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The human microbiome is increasingly recognized as a key 
player in human health1. Although most research has focused 
on the bacterial component2 and its bacteriophages3,4, and 

to some extent unicellular eukaryotes (including fungi) and their 
viruses, the archaea have been largely overlooked, mainly due to 
methodological reasons5–9.

Archaea are prokaryotes, like bacteria, but are different in cell 
structure, metabolism and molecular machinery (summarized in 
ref. 9). Archaea linked with the human gut microbiome are mainly 
methanogenic archaea, of which only a few have been isolated. 
Methanogenesis is a unique metabolic process, during which C1 or 
C2 carbon compounds, such as CO2, CO, formate, acetate or methyl 
compounds serve as substrates for the formation of methane. It is a 
highly syntrophic metabolism, as end-products of bacterial fermen-
tation are consumed.

The most prevalent archaea in the human gut are Methano 
bacteriales and Methanomassiliicoccales. Methanobacteriales are 
mainly represented by Methanobrevibacter smithii (prevalence of 
up to 97.5%) and Methanosphaera stadtmanae (prevalence of up to 
23%10–12). Methanomassiliicoccales have only recently been discov-
ered and identified in the human gut, with Methanomassiliicoccus 
luminyensis13, Candidatus Methanomassiliicoccus intestinalis14, 
Ca. Methanomethylophilus alvus15, and the strains Mx02, Mx03 
and Mx06, being most prevalent (up to 80%16). Numerous addi-
tional archaeal signatures have been retrieved by amplicon- and 
metagenome-based microbiome analyses, indicating the presence of 
a complex archaeome in the human gastrointestinal tract (GIT)8,17,18.

Some archaea carry adaptive traits for colonization of the human 
gut environment, such as bile salt hydrolases19 and adhesin-like 
proteins16,20. Besides, archaea can degrade deleterious bacterial 

metabolites such as trimethylamine (TMA)16,21,22 and can induce 
specific host immune responses7,23,24. Overall, the role of the human 
archaeome, particularly in health and disease6,9, still needs to be 
explored, with the most puzzling question, whether archaeal patho-
gens do exist, as an intrinsically pathogenic capacity of archaea has 
never been identified.

Based on the recent activities to generate and collect thousands 
of metagenome-assembled genomes (MAGs) from metagenomic 
datasets of human GIT2,25–27, a treasure of information was pro-
duced. In the present study, we present a public catalogue composed 
of 1,167 archaeal genomes and 28,581 protein clusters derived from 
the human gastrointestinal archaeal community. Leveraging this 
comprehensive sequence collection, we gain previously undescribed 
insights into the abundance, distribution, composition and function 
of the human archaeome.

Results
Over 1,000 unique archaeal genomes recovered from human gas-
trointestinal samples. To explore the diversity of archaea in human 
gastrointestinal samples, we compiled publicly available genomes 
from recent collections of MAGs and isolates. The retrieved 1,167 
nonchimeric and nonredundant genomes (Extended Data Fig. 1)  
span a wide taxonomic diversity, and include members of the 
Methanobacteriales (87.15%), Methanomassiliicoccales (12.43%), 
Methanomicrobiales (0.26%) and Halobacteriales (0.17%; 
Supplementary Table 1a–f and Fig. 1). Most genomes were taxo-
nomically affiliated with the known genus Methanobrevibacter (996 
genomes; 85%), in agreement with earlier reports9. Other genomes 
were affiliated to the genera Methanomethylophilus (38; 3.3%), 
Methanomassiliicoccus (29; 2.5%), Methanosphaera (20; 1.7%) and 
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Fig. 1 | Archaeal genomes (1,167) from the human GIT reveal taxonomic expansion of the archaeome. Phylogenetic tree of genomes clustered at 
99% similarity (‘strains’), shown with the following characteristics (from left to right): proposed original taxa (indicated by stars on the branch of the 
phylogenetic tree), including ultrafast bootstrap values. Species representatives are highlighted by bold genome numbers. Isolates, representatives of 
unknown genera and species are indicated by a coloured dot next to the genome number. Taxonomic affiliation of representative genomes is shown at 
order, genus and species level. The number of genomes assigned to the strain-level taxon is shown in the grey histogram. The origin displays the origin 
of the samples from which this genome and its representatives could be assembled. The pie chart displays the proportion of the origins. The respective 
genome size of the representative genome is displayed in megabases (Mb; brown bars). There is an overview of the absence and presence of genes 
involved in host interactions: with bile salt hydrolases (blue; BSH) and oxygen resistance genes (green), and the presence of genomes potentially coding 
for adhesins/adhesin-like/‘Flg_new’ domain16 proteins (orange). Genomes (strain list) were analysed using MaGe Microscope and genes were counted as 
present when automatic annotation was positive (‘putative’ annotation was counted as positive).
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Methanocorpusculum (3; 0.3%). Methanobacterium, Haloferax and 
Halorubrum spp. were represented by only one genome each. Of 
the 1,167 genomes, 10 (0.85%) could not be assigned to any previ-
ously described genus and 98 genomes (8.3%) did not match any 
known species. A large proportion of genomes not matching any 
known species (n = 83) and genera (n = 10) were affiliated with 
the order Methanomassiliicoccales. Read-based community pro-
filing revealed a fraction of 1.22% archaeal reads in representative 
original datasets (Supplementary Table 2a–f). Based on growth 
rate index analyses, we received good evidence that the major 
archaeal species are indeed actively replicating within their habi-
tat (see Supplementary Information and Extended Data Fig. 2). 
Pan-genome analyses (Supplementary Information) revealed that 
the gut archaeome still remains largely undersampled.

Archaeal protein profile correlates with geographic and demo-
graphic parameters. In total, 1.8 million proteins were identi-
fied from the 1,167 genomes, 54% of which were annotated as 
hypothetical proteins. A protein catalogue of all 1,167 archaeal 
genomes was generated by clustering the genes predicted across all 
genomes and excluding singleton clusters, resulting in 28,581 clus-
ter representatives (>50% amino acid identity and >80% coverage) 
(Extended Data Fig. 3 and Supplementary Material 1). 2,050 pro-
teins (thereof 58% hypothetical proteins) were found to be shared 
among >50 genomes in our dataset, mirroring the taxonomic dis-
tance of the two most abundant orders, Methanomassiliicoccales 
and Methanobacteriales (Fig. 2a).

The protein catalogue had predictive potential for some metadata 
categories (Fig. 3, Supplementary Tables 3 and 4, and Extended Data 
Figs. 4 and 5). Highest prediction accuracies were reached for the 
lifestyle (urban/rural) of an individual (overall accuracy = 100%). 
Prediction accuracies >70% were still reached for the continent, 
country, health status, age group or sex of an individual, whereas the 
body mass index (BMI) group was less suitable to build supervised 
learning models (prediction accuracies <70%) and achieved signifi-
cance only when predictions were based on actual numerical BMI 
values rather than grouped BMI categories (R = 0.4, P = 2.9 × 10−5). 
For some metadata categories such as lifestyle, sex and origin per 
country of an individual, predictions improved if they were based 
on abundances (mapped protein matrix) rather than presence/
absence (unified protein catalogue). Please refer to Supplementary 
Information for results on combinatory effects of multiple metadata 
categories, and on the association of hypothetical proteins with vari-
ous metadata categories (Supplementary Tables 5 and 6).

The dataset reveals previously undescribed members of the 
human gastrointestinal archaeome. We obtained 20 genomes affil-
iated with Methanosphaera sp., including three genomes from iso-
lates. Taxonomically, human-associated Methanosphaera genomes 
were affiliated to three distinct species-level clades (Extended Data 
Fig. 6 and Supplementary Table 7a–c). Among those, M. stadtmanae 
was the most commonly retrieved, with 17 genomes (14 MAGs). M. 
stadtmanae reads represented a fraction of 0.028% among all micro-
bial reads, with an average fraction of 13.45% among all archaeal 
reads in reference datasets (for details, see Supplementary Table 
2a, and also for other taxa mentioned below). Two MAGs (aver-
age nucleotide identity (ANI) 98.5%) clustered within M. cuniculi, 
and were retrieved from healthy Asian subjects living in an urban 
environment. The M. cuniculi type strain was originally isolated 
from the intestinal tract of a rabbit28 and has not been reported thus 
far in human hosts. One additional MAG belonging to the genus 
Methanosphaera was binned from a gut metagenome of a diseased 
(colorectal cancer) European male (BMI 21, age 64 years, urban 
environment). This genome clustered together with RUG761, a 
genome recovered from cattle intestines29 (ANI 99.0%; Extended 
Data Fig. 6).

The dataset of human-associated Methanomassiliicoccales con-
sisted of 145 genomes corresponding to 12 species (Supplementary 
Table 1a). The genomes were distributed into two families, most 
of them belonging to ‘host-associated’ Methanomethylophilaceae 
(116 genomes), the other to Methanomassiliicoccaceae 
(‘free-living clade’; 29 genomes). Five of the candidate species 
corresponded to genomes previously found in human samples, 
comprising 81% of the Methanomassiliicoccales from the pres-
ent study. These included Methanomassiliicoccales Mx06 sp.16 
(44 genomes), Methanomethylophilus alvus15 (37 genomes) and 
Methanomassiliicoccus intestinalis14 (20 genomes), being the most 
prevalent Methanomassiliicoccales representative in human popu-
lations16. Mx06 representatives were mostly present in young adults 
(aged 32 years (average), n = 34) from rural areas (80%; n = 40) in 
Oceania, Asia and Africa (65%, 13% and 7%, respectively; n = 43). 
Together with its high prevalence (80%) in a population of 7- to 
48-year-old uncontacted Amerindians16,30, it appears that this species 
is strongly linked with nonwesternized populations. The young age 
of people with this species contrasts with previously reported posi-
tive correlation between age and methanogen prevalence. Several 
representatives of this species have the genetic potential to metabo-
lize TMA, a bacterial metabolite involved in trimethylaminuria and 
suspected in cardiometabolic, cardiovascular and renal diseases. 
This species is part of a well-supported clade that is separated from 
other Methanomethylophilaceae genera (Methanomethylophilus, 
Methanogranum and Methanoplasma spp.) and belongs to the can-
didate genus ‘UBA71’ following the Genome Taxonomy Database 
(GTDB) classification (Supplementary Table 1c). We thus suggest 
that it represents a previously undescribed genus and species, and 
propose the name of ‘Candidatus Methanoprimaticola hominis’ 
gen. nov., sp. nov. (Me.tha.no.pri.ma.ti’co.la. N.L. pref. methano- 
pertaining to methane; N.L. pl. n. Primates a zoological order; L. 
suff. -cola (from L. masc. or fem. n. incola) an inhabitant, dweller; 
N.L. fem. n. Methanoprimaticola a methane-forming dweller of 
primates; ho’mi.nis. L. gen. n. hominis of a human) for representa-
tives of Mx06 (representative MAG: GUT_GENOME268463). Ca. 
Methanoprimaticola hominis represented 0.094% of all microbial 
reads (691 studies), and 0.50–69.22% of all archaeal reads in 48 of 
691 analysed studies (Supplementary Table 2a).

In addition to the species previously identified through MAGs 
or culture approaches, we identified 6 undescribed species of 
Methanomassiliicoccales, represented by 24 MAGs. One of those 
gathers 12 MAGs and was more often found among Asian people.  
We propose naming it ‘Ca. Methanoprimaticola macfarlanii’  
sp. nov. (mac.far.la’ne.i. N.L. gen. n. macfarlanei named after George 
T. Macfarlane; representative MAG: GUT_GENOME251929). This 
species represented 0.076% of all microbial reads in 691 screened 
studies (Supplementary Table 2a).

A number of additional archaeal taxa not yet described to be 
constituents of the human GIT were recovered from the MAG data-
set. For details on these and other taxa (Halorubrum, Haloferax, 
Methanocorpuscum and Methanobacterium spp.), please refer to 
Supplementary Information.

The M. smithii clade splits into two separate species. An overview 
on host association, geography, genome size and taxonomic asso-
ciation of known Methanobrevibacter spp. and genomes is given in  
Fig. 4 (for further details on Methanobrevibacter genomes besides 
the M. smithii clade, see Supplementary Information).

Based on ANI similarity values, as well as information derived 
from the protein catalogue, the M. smithii group was represented by 
two species-level clades (tentatively named ‘smithii’ and ‘smithii_A’ 
according to the GTDB classification31) (Figs. 2c and 4a, and 
Supplementary Table 8a,b; see also ref. 25). M. smithii_A was rep-
resented in our entire dataset 185 times (16% of the entire data-
set), whereas M. smithii was detected 797 times (68%), together  
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Fig. 2 | Genome distribution on different metadata categories covering geographic origin, demographics and health aspects. a,b, Categorical metadata 
were grouped in three alluvial diagrams referring to geographic origin (a, lifestyle and country) and demographics (b, age and BMI group). Obesity was 
defined as BMI > 30 kg m−2. Infant: 0–3 years; child: 4–12 years; teenager: 13–18 years; adult: 19–64 years; elderly person: >64 years. c, Health aspects 
(health status and disease type). NA, no data available. For improved visibility only genomes with a minimum of three representatives according to the 
GTDB classification are shown. Numbers indicate the amount of genomes in each group (1,054 archaeal genomes in total).
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representing 84% of all genomes in our dataset (Supplementary 
Table 1a). Based on read mapping, M. smithii was found to be 
responsible for 0.56% of all microbial reads in screened studies, 
whereas M. smithii_A represented 0.13% (Supplementary Table 2a).  
Together, these two taxa represented 0.69% of all microbial reads 
(total archaeal reads: 1.21%), confirming their predominance 
among the gastrointestinal archaea.

The two M. smithii groups (sum test, two-sided, genome size 
corrected by completeness, Supplementary Table 9a) had median 
genome sizes of 1.7 Mbp for M. smithii and 1.8 Mbp for M. smithii_A 
(Supplementary Table 8; genome sizes for isolates: 1.7 Mbp  
(M. smithii DSM2374) and 1.9 Mbp (isolate WWM1085)).

All M. smithii strains carried the modA gene, which was 
not detected in any of the smithii_A genomes (Supplementary  

Fig. 3 | Archaeal genomes from the human gut microbiome distribution and the corresponding unified protein catalogue. a, Unified human archaeal 
protein catalogue based on protein clustering at 50% sequence identity and 80% coverage using MMseqs2 of all 1,167 archaeal genomes. Heatmap 
depicts the presence of 3,050 proteins (found in >50 genomes; rows) across the 1,167 archaeal genomes (columns). Heatmap visualization was done 
using the pheatmap library in R. NA, no data available. b, The taxonomic distinction of Methanomassiliicoccales, Halobacteriales and Methanobacteriales 
based on the protein profile (a), displayed in a PCoA plot based on Bray–Curtis distances at a depth of 623 archaeal proteins. The PCoA showed five 
distinct clusters referring to Methanomethylophilaceae, Methanomassiliicoccus, Methanocorpusculum, Methanosphaera and Methanobacteriaceae spp. c, 
Notably, the clade of Methanobacteriaceae sp. was subdivided into Methanobacterium sp. and a heterogeneous cluster of Methanobrevibacter sp., where 
Methanobrevibacter smithii and M. smithii_A (later referred to as Ca. M. intestini,), form separate clusters.
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Table 8b). This gene is involved in molybdate transport and respon-
sible for substrate binding32. In addition, among the top 25 dis-
criminative proteins (Extended Data Fig. 7 and Supplementary 
Table 9b), the molybdate ABC transporter permease component, 
as well as the molybdate ABC transporter ATP-binding protein, 
were identified in 94% of all M. smithii genomes, but in none of 
the M. smithii_A genomes. This indicates a different pathway for 
molybdate acquisition in the M. smithii_A clade. The M. smithii_A 
genomes were further characterized by additional unique mem-
brane/cell-wall-associated proteins, such as adhesin-like proteins, 
surface proteins and a number of uncharacterized membrane pro-
teins/transporters (Extended Data Fig. 7).

Based on the extent of discriminative features, and an ANI of 
only 93.95% between the two representative genomes of M. smithii 
and M. smithii_A, we propose to rename the smithii_A clade, rep-
resented by isolate WWM1085 (GUT_GENOME143185 (ref. 33)), 
‘Candidatus Methanobrevibacter intestini’ sp. nov. (in.tes.ti’ni L. gen. 
neut. n. intestini, of the gut), to further emphasize the presence of 
two predominant, distinctive Methanobrevibacter clades in the GIT. 
‘Ca. M. intestini’ and M. smithii cannot be distinguished on 16S 

ribosomal RNA gene sequences, which is most probably the rea-
son for missing this clade separation previously. However, analysis 
of the mcrA gene revealed a consistent difference between the two 
clades, with an average of 2.15% difference in amino acid sequence 
(1.82–2.22%; Supplementary Material 4).

The human archaeome carries a complex, previously unseen 
virome. We identified 94 viral populations in our genome data-
sets (Extended Data Fig. 8 and Supplementary Table 10a–c). 
Of the identified proviruses, 91 viral species representatives 
were found to be specific for Methanobrevibacter A, and one 
each for Methanomassiliicoccus and Methanosphaera spp., and 
Methanomethylophilaceae UBA71.

Although archaeal viruses in extreme environments were dis-
covered in the early 1970s34,35, little is known about nonextremo-
philic viruses in the highly abundant mesophilic environments, and 
only a few nonextremophilic archaeal viruses have been isolated so 
far36–39. To the best of our knowledge, no viruses/proviruses have 
been identified in the past infecting Methanomassiliicoccales and 
Methanobacteriales members of the human gut.
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We explored the uniqueness of these 175 high- and medium- 
quality proviruses by comparing them with the latest comprehen-
sive human Gut Virome Database (GVD)3, and the Viral Refseq 
Database, using the network-based viral classification tool vCon-
TACT2 (ref. 40). However, none of the viruses clustered with any of 
the sequences in the databases. Due to the lack of similar archaeal 
viral genomes in the reference databases, the classification and 
further characterization of discovered archaeal viruses through 
metagenomic approaches remain challenging.

Taken together, these results reveal that archaeal viruses prob-
ably have a currently underestimated diversity and probable eco-
logical importance in the human gut microbiome.

Human-associated archaea exhibit a lower proportion of bac-
terial genes than animal-associated archaea. The adaptation of 
archaea to the GIT may have been favoured by specific acquisi-
tion of genes from the resident bacterial community providing 
additional functions. To assess this possibility, we compared the 
retrieved Methanosphaera and Methanobrevibacter genomes with 
isolates and genomes derived from animal sources (Supplementary 
Table 11). For this comparison, and to rule out false information 
from contaminating reads, we used only genomes from isolates and 
MAGs with 0% contamination.

Human-associated methanogens revealed a significantly lower 
proportion of genes most probably derived from bacterial origin, 
irrespective of whether we considered isolates only or both isolates 
and MAGs. Human-associated Methanobrevibacter spp. carried, on 
average, approximately 2.84% genes annotated as of nonarchaeal 
origin, which was significantly lower than the proportion of non-
archaeal genes in animal-associated Methanobrevibacter sp. (6.09%; 
Mann–Whitney U-test, P = 0.00308; genomes from isolates only: 
6.36%). This was mainly due to a significantly increased contribu-
tion of clostridia-derived genes (specifically from Lachnospiraceae) 
in genomes from animals (P = 0.00116 and P < 0.00001, Mann–
Whitney U-test; Extended Data Fig. 8). Lachnospiraceae represen-
tatives are mainly specialized on plant degradation. In particular, 
Methanobrevibacter smithii/smithii_A (Ca. M. intestini) represen-
tatives revealed a very low contribution of potentially nonarchaeal 
genes (2.11%; genomes from isolates only: 1.8%).

Human-associated Methanosphaera spp. carried on average 
a proportion of 1.45% of genes of bacterial annotation (genomes 
from isolates only: 0.68%). Animal-associated Methanosphaera 
spp., however, contained a significantly higher proportion of 
bacterial genes (6.74%; P = 0.00452, Mann–Whitney U-test; 
genomes from animal isolates only: 5.31%). The differences were 
mainly due to a significantly increased contribution of Bacilli- 
and Erysipelotrichia-derived genes in genomes from animals 
(P = 0.000441 and 0.000509, respectively; Student’s t-test; Extended 
Data Fig. 9). For information on Methanomassiliicoccales, please 
refer to Supplementary Information.

Our results indicate that adaptation towards the human host 
might not necessarily be reflected by a (generally) higher propor-
tion of genes derived from the human gastrointestinal bacteriome.

Host-associated archaea are distantly related to environmental 
relatives. We reasoned that host-associated archaea are taxonomi-
cally and functionally distant from their environmental relatives 
due to the characteristics of their individual host environments.

In 16S rRNA gene-based analyses (Supplementary Table 12a,b),  
we found that members of genera Methanobrevibacter and 
Methanosphaera, as well as Ca. Methanomethylophilus belonged 
almost exclusively to taxa from host-associated (animal, human, plant) 
sources, whereas Methanocorpusculum and Nitrososphaeria spp., and 
Haloferaceae were more related to environmental strains (Fig. 5a).

ANI-based analyses of the families Methanobacteriaceae, 
Methanocorpusculaceae, Methanomethylophilaceae and 

Methanomassiliicoccaceae revealed an overall clear separation 
between the MAGs of different origins (Fig. 5b–e; additional details 
in Supplementary Information). Based on the information on their 
respective biomes, the archaeal strains of the present study can be 
classified into three groups: (1) exclusively found in the human gut, 
(2) host (human, animal, plant) associated and (3) widespread in 
the environment, with the first two groups representing the high-
est proportion5,7,9. Following this classification and based on the 
current availability of genomes and metadata, H. massiliensis,  
M. oralis, M. smithii, M. smithii_A (Ca. M. intestini), M. stadtmanae,  
M. intestinalis and M. alvus can be considered to be affiliated to 
group (1). Species belonging to group (2) include M. woesei and  
M. cuniculi. Species of group (3) are represented by H. lipolyticum41, 
M. arboriphilus42,43 and M. luminyensis13,16, widespread in various 
environments.

Functional and metabolic interaction of the archaeome with the 
gut environment. We analysed specific features that could indicate 
the advanced interaction of the human-associated GIT archaea with 
their gut environment (host and nonarchaeal microbiome; Fig. 1).

Loss of genes involved in dealing with oxidative stress is consid-
ered to be a trait of host association, because environmental strains 
have to face nonpermanently, strict anaerobic conditions, whereas 
this is not the case for strains inhabiting the GIT. We therefore 
analysed the presence of genes associated with oxygen resistance 
(catalase, superoxide dismutase, peroxiredoxin, rubredoxin and thio-
redoxin44). Catalase was detected in some Methanomassiliicoccales 
(mainly Methanomassiliicoccus representatives) and Haloarchaea, 
and in Methanobrevibacter arboriphilus and Methanobacterium 
spp. The presence of a superoxide dismutase was rarely detected, 
namely in members of Haloferax and Halorubrum spp. None of the 
Methanobrevibacter representatives, except M. arboriphilus, carried 
the peroxiredoxin gene. In contrast, thioredoxin and rubredoxin 
were detected in most of the genomes (Fig. 1).

Additional functions of interest are adhesins and bile salt 
hydrolases (that is, choloylglycine hydrolase (CGH)). Adhesins 
or adhesin-like proteins were widely observed (Fig. 1). CGH 
homologues were detected in 11 of 27 of the archaeal species, 
including the 5 most prevalent ones (M. smithii, ‘Ca. M. intestini’,  
M. stadtmanae, M. alvus and ‘Ca. M. hominis’). CGH genes were 
not detected in any of the Methanomassiliicoccus genomes and in 
the Haloferaceae, indicating their importance for specialization 
towards the human gut. It should be noted that the CGH genes 
detected in Methanomassiliicoccales, Methanomicrobiales and 
Methanobacteriales formed separate clusters within the bacterial 
bile salt hydrolases gene tree (Extended Data Fig. 10), indicating 
their potential acquisition from different events of horizontal gene 
transfers (HGTs).

Additional adaptations were observed at the metabolism level. 
Apart from key components of methanogenesis, methyl-coenzyme 
M reductase (MCR) and heterodisulfide reductase/[NiFe] 
hydrogenase (Hdr/Mvh) complexes, the main gut methanogens 
(Methanobacteriales and Methanomassiliicoccales) possess very dis-
tinct methanogenesis pathways (Fig. 6 and Supplementary Table 13). 
For example, different from all Methanomassiliicoccales, all human 
gut Methanobrevibacter spp. have the genetic potential for formate 
and H2/CO2 utilization. However, 83% of all methanogenic MAGs 
(including Methanobacteriales and Methanomassiliicoccales) have 
the mtaABC genes, providing the genetic potential to use methanol. 
The two dominant Methanobrevibacter spp. carry mtaABC genes, 
whereas four species that are rarely present do not carry these genes, 
strongly suggesting that methanol utilization might provide a selec-
tive advantage in the human gut. However, the condition under 
which Methanobrevibacter sp. uses methanol and whether it is a 
methanogenic substrate or enters an anabolic pathway remains to 
be elucidated.
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The two dominant Methanobrevibacter sp. also display the 
genetic potential to use alcohols (probably secondary alcohols 
and ethanol) as electron donors for methanogenesis. One of the 
Methanosphaera spp. may also have the genetic capacity to reduce 
methanol with ethanol for methanogenesis as described earlier45, 
but this species was encountered only once in our analyses, and M. 
stadtmanae cannot perform this pathway.

The majority (11/13) of the GIT-associated species of 
Methanomassiliicoccales code for the MttBC methyltransferase 
and corrinoid protein needed for methanogenesis from TMA. This 
capacity would allow them to decrease the concentrations of this 
molecule produced by gut microbiota and involved in cardiovascu-
lar diseases16,21. The presence of the mttBC genes was detected in a 
larger proportion of the Methanomassiliicoccales MAGs originating 
from Europe and North America (~60%) with respect to Africa and 
Asia (~40%) or Oceania (17%) (Extended Data Fig. 10). These vari-
ations may reflect different TMA-production capacity by bacteria in 
the microbiota across these populations and diet habits. One of the 
two species of Methanomethylophilaceae lacking TMA-utilization 
capacity (Ca. Methanoprimatia macfarlanii) also lacks MtbBC and 
MtmBC methyltransferases and corrinoid proteins for dimethyl-
amine and monomethylamine utilization, respectively. However, 
several strains of this species have the genes encoding the synthesis 
of pyrrolysine (pylSBCD), a proteinogenic amino acid (UAG codon 
encoded) quite exclusive to methylamine-specific methyltrans-
ferases46,47. The absence of detection of the methylamine-specific 
methyltransferases in these MAGs, including MttBC for TMA uti-
lization, is thus probably due to genome incompleteness. The other 
species lacking methylamine methyltransferase, corresponding to 
Methanomassiliicoccales Mx02 (ref. 16), also lack any other genes 
known to be involved in methyl-compound utilization or in any 

alternative methanogenesis pathways (Supplementary Table 13). 
The absence of these methanogenesis genes in all the MAGs of 
Methanomassiliicoccales Mx02 and in previously obtained related 
MAGs, support assumptions16,48 on the presence of unknown meth-
anogenesis pathways probably based on unknown methyltransfer-
ases, or another metabolic route in the Methanomassiliicoccales. 
Thus, we propose the name ‘Candidatus Methanarcanum hack-
steinii’ Mx02 gen. nov., sp. nov. (Me.than.ar.ca’num. N.L. neut. n. 
methanum methane; L. masc. adj. arcanus silent, secret; N.L. neut. 
n. Methanarcanum; an archaeon-forming methane in a puzzling 
way; hack.stei’ni.i. N.L. gen. n. hacksteinii named after Johannes H. 
P. Hackstein; representative MAG: GUT_GENOME287001).

Discussion
Our work adds original information on the biology of the GIT 
archaeome, by characterizing a collection of 1,167 nonredun-
dant archaeal genomes. We were able to make initial associations 
between the diversity of gut-associated archaea with several demo-
graphic and geographic patterns. However, many geographic loca-
tions remain undersampled to date.

As our genome collection is based on public datasets processed 
for the analysis of the bacterial component of the microbiome, a 
large number of archaeal species requiring specialized methods for 
cell lysis and DNA extraction6 may be missing. Moreover, sequenc-
ing stool samples is not necessarily representative of the com-
plete diversity of species in the intestines, because some archaea 
have been shown to form biofilms and stick to the epithelium49. 
Besides, as several taxa in our collection are represented by only 
single genome representatives, additional conspecific strains will be 
needed to allow profound analyses. Thus, we are far from capturing 
the entire diversity of the GIT archaeome.
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The overall observed percentage of archaea present in the human 
gut microbiomes (~1.2%, Supplementary Table 2a) is in agreement 
with recently reported average percentages based on 16S rRNA 
gene and shotgun metagenomic information18. The abundance of 
methanogenic archaea in the human gut is highly variable and rep-
resented by two physiological types of humans, namely methane 
emitters (>5 p.p.m. methane in breath, ~20% of the western popula-
tion; 2% archaeal signatures in overall microbial GIT community) 
and nonemitters (0.002% archaeal signatures), exhaling negligible 
amounts of this gas. The effects of these striking differences of high- 
and low-methane emitters on host physiology are largely unclear to 
date, but are considered to be relevant to health and disease18.

The presented genome collection and the catalogue of 1.8 mil-
lion putative proteins can now serve as a unique source to generate 
hypotheses to be addressed in future studies. This includes aspects 
on: (1) the archaeal physiology and metabolism; (2) the detailed 
comparison and differentiation of free-living, animal- and human 
host-associated archaea (see also ref. 50,51), including the aspect of 
HGT; (3) the interaction with the bacterial microbiome and the 
virome; and (4) the type of archaeal cross-talk with the human host. 
Moreover, considering that only 9 of 27 archaeal species detected in 
the human gut metagenomes had a cultured representative, the pro-
vided resource can serve as a starting point for targeted cultivation of 
previously uncultivated members of the archaeome and their virome.

Due to missing metadata and limited statistical power, it is chal-
lenging to establish significant associations between the archaeal 
genomic diversity and human lifestyles or diseases herein. Thus, 
experimentally driven, well-designed studies will ultimately eluci-
date the impact of archaea on human health9. Moreover, incorporat-
ing both transcriptomics and proteomics data will further reinforce 
the genomic predictions and improve our understanding of the reg-
ulation of archaeal physiology and host adaptation. Future efforts 
should also seek to extend the dataset beyond the gastrointestinal 
environment, to other human body sites and hosts.

Overall, our work contributes substantially to the understanding of 
the microbiome of the human GIT as a complex multi-domain bacte-
rial, archaeal, fungal and viral network52–56. All microbial puzzle pieces 
have co-evolved and adapted together within the gut ecosystem, so 
study of these dynamic multi-kingdom interactions holistically will 
provide crucial insights into the role of the gut microbiome in health.

Methods
A resource summary is provided in Supplementary Table 14.

Dataset description. To explore the diversity of archaea in human gastrointestinal 
samples, we compiled publicly available genomes from four recent collections 
of MAGs2,25–27,57. Briefly, the Unified Human Gastrointestinal Genome (UHGG) 
collection (data access June 2020, https://www.ebi.ac.uk/metagenomics/
genomes) holds published, nonredundant MAGs and isolates, collected from 
public repositories and associated metadata information (see ref. 2 for more 
details). No statistical methods were used to predetermine sample sizes. We 
additionally included published genomes from cultured archaea available in 
the National Center for Biotechnology Information (NCBI)58, Pathosystems 
Resource Integration Center (PATRIC)59 and Integrated Microbial Genomes and 
Microbiomes (IMG/M)60 repositories.

Genomes were compared using Mash v.2.1 (ref. 61) and, for genomes that were 
estimated to be identical and had a Mash distance of 0, only one was selected. 
In addition, we included genomes of ‘Ca. Methanomethylophilus alvus’15 and 
‘Ca. Methanomassiliicoccus intestinalis’14, as well as human gut-derived MAGs 
of Methanomassiliicoccales Mx02, Mx03 and Mx06, and additional ‘Ca. M. 
intestinalis’16, and the human isolate Methanobrevibacter arboriphilus ANOR1 
(ref. 42) to complete the dataset. Those genomes were assigned a genome accession 
no. (GUT_GENOME286998, GUT_GENOME287001, GUT_GENOME287002, 
GUT_GENOME287004), as given in Supplementary Table 1a. This brought the total 
number of genomes used for the analysis in the present study to 1,167. Data collection 
and analysis were not performed blind to the conditions of the experiments.

Genome quality and taxonomic classification. The completeness of the 
nonredundant 1,167 genomes was evaluated by CheckM v.1.0.11 (ref. 62) and 
only genomes that were >50% complete and had <5% contamination were 

selected (following the protocol from ref. 2; Extended Data Figs. 1 and 2a–c). 
This procedure yielded 1,167 nonchimeric63 (clade separation score (CSS) = 0; 
Supplementary Table 1a) and nonredundant archaeal genomes (Mash distance 
threshold of 0.001, 99.9% ANI61; Supplementary Table 1a) which were further 
subgrouped into individual strains (<99% ANI similarity, >75% genome 
completeness; Supplementary Table 1b; 98 genomes; Fig. 1), and species (<95% 
ANI similarity, >75% genome completeness; Supplementary Table 1c; 27 
genomes). For this, the best quality genome (genome completeness, minimal 
contamination, strain heterogeneity and assembly continuity based on the N50 
value) from each cluster was selected as representative or, whenever an isolate was 
available, it was preferred and used for further analysis.

Read mapping was performed with Bowtie2 (ref. 64) for the genomes that had 
original raw reads available and were post-processed using samtools65. Strain 
heterogeneity within each MAG was computed using the script ‘polymut.py’ from 
the CMseq tool (https://github.com/SegataLab/cmseq). Alignment files were used 
together with the parameters --minqual 30 and --cov 10, following the method 
description in refs. 2,25. A threshold of ≤0.5% indicates heterogeneity of assembly 
and the higher likelihood of one strain present per assembly. GUNC63 was used to 
detect chimerism in all 1,167 genomes and resulted in a CSS of 0 for all genomes 
(Supplementary Table 1e). A CSS closer to a value of 0 indicates that a genome is 
free of contamination and all genes are assigned to the same taxonomy, whereas 
a CSS score closer to 1 indicates chimerism. The CSS, taken together with the 
contamination thresholds from CheckM, demonstrated that our 1,167 genomes 
were not chimeric in nature.

DRep v.2.0.0 (ref. 66) was used to dereplicate the complete dataset at 95% and 
99% ANI values. The 95% ANI values were selected to separate between species 
boundaries (n = 27)67. A cut-off of 99% was selected for strain delineation, provided 
that a stable number of clusters for MAGs >75% complete had <5% contamination 
(n = 98; Extended Data Fig. 3a). Lower thresholds did not affect the number of 
strains recovered. The resulting strain and species representatives are given in 
Supplementary Table 1a-c.

All genomes were taxonomically annotated following the procedure given in 
ref. 2. The taxonomic assignment was performed using the GTDB Toolkit v.0.3.1 
(database release 04-RS89)68 and default parameters that utilize a set of 122 marker 
genes to identify archaeal MAGs. Previously undescribed species and genera 
were defined when no taxonomic information was assigned for all members of a 
species cluster and their species representatives based on the GTDB database. The 
methodology is detailed in Supplementary Fig. 1.

Genome annotation and protein catalogue. Protein-coding sequences (CDSs) 
were predicted and annotated with Prokka v.1.14.5 (ref. 69) using the parameters 
‘--kingdom Archaea’ to include nonfragmented archaea-curated proteins from the 
UniProtKB database and ‘--rfam’ to scan for noncoding RNAs. CDSs were further 
characterized using eggNOG-mapper v.2.0.0 (ref. 70) and the eggNOG database 
v.5.0 (ref. 71), which includes the latest release of all archaeal clusters of orthologous 
groups and their proteins72.

The protein catalogue was generated by combining all predicted CDSs (total 
number 1,790,493) derived from the 1,167 nonredundant archaeal genomes. 
MMseqs2 linclust73 was used to cluster the concatenated proteins dataset using 
the options ‘--cov-mode 1 -c 0.8’ (minimum coverage threshold of 80% the length 
of the shortest sequence) and ‘--kmer-per-seq 80’. Proteins were clustered at 
different percentage identities and the number of unique proteins resulting per 
clustering for each taxonomic family was computed and visualized (Extended Data 
Fig. 3b). To reduce the risk of contaminants, the proteins were filtered to remove 
all nonclustered proteins. This gave a total of 28,581 proteins clustering at 50% 
identity (Supplementary Material 1) visualized using the library pheatmap74 in 
R. MMseqs2 using the ‘easy-search’ was additionally used for aligning the 28,581 
proteins to UniRef 50 (ref. 75) (date of download January 2021) to verify predicted 
proteins that resulted in 13,254 (46.37%) proteins with a hit.

In addition to the protein catalogue, the various species and strain subsets of 
the total 1,167 archaeal genomes (Supplementary Table 1b,c) were submitted to 
MaGe MicroScope (Microbial Genome Annotation & Analysis Platform76), for 
detailed analyses of genomic synteny, and the detection of bile salt hydrolases, 
oxygen resistance genes and adhesins, following the automated annotation of 
MaGe (Supplementary Table 1f).

Relative abundance of archaea in human metagenomes. Raw read datasets (691) 
were obtained from studies of the human gut microbiome, out of which 691 (of 
1,167) medium- or high-quality archaeal MAGs were assembled. The remainder 
was not made public by their original submitters (Supplementary Table 1a).

We mapped raw reads to the 27 reference archaeal species representatives 
using Bowtie2-align64 and post-processed using samtools65. The generated sorted 
mapping files were used to calculate the breadth of coverage. Breadth of coverage 
was calculated by dividing the total number of bases covered (using samtools 
mpileup) by the length of the reference genome. To get the percentage coverage 
breadth we multiplied the resulting number by 100.

For measuring the relative abundance of the 27 archaeal species in the different 
metagenomics datasets we used CoverM (https://github.com/wwood/CoverM) and 
the relative_abundance calculation method (Supplementary Table 2f).

Nature Microbiology | VOL 7 | January 2022 | 48–61 | www.nature.com/naturemicrobiology 57

https://www.ebi.ac.uk/metagenomics/genomes
https://www.ebi.ac.uk/metagenomics/genomes
https://www.ncbi.nlm.nih.gov/assembly/GCA_006954385.1/
https://www.ncbi.nlm.nih.gov/assembly/GCA_006954405.1/
https://www.ncbi.nlm.nih.gov/assembly/GCA_006954425.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000513315.1/
https://github.com/SegataLab/cmseq
https://github.com/wwood/CoverM
http://www.nature.com/naturemicrobiology


Articles NaTurE MIcrOBIOlOgy

Reads were additionally mapped using Kraken v.2.1.2 (ref. 77) (with default 
settings) against (1) a custom database of the UHGG catalogue available from 
the MGnify FTP site (http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_
genomes/human-gut/v1.0/uhgg_kraken2-db) and (2) a customized database of 
the 27 archaeal species representatives in our dataset because we supplemented the 
initial resource with additional isolates (Data description). Results were processed 
using Bracken v.2.5.3 (ref. 78) using both read lengths 100 and 250 to estimate the 
relative abundance of domain-, family- and species-level taxa (Supplementary 
Table 2b–d). We did not observe differences in the output values of the analysis 
between read lengths 100 and 250.

Protein abundance estimation. To avoid estimations based on potential false 
negatives derived from sample processing or genome binning, all raw reads were 
aligned on the unified archaeal protein catalogue using DIAMOND BLASTx79. The 
hits were counted and the result was transformed into a matrix of the number of 
hits for each protein per study using the pandas library80. This resulted in a mapped 
protein matrix used for further statistical analysis to minimize the risk for sample 
or batch effects in our dataset (Supplementary Material 2).

Besides genomic information (genome length, number of contigs, N50, GC 
content, genome completeness, genome contamination, and number of rRNAs 
and transfer RNAs), 11 metadata categories (numerical 2, categorical 9) could 
be considered for the dataset. Information about the geographic origin was 
available for 1,063 genomes (91% of the dataset covered countries from maximum 
to minimum: the USA, Israel, Spain, Sweden, Fiji, UK, Austria, Denmark, the 
Netherlands, France, China, Peru, Germany, Madagascar, United Republic of 
Tanzania, Australia, Canada, Ireland, Italy, Russia, El Salvador, Iceland, Mongolia, 
Norway, on five continents; Supplementary Table 1d and Fig. 3a).

Information on lifestyle was available for 1,054 genomes (90%, max.–min.: urban, 
rural, semi-urban), health state (healthy, diseased) for 894 genomes (77%), age group 
(adult, elderly person, child, teenager, infant) for 825 genomes (71%), gender (female, 
male) for 620 genomes (53%), BMI group (normal weight, overweight, obesity class 
1, underweight, obesity class 2, extreme obesity class 3) for 505 genomes (43%) and 
name of disease (colorectal cancer, infection, type 2 diabetes, adenoma, obesity, 
ulcerative colitis, nonalcoholic fatty liver disease (NAFLD), Parkinson’s disease, 
ankylosing spondylitis—arthritis, faecal microbiota transplantation (FMT), cirrhosis) 
for 303 genomes (26%) and treatment (antibiotics) for 241 genomes (21%). However, 
most genomes (third quartile, 75% of all values) were obtained from healthy women 
of normal weight, living in urban areas of Europe (Fig. 3).

To overcome biases introduced by potential residual MAGs contamination 
issues, we focused our analyses on patterns observed in two or more genomes, 
unless stated otherwise. In addition, we explored protein diversity patterns and 
their functional characterization among isolated genomes to corroborate those 
observed in MAGs. Finally, to avoid estimations based on potential false negatives 
derived from sample processing or genome binning, raw reads were mapped on 
the unified archaeal protein catalogue (Supplementary Material 1) as a reference to 
generate a mapped protein matrix (Supplementary Material 2), which minimized 
the risk for sample or batch effects in our dataset.

Supervised classification and regressions with RandomForest were applied 
to predict respective metadata categories from the unified archaeal protein 
catalogue and the mapped protein matrix with the q2-sample-classifier 
plugin81. To reduce the risk of overfitting, the matrices were downsampled to a 
minimum of 50 genomes for each tested metadata category, as recommended by 
scikit-learn 0.24.1 (ref. 82). First subsets of each metadata category were created 
from the entire protein matrix and randomly split into a training set and a test 
set with the proportions 80%:20%. By using K-fold cross-validation, the training 
set served as a learning model to predict class probabilities with settings for 
optimized feature selection and parameter tuning. In the end, model accuracy 
was determined by comparing the predicted values between the training and  
test datasets.

Pan-genome analysis. Pan-genome analysis was performed using Panaroo83 
in ‘strict’ mode because it accounts for potential annotation errors, fragment 
assemblies and contaminated genomes to recover an accurate pan-genome. 
Pan-genome analysis was performed for archaeal genomes of the same families 
and the same genus. We used Heaps’ law (η = κ × n − α) to estimate whether we had 
an open or a closed pan-genome84, This analysis was carried out in the R package 
‘micropan’85 using a default permutation value of 100, where η is the predicted 
number of genes for a particular number of genomes (n), and κ (intercept 
parameter) and α (decay parameter) are the constants used to fit the curve after the 
genomes have been ordered in a random way. An open pan-genome is indicated by 
α < 1 whereas a closed pan-genome is indicated by α > 1.

Estimation of growth rates. Growth rates were estimated using GRiD86 in the 
multiplex mode (minimum coverage = 1 and reassignment of ambiguous reads) by 
a customized GRiD database based on the created subset of high-quality archaeal 
genomes on species level. As the original raw reads were not available for each 
representative genome and the remaining read sets were not made publically 
available, growth rate estimates covered 131 metagenomic read sets (70% of all 
archaeal genomes grouped at strain level).

In-depth taxonomic and clustering analyses of the various genera. ANI distances 
and tree matrices were calculated using the online resources of the enveomics 
platform87, MaGe76, as well as Microbial Genomes Atlas (MiGA)88. Dendrograms, 
built on the ANI tree matrix, were annotated using the iTOL tool (Interactive Tree 
Of Life)89, and processed using InkScape. For specific considerations involving 
additional genomes from animals, a subselection of the archaeal genomes was 
reanalysed together with the additional genomes following the same settings as 
described for the protein catalogue procedures above (respective datasets are given 
in the Supplementary Table 12).

McrA genes were extracted via MaGe, hosting all strain-level genomes 
(Supplementary Material 4). McrA genes were aligned using MegaX90, and a 
maximum likelihood tree was calculated (default settings).

Bacterial and archaeal BSH genes were derived from ref. 91 and supplemented 
with BSH genes from genomes in the present study. Sequences were cropped 
and a tree was calculated using the MEGA-X Maximum Likelihood Phylogeny 
Reconstruction. The tree was annotated using the iTOL tool89.

Initial HGT analysis. Representative genomes from isolates and MAGs with 
0% contamination according to CheckM results were selected for these analyses 
(Methanosphaera spp.: 8 from humans, 7 from animals; Methanobrevibacter 
spp.: 30 from humans, 11 from animals). A list with full details is provided in 
Supplementary Table 11. Genomes from animals were obtained from NCBI (ncbi.
nlm.nih.go/genome), representing all available high-quality genomes (isolates, 
MAGs) of the respective genus at the time point of analysis (2020; Supplementary 
Table 11). The selected genomes were further characterized as previously 
mentioned using eggNOG-mapper v.2.0.0 (ref. 70) and the previously mentioned 
databases (Genome annotation and protein catalogue). Annotated genes were 
sorted according to their taxonomic affiliation (eggNOG output information: 
‘best_tax_level’), and the proportion of archaeal and bacterial genes was calculated 
for all genomes and genera. Data were visualized using Krona92.

Detection of virulence and resistance genes. To predict potential virulence genes 
in all 1,167 archaeal genomes, ABRicate v.0.5 (https://github.com/tseemann/
abricate) was used to profile the following databases: CARD93, Resfinder94, 
PlasmidFinder95, ARG-ANNOT96, EcOH97 and MEGARes 2.0 (ref. 98), as well as 
NCBI AMRFinderPlus99. As ABRicate is solely based on DNA sequences, blastX 
searches using DIAMOND79 was used to complement results from ABRicate on the 
level of protein sequences in the virulence factor database (VFDB v.20191122)100,101 
and CARD together with the Resistance Gene Identifier102.

Specific groups of proteins and genes involved in human interaction were 
investigated according to available annotations from MaGe76 and eggNOG-mapper70.

Viral identification, quality estimation and comparisons to viral databases. 
To assess the presence of prophages, VirSorter2 (ref. 103) was used to scan all 
MAGs. CheckV104 was used to estimate completeness and assess the quality of 
VirSorter2-predicted viruses. To ensure that we overcame possible contamination 
issues that could potentially result from the binning process, we selected proviruses 
flanked within archaeal contigs for this analysis. VirSorter2 tends to overestimate 
provirus boundaries (https://github.com/jiarong/VirSorter2), therefore CheckV 
is recommended to apply a quality control check and remove false positives. 
CheckV looks for host–virus boundaries based on differences in GC content and 
gene annotation in a sliding window approach. Proviruses (detected by VirSorter2 
followed by CheckV and CheckV on a separate run) that had a quality assignment 
of medium quality (50–90% completeness) of high quality (>90% completeness), 
or were complete, were considered for further analysis. Quality assignments 
by CheckV are based on Minimum Information about an Uncultivated Virus 
(MIUViG) standards105. It is worth mentioning that proviruses detected by 
Virsorter2 followed by CheckV were detected by running CheckV independently. 
The selected proviruses were subsequently clustered with MMseqs2 using the 
‘linclust’ function with the same parameters previously specified and MMseqs 
function ‘result2repseq’ to select a viral cluster representative.

We identified 94 viral populations in our genome datasets. This number is the 
result of clustering 45 high-quality (>90% completeness) and 130 medium-quality 
(50–90% completeness) archaeal proviruses, flanked within archaeal contigs, at 
95% identity and 80% coverage, where one to a maximum of two proviruses were 
identified per host. The selected cut-off is commonly used for viral species3,105–110 
definition (Extended Data Fig. 8 and Supplementary Table 10a–c).

Open reading frames of viral populations with the previously specified 
MIUViG quality were used as input for vConTACT2 (ref. 40) including Viral RefSeq 
genome (v.97). VconTACT2 is used to affiliate a family or a genus rank group to 
viral populations and thus to determine taxonomic diversity.

A recent study was published by Gregory et al.3 where a human GVD harbours 
33,242 viral populations, including 0.1% archaeal viruses resulting from 2,697 gut 
metagenomes in 32 studies. This dataset was used as a reference database to scan 
the identified viral scaffolds using MMseqs2 ‘easy-linclust’ function at 50, 80, 90 
and 95% identity.

Comparison to environmental archaea. For considerations based on 16S 
rRNA genes, 16S rRNA genes of representative genomes were extracted using 
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Metaxa2 (ref. 111) (n = 314; not all 16S rRNA genes could be recovered). This 
dataset was supplemented with data from amplicon sequencing studies and 
clone sequences from archaeal signatures from human gastrointestinal samples 
(dataset described in ref. 9; n = 381 in total). These sequences were aligned and 
classified using the SILVA rRNA database112. More specifically, the retrieved 
16S rRNA genes were subjected to the ACT tool (alignment, classification and 
tree service)113, using the following parameters: basic alignment parameters: 
‘removed’; search and classify, minimum identity with query sequence: ‘0.95’; 
number of neighbours per query sequence: ‘10’; compute tree; workflow: 
‘Denovo including neighbours’ and default parameters; and advanced tree 
computation parameters, positional variability filter: ‘none’, domain: ‘archaea’. 
Unclassified sequences were removed from the dataset. Via SILVA SINA, ten 
next neighbours were selected, and information on their isolation source was 
gathered through NCBI (Supplementary Material 3 and Supplementary Table 
12a; the final dataset contained 566 sequences). Grouping was performed at 
the genus/species level, and information on the percentage of host-associated 
archaea in all groups was displayed as a circle packing plot (RawGraphs online 
tool, https://app.rawgraphs.io).

For genome-based analyses, a set of 623 archaeal MAGs identified from 
environmental and gastrointestinal samples (for example, rumen, guinea-pigs 
and baboon faeces) was used as a reference dataset for comparison to the set of 
archaea isolated from the human gut microbiome2,114. All environmental genomes 
used were >50% complete, and also up to 90% complete, with <5% contamination 
as well. To estimate the pairwise ANI distance between environmental archaeal 
genome dataset (Supplementary Table 12) and the archaeal genomes from the 
human gut microbiome, we used fastANI67, a tool that effectively discriminated 
intra- and interspecies boundaries for >90,000 prokaryotic genomes.

Metabolic interaction of the archaeome with the gastrointestinal environment. 
Proteins involved in methanogenesis were searched in all genomes using 
customized Hidden Markov Model profiles (threshold e-value 10−5) implemented 
in Macsyfinder115. This allowed us to determine the presence of enzymatic 
complexes on the basis of the presence of all or most subunits. The presence in the 
26 methanogenic species was first evaluated based on the representative genome 
(which are the most complete/less contaminated). If most of the MAGs in a species 
have an enzyme, then this enzyme was considered to be present in the species, even 
if absent from the best representative genome.

Functional interaction of the archaeome with the gastrointestinal environment. 
Specific functions were searched for (‘search by keywords’-function) in MaGe76. 
Presence and absence information was used for tree annotation through iTOL89. 
The backbone tree was based on ANI similarity as described above.

Tools used for data visualization. Principal coordinate analyses (PCoAs) and 
other graphic displays based on the unified archaeal protein matrix were calculated 
and visualized in Qiime2 (ref. 116) and Calypso117. Venn diagrams were created with 
creately (https://creately.com). Alluvial plots, circle packing plots and contour plots 
were generated with RAWGraphs (https://app.rawgraphs.io). Strip charts were 
created with Calypso. Dendrograms, based on the ANI tree matrix, were annotated 
using the iTOL tool. All figure panels were created using InkScape.

Quantification and statistical analysis. All statistical analyses were conducted 
using R, Qiime2116, Calypso117 and MaAsLin2 (ref. 118). Where applicable, data 
distribution was tested using Shapiro–Wilk normality tests. Statistical significance 
was determined by nonparametric tests including Spearman’s rank correlations, 
PERMANOVA and Wilcoxon’s rank-sum tests for pairwise analysis, Mann–
Whitney U-tests for unpaired data and Kruskal–Wallis tests if the significance 
had to be determined for all groups. Significance was considered at an α < 0.05 
after 999 permutations. P values were corrected for multi-hypothesis testing 
using the false discovery rate. To control for potential batch effects resulting from 
different isolation methods, DNA extraction protocols, assembly methods and/or 
sampling depth, etc., the study accession was set as a random effect in MaAsLin2 
analysis. In addition, linear mixed effect models81 were calculated to test whether 
Bray–Curtis distances and α diversity (Shannon’s diversity index) of the mapped 
archaeal protein matrix changed over age, BMI, genome completeness or growth 
rate (GRiD), and in response to the use of antibiotics, geography (continent or 
country), disease, sex, health status or lifestyle in the dataset.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All the recovered genomes are available for bulk download in an archived folder 
‘archaea_gut-genomes.tar.gz’ in generic feature format at http://ftp.ebi.ac.uk/pub/
databases/metagenomics/genome_sets. All used genomes and metagenomes in the 
present study are publicly available on NCBI and MGnify resource. Accession no. 
details and paper references of used genomes and metagenomes are summarized in 
Supplementary Table 1a–f.

Code availability
The present study did not generate code, and mentioned tools used for the data 
analysis were applied with default parameters unless specified otherwise.
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Extended Data Fig. 1 | Methodology. Flow chart covering the major analysis steps of the study. Colored boxes show the source data (green), main input 
for the analysis (magenta), downstream analysis (red) and the taxonomic analysis of the presented data set (yellow). Different steps are connected 
by arrows highlighting a selection of used bioinformatic tools for each step. For details on the genomes, software and databases used, please refer to 
Supplementary Table 1 and Supplementary Table 14. Figure created with biorender.com.
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Extended Data Fig. 2 | Overview on the quality of 1,167 genomes summarized in Supplementary Table 1a. a) Contour plot of genome completeness 
vs. genome contamination based on CheckM MAGs quality estimates. b) Contour plot of genome length vs. number of contigs. c) Number of predicted 
tRNAs vs. completeness for each of the 1,167 genomes represented in a scatter plot color coded by taxonomic assignment at the genus level. The size of 
each data point is relative to genome contamination estimation. Locally Weighted Least Squares Regression (LOESS) method used for smoothing (blue 
line). d) Growth rate indices (GRiD) of archaeal genomes from the human gut based on 58 GTDB classified genomes. *Candidatus Methanobrevibacter 
intestini. n = 58 independent genomes, boxplot specifications: colored box de- fines the interquartile range (lower boundry 25th percentile, median 50th 
percentile and upper boundry 75th percentile), whiskers repre- sent smallest and largest values within 1.5 times of the interquartile range above the 75th 
percentile and below the 25th percentile re- spectively. Individual dots represent outside values between 1.5 and 3 times of the interquartile range.
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Extended Data Fig. 3 | Genome dereplication, protein catalogue and protein functionality. a) Benchmarking different genome clustering thresholds. 
Number of clusters (that is, strains) identified according to the thresholds used by dRep for ANI and aligned fraction (AF). Vertical line indicates the 
chosen ANI threshold where the number of clusters begins to stabilize. The 99% ANI threshold was selected to sub-group genomes into a ‘strain’-list. 
b) Protein catalogue clustering at different percent identities. Line plots representing the number of unique proteins per archaeal family clustering at 
different percent identities. Drops are observed at 99-95% and 80-50% identity and 80% coverage. c) UpSet plot representing the frequency of COG 
categories based on the protein catalogue of the unique and shared proteins between the 5 archaeal MAGs taxonomic families (CELLULAR PROCESSES 
AND SIGNALING: [d] Cell cycle control, cell division, chromosome partitioning, [M] Cell wall/membrane/envelope biogenesis, [N] Cell motility, [O] 
Post-translational modification, protein turnover, and chaperones, [T] Signal transduction mechanisms, [U] Intracellular trafficking, secretion, and 
vesicular transport, [V] Defense mechanisms. INFORMATION STORAGE AND PROCESSING: [J] Translation, ribosomal structure and biogenesis, [K] 
Transcription, [L] Replication, recombination, and repair. METABOLISM: [C] Energy production and conversion, [E] Amino acid transport and metabolism, 
[F] Nucleotide transport and metabolism, [G] Carbohydrate transport and metabolism, [H] Coenzyme transport and metabolism, [I] Lipid transport and 
metabolism, [P] Inorganic ion transport and metabolism, [Q] Secondary metabolites biosynthesis, transport, and catabolism. POORLY CHARACTERIZED: 
[S] Function unknown) – Supplementary Material 1. The numbers in the vertical barplot represent the size of the unique (single dots) and shared 
proteins (connected dots) between the 5 archaeal taxonomic families while the numbers in the horizontal barplots represent the number of genomes 
per archaeal family. UpSet plot was done using the library UpSet in R. The 2 pairs of families that shared the higher numbers of protein clusters were 
Methanomethylophilaceae- Methanomassilliicoccaceae and Methanobacteriaceae- Methanomassilliicoccaceae. Shared protein clusters COG categories 
are Metabolism, Information, storage and processing, Cellular processes and signaling and have unknown functions. Shared proteins between the different 
archaeal families d) for all 1167 genomes e) for complete genomes only. Venn diagrams were done by creately (https://app.creately.com).
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Extended Data Fig. 4 | Predicting metadata values as a function of protein composition by supervised learning methods. Heatmaps and Receiver 
Operating Characteristic (ROC) curves of metadata predictions based on the unified archaeal MAG protein catalogue. AUC (area under the curve). Each 
tested metadata category was downsampled to a minimum of 50 genomes. Continent (a), country (b), age group (c), BMI group (d), health status (e), 
diseases (f), lifestyle (g).
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Extended Data Fig. 5 | Predicting metadata values as a function of mapped sequences. Heatmaps and Receiver Operating Characteristic (ROC) curves of 
metadata predictions based on mapped reads against the unified archaeal MAG protein catalogue as a reference. AUC (area under the curve). Each tested 
metadata category was downsampled to a against the unified protein catalogue by supervised learning methods minimum of 50 genomes. Continent (a), 
country (b), age group (c), BMI group (d), health status (e), diseases (f), lifestyle (g).

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


ArticlesNaTurE MIcrOBIOlOgy ArticlesNaTurE MIcrOBIOlOgy

Extended Data Fig. 6 | Profiles of human- associated Methanosphaera genomes. For comparison, eleven genomes from animal-associated 
Methanosphaera were included. PCoA plots (Bray-Curtis distance) of the genomic profiles according to taxonomy (a), geography (b), genome type (c), and 
host (d) and dendrogram of the genus Methanosphaera with human- and animal-associated representatives (e). Human-associated species are highlighted 
in green colors. Colored bar displays the origin: human (yellow) and animals (shades of brown). (f): Forest plot showing the outcome of the Wilcoxon rank 
test comparison of genomes from humans vs. animals (only proteins with FDR < 0.05 are shown), bar displays the odds ratio (OR) (Supplementary Table 
7). Arrowheads represent OR that extend beyond the range of the shown X-axis.
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Extended Data Fig. 7 | Methanobrevibacter smithii Forest plot. Forest plot showing the outcome of the Wilcoxon rank test comparison of the genomic 
inventory from M. smithii_A (Cand. M. intestini) vs. M. smithii (only TOP 25 proteins are shown; FDR adjusted P<0.000005); bar displays the odds ratio 
(OR) (see Supplementary Table 9b).
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Extended Data Fig. 8 | Number of identified MQ and HQ proviruses and confirmed viral genes. a) UpSet plot showing the number of viral species color 
coded by quality (vertical bars, yellow for high-quality; >90% complete, and blue for medium-quality; 50-90% complete), according to the archaeal 
species where the viral cluster was identified. b) Scatter plot representing prophages length vs. estimated completeness color coded by taxonomic 
assignment at the genus level of host archaeal genome. The size of each data point is relative to the number of identified viral genes per prophage. Locally 
Weighted Least Squares Regression (LOESS) method used for smoothing. c) Word cloud of interesting viral genes identified, where the size of each word is 
relative to its number of occurrences.
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Extended Data Fig. 9 | Contribution of bacterial-annotated genes in human- (left) and animal- (right) associated Methanobrevibacter and 
Methanosphaera species: Krona chart proportion in percent indicated by the small circles (the yellow wedge refers to proportion of bacterial annota- 
tion: human Methanobrevibacter: 2.84%; animal Methanobrevibacter: 6.09%; human Methanosphaera: 2.11%; animal Methanosphaera: 6.74%) and 
potential bacterial origin (taxa as displayed in the large circles). Unclassified taxa are whitened out. Only MAGs with 0% contamination and of high 
quality (taken from ‘strain list’) and genomes from isolates were analyzed (full details are provided in Supplementary Table 11) using eggNOG mapper 
v2.0.0. Annotated genes were sorted according to their taxonomic affiliation (eggNOG output information: ‘best_tax_level’), and the proportion of 
archaeal and bacterial genes was calculated.
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Extended Data Fig. 10 | Functional and metabolic interaction of the archaeome with the gut environment. a) Archaeal bile salt hydrolase genes (this 
study) integrated in the bacterial tree of BSHs18. Archaeal genes are highlighted by the colored ring, indicating the respective taxonomic affiliation. b) 
Geographic distribution of methyl-compound utilization capacity by Methanomasiliicoccales representatives. The presence of mtaBC, mtmBC, mtbBC and 
mttBC genes needed for methanol, monomethylamine, dimethylamine and, trimethylamine utilization, respectively, as well as pylBCDE genes responsible 
for the biosynthesis of pyrrolysine (an aminoacid specifically present in methylamine methyltransferases) was searched in all Methanomassiliicoccales. 
MAGs. Methanomassiliicoccales were separated according to the geographic location (continents) of their host, and the percentage of them having the 
above mentioned genes is displayed. Average Methanomassiliicoccales MAGs completeness are Africa, 70.1%; Asia, 72.6%; Europe, 79.9%; Oceania, 
87.2%.
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