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Abstract Vascular aging has a central role in the
pathogenesis of cardiovascular diseases contribut-
ing to increased mortality of older adults. There is
increasing evidence that, in addition to the docu-
mented role of cell-autonomous mechanisms of aging,
cell-nonautonomous mechanisms also play a critical
role in the regulation of vascular aging processes. Our
recent transcriptomic studies (Kiss T. et al. Gerosci-
ence. 2020;42(2):727-748) demonstrated that circu-
lating anti-geronic factors from young blood promote
vascular rejuvenation in aged mice. The present study
was designed to expand upon the results of this study
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by testing the hypothesis that circulating pro-geronic
factors also contribute to the genesis of vascular aging
phenotypes. To test this hypothesis, through heterochro-
nic parabiosis, we determined the extent to which shifts
in the vascular transcriptome (RNA-seq) are modulated
by the old systemic environment. We reanalyzed exist-
ing RNA-seq data, comparing the transcriptome in the
aorta arch samples isolated from isochronic parabiont
aged (20-month-old) C57BL/6 mice [A—(A); parabiosis
for 8 weeks] and young isochronic parabiont (6-month-
old) mice [Y—(Y)] and also assessing transcriptomic
changes in the aortic arch in young (6-month-old)
parabiont mice [Y—(A); heterochronic parabiosis for
8 weeks] induced by the presence of old blood derived
from aged (20-month-old) parabionts. We identified
528 concordant genes whose expression levels dif-
fered in the aged phenotype and were shifted towards
the aged phenotype by the presence of old blood in
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young Y—(A) animals. Among them, the expression of
221 concordant genes was unaffected by the presence
of young blood in A—(Y) mice. GO enrichment analysis
suggests that old blood-regulated genes may contrib-
ute to pathologic vascular remodeling. IPA Upstream
Regulator analysis (performed to identify upstream
transcriptional regulators that may contribute to the
observed transcriptomic changes) suggests that the
mechanism of action of pro-geronic factors present in
old blood may include inhibition of pathways mediated
by SRF (serum response factor), insulin-like growth
factor-1 (IGF-1) and VEGF-A. In conclusion, relatively
short-term exposure to old blood can accelerate vascu-
lar aging processes. Our findings provide additional evi-
dence supporting the significant plasticity of vascular
aging and the existence of circulating pro-geronic fac-
tors mediating pathological remodeling of the vascular
smooth muscle cells and the extracellular matrix.

Keywords Heterochronic parabiosis - Aging -
Vascular aging - Transcriptome - Aneurysm -
Atherosclerosis - Aorta

Introduction

Diseases of the large arteries (including aorta
aneurysm and large vessel atherosclerosis and its
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complications [e.g., ischemic stroke, ischemic heart
disease]) are among the most common causes of seri-
ous long-term disability and cardiovascular mortality
among older adults in the developed world [1]. These
diseases account for approximately one-third of all
deaths in the United States in those over 65 and nearly
two-thirds of all deaths in those over the age of 85 [2].

Epidemiological studies demonstrate that the
impact of traditional risk factors (including high
blood pressure, hypercholesterolemia, tobacco
smoking, obesity, diabetes mellitus, etc.) on the inci-
dence of the aforementioned large vessel diseases
are dwarfed by the single most important risk factor
for these vascular pathologies: advanced aging [1].
In order to develop novel approaches for the preven-
tion and treatment of age-related large vessel pathol-
ogies, it is essential to elucidate the contribution of
shared biological mechanisms of aging to the func-
tional and phenotypic changes that are manifested
in the old vasculature [3, 4]. Previous studies have
characterized several important cell-autonomous
mechanisms that drive functional decline in the
aging vasculature [1], including mitochondrial dys-
function [5, 6], increased oxidative stress [1, 7-17],
impaired production and bioavailability of NO [11,
18-20], cellular NAD +depletion, and energetic
dysfunction [5, 21-24] and dysregulation of sirtuin
pathways [8, 25].
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Over the past decade, major advances in the field
of geroscience, coupled with advances in animal
model development and multiomics technologies,
have led to explosive growth in biological informa-
tion that implicates cell-nonautonomous mechanisms
as also playing critical roles in driving organismal
aging processes and pathogenesis of age-related dis-
eases [26-31]. It was also recognized that aging is
characterized by complex alterations of inter-organ
communication, which also modulate cell-autono-
mous processes of aging in the cardiovascular system,
exacerbating the genesis of vascular pathologies [1].
Accordingly, there is growing evidence that there are
factors present in the circulation, which are derived
from other organ systems (including the adipose tis-
sue, the endocrine system, the gastrointestinal tract,
the central nervous system, the immune system) and
regulate cellular aging processes in the vasculature.
The view has emerged that there are multiple circu-
lating anti-geronic factors extant, which can reverse
or prevent the genesis of cardiovascular aging pheno-
types and whose production declines with age [4].

Parabiosis is a surgical procedure for join-
ing two animals to allow for blood exchange via
their shared circulatory systems [32-35]. By com-
paring heterochronic (young—old) and isochronic
(young—young and old—old) parabiont pairs of ani-
mals [29, 31, 34-55], it can be investigated how cir-
culating (humoral and/or cellular) factors derived
from one animal contribute to the genesis of aging
phenotypes in various organ systems in the other
parabiont. Using heterochronic parabiosis in mice as
an experimental tool, our recent studies [54] provided
critical evidence that the presence of young blood
derived from young parabionts significantly improves
endothelium-dependent vasorelaxation and attenuates
the production of reactive oxygen species in vessels
of heterochronic parabiont aged mice. Using RNA-
seq, we also assessed transcriptomic changes in the
aortic arch associated with aging and heterochronic
parabiosis [54]. We have identified 212 discordant
genes whose expression levels differed in the aged
phenotype but have shifted back toward the young
phenotype by the presence of young blood in aged
heterochronic parabiont animals [54]. Pathway anal-
ysis suggested that vasoprotective effects conferred
by young blood include mitochondrial rejuvenation.
On the basis of the transcriptomic changes, insulin-
like growth factor-1 (IGF-1) has been identified as a

putative circulating anti-geronic factor that contrib-
utes to the vasoprotective effects mediated by expo-
sure to young blood [54]. This finding accords with
the results of earlier studies, which demonstrated that
circulating levels of IGF-1 decline in older adults [56]
and aged mice [27]. Importantly, IGF-1 exerts multi-
faceted vasoprotective effects, maintaining a youthful
vascular phenotype and function [27, 56-63].

Experiments using heterochronic parabiosis also
suggested that in addition to anti-geronic factors,
there are also pro-geronic factors present in the cir-
culation that can accelerate cellular aging processes.
The production of circulating pro-geronic factors
increases with age and they mediate deleterious cell-
nonautonomous effects in multiple organs, including
the skeletal muscle, central nervous system, and the
heart [29, 39, 47, 48, 50, 52, 64].

The present study was designed as a follow-up
investigation to test the hypothesis that age-related
changes in circulating pro-geronic factors also con-
tribute to vascular aging. To test this hypothesis, we
reanalyzed our previously published transcriptomic
dataset [54] assayed from the aortas of heterochro-
nic (young—old) and isochronic (young—young and
old—old) parabiont pairs of experimental mice. We
determined to what extent, if any, transposition of
aging phenotypes could be observed in the young
aorta by exposure to an old systemic environment.

Methods
Animals and parabiosis surgery

To elucidate the effects of old blood on the vascular
transcriptome, in the present study we reanalyzed
our previously published transcriptomic dataset [54]
assayed from the aortas of heterochronic (young—old)
and isochronic (young-young and old—old) para-
biont pairs of experimental mice. Here we provide
a short description of the experimental procedures
based on the description of the methods in our origi-
nal publication [54]. As previously described [54],
young (4-month-old) and aged (18-month-old) male
C57BL/6 mice were obtained from the aging rodent
colony maintained by the National Institute on Aging
at Charles River Laboratories (Wilmington, MA).
Mice were housed under specific pathogen-free con-
ditions at the rodent barrier facility at Albert Einstein

@ Springer



GeroScience

College of Medicine under a controlled photoper-
iod (12 h light; 12 h dark) with unlimited access to
water and were fed a standard chow diet (ad libitum).
Parabiosis surgery in young and aged animals was
carried out by the Einstein Health Span Core [65],
according to published protocols [66, 67] as reported
previously [30]. Surgical unions were performed
between young animals (isochronic; young Y-(Y);
n=4 pairs), aged animals (isochronic old; A—(A);
n=4 pairs), and young and aged mice (heterochronic
Y—(A) and A—(Y); n=>5 pairs) as described [30]. Fol-
lowing surgery, animals were kept on a partial heat-
ing pad overnight. Pairs were then intensively moni-
tored and received subcutaneous (s.c) injections of
Banamine (2 mg/kg each) immediately post-op and
twice a day for three days and then once daily for
four days. Animals also received 1 mL of Ringer’s
lactate (s.c.) immediately after, daily for three days
post-op to prevent dehydration. Animals remained
joined for~8 weeks prior to sacrifice. All experi-
mental procedures were approved by the Institutional
Animal Care and Use Committee (JACUC) at the
Albert Einstein College of Medicine and the Univer-
sity of Oklahoma Health Sciences Center. All animal
experiments were carried out in accordance with the
National Institutes of Health guide for the care and
use of laboratory animals (NIH Publications No.
8023, revised 1978).

RNA isolation, cDNA synthesis, library construction,
and next-generation sequencing

RNA was isolated from the aortic arch samples using
AllPrep DNA/RNA Mini Kit (Qiagen) as previously
described [68, 69]. Prior to 3'-tag RNA-seq analysis
quality control measures were implemented. The con-
centration of RNA was ascertained via fluorometric
analysis on a Thermo Fisher Qubit fluorometer. The
overall quality of RNA was verified using an Agilent
Tapestation instrument. Following initial QC steps
sequencing libraries were generated using the Lexo-
gen Quantseq FWD library prep kit according to the
manufacturers’ protocol by the Clinical Genomics
Core of the Oklahoma Medical Research Foundation
[70]. Briefly, the first strand of cDNA was generated
using 5'-tagged poly-T oligomer primers. Follow-
ing RNase digestion, the second strand of cDNA was
generated using 5'-tagged random primers. A sub-
sequent PCR step with additional primers added the
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complete adapter sequence to the initial 5’ tags, added
unique indices for demultiplexing of samples, and
amplified the library. Final libraries for each sample
were assayed on the Agilent Tapestation for appropri-
ate size and quantity. These libraries were then pooled
in equimolar amounts as ascertained via fluorometric
analyses. Final pools were absolutely quantified using
gPCR on a Roche LightCycler 480 instrument with
Kapa Biosystems Illumina Library Quantification
reagents. Sequencing was performed using custom
primers on an Illumina NextSeq 500 instrument with
High Output chemistry and 75 bp single-ended reads.

RNA-seq data analysis and visualization

Raw sequencing reads were trimmed of their [llumina
TruSeq adapter sequences using Trimmomatic v0.35
[71], filtered for contaminants of ribosomal, mito-
chondrial, and hemoglobin transcripts, then aligned
to the mouse genome version GRCm38 using Kallisto
v0.43.03 [72]. Samples were checked for outliers and
separation by principle components analysis (PCA)
with the R function prcomp. Raw expression counts
were summarized at the gene level to transcript-
length adjusted, library-size scaled counts per million
(CPM) with the R/Bioconductor package tximport
[73]. Differential expression analysis was performed
using the empirical Bayes approach implemented
in the R/Bioconductor package DESeq2 [74]. Sig-
nificantly differentially expressed (DE) genes had an
absolute log2 fold change>0.585 (corresponding to
a change of 50% or more in the expression) and the
False Discovery Rate FDR-adjusted p-value<0.05.
Gene annotation was done using biomaRt [75] in the
R/Bioconductor package. The R package pheatmap
v1.0.12 was used to perform hierarchical clustering
and to generate the heat maps. The org.Mm.eg.db
v3.8.2 R/Bioconductor package was used to collect
Gene Ontology, KEGG, and Reactome terms associ-
ated with the DE (differentially expressed) genes. The
same package was used to translate Ensemble IDs
to Entrez IDs when it was required by the statistical
packages.

Functional annotation
To collect gene annotation data the g:Profiler service

version e102_eg49_pl15_e7{f1c9 was used via the R
interface and with fdr correction method applying
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significance threshold of 0.05 [76]. The results were
plotted using the ggplot2 v3.3.5 package [https:/
ggplot2.tidyverse.org] in the R v4.1.1 environ-
ment and the EnrichmentMap v3.3.3 tool [77] in the
Cytoscape v3.8.2 environment [78].

To identify upstream regulators that potentially
explain the observed gene expression changes in our
samples we used upstream regulator analysis (URA)
algorithm [79] implemented in the ingenuity pathway
analysis (IPA; QIAGEN) software [79]. IPA is a com-
mercial software package most commonly utilized to
intersect DE genes with known biological functions
and pathways maintained in the ingenuity knowledge
base, a collection of nearly 5 million experimental
findings manually curated from either literature or
third-party databases. Detailed information can be
found at http://qiagen.force.com/KnowledgeBase/.

Gene set enrichment analysis

Gene set enrichment analysis was performed using
the fgsea v1.18.0 package implemented in R [80].
Results were plotted in ggplot2.

Results

Exposure to old blood mimics age-related changes in
vascular mRNA expression profile

By re-analyzing the previously collected transcrip-
tomic data [81] data we assessed transcriptomic
changes in the aorta arch associated with aging and
exposure to aged blood via heterochronic parabiosis.
Biological replicates from the isochronic parabiosis
mice [Y—(Y) and A—(A)] exhibited distinct cluster-
ing by PCA, suggesting distinct aortic transcrip-
tomes (Fig. 1A). Transcriptomic profiles of aortas of
young mice exposed to aged blood [Y—(A)] clustered
between the isochronic pairs in the PCA, suggesting
old blood shifted the aortic transcriptome of young
mice toward an aged phenotype. In our original publi-
cation of the transcriptomic data [54] we documented
the presence of an outlier (Y—(A) sample #3 in the
original dataset). This sample was excluded from the
present re-analysis of the dataset.

In Fig. 1B a heat map is shown as a graphical rep-
resentation of normalized expression values of genes
that are differentially expressed both in aorta samples

derived from isochronic parabiont aged mice [A-(A)]
and heterochronic parabiont young mice [Y—(A)] as
compared to those in aorta samples obtained from
isochronic parabiont young mice [Y—(Y)]. Hierarchi-
cal clustering analysis reveals groups of genes whose
expression is similarly up- or down-regulated in aor-
tas of both A—(A) mice and Y—(A) mice relative to
Y—(Y) mice but is unaffected by exposure to young
blood in aged mice [A—(Y)].

We then determined the number of genes that were
significantly upregulated or downregulated (“differ-
entially expressed”’; DE; fold-change> 1.5 or<0.67;
p<0.05 adjusted for multiple comparisons) in the
aorta by aging or by heterochronic parabiosis. We
then filtered for genes that are significantly altered
(adjusted p<0.05), expressed at an appreciable
level (fragments per kilobase of transcript per mil-
lion mapped reads > 1). There were 347 DE genes in
A—(A) animals compared to Y—(Y) controls [81]. We
further identified 39 DE genes in Y-(A) mice com-
pared to A—(A) controls. In Fig. 1C a volcano plot
shows statistical significance (p-value) versus mag-
nitude of age-related change in gene expression. Red
symbols denote genes, whose expression levels sig-
nificantly differed in Y—(A) mice.

We realized that significance cut-offs to identify
DE genes shared between the age-effect [A—(A) vs.
Y-(Y)] and old blood-effect [Y—(A) vs. Y-(Y)] data-
sets might be too stringent with the result that the
analysis in Fig. 1C might miss concordant patterns of
gene expression with important biological relevance
for old blood-induced accelerated vascular aging and
age-related vascular pathologies. Thus, we also used
a slightly relaxed approach to detect concordant tran-
scriptional patterns (here termed “pro-geronic shifts’)
by comparing the age-effect and old blood-effect gene
expression datasets using combination criteria that
took into account the effect direction (Fig. 2). Specifi-
cally, genes were ranked by their effect size direction
and ranked lists were compared to identify overlap-
ping genes across a continuous significance gradient.
Genes with “pro-geronic shifts” were defined as con-
cordant genes that (1) were DE based on both p-value
and fold-change criteria either in the age-effect or
the old-blood-effect comparison, (2) satisfied a fold-
change criterion with a cutoff of > 1.5 or <0.67.

in the comparison in which the statistical sig-
nificance criterion was not met, and (3) satisfied the
criterion that the effect directions of the age-effect
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A(A)2

Fig.1 Old blood induces aging-like changes in vascular
mRNA expression profile Panel A: Principal component anal-
ysis (PCA) plot of mRNA expression profiles in aorta sam-
ples derived from isochronic parabiont young mice [Y—(Y)],
isochronic parabiont aged mice [A—(A)] and heterochronic
parabiont young mice [Y—(A)]. The profiles from Y—(Y) mice
(green) cluster separately from clusters representing A—(A)
mice (red) and Y—(A) mice (yellow) in the space of the first
three principal components. The A—(A) and Y—(A) expression
profiles were more similar and clustered less discriminately
in the PCA, indicating the impact of old blood on the aorta
transcriptome in young mice. PC1, PC2, and PC3: Principal
components 1, 2, and 3, respectively. Panel B: The heat map
is a graphic representation of normalized expression values
of genes that are differentially expressed both in aorta sam-

and old blood-effect are the same. We found that
these combination criteria found more biologically
meaningful sets of genes showing pro-geronic shift
(n=1528) than the analysis requiring concordant genes
meet both fold change and statistical significance cri-
teria (Fig. 2A, blue dots; Fig. 2B, three internal inter-
sections in gray). These data suggest that changes in
circulating pro-geronic factor(s) contribute to age-
related dysregulation of vascular gene expression.

Old blood induces aging-like transcriptomic changes
by regulating genes expressed in endothelial cells and
smooth muscle cells in the mouse aorta

Next, we aimed to determine whether old blood fac-
tors promote aging-like gene expression changes in
endothelial cells (EC) or vascular smooth muscle
cells (SMC). To identify genes that are enriched in
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ples derived from isochronic parabiont aged mice [A—(A)]
and heterochronic parabiont young mice [Y—(A)] as compared
to those in aorta samples obtained from isochronic parabiont
young mice [Y—(Y)]. The expression values for these genes
in aorta samples obtained from heterochronic parabiont aged
mice [A—(Y)] are also shown. Hierarchical clustering analysis
reveals groups of genes whose expression is similarly up- or
down-regulated in aortas of both A—(A) mice and Y—(A) mice
but is unaffected by the presence of young blood in A—(Y)
mice. Panel C: Volcano plot depicting differentially expressed
genes comparing aortic samples derived from Y—(Y) and Y-
(A) mice. Stratified p-values are plotted against expression fold
changes for results obtained in Y—(A) samples normalized to
Y—(Y) samples. Colored points refer to genes whose expres-
sion is significantly altered in Y—(A) mice

endothelial cells and SMCs, we reanalyzed single-
cell data RNA-seq data obtained from the intima and
madia leyers of wild-type mouse aortas, published by
Deng et al [82].

Unbiased Louvain clustering of cells resolved 2
robust, transcriptionally distinct clusters of aorta-
derived cells (Fig. 3A-C). Clusters of endothelial
cells and vascular smooth muscle cells (SMCs) were
identified by the significant, cluster-specific markers
calculated by the MAST method as described [83].
Then, we determined which concordant genes from
our dataset showing pro-geronic shifts are expressed
in the endothelial cells and/or the SMCs (Fig. 3D).
We found that old blood induces aging-like transcrip-
tomic changes in young mouse aortas by regulating
genes expressed both in endothelial cells and SMCs.

Old blood-induced vascular transcriptomic
changes in young mice predict pathologic vascular
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Fig.2 Old blood promotes aging-like changes in vascular
mRNA expression profile: identification of concordant genes
Panel A: Old blood-induced changes in gene expression (log,
fold changes; heterochronic parabiont young [Y—(A)] mice
vs. isochronic parabiont young [Y—(Y)] mice) plotted against
age-related changes (log, fold changes; isochronic parabiont
aged [A-—(A)] mice vs. isochronic parabiont young [Y—(Y)]
mice) in the aortic transcriptome. Red symbols indicate con-
cordant differentially expressed genes, whose expression sig-
nificantly changes with age, and the direction of this effect is
mimicked by exposure to old blood. Blue and green symbols
denote concordant genes, whose expression similarly changes
in aging and by old blood exposure, but only the aging (blue)
or the old blood effect (green) reaches the cutoff for statistical
significance. Panel B: Venn diagrams showing the numbers of
differentially expressed mRNAs in each group. The blue circle
represents genes, which are significantly up- or down-regulated
in aged mice as compared to young mice. The green circle rep-

remodeling, suggesting a possible role for circulat-
ing factors present in old blood in the pathogenesis of
aorta aneurysms and atherosclerosis.
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resents genes, which are significantly up- or down-regulated by
the presence of old blood in young mice. The intersection of
the two circles represents concordant differentially expressed
genes. Grey areas represent concordant genes, whose expres-
sion similarly changes in aging and by old blood exposure, but
only the aging or the old blood effect reaches the cutoff for sta-
tistical significance. Panel C: The heat map is a graphic repre-
sentation of normalized expression values of concordant genes
in aorta samples derived from Y—(Y), A—(A), and Y—(A) mice.
Data for aorta samples derived from A—(Y) mice are shown
for comparison. Note that the expression of the majority of
concordant genes, which are down-regulated by old blood in
young mice, is unaffected by the presence of young blood in
old mice. These data indicate that many of the effects of pro-
geronic factors, which induce accelerated aging phenotypes in
young mice, cannot be rescued by the presence of young blood
in old mice

We performed GO (gene ontology) enrichment
analysis to explore potential biological functions
of the old blood-induced concordant genes with
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Fig. 3 Old blood induces aging-like transcriptomic changes
by regulating genes expressed in endothelial cells and smooth
muscle cells in the mouse aorta To determine the expression
pattern of concordant genes in endothelial cells (ECs) and vas-
cular smooth muscle cells (SMCs), single-cell RNA-seq data
were obtained in ECs, and SMCs derived from the mouse
aorta and published by Deng et al [82] were reanalyzed. Panel
A-C: Identification of ECs and SMCs based on differentially
expressed marker genes. Panel C depicts two-dimensional
tSNE plots based on differentially expressed marker genes,
colored by cluster. Panels A and B depict the expression of a

pro-geronic shifts. GO enrichment analysis of con-
cordant genes identified functions in vascular SMC
and extracellular matrix remodeling (Fig. 4A; Table
S1).

Overrepresentation analysis of GO terms revealed
that genes regulating vascular SMC function and
processes involved in vascular remodeling (includ-
ing the GO terms “regulation of cell migration”
[GO:0030334] and “blood vessel development”
[GO:0001568]), genes regulating oxidative stress
responses (including the GO terms “response to oxi-
dative stress” [GO:0006979] and ‘“reactive oxygen
species biosynthetic process” [G0O:1903409]), extra-
cellular matrix related genes (including the GO terms
“connective tissue development” [GO:0061448];
“extracellular matrix organization” [GO:0030198]

@ Springer

canonical endothelial cell marker (Pecaml) and a canonical
smooth muscle cell marker (Myhll), respectively. Relative
expression values for each cell in each cluster identified in
the two-dimensional tSNE plots are shown. Panel D: Bubble
plot shows the relative expression of the concordant genes in
mouse aorta ECs and SMCs. Bubble size is proportional to the
percentage of cells expressing a gene, and color intensity are
proportional to average scaled gene expression within a cluster.
Note that old blood induces aging-like transcriptomic changes
in young mouse aortas by regulating genes expressed both in
endothelial cells and smooth muscle cells

and “collagen metabolic process” [G0:0032963]),
and genes regulating apoptosis (including the GO
terms “regulation of cell death” [GO:0010941] and
“apoptotic process” [GO:0006915] and “positive reg-
ulation of cell death” [GO:0010942]) were overrepre-
sented among the concordant genes.

For functional enrichment visualization, we
used the EnrichmentMap Cytoscape App [77]. Fig-
ure 4B-D shows the enrichment maps in which sig-
nificantly enriched GO terms associated with con-
cordant genes are organized into a network. Nodes
represent gene-sets (GO terms), edges represent
mutual overlap, and, in this way, mutually overlap-
ping GO terms cluster together. Note that the pro-
geronic shift in gene expression profile in aortas of
Y—(A) animals are associated with transcriptional
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Fig. 4 GO enrichment analysis results: old blood induces a
gene expression signature indicating pathological remodeling
of the aorta Panel A: Bubble plots visualizing gene ontology
(GO) representatives of biological processes (BP, left panel),
cellular components (CC, middle panel), and molecular func-
tions (MF, right panel), which are over-represented (enriched)
in the concordant genes induced by old blood. Terms are
shown at —log2 (adjusted p-value; cut off >0.05) vs. term size.
Bubble size indicates the number of genes annotated with a

changes indicating pathological vascular remodeling
and oxidative stress-related responses.

In humans, aging is known to promote the patho-
genesis of aorta aneurysms and atherosclerosis [1].
In the present study, we aimed to elucidate how aorta
aneurysm- and atherosclerosis-related gene expres-
sion is altered by circulating factors present in old
blood. To compile a list of genes with known func-
tions related to the pathogenesis of aorta aneurysms
and atherosclerosis we identified genes associated

term in the list of concordant genes. Note that the presence of
old blood in young animals is associated with transcriptional
changes indicating multifaceted biological processes related
to vascular remodeling. Panels B, C: Enrichment maps visu-
alizing shared, significantly enriched GO terms (Panels B,
C: Biological processes, cellular components, and molecular
functions, respectively) for concordant genes organized into
a network. Note that mutually overlapping GO terms cluster
together

with aorta aneurysms and atherosclerosis using the
IRIDESCENT text mining package [84]. IRIDES-
CENT’s database contains over 730,000 recog-
nized terms and phrases, representing over 162,000
unique concepts obtained from public databases
(OMIM, Entrez Gene, Gene Ontology, ChemlID,
FDA approved drugs, and disease ontology terms).
Over 22 million MEDLINE abstracts were processed
to identify co-occurring terms. This creates a net-
work of concepts, weighted by their frequency of

@ Springer
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co-occurrence. Concepts such as “aorta aneurysm”
and “atherosclerosis” were then queried for frequently
co-occurring gene names. We used Gene Set Enrich-
ment Analysis (GSEA) for interpreting the expression
of aorta aneurysm- and atherosclerosis-related genes
[85] in all of our comparisons of mouse pairs. GSEA
of these aorta aneurysms- and atherosclerosis-related
genes was performed using a ranked gene list for each
comparison of mouse pairs based on the gene-level
signed statistics (Figs. 5 and 6, respectively). Fig-
ure 5SA—C depicts a running-sum statistic (enrichment
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0
Aging log2 FC

score) based on Fig. 5D, increasing when a gene is
a member of the aorta aneurysm-related gene set and
decreasing when it is not. Note that in aged mice,
enrichment scores increased predominantly on the
right indicating age-related down-regulation of genes
related to extracellular matrix homeostasis (Fig. 5A).
In response to the presence of old blood in young
mice enrichment scores showed similar increases
on the right, indicating that presence of old blood in
young mice mimics the effects of aging on extracel-
lular matrix homeostasis (Fig. 5B). In contrast, young
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«Fig. 5 Presence of old blood in young mice mimics age-
related changes in vascular expression of genes associated
with the pathogenesis of aorta aneurysms Panel A: Gene set
enrichment analysis (GSEA) to test the effect of aging on the
enrichment of the set of genes associated with the pathogenesis
of aorta aneurysms by comparing aorta samples derived from
isochronic parabiont young mice [parabiont: young; Y—(Y)]
and isochronic parabiont aged mice [parabiont: aged; A—(A)].
Aging-induced gene expression changes were ranked from
most up-regulated (left) to most down-regulated (right). Ticks
represent genes encoding aneurysm-related factors. Shown is
a running-sum statistic (enrichment score) based on panel D,
increasing when a gene is a member of the aneurysm-related
gene set and decreasing when it is not. Panel B: GSEA show-
ing the effect of exposure to old blood on the enrichment of
aneurysm-related genes. Aorta samples derived from isoch-
ronic parabiont young mice [parabiont: young; Y—(Y)] and
heterochronic parabiont young mice [parabiont: aged; Y—(A)]
were compared. Note that in aged mice, enrichment scores
increased predominantly on the right indicating age-related
down-regulation of genes related to extracellular matrix home-
ostasis. In response to the presence of old blood in young
mice, enrichment scores showed similar increases on the right,
indicating that the presence of old blood in young mice mim-
ics the effects of aging on aneurysm-related genes. Panel C:
Youngblood had no consistent effect on aneurysm-related
genes (comparison: A—(Y) vs. A—(A)). Panel D: The heat maps
are graphical representations of normalized expression values
of aneurysm-related genes. Hierarchical clustering analysis
revealed the similarities on aortic expression profiles of aneu-
rysm-related genes in aged mice and old blood exposed young
mice. Panel E: Old blood-induced changes in aneurysm-related
gene expression (log, fold changes; Y—(A) vs. Y—(Y)) plot-
ted against age-related changes (log, fold changes; A—(A) vs.
Y—(Y)) in aneurysm-related gene expression. Note that many
aneurysm-related genes are dysregulated both in aging and by
the presence of old blood in young animals as well

blood had no consistent effect on aneurysm-related
genes (Fig. 5C). Figure 5E shows that many aneu-
rysm-related genes are dysregulated both in aging
and by the presence of old blood in young animals as
well. GSEA of atherosclerosis-related genes yielded
similar results (Fig. 6), showing that many genes
involved in the regulation of atherogenesis are simi-
larly dysregulated both in aging and by the presence
of old blood in young animals.

Ingenuity upstream regulator analysis

We have performed IPA upstream regulator analysis
[54] to identify upstream transcriptional regulators
that may contribute to the observed transcriptomic
changes in our dataset, which can help to iden-
tify the mechanism of action of pro-geronic factors
present in the old blood. The upstream regulator

analysis is based on information in the ingenuity
knowledge base (a curated relational database of
the available biomedical literature) on the expected
effects between transcriptional regulators and their
target genes. Using the IPA Upstream Regulator
analysis, it was examined how many known targets
of each transcriptional regulator were differentially
expressed in our samples and the direction of these
gene expression changes were compared to what
is expected from the literature. On the basis of the
observed direction of change, a prediction of the
activation state of the predicted transcriptional reg-
ulators (“activated” or “inhibited”) was made. For
each potential transcriptional regulator two statisti-
cal measures, an overlap p-value and an activation
z-score were computed. The overlap p-value calls
likely upstream regulators based on the significant
overlap between the DE genes and known targets
regulated by that particular transcriptional regula-
tor. The activation z-score is used to infer the activa-
tion state of the predicted transcriptional regulators
(“activated” or “inhibited”) based on comparison
with a model that assigns random regulation direc-
tions. The results of the IPA upstream regulator
analysis are shown in Table 1. In particular, the
IPA upstream regulator analysis predicts that old
blood-induced accelerated vascular aging is associ-
ated with inhibition of pathways mediated by SRF
(serum response factor), insulin-like growth factor-1
(IGF-1) and VEGF-A (Table 1).

Effect of old blood on SRF-regulated pathways

To investigate the contribution of SRF-regulated
pathways to the effects induced by old blood we ana-
lyzed the expression of known SRF-regulated genes
(Table S2). SRF-regulated genes were identified
using the MotifMap database [86], and a literature
search [87]. A list of SRF-regulated genes was also
retrieved from the ingenuity knowledge base.

We used GSEA for interpreting the expression of
SRF-driven genes. Figure 7A,B depicts a running-
sum statistic (enrichment score) based on Fig. 7C.
Note that in aged mice, enrichment scores increased
predominantly on the right indicating age-related
down-regulation of SRF-driven genes (Fig. 7A).
In response to the presence of old blood in young
mice, enrichment scores showed similar increases
on the right, indicating that the presence of old
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blood in young mice mimics the effects of aging Discussion

on SRF-driven genes (Fig. 7B). We also performed
comparison analysis using the Ingenuity Pathway
Analysis tool to depict aging- and old-blood-effect
changes in the SRF-driven genes (Fig. 7D and E,
respectively). Note that many SRF-driven genes
are similarly dysregulated both in aging and by the
presence of old blood in young animals as well.
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The key finding of this study is that relatively short-
term exposure to an old humoral environment in
young mice can promote the acquisition of acceler-
ated vascular aging phenotypes, including dysregula-
tion of the expression of genes related to pathological
vascular remodeling.

Although significant progress has been made in
recent years to understand the genesis of cardiovas-
cular aging phenotypes that arise as the consequence
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«Fig. 6 Presence of old blood in young mice mimics age-
related changes in vascular expression of genes associated
with the pathogenesis of atherosclerosis Panel A: Gene set
enrichment analysis (GSEA) to test the effect of aging on the
enrichment of the set of genes associated with the pathogen-
esis of atherosclerosis by comparing aorta samples derived
from isochronic parabiont young mice [parabiont: young; Y-
(Y)] and isochronic parabiont aged mice [parabiont: aged;
A—(A)]. Aging-induced gene expression changes were ranked
from most up-regulated (left) to most down-regulated (right).
Ticks represent genes encoding atherosclerosis-related fac-
tors. Shown is a running-sum statistic (enrichment score)
based on panel D, increasing when a gene is a member of the
atherosclerosis-related gene set and decreasing when it is not.
Panel B: GSEA showing the effect of exposure to old blood
on enrichment of atherosclerosis-related genes. Aorta sam-
ples derived from isochronic parabiont young mice [parabi-
ont: young; Y—(Y)] and heterochronic parabiont young mice
[parabiont: aged; Y—(A)] were compared. Note that in aged
mice enrichment scores increased predominantly on the right
indicating age-related dysregulation of genes related to athero-
protection. In response to the presence of old blood in young
mice enrichment scores showed similar increases on the right,
indicating that the presence of old blood in young mice mim-
ics the effects of aging. Panel C: Youngblood had no consistent
effect on atherosclerosis-related genes (comparison: A—(Y) vs.
A—(A)). Panel D: The heatmaps are graphic representations of
normalized expression values of atherosclerosis-related genes.
Hierarchical clustering analysis revealed the similarities on
aortic expression profiles of atherosclerosis-related genes in
aged mice and old blood exposed young mice. Panel E: Old
blood-induced changes in atherosclerosis-related gene expres-
sion (log, fold changes; Y—(A) vs. Y—(Y)) plotted against age-
related changes (log, fold changes; A—(A) vs. Y—(Y)) in ath-
erosclerosis-related gene expression. Note that many genes are
similarly dysregulated both in aging and by the presence of old
blood in young animals as well

of spontaneous, stochastic damage [4, 16, 18, 21, 70,
88-97], the relative contribution of cell-autonomous
and non-autonomous mechanisms to vascular aging
remained unclear. Here we show for the first time that
circulating factors present in the blood of old mice
promote accelerated vascular aging mimicking select
transcriptional changes associated with old age in the
aorta. Our findings support the concept that cell-non-
autonomous mechanisms play important roles in driv-
ing vascular aging processes and thereby likely pro-
mote the pathogenesis of age-related cardiovascular
diseases [1]. Previous studies also demonstrated that
the presence of old blood in the circulation of young
heterochronic parabionts also promotes aging-like
phenotypic changes in the liver, heart, and brain [31,
47, 49, 52, 55, 98]. Interestingly, circulating noncel-
lular factors present in the old blood were also shown
to confer pro-geronic effects on the central nervous

system [99, 100], suggesting that key circulating anti-
geronic factor(s) may penetrate the blood-brain bar-
rier and/or exert their deleterious effects on the brain
by promoting accelerated aging in the cerebral micro-
circulation. The remarkable level of the malleability
of vascular aging phenotypes in response to both anti-
geronic [7, 101-103] and pro-geronic circulating fac-
tors highlight the potential for therapeutic interven-
tions to reverse the deleterious effects of aging in the
circulatory system via targeting the systemic milieu
directly or indirectly.

Aging is associated with structural remodeling of
the aorta both in humans [104, 105] and laboratory
rodents [106-108]. These aging-induced structural
and cellular changes alter the mechanical proper-
ties of the aorta and contribute to the genesis of age-
related large vessel diseases, including atherosclerosis
and aneurysm formation. Here we report that circu-
lating factors present in the blood of old mice induce
aging-like changes in vascular remodeling-related
gene expression in the aorta of young parabionts. On
the basis of previous findings [108—112] we posit that
old blood-induced dysregulation of genes driving
production, assembly, and deposition of extracellular
matrix components, SMC proliferation, and apoptosis
contribute to the genesis of accelerated vascular aging
phenotypes. In addition, dysregulation of genes reg-
ulating ROS metabolism may also contribute to old
blood-mediated accelerated vascular aging.

Our GSEA results provide additional transcrip-
tomic insight into the contribution of circulating fac-
tors to the pathogenesis of specific age-related vascu-
lar diseases. Specifically, we predict that circulating
factors present in old blood may exacerbate biologi-
cal processes involved in the pathogenesis of aorta
aneurysm and atherosclerosis. Further studies are evi-
dently needed to test these predictions experimentally.

Importantly, the vasculature comes in contact with
each plasma constituent derived from the old blood
(including circulating hormones, cytokines, other
proteins, peptides, lipid mediators, micropeptides,
metabolites, and circulating exosomes) as well as
circulating cellular factors, all of which may confer
important pro-geronic effects. The exact nature and
the cellular origins of circulating pro-geronic factors
responsible for the induction of accelerated vascu-
lar aging in our studies remain obscure. In the pre-
sent study, we performed upstream regulator analysis
to gain insight into the cellular pathways induced by
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pro-geronic factors present in old blood. This analysis
highlighted the possible role of TGFf signaling and
other pathways involved in vascular remodeling. The
possibility indicated by this analysis that pro-geronic
factors present in old blood may inhibit the tumor
suppressor and vasculoprotective pS3 pathway is also
highly intriguing.

It is also potentially interesting for the discovery
of novel cell-nonautonomous mechanisms of aging
that the upstream regulator analysis identified inhibi-
tion of SRF-driven pathways as a putative mediator of
the effects of old blood on the aorta. Greenberg dis-
covered in 1984 that the addition of young serum to
quiescent cells in culture rapidly stimulates c-fos and
thereby promotes cell growth [113]. Subsequently, it
was demonstrated that several growth factors can have
synergistic effects and a short DNA sequence was
identified in the promoter region of c-fos and other
serum-responsive genes (termed serum response ele-
ment or SRE), which renders the cells responsive to
stimulation by young serum samples [114]. Treisman
identified the transcription factor that binds to SRE
and named it Serum Response Factor or SRF. [115,
116]. Interestingly, cells of the cardiovascular sys-
tem, including VSMCs, were found to be particularly
sensitive to stimulation by young serum, and SRF
was shown to regulate several VSMC-specific genes
[87, 117-120]. SRF is down-regulated in aging skel-
etal muscle in mice and humans [121]. Importantly,
muscle-specific knockdown of SRF was shown to
promote muscle atrophy [121]. Future studies should
determine the roles of dilution of young blood factors
by old blood [99, 100] and the effects of specific pro-
geronic factors in old blood, which interfere with the
young blood factors activating SRF-driven pathways.

Interestingly, our analysis also suggests that the
presence of old blood inhibits VEGF-A and IGF-1
signaling in young vessels. These findings are poten-
tially significant as VEGF-A signaling in the vas-
culature is known to decrease with age, and recent
studies show that an increase in circulatory VEGF-A
in aged mice exerts rejuvenating effects on the aged
vasculature [122]. Similarly, circulating free IGF-1
also declines in aging [123-126], in part, due to an
increased presence of IGF-1 binding proteins in the
circulation [127-129]. Previous studies provided
ample evidence that decreases in circulating levels of
free IGF-1 [59] contribute to the genesis of vascular
aging phenotypes, including endothelial dysfunction

[60], impaired autoregulation of cerebral blood flow
[61], pathological remodeling of the extracellular
matrix and the media [57], increased atherogenesis
[130], impaired vascular oxidative stress resistance
[131, 132], impaired angiogenesis, and capillary rar-
efaction [133]. Follow-up investigations should fur-
ther interrogate experimentally the role of disrupted
VEGF-A and IGF-1 signaling in the deleterious vas-
cular effects of old blood transfer.

Other circulating factors, whose levels are
altered in young mice by heterochronic parabiosis
or systemic administration of old plasma or blood
and which may confer aging-like effects in multi-
ple organs (e.g., brain, heart, and skeletal muscle)
include P2-microglobulin and TGFp family mem-
ber cytokines [31, 52]. There is also evidence that
TNFa [134] and other inflammatory cytokines (e.g.,
CCL11) may serve as circulating pro-geronic factors.
However, transcriptomic analysis of the aortas did not
indicate that these cytokines play a central role in old
blood-mediated accelerated aging in the mouse aorta.
Factors secreted by senescent cells in various organs
of aged mice (the senescence-associated secretory
phenotype [SASP] [135, 136]), which also are present
in the systemic circulation, have also been proposed
to drive age-related dysfunction [4].

Perspectives

The present results support the remarkable plasticity
of vascular aging in preclinical models and its ame-
nability to modulation by circulating pro-geronic/old
blood factors. Follow-up investigations are warranted
to define the exact nature of the circulating old blood
factors that regulate critical pathways involved in vas-
cular aging. Studies using blood exchange paradigms,
in which pro-geronic factors are diluted by replacing
half of the plasma in mice with saline containing 5%
albumin, suggest that noncellular factors play a key
role in the mediation of the old blood effects in many
organs [99]. Nevertheless, future studies are war-
ranted to determine the potential roles of aged leu-
kocytes that exhibit a pro-inflammatory phenotype
in the pathogenesis of age-related vascular diseases
[137]. Interesting in that regard is that 10 to 20% of
adults aged 70 or older exhibit clonal hematopoiesis
of indeterminate potential (CHIP), characterized by
somatic mutations in leukocytes, which associates
with a pro-inflammatory status and increased risk for

@ Springer



GeroScience

enrichment score

enrichment score

@ Springer

SRF Predicted Targets - Aging

-111TI'I-|ET|!|'I

| (Bunoy Juoigesed) Bunop
Z (Bunoy, uogesed) Bunos

SRF Predicted Targets

R T
SRERRE
Prifiiye
TR EE

Prediction Legend -

. Increased measuroment ()
@D Dexreased measurement

¥ (paby uogesed) Bunop

S (poby uorgesed) Bunop
1Y
5
-4




GeroScience

«Fig.7 Old blood induces aging-like transcriptomic changes,
in part, by dysregulating SRF-driven gene expression Panel A:
Gene set enrichment analysis (GSEA) to test the effect of aging
on the enrichment of the set of genes whose expression is regu-
lated by SRF (serum response factor) by comparing aorta sam-
ples derived from isochronic parabiont young mice [parabiont:
young; Y—(Y)] and isochronic parabiont aged mice [parabiont:
aged; A—(A)]. Aging-induced gene expression changes were
ranked from most up-regulated (left) to most down-regulated
(right). Ticks represent genes encoding SRF-regulated pro-
teins. Shown is a running-sum statistic (enrichment score)
based on panel C, increasing when a gene is a member of
the SRF-driven gene set and decreasing when it is not. Panel
B: GSEA showing the effect of exposure to old blood on the
enrichment of SRF-regulated genes. Aorta samples derived
from isochronic parabiont young mice [parabiont: young;
Y—(Y)] and heterochronic parabiont young mice [parabiont:
aged; Y—(A)] were compared. Note that in aged mice, enrich-
ment scores increased predominantly on the right indicating
age-related down-regulation of SRF-driven genes. In response
to the presence of old blood in young mice, enrichment scores
showed similar increases on the right, indicating that the pres-
ence of old blood in young mice mimics the effects of aging
on SRF-driven genes. Panel C: The heat maps are graphical
representations of normalized expression values of SRF-driven
genes. Hierarchical clustering analysis revealed the similarities
on aortic expression profiles of SRF-driven genes in aged mice
and old blood exposed young mice. Panel D-E: Comparison
analysis using the ingenuity pathway analysis (IPA) tool. The
upstream regulator heat maps depict age- and old blood-related
changes in the expression of SRF-driven genes. Each symbol
on the map represents a gene product in the SRF pathway. The
symbols are set to color by age-related (panel D) and old blood
exposure-induced (panel E) changes in gene expression (fold
change). Red color indicates up-regulation, green color indi-
cates down-regulation

atherogenesis [138-141]. Future studies should also
determine whether the observed cell non-autonomous
mechanisms of vascular aging are not strain- or spe-
cies-dependent and elucidate their role in humans.
We used an 8-week parabiosis protocol, which rep-
resents~6% of the maximum lifespan potential of
the mouse strain used. This is biologically equiva-
lent to~6 years for human life. Studies (e.g., using a
serum transfer paradigm) are warranted to determine
how shorter exposures to circulating pro-geronic and/
or anti-geronic factors affect vascular phenotypes.
Subsequent studies are also warranted to identify the
critical organ(s), tissues, and cell types, which con-
tribute to the synthesis/release of the circulating pro-
geronic factors that drive vascular aging processes. A
potentially highly promising area of research includes
the investigation of the role of factors secreted by
senescent cells in distant organs (e.g., the adipose

tissue [142-145]). Finally, studies targeting cell non-
autonomous mechanisms of vascular aging identified
using the aforementioned approaches may lead to the
development of new treatments for the prevention of
age-related vascular diseases.
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