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The human gut microbiome plays an important role in health, but its archaeal diversity remains largely unexplored. In the pres-
ent study, we report the analysis of 1,167 nonredundant archaeal genomes (608 high-quality genomes) recovered from human
gastrointestinal tract, sampled across 24 countries and rural and urban populations. We identified previously undescribed taxa
including 3 genera, 15 species and 52 strains. Based on distinct genomic features, we justify the split of the Methanobrevibacter
smithii clade into two separate species, with one represented by the previously undescribed ‘Candidatus Methanobrevibacter
intestini'. Patterns derived from 28,581 protein clusters showed significant associations with sociodemographic characteris-
tics such as age groups and lifestyle. We additionally show that archaea are characterized by specific genomic and functional
adaptations to the host and carry a complex virome. Our work expands our current understanding of the human archaeome and

provides a large genome catalogue for future analyses to decipher its impact on human physiology.

player in human health'. Although most research has focused

on the bacterial component’ and its bacteriophages™, and
to some extent unicellular eukaryotes (including fungi) and their
viruses, the archaea have been largely overlooked, mainly due to
methodological reasons®~’.

Archaea are prokaryotes, like bacteria, but are different in cell
structure, metabolism and molecular machinery (summarized in
ref. °). Archaea linked with the human gut microbiome are mainly
methanogenic archaea, of which only a few have been isolated.
Methanogenesis is a unique metabolic process, during which C, or
C, carbon compounds, such as CO,, CO, formate, acetate or methyl
compounds serve as substrates for the formation of methane. It is a
highly syntrophic metabolism, as end-products of bacterial fermen-
tation are consumed.

The most prevalent archaea in the human gut are Methano
bacteriales and Methanomassiliicoccales. Methanobacteriales are
mainly represented by Methanobrevibacter smithii (prevalence of
up to 97.5%) and Methanosphaera stadtmanae (prevalence of up to
23%'°""?). Methanomassiliicoccales have only recently been discov-
ered and identified in the human gut, with Methanomassiliicoccus
luminyensis®>, Candidatus Methanomassiliicoccus  intestinalis™,
Ca. Methanomethylophilus alvus®, and the strains Mx02, Mx03
and Mx06, being most prevalent (up to 80%'?). Numerous addi-
tional archaeal signatures have been retrieved by amplicon- and
metagenome-based microbiome analyses, indicating the presence of
a complex archaeome in the human gastrointestinal tract (GIT)*'"'%.

Some archaea carry adaptive traits for colonization of the human
gut environment, such as bile salt hydrolases” and adhesin-like
proteins'®”. Besides, archaea can degrade deleterious bacterial

| he human microbiome is increasingly recognized as a key

metabolites such as trimethylamine (TMA)'**»** and can induce
specific host immune responses”*>**. Overall, the role of the human
archaecome, particularly in health and disease®’, still needs to be
explored, with the most puzzling question, whether archaeal patho-
gens do exist, as an intrinsically pathogenic capacity of archaea has
never been identified.

Based on the recent activities to generate and collect thousands
of metagenome-assembled genomes (MAGs) from metagenomic
datasets of human GIT*>*?, a treasure of information was pro-
duced. In the present study, we present a public catalogue composed
of 1,167 archaeal genomes and 28,581 protein clusters derived from
the human gastrointestinal archaeal community. Leveraging this
comprehensive sequence collection, we gain previously undescribed
insights into the abundance, distribution, composition and function
of the human archaeome.

Results

Over 1,000 unique archaeal genomes recovered from human gas-
trointestinal samples. To explore the diversity of archaea in human
gastrointestinal samples, we compiled publicly available genomes
from recent collections of MAGs and isolates. The retrieved 1,167
nonchimeric and nonredundant genomes (Extended Data Fig. 1)
span a wide taxonomic diversity, and include members of the
Methanobacteriales (87.15%), Methanomassiliicoccales (12.43%),
Methanomicrobiales (0.26%) and Halobacteriales (0.17%;
Supplementary Table la-f and Fig. 1). Most genomes were taxo-
nomically affiliated with the known genus Methanobrevibacter (996
genomes; 85%), in agreement with earlier reports’. Other genomes
were affiliated to the genera Methanomethylophilus (38; 3.3%),
Methanomassiliicoccus (29; 2.5%), Methanosphaera (20; 1.7%) and
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Fig. 1| Archaeal genomes (1,167) from the human GIT reveal taxonomic expansion of the archaeome. Phylogenetic tree of genomes clustered at

99% similarity (‘strains’), shown with the following characteristics (from left to right): proposed original taxa (indicated by stars on the branch of the
phylogenetic tree), including ultrafast bootstrap values. Species representatives are highlighted by bold genome numbers. Isolates, representatives of
unknown genera and species are indicated by a coloured dot next to the genome number. Taxonomic affiliation of representative genomes is shown at
order, genus and species level. The number of genomes assigned to the strain-level taxon is shown in the grey histogram. The origin displays the origin

of the samples from which this genome and its representatives could be assembled. The pie chart displays the proportion of the origins. The respective
genome size of the representative genome is displayed in megabases (Mb; brown bars). There is an overview of the absence and presence of genes
involved in host interactions: with bile salt hydrolases (blue; BSH) and oxygen resistance genes (green), and the presence of genomes potentially coding
for adhesins/adhesin-like/'Flg_new’ domain'® proteins (orange). Genomes (strain list) were analysed using MaGe Microscope and genes were counted as
present when automatic annotation was positive (‘putative’ annotation was counted as positive).
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Methanocorpusculum (3; 0.3%). Methanobacterium, Haloferax and
Halorubrum spp. were represented by only one genome each. Of
the 1,167 genomes, 10 (0.85%) could not be assigned to any previ-
ously described genus and 98 genomes (8.3%) did not match any
known species. A large proportion of genomes not matching any
known species (n=83) and genera (n=10) were affiliated with
the order Methanomassiliicoccales. Read-based community pro-
filing revealed a fraction of 1.22% archaeal reads in representative
original datasets (Supplementary Table 2a-f). Based on growth
rate index analyses, we received good evidence that the major
archaeal species are indeed actively replicating within their habi-
tat (see Supplementary Information and Extended Data Fig. 2).
Pan-genome analyses (Supplementary Information) revealed that
the gut archaeome still remains largely undersampled.

Archaeal protein profile correlates with geographic and demo-
graphic parameters. In total, 1.8 million proteins were identi-
fied from the 1,167 genomes, 54% of which were annotated as
hypothetical proteins. A protein catalogue of all 1,167 archaeal
genomes was generated by clustering the genes predicted across all
genomes and excluding singleton clusters, resulting in 28,581 clus-
ter representatives (>50% amino acid identity and >80% coverage)
(Extended Data Fig. 3 and Supplementary Material 1). 2,050 pro-
teins (thereof 58% hypothetical proteins) were found to be shared
among >50 genomes in our dataset, mirroring the taxonomic dis-
tance of the two most abundant orders, Methanomassiliicoccales
and Methanobacteriales (Fig. 2a).

The protein catalogue had predictive potential for some metadata
categories (Fig. 3, Supplementary Tables 3 and 4, and Extended Data
Figs. 4 and 5). Highest prediction accuracies were reached for the
lifestyle (urban/rural) of an individual (overall accuracy=100%).
Prediction accuracies >70% were still reached for the continent,
country, health status, age group or sex of an individual, whereas the
body mass index (BMI) group was less suitable to build supervised
learning models (prediction accuracies <70%) and achieved signifi-
cance only when predictions were based on actual numerical BMI
values rather than grouped BMI categories (R=0.4, P=2.9%x107).
For some metadata categories such as lifestyle, sex and origin per
country of an individual, predictions improved if they were based
on abundances (mapped protein matrix) rather than presence/
absence (unified protein catalogue). Please refer to Supplementary
Information for results on combinatory effects of multiple metadata
categories, and on the association of hypothetical proteins with vari-
ous metadata categories (Supplementary Tables 5 and 6).

The dataset reveals previously undescribed members of the
human gastrointestinal archaeome. We obtained 20 genomes affil-
iated with Methanosphaera sp., including three genomes from iso-
lates. Taxonomically, human-associated Methanosphaera genomes
were affiliated to three distinct species-level clades (Extended Data
Fig. 6 and Supplementary Table 7a-c). Among those, M. stadtmanae
was the most commonly retrieved, with 17 genomes (14 MAGs). M.
stadtmanae reads represented a fraction of 0.028% among all micro-
bial reads, with an average fraction of 13.45% among all archaeal
reads in reference datasets (for details, see Supplementary Table
2a, and also for other taxa mentioned below). Two MAGs (aver-
age nucleotide identity (ANI) 98.5%) clustered within M. cuniculi,
and were retrieved from healthy Asian subjects living in an urban
environment. The M. cuniculi type strain was originally isolated
from the intestinal tract of a rabbit*® and has not been reported thus
far in human hosts. One additional MAG belonging to the genus
Methanosphaera was binned from a gut metagenome of a diseased
(colorectal cancer) European male (BMI 21, age 64years, urban
environment). This genome clustered together with RUG761, a
genome recovered from cattle intestines” (ANI 99.0%; Extended
Data Fig. 6).

The dataset of human-associated Methanomassiliicoccales con-
sisted of 145 genomes corresponding to 12 species (Supplementary
Table 1a). The genomes were distributed into two families, most
of them belonging to ‘host-associated” Methanomethylophilaceae
(116 genomes), the other to Methanomassiliicoccaceae
(‘free-living clade’; 29 genomes). Five of the candidate species
corresponded to genomes previously found in human samples,
comprising 81% of the Methanomassiliicoccales from the pres-
ent study. These included Methanomassiliicoccales Mx06 sp.'®
(44 genomes), Methanomethylophilus alvus (37 genomes) and
Methanomassiliicoccus intestinalis' (20 genomes), being the most
prevalent Methanomassiliicoccales representative in human popu-
lations'®. Mx06 representatives were mostly present in young adults
(aged 32years (average), n=234) from rural areas (80%; n=40) in
Oceania, Asia and Africa (65%, 13% and 7%, respectively; n=43).
Together with its high prevalence (80%) in a population of 7- to
48-year-old uncontacted Amerindians'®”, itappears that this species
is strongly linked with nonwesternized populations. The young age
of people with this species contrasts with previously reported posi-
tive correlation between age and methanogen prevalence. Several
representatives of this species have the genetic potential to metabo-
lize TMA, a bacterial metabolite involved in trimethylaminuria and
suspected in cardiometabolic, cardiovascular and renal diseases.
This species is part of a well-supported clade that is separated from
other Methanomethylophilaceae genera (Methanomethylophilus,
Methanogranum and Methanoplasma spp.) and belongs to the can-
didate genus ‘UBA71’ following the Genome Taxonomy Database
(GTDB) classification (Supplementary Table 1c). We thus suggest
that it represents a previously undescribed genus and species, and
propose the name of ‘Candidatus Methanoprimaticola hominis’
gen. nov., sp. nov. (Me.tha.no.pri.ma.ticola. N.L. pref. methano-
pertaining to methane; N.L. pl. n. Primates a zoological order; L.
suff. -cola (from L. masc. or fem. n. incola) an inhabitant, dweller;
N.L. fem. n. Methanoprimaticola a methane-forming dweller of
primates; ho'mi.nis. L. gen. n. hominis of a human) for representa-
tives of Mx06 (representative MAG: GUT_GENOME268463). Ca.
Methanoprimaticola hominis represented 0.094% of all microbial
reads (691 studies), and 0.50-69.22% of all archaeal reads in 48 of
691 analysed studies (Supplementary Table 2a).

In addition to the species previously identified through MAGs
or culture approaches, we identified 6 undescribed species of
Methanomassiliicoccales, represented by 24 MAGs. One of those
gathers 12 MAGs and was more often found among Asian people.
We propose naming it ‘Ca. Methanoprimaticola macfarlanii’
sp. nov. (mac.farlanei. N.L. gen. n. macfarlanei named after George
T. Macfarlane; representative MAG: GUT_GENOME251929). This
species represented 0.076% of all microbial reads in 691 screened
studies (Supplementary Table 2a).

A number of additional archaeal taxa not yet described to be
constituents of the human GIT were recovered from the MAG data-
set. For details on these and other taxa (Halorubrum, Haloferax,
Methanocorpuscum and Methanobacterium spp.), please refer to
Supplementary Information.

The M. smithii clade splits into two separate species. An overview
on host association, geography, genome size and taxonomic asso-
ciation of known Methanobrevibacter spp. and genomes is given in
Fig. 4 (for further details on Methanobrevibacter genomes besides
the M. smithii clade, see Supplementary Information).

Based on ANI similarity values, as well as information derived
from the protein catalogue, the M. smithii group was represented by
two species-level clades (tentatively named ‘smithii’ and ‘smithii_A
according to the GTDB classification’) (Figs. 2c and 4a, and
Supplementary Table 8a,b; see also ref. ). M. smithii_A was rep-
resented in our entire dataset 185 times (16% of the entire data-
set), whereas M. smithii was detected 797 times (68%), together

50 NATURE MICROBIOLOGY | VOL 7 | JANUARY 2022 | 48-61| www.nature.com/naturemicrobiology


https://www.ebi.ac.uk/metagenomics/genomes/MGYG000004339
https://www.ebi.ac.uk/metagenomics/genomes/MGYG000003962
http://www.nature.com/naturemicrobiology

NATURE MICROBIOLOGY

ARTICLES

Methanobrevibacter A smithii [_|] 742

Methanobrevibacter_A smithii_ A [ ]]167

Methanomethylophilaceae UBA71 [ |»63
Methanomethylophilus alvus D -29
Methanomassiliicoccus_A intestinalis []-16
Methanosphaera stadtmanae []-14
Methanobrevibacter A [ ]-8
Methanomethylophilaceae | -7
Methanomassiliicoccus_A D -5
Methanocorpusculum || -3

Methanobrevibacter A smithii D 742

Methanobrevibacter_A smithii_A D 167

Methanomethylophilaceae UBA71 [_] |63

Methanomethylophilus alvus [_] 129
Methanomassiliicoccus_A intestinalis [] »16
Methanosphaera stadtmanae D =14
Methanobrevibacter A [] -8
Methanomethylophilaceae || -7
Methanomassiliicoccus_A [] -5
Methanocorpusculum [ ] -3

Methanobrevibacter_A smithii [_] | 742

Methanobrevibacter_A smithii A []|167

Methanomethylophilaceae UBA71 [] 163

Methanomethylophilus alvus [_] 129

Methanomassiliicoccus_A intestinalis [] =16

Methanosphaera stadtmanae [ =14
Methanobrevibacter A []-8
Methanomethylophilaceae [ ] -7
Methanomassiliicoccus_A D -5
Methanocorpusculum [_]-3

Lifestyle Country
904 135 1USA
129 1lsrael
99 1 Spain
98 1 Sweden
1139 88 1UK
iZ 874 Fili
86 1 Austria
[Jurban 70 ¥ Denmark
[CRural 59 = The Netherlands
[INA 48 = France
[]Semi-urban 45 = China
30-= Peru
23 - Germany

12 - Madagascar
12 - United Republic of Tanzania
9 - Australia
6 - Canada
5 - ltaly
5 - Ireland
- Russia
El Salvador
Iceland
Norway
Mongolia

aaanw

Age group BMI group

Normal weight

Overweight

Obesity class 1

Underweight
Obesity class 2

[ Adult ~1— Extreme obesity class 3
I Elderly person
INA
] Child
[] Teenager
[ Infant
Health status Disease type
588 753 | NA
301
. 82 I Colorectal cancer
SSmae 57 | Infection
165
51 ] Type 2 diabetes
371 Adenoma
Dg?althy " 24w Ulcerative colitis
[JDisease 241 QObesity
CInA 10-- NAFLD
9= Parkinson
3- FMT
3 - Ankylosing spondylitis
1 Cirrhosis

Fig. 2 | Genome distribution on different metadata categories covering geographic origin, demographics and health aspects. a,b, Categorical metadata
were grouped in three alluvial diagrams referring to geographic origin (a, lifestyle and country) and demographics (b, age and BMI group). Obesity was
defined as BMI>30 kgm~2 Infant: 0-3years; child: 4-12 years; teenager: 13-18 years; adult: 19-64 years; elderly person: >64 years. ¢, Health aspects
(health status and disease type). NA, no data available. For improved visibility only genomes with a minimum of three representatives according to the
GTDB classification are shown. Numbers indicate the amount of genomes in each group (1,054 archaeal genomes in total).
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Fig. 3 | Archaeal genomes from the human gut microbiome distribution and the corresponding unified protein catalogue. a, Unified human archaeal
protein catalogue based on protein clustering at 50% sequence identity and 80% coverage using MMsegs? of all 1,167 archaeal genomes. Heatmap
depicts the presence of 3,050 proteins (found in >50 genomes; rows) across the 1,167 archaeal genomes (columns). Heatmap visualization was done
using the pheatmap library in R. NA, no data available. b, The taxonomic distinction of Methanomassiliicoccales, Halobacteriales and Methanobacteriales
based on the protein profile (a), displayed in a PCoA plot based on Bray-Curtis distances at a depth of 623 archaeal proteins. The PCoA showed five
distinct clusters referring to Methanomethylophilaceae, Methanomassiliicoccus, Methanocorpusculum, Methanosphaera and Methanobacteriaceae spp. €,
Notably, the clade of Methanobacteriaceae sp. was subdivided into Methanobacterium sp. and a heterogeneous cluster of Methanobrevibacter sp., where
Methanobrevibacter smithii and M. smithii_A (later referred to as Ca. M. intestini,), form separate clusters.

representing 84% of all genomes in our dataset (Supplementary The two M. smithii groups (sum test, two-sided, genome size
Table la). Based on read mapping, M. smithii was found to be corrected by completeness, Supplementary Table 9a) had median
responsible for 0.56% of all microbial reads in screened studies, genome sizes of 1.7 Mbp for M. smithii and 1.8 Mbp for M. smithii_A
whereas M. smithii_A represented 0.13% (Supplementary Table 2a).  (Supplementary Table 8; genome sizes for isolates: 1.7Mbp
Together, these two taxa represented 0.69% of all microbial reads (M. smithii DSM2374) and 1.9 Mbp (isolate WWM1085)).

(total archaeal reads: 1.21%), confirming their predominance All M. smithii strains carried the modA gene, which was
among the gastrointestinal archaea. not detected in any of the smithii_A genomes (Supplementary
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Fig. 4 | Characteristics of the Methanobrevibacter genomes. a, Dendrogram of the Methanobrevibacter clade based on ANI distance. Twelve representative
genomes from sources other than humans were included for comparison (further details are given in Supplementary Table 8). Genomes (strain level) from
the human GIT are highlighted in green colours (taxon label). M. smithii_A refers to the new species Ca. M. intestini. The bar on the left displays the origin:
human (yellow bar), animal (shades of red) and plant (green). b-e, PCoA plots (Bray-Curtis distance) of protein profiles, according to: genome size (b),
Methanobrevibacter clade according to the GTDB (c), assigned species (d) and geographical origin (e). NA, no data available.

Table 8b). This gene is involved in molybdate transport and respon-
sible for substrate binding™. In addition, among the top 25 dis-
criminative proteins (Extended Data Fig. 7 and Supplementary
Table 9b), the molybdate ABC transporter permease component,
as well as the molybdate ABC transporter ATP-binding protein,
were identified in 94% of all M. smithii genomes, but in none of
the M. smithii_A genomes. This indicates a different pathway for
molybdate acquisition in the M. smithii_A clade. The M. smithii_A
genomes were further characterized by additional unique mem-
brane/cell-wall-associated proteins, such as adhesin-like proteins,
surface proteins and a number of uncharacterized membrane pro-
teins/transporters (Extended Data Fig. 7).

Based on the extent of discriminative features, and an ANI of
only 93.95% between the two representative genomes of M. smithii
and M. smithii_A, we propose to rename the smithii_A clade, rep-
resented by isolate WWM1085 (GUT_GENOME143185 (ref. %)),
‘Candidatus Methanobrevibacter intestini’ sp. nov. (in.tes.tini L. gen.
neut. n. intestini, of the gut), to further emphasize the presence of
two predominant, distinctive Methanobrevibacter clades in the GIT.
‘Ca. M. intestini’ and M. smithii cannot be distinguished on 16S
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ribosomal RNA gene sequences, which is most probably the rea-
son for missing this clade separation previously. However, analysis
of the mcrA gene revealed a consistent difference between the two
clades, with an average of 2.15% difference in amino acid sequence
(1.82-2.22%; Supplementary Material 4).

The human archaeome carries a complex, previously unseen
virome. We identified 94 viral populations in our genome data-
sets (Extended Data Fig. 8 and Supplementary Table 10a-c).
Of the identified proviruses, 91 viral species representatives
were found to be specific for Methanobrevibacter A, and one
each for Methanomassiliicoccus and Methanosphaera spp., and
Methanomethylophilaceae UBA71.

Although archaeal viruses in extreme environments were dis-
covered in the early 1970s***, little is known about nonextremo-
philic viruses in the highly abundant mesophilic environments, and
only a few nonextremophilic archaeal viruses have been isolated so
far’*-*. To the best of our knowledge, no viruses/proviruses have
been identified in the past infecting Methanomassiliicoccales and
Methanobacteriales members of the human gut.
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We explored the uniqueness of these 175 high- and medium-
quality proviruses by comparing them with the latest comprehen-
sive human Gut Virome Database (GVD)’, and the Viral Refseq
Database, using the network-based viral classification tool vCon-
TACT?2 (ref. *°). However, none of the viruses clustered with any of
the sequences in the databases. Due to the lack of similar archaeal
viral genomes in the reference databases, the classification and
further characterization of discovered archaeal viruses through
metagenomic approaches remain challenging.

Taken together, these results reveal that archaeal viruses prob-
ably have a currently underestimated diversity and probable eco-
logical importance in the human gut microbiome.

Human-associated archaea exhibit a lower proportion of bac-
terial genes than animal-associated archaea. The adaptation of
archaea to the GIT may have been favoured by specific acquisi-
tion of genes from the resident bacterial community providing
additional functions. To assess this possibility, we compared the
retrieved Methanosphaera and Methanobrevibacter genomes with
isolates and genomes derived from animal sources (Supplementary
Table 11). For this comparison, and to rule out false information
from contaminating reads, we used only genomes from isolates and
MAGs with 0% contamination.

Human-associated methanogens revealed a significantly lower
proportion of genes most probably derived from bacterial origin,
irrespective of whether we considered isolates only or both isolates
and MAGs. Human-associated Methanobrevibacter spp. carried, on
average, approximately 2.84% genes annotated as of nonarchaeal
origin, which was significantly lower than the proportion of non-
archaeal genes in animal-associated Methanobrevibacter sp. (6.09%;
Mann-Whitney U-test, P=0.00308; genomes from isolates only:
6.36%). This was mainly due to a significantly increased contribu-
tion of clostridia-derived genes (specifically from Lachnospiraceae)
in genomes from animals (P=0.00116 and P<0.00001, Mann-
Whitney U-test; Extended Data Fig. 8). Lachnospiraceae represen-
tatives are mainly specialized on plant degradation. In particular,
Methanobrevibacter smithii/smithii_A (Ca. M. intestini) represen-
tatives revealed a very low contribution of potentially nonarchaeal
genes (2.11%; genomes from isolates only: 1.8%).

Human-associated Methanosphaera spp. carried on average
a proportion of 1.45% of genes of bacterial annotation (genomes
from isolates only: 0.68%). Animal-associated Methanosphaera
spp., however, contained a significantly higher proportion of
bacterial genes (6.74%; P=0.00452, Mann-Whitney U-test;
genomes from animal isolates only: 5.31%). The differences were
mainly due to a significantly increased contribution of Bacilli-
and Erysipelotrichia-derived genes in genomes from animals
(P=0.000441 and 0.000509, respectively; Student’s ¢-test; Extended
Data Fig. 9). For information on Methanomassiliicoccales, please
refer to Supplementary Information.

Our results indicate that adaptation towards the human host
might not necessarily be reflected by a (generally) higher propor-
tion of genes derived from the human gastrointestinal bacteriome.

Host-associated archaea are distantly related to environmental
relatives. We reasoned that host-associated archaea are taxonomi-
cally and functionally distant from their environmental relatives
due to the characteristics of their individual host environments.

In 16S rRNA gene-based analyses (Supplementary Table 12a,b),
we found that members of genera Methanobrevibacter and
Methanosphaera, as well as Ca. Methanomethylophilus belonged
almost exclusively to taxa from host-associated (animal, human, plant)
sources, whereas Methanocorpusculum and Nitrososphaeria spp., and
Haloferaceae were more related to environmental strains (Fig. 5a).

ANI-based analyses of the families Methanobacteriaceae,
Methanocorpusculaceae, Methanomethylophilaceae and

Methanomassiliicoccaceae revealed an overall clear separation
between the MAGs of different origins (Fig. 5b-e; additional details
in Supplementary Information). Based on the information on their
respective biomes, the archaeal strains of the present study can be
classified into three groups: (1) exclusively found in the human gut,
(2) host (human, animal, plant) associated and (3) widespread in
the environment, with the first two groups representing the high-
est proportion®”’. Following this classification and based on the
current availability of genomes and metadata, H. massiliensis,
M. oralis, M. smithii, M. smithii_A (Ca. M. intestini), M. stadtmanae,
M. intestinalis and M. alvus can be considered to be affiliated to
group (1). Species belonging to group (2) include M. woesei and
M. cuniculi. Species of group (3) are represented by H. lipolyticum*,
M. arboriphilus*>* and M. luminyensis'>', widespread in various
environments.

Functional and metabolic interaction of the archaeome with the
gut environment. We analysed specific features that could indicate
the advanced interaction of the human-associated GIT archaea with
their gut environment (host and nonarchaeal microbiome; Fig. 1).

Loss of genes involved in dealing with oxidative stress is consid-
ered to be a trait of host association, because environmental strains
have to face nonpermanently, strict anaerobic conditions, whereas
this is not the case for strains inhabiting the GIT. We therefore
analysed the presence of genes associated with oxygen resistance
(catalase, superoxide dismutase, peroxiredoxin, rubredoxin and thio-
redoxin'). Catalase was detected in some Methanomassiliicoccales
(mainly Methanomassiliicoccus representatives) and Haloarchaea,
and in Methanobrevibacter arboriphilus and Methanobacterium
spp. The presence of a superoxide dismutase was rarely detected,
namely in members of Haloferax and Halorubrum spp. None of the
Methanobrevibacter representatives, except M. arboriphilus, carried
the peroxiredoxin gene. In contrast, thioredoxin and rubredoxin
were detected in most of the genomes (Fig. 1).

Additional functions of interest are adhesins and bile salt
hydrolases (that is, choloylglycine hydrolase (CGH)). Adhesins
or adhesin-like proteins were widely observed (Fig. 1). CGH
homologues were detected in 11 of 27 of the archaeal species,
including the 5 most prevalent ones (M. smithii, ‘Ca. M. intestini,
M. stadtmanae, M. alvus and ‘Ca. M. hominis’). CGH genes were
not detected in any of the Methanomassiliicoccus genomes and in
the Haloferaceae, indicating their importance for specialization
towards the human gut. It should be noted that the CGH genes
detected in Methanomassiliicoccales, Methanomicrobiales and
Methanobacteriales formed separate clusters within the bacterial
bile salt hydrolases gene tree (Extended Data Fig. 10), indicating
their potential acquisition from different events of horizontal gene
transfers (HGTs).

Additional adaptations were observed at the metabolism level.
Apart from key components of methanogenesis, methyl-coenzyme
M  reductase (MCR) and heterodisulfide reductase/[NiFe]
hydrogenase (Hdr/Mvh) complexes, the main gut methanogens
(Methanobacteriales and Methanomassiliicoccales) possess very dis-
tinct methanogenesis pathways (Fig. 6 and Supplementary Table 13).
For example, different from all Methanomassiliicoccales, all human
gut Methanobrevibacter spp. have the genetic potential for formate
and H,/CO, utilization. However, 83% of all methanogenic MAGs
(including Methanobacteriales and Methanomassiliicoccales) have
the mtaABC genes, providing the genetic potential to use methanol.
The two dominant Methanobrevibacter spp. carry mtaABC genes,
whereas four species that are rarely present do not carry these genes,
strongly suggesting that methanol utilization might provide a selec-
tive advantage in the human gut. However, the condition under
which Methanobrevibacter sp. uses methanol and whether it is a
methanogenic substrate or enters an anabolic pathway remains to
be elucidated.
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The two dominant Methanobrevibacter sp. also display the
genetic potential to use alcohols (probably secondary alcohols
and ethanol) as electron donors for methanogenesis. One of the
Methanosphaera spp. may also have the genetic capacity to reduce
methanol with ethanol for methanogenesis as described earlier®,
but this species was encountered only once in our analyses, and M.
stadtmanae cannot perform this pathway.

The majority (11/13) of the GIT-associated species of
Methanomassiliicoccales code for the MttBC methyltransferase
and corrinoid protein needed for methanogenesis from TMA. This
capacity would allow them to decrease the concentrations of this
molecule produced by gut microbiota and involved in cardiovascu-
lar diseases'*”!. The presence of the mttBC genes was detected in a
larger proportion of the Methanomassiliicoccales MAGs originating
from Europe and North America (~60%) with respect to Africa and
Asia (~40%) or Oceania (17%) (Extended Data Fig. 10). These vari-
ations may reflect different TMA-production capacity by bacteria in
the microbiota across these populations and diet habits. One of the
two species of Methanomethylophilaceae lacking TMA-utilization
capacity (Ca. Methanoprimatia macfarlanii) also lacks MtbBC and
MtmBC methyltransferases and corrinoid proteins for dimethyl-
amine and monomethylamine utilization, respectively. However,
several strains of this species have the genes encoding the synthesis
of pyrrolysine (pylSBCD), a proteinogenic amino acid (UAG codon
encoded) quite exclusive to methylamine-specific methyltrans-
ferases***’. The absence of detection of the methylamine-specific
methyltransferases in these MAGs, including MttBC for TMA uti-
lization, is thus probably due to genome incompleteness. The other
species lacking methylamine methyltransferase, corresponding to
Methanomassiliicoccales Mx02 (ref. '¢), also lack any other genes
known to be involved in methyl-compound utilization or in any

alternative methanogenesis pathways (Supplementary Table 13).
The absence of these methanogenesis genes in all the MAGs of
Methanomassiliicoccales Mx02 and in previously obtained related
MAGs, support assumptions'®* on the presence of unknown meth-
anogenesis pathways probably based on unknown methyltransfer-
ases, or another metabolic route in the Methanomassiliicoccales.
Thus, we propose the name ‘Candidatus Methanarcanum hack-
steinit’ Mx02 gen. nov., sp. nov. (Me.than.ar.canum. N.L. neut. n.
methanum methane; L. masc. adj. arcanus silent, secret; N.L. neut.
n. Methanarcanum; an archaeon-forming methane in a puzzling
way; hack.sterni.i. N.L. gen. n. hacksteinii named after Johannes H.
P. Hackstein; representative MAG: GUT_GENOME287001).

Discussion

Our work adds original information on the biology of the GIT
archaeome, by characterizing a collection of 1,167 nonredun-
dant archaeal genomes. We were able to make initial associations
between the diversity of gut-associated archaea with several demo-
graphic and geographic patterns. However, many geographic loca-
tions remain undersampled to date.

As our genome collection is based on public datasets processed
for the analysis of the bacterial component of the microbiome, a
large number of archaeal species requiring specialized methods for
cell lysis and DNA extraction® may be missing. Moreover, sequenc-
ing stool samples is not necessarily representative of the com-
plete diversity of species in the intestines, because some archaea
have been shown to form biofilms and stick to the epithelium®.
Besides, as several taxa in our collection are represented by only
single genome representatives, additional conspecific strains will be
needed to allow profound analyses. Thus, we are far from capturing
the entire diversity of the GIT archaeome.
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The overall observed percentage of archaea present in the human
gut microbiomes (~1.2%, Supplementary Table 2a) is in agreement
with recently reported average percentages based on 16S rRNA
gene and shotgun metagenomic information'®. The abundance of
methanogenic archaea in the human gut is highly variable and rep-
resented by two physiological types of humans, namely methane
emitters (>5 p.p.m. methane in breath, ~20% of the western popula-
tion; 2% archaeal signatures in overall microbial GIT community)
and nonemitters (0.002% archaeal signatures), exhaling negligible
amounts of this gas. The effects of these striking differences of high-
and low-methane emitters on host physiology are largely unclear to
date, but are considered to be relevant to health and disease'®.

The presented genome collection and the catalogue of 1.8 mil-
lion putative proteins can now serve as a unique source to generate
hypotheses to be addressed in future studies. This includes aspects
on: (1) the archaeal physiology and metabolism; (2) the detailed
comparison and differentiation of free-living, animal- and human
host-associated archaea (see also ref. ***'), including the aspect of
HGT; (3) the interaction with the bacterial microbiome and the
virome; and (4) the type of archaeal cross-talk with the human host.
Moreover, considering that only 9 of 27 archaeal species detected in
the human gut metagenomes had a cultured representative, the pro-
vided resource can serve as a starting point for targeted cultivation of
previously uncultivated members of the archaeome and their virome.

Due to missing metadata and limited statistical power, it is chal-
lenging to establish significant associations between the archaeal
genomic diversity and human lifestyles or diseases herein. Thus,
experimentally driven, well-designed studies will ultimately eluci-
date the impact of archaea on human health’. Moreover, incorporat-
ing both transcriptomics and proteomics data will further reinforce
the genomic predictions and improve our understanding of the reg-
ulation of archaeal physiology and host adaptation. Future efforts
should also seek to extend the dataset beyond the gastrointestinal
environment, to other human body sites and hosts.

Overall, our work contributes substantially to the understanding of
the microbiome of the human GIT as a complex multi-domain bacte-
rial, archaeal, fungal and viral network®>-°. All microbial puzzle pieces
have co-evolved and adapted together within the gut ecosystem, so
study of these dynamic multi-kingdom interactions holistically will
provide crucial insights into the role of the gut microbiome in health.

Methods

A resource summary is provided in Supplementary Table 14.

Dataset description. To explore the diversity of archaea in human gastrointestinal
samples, we compiled publicly available genomes from four recent collections
of MAGs>*~?""". Briefly, the Unified Human Gastrointestinal Genome (UHGG)
collection (data access June 2020, https://www.ebi.ac.uk/metagenomics/
genomes) holds published, nonredundant MAGs and isolates, collected from
public repositories and associated metadata information (see ref. > for more
details). No statistical methods were used to predetermine sample sizes. We
additionally included published genomes from cultured archaea available in
the National Center for Biotechnology Information (NCBI)*, Pathosystems
Resource Integration Center (PATRIC)* and Integrated Microbial Genomes and
Microbiomes (IMG/M)® repositories.

Genomes were compared using Mash v.2.1 (ref. ©') and, for genomes that were
estimated to be identical and had a Mash distance of 0, only one was selected.
In addition, we included genomes of ‘Ca. Methanomethylophilus alvus™ and
‘Ca. Methanomassiliicoccus intestinalis™, as well as human gut-derived MAGs
of Methanomassiliicoccales Mx02, Mx03 and Mx06, and additional ‘Ca. M.
intestinalis’'°, and the human isolate Methanobrevibacter arboriphilus ANOR1
(ref. ) to complete the dataset. Those genomes were assigned a genome accession
no. (GUT_GENOME286998, GUT_GENOME287001, GUT_GENOME287002,
GUT_GENOME287004), as given in Supplementary Table 1a. This brought the total
number of genomes used for the analysis in the present study to 1,167. Data collection
and analysis were not performed blind to the conditions of the experiments.

Genome quality and taxonomic classification. The completeness of the
nonredundant 1,167 genomes was evaluated by CheckM v.1.0.11 (ref. ©*) and
only genomes that were >50% complete and had <5% contamination were

selected (following the protocol from ref. % Extended Data Figs. 1 and 2a—c).
This procedure yielded 1,167 nonchimeric® (clade separation score (CSS) =0;
Supplementary Table 1a) and nonredundant archaeal genomes (Mash distance
threshold of 0.001, 99.9% ANI®'; Supplementary Table 1a) which were further
subgrouped into individual strains (<99% ANI similarity, >75% genome
completeness; Supplementary Table 1b; 98 genomes; Fig. 1), and species (<95%
ANI similarity, >75% genome completeness; Supplementary Table 1c; 27
genomes). For this, the best quality genome (genome completeness, minimal
contamination, strain heterogeneity and assembly continuity based on the N50
value) from each cluster was selected as representative or, whenever an isolate was
available, it was preferred and used for further analysis.

Read mapping was performed with Bowtie2 (ref. **) for the genomes that had
original raw reads available and were post-processed using samtools®. Strain
heterogeneity within each MAG was computed using the script ‘polymut.py’ from
the CMseq tool (https://github.com/SegatalLab/cmseq). Alignment files were used
together with the parameters --minqual 30 and --cov 10, following the method
description in refs. >*°. A threshold of <0.5% indicates heterogeneity of assembly
and the higher likelihood of one strain present per assembly. GUNC®* was used to
detect chimerism in all 1,167 genomes and resulted in a CSS of 0 for all genomes
(Supplementary Table le). A CSS closer to a value of 0 indicates that a genome is
free of contamination and all genes are assigned to the same taxonomy, whereas
a CSS score closer to 1 indicates chimerism. The CSS, taken together with the
contamination thresholds from CheckM, demonstrated that our 1,167 genomes
were not chimeric in nature.

DRep v.2.0.0 (ref. °°) was used to dereplicate the complete dataset at 95% and
99% ANI values. The 95% ANI values were selected to separate between species
boundaries (n=27)". A cut-off of 99% was selected for strain delineation, provided
that a stable number of clusters for MAGs >75% complete had <5% contamination
(n=98; Extended Data Fig. 3a). Lower thresholds did not affect the number of
strains recovered. The resulting strain and species representatives are given in
Supplementary Table la-c.

All genomes were taxonomically annotated following the procedure given in
ref. 2. The taxonomic assignment was performed using the GTDB Toolkit v.0.3.1
(database release 04-RS89)" and default parameters that utilize a set of 122 marker
genes to identify archaeal MAGs. Previously undescribed species and genera
were defined when no taxonomic information was assigned for all members of a
species cluster and their species representatives based on the GTDB database. The
methodology is detailed in Supplementary Fig. 1.

Genome annotation and protein catalogue. Protein-coding sequences (CDSs)
were predicted and annotated with Prokka v.1.14.5 (ref. ) using the parameters
‘--kingdom Archaea’ to include nonfragmented archaea-curated proteins from the
UniProtKB database and ‘--rfam’ to scan for noncoding RNAs. CDSs were further
characterized using eggNOG-mapper v.2.0.0 (ref. °) and the eggNOG database
v.5.0 (ref. '), which includes the latest release of all archaeal clusters of orthologous
groups and their proteins™.

The protein catalogue was generated by combining all predicted CDSs (total
number 1,790,493) derived from the 1,167 nonredundant archaeal genomes.
MMseqs2 linclust”™ was used to cluster the concatenated proteins dataset using
the options ‘--cov-mode 1 -¢ 0.8’ (minimum coverage threshold of 80% the length
of the shortest sequence) and ‘--kmer-per-seq 80’ Proteins were clustered at
different percentage identities and the number of unique proteins resulting per
clustering for each taxonomic family was computed and visualized (Extended Data
Fig. 3b). To reduce the risk of contaminants, the proteins were filtered to remove
all nonclustered proteins. This gave a total of 28,581 proteins clustering at 50%
identity (Supplementary Material 1) visualized using the library pheatmap™ in
R. MMseqs2 using the ‘easy-search’ was additionally used for aligning the 28,581
proteins to UniRef 50 (ref. ) (date of download January 2021) to verify predicted
proteins that resulted in 13,254 (46.37%) proteins with a hit.

In addition to the protein catalogue, the various species and strain subsets of
the total 1,167 archaeal genomes (Supplementary Table 1b,c) were submitted to
MaGe MicroScope (Microbial Genome Annotation & Analysis Platform’), for
detailed analyses of genomic synteny, and the detection of bile salt hydrolases,
oxygen resistance genes and adhesins, following the automated annotation of
MaGe (Supplementary Table 1f).

Relative abundance of archaea in human metagenomes. Raw read datasets (691)
were obtained from studies of the human gut microbiome, out of which 691 (of
1,167) medium- or high-quality archaeal MAGs were assembled. The remainder
was not made public by their original submitters (Supplementary Table 1a).

‘We mapped raw reads to the 27 reference archaeal species representatives
using Bowtie2-align® and post-processed using samtools®. The generated sorted
mapping files were used to calculate the breadth of coverage. Breadth of coverage
was calculated by dividing the total number of bases covered (using samtools
mpileup) by the length of the reference genome. To get the percentage coverage
breadth we multiplied the resulting number by 100.

For measuring the relative abundance of the 27 archaeal species in the different
metagenomics datasets we used CoverM (https://github.com/wwood/CoverM) and
the relative_abundance calculation method (Supplementary Table 2f).

NATURE MICROBIOLOGY | VOL 7 | JANUARY 2022 | 48-61| www.nature.com/naturemicrobiology 57


https://www.ebi.ac.uk/metagenomics/genomes
https://www.ebi.ac.uk/metagenomics/genomes
https://www.ncbi.nlm.nih.gov/assembly/GCA_006954385.1/
https://www.ncbi.nlm.nih.gov/assembly/GCA_006954405.1/
https://www.ncbi.nlm.nih.gov/assembly/GCA_006954425.1/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000513315.1/
https://github.com/SegataLab/cmseq
https://github.com/wwood/CoverM
http://www.nature.com/naturemicrobiology

ARTICLES

NATURE MICROBIOLOGY

Reads were additionally mapped using Kraken v.2.1.2 (ref. ) (with default
settings) against (1) a custom database of the UHGG catalogue available from
the MGnify FTP site (http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_
genomes/human-gut/v1.0/uhgg_kraken2-db) and (2) a customized database of
the 27 archaeal species representatives in our dataset because we supplemented the
initial resource with additional isolates (Data description). Results were processed
using Bracken v.2.5.3 (ref. ) using both read lengths 100 and 250 to estimate the
relative abundance of domain-, family- and species-level taxa (Supplementary
Table 2b-d). We did not observe differences in the output values of the analysis
between read lengths 100 and 250.

Protein abundance estimation. To avoid estimations based on potential false
negatives derived from sample processing or genome binning, all raw reads were
aligned on the unified archaeal protein catalogue using DIAMOND BLASTx". The
hits were counted and the result was transformed into a matrix of the number of
hits for each protein per study using the pandas library®. This resulted in a mapped
protein matrix used for further statistical analysis to minimize the risk for sample
or batch effects in our dataset (Supplementary Material 2).

Besides genomic information (genome length, number of contigs, N50, GC
content, genome completeness, genome contamination, and number of rRNAs
and transfer RNAs), 11 metadata categories (numerical 2, categorical 9) could
be considered for the dataset. Information about the geographic origin was
available for 1,063 genomes (91% of the dataset covered countries from maximum
to minimum: the USA, Israel, Spain, Sweden, Fiji, UK, Austria, Denmark, the
Netherlands, France, China, Peru, Germany, Madagascar, United Republic of
Tanzania, Australia, Canada, Ireland, Italy, Russia, El Salvador, Iceland, Mongolia,
Norway, on five continents; Supplementary Table 1d and Fig. 3a).

Information on lifestyle was available for 1,054 genomes (90%, max.-min.: urban,
rural, semi-urban), health state (healthy, diseased) for 894 genomes (77%), age group
(adult, elderly person, child, teenager, infant) for 825 genomes (71%), gender (female,
male) for 620 genomes (53%), BMI group (normal weight, overweight, obesity class
1, underweight, obesity class 2, extreme obesity class 3) for 505 genomes (43%) and
name of disease (colorectal cancer, infection, type 2 diabetes, adenoma, obesity,
ulcerative colitis, nonalcoholic fatty liver disease (NAFLD), Parkinson’s disease,
ankylosing spondylitis—arthritis, faecal microbiota transplantation (FMT), cirrhosis)
for 303 genomes (26%) and treatment (antibiotics) for 241 genomes (21%). However,
most genomes (third quartile, 75% of all values) were obtained from healthy women
of normal weight, living in urban areas of Europe (Fig. 3).

To overcome biases introduced by potential residual MAGs contamination
issues, we focused our analyses on patterns observed in two or more genomes,
unless stated otherwise. In addition, we explored protein diversity patterns and
their functional characterization among isolated genomes to corroborate those
observed in MAGs. Finally, to avoid estimations based on potential false negatives
derived from sample processing or genome binning, raw reads were mapped on
the unified archaeal protein catalogue (Supplementary Material 1) as a reference to
generate a mapped protein matrix (Supplementary Material 2), which minimized
the risk for sample or batch effects in our dataset.

Supervised classification and regressions with RandomForest were applied
to predict respective metadata categories from the unified archaeal protein
catalogue and the mapped protein matrix with the q2-sample-classifier
plugin®. To reduce the risk of overfitting, the matrices were downsampled to a
minimum of 50 genomes for each tested metadata category, as reccommended by
scikit-learn 0.24.1 (ref. *?). First subsets of each metadata category were created
from the entire protein matrix and randomly split into a training set and a test
set with the proportions 80%:20%. By using K-fold cross-validation, the training
set served as a learning model to predict class probabilities with settings for
optimized feature selection and parameter tuning. In the end, model accuracy
was determined by comparing the predicted values between the training and
test datasets.

Pan-genome analysis. Pan-genome analysis was performed using Panaroo®

in ‘strict’ mode because it accounts for potential annotation errors, fragment
assemblies and contaminated genomes to recover an accurate pan-genome.
Pan-genome analysis was performed for archaeal genomes of the same families
and the same genus. We used Heaps’ law (n=k X n— ) to estimate whether we had
an open or a closed pan-genome*, This analysis was carried out in the R package
‘micropan’™® using a default permutation value of 100, where 1 is the predicted
number of genes for a particular number of genomes (1), and «k (intercept
parameter) and o (decay parameter) are the constants used to fit the curve after the
genomes have been ordered in a random way. An open pan-genome is indicated by
a <1 whereas a closed pan-genome is indicated by > 1.

Estimation of growth rates. Growth rates were estimated using GRiD* in the
multiplex mode (minimum coverage =1 and reassignment of ambiguous reads) by
a customized GRiD database based on the created subset of high-quality archaeal
genomes on species level. As the original raw reads were not available for each
representative genome and the remaining read sets were not made publically
available, growth rate estimates covered 131 metagenomic read sets (70% of all
archaeal genomes grouped at strain level).

In-depth taxonomic and clustering analyses of the various genera. ANI distances
and tree matrices were calculated using the online resources of the enveomics
platform®, MaGe’®, as well as Microbial Genomes Atlas (MiGA)*. Dendrograms,
built on the ANI tree matrix, were annotated using the iTOL tool (Interactive Tree
Of Life)*, and processed using InkScape. For specific considerations involving
additional genomes from animals, a subselection of the archaeal genomes was
reanalysed together with the additional genomes following the same settings as
described for the protein catalogue procedures above (respective datasets are given
in the Supplementary Table 12).

McrA genes were extracted via MaGe, hosting all strain-level genomes
(Supplementary Material 4). McrA genes were aligned using MegaX”, and a
maximum likelihood tree was calculated (default settings).

Bacterial and archaeal BSH genes were derived from ref. *' and supplemented
with BSH genes from genomes in the present study. Sequences were cropped
and a tree was calculated using the MEGA-X Maximum Likelihood Phylogeny
Reconstruction. The tree was annotated using the iTOL tool®.

Initial HGT analysis. Representative genomes from isolates and MAGs with

0% contamination according to CheckM results were selected for these analyses
(Methanosphaera spp.: 8 from humans, 7 from animals; Methanobrevibacter

spp.: 30 from humans, 11 from animals). A list with full details is provided in
Supplementary Table 11. Genomes from animals were obtained from NCBI (ncbi.
nlm.nih.go/genome), representing all available high-quality genomes (isolates,
MAGs) of the respective genus at the time point of analysis (2020; Supplementary
Table 11). The selected genomes were further characterized as previously
mentioned using eggNOG-mapper v.2.0.0 (ref. ”°) and the previously mentioned
databases (Genome annotation and protein catalogue). Annotated genes were
sorted according to their taxonomic affiliation (eggNOG output information:
‘best_tax_level’), and the proportion of archaeal and bacterial genes was calculated
for all genomes and genera. Data were visualized using Krona®.

Detection of virulence and resistance genes. To predict potential virulence genes
in all 1,167 archaeal genomes, ABRicate v.0.5 (https://github.com/tseemann/
abricate) was used to profile the following databases: CARD*, Resfinder™,
PlasmidFinder”, ARG-ANNOT", ECOH”” and MEGARes 2.0 (ref. %), as well as
NCBI AMRFinderPlus”. As ABRicate is solely based on DNA sequences, blastX
searches using DIAMOND” was used to complement results from ABRicate on the
level of protein sequences in the virulence factor database (VFDB v.20191122)'%1¢!
and CARD together with the Resistance Gene Identifier'.

Specific groups of proteins and genes involved in human interaction were
investigated according to available annotations from MaGe’™ and eggNOG-mapper”.

Viral identification, quality estimation and comparisons to viral databases.

To assess the presence of prophages, VirSorter2 (ref. '*) was used to scan all
MAGs. CheckV'"* was used to estimate completeness and assess the quality of
VirSorter2-predicted viruses. To ensure that we overcame possible contamination
issues that could potentially result from the binning process, we selected proviruses
flanked within archaeal contigs for this analysis. VirSorter2 tends to overestimate
provirus boundaries (https://github.com/jiarong/VirSorter2), therefore CheckV

is recommended to apply a quality control check and remove false positives.
CheckV looks for host-virus boundaries based on differences in GC content and
gene annotation in a sliding window approach. Proviruses (detected by VirSorter2
followed by CheckV and CheckV on a separate run) that had a quality assignment
of medium quality (50-90% completeness) of high quality (>90% completeness),
or were complete, were considered for further analysis. Quality assignments

by CheckV are based on Minimum Information about an Uncultivated Virus
(MIUVIG) standards'”. It is worth mentioning that proviruses detected by
Virsorter2 followed by CheckV were detected by running CheckV independently.
The selected proviruses were subsequently clustered with MMseqs2 using the
‘linclust’ function with the same parameters previously specified and MMseqs
function ‘result2repseq’ to select a viral cluster representative.

We identified 94 viral populations in our genome datasets. This number is the
result of clustering 45 high-quality (>90% completeness) and 130 medium-quality
(50-90% completeness) archaeal proviruses, flanked within archaeal contigs, at
95% identity and 80% coverage, where one to a maximum of two proviruses were
identified per host. The selected cut-off is commonly used for viral species™'*-'!0
definition (Extended Data Fig. 8 and Supplementary Table 10a—c).

Open reading frames of viral populations with the previously specified
MIUViG quality were used as input for vConTACT?2 (ref. *°) including Viral RefSeq
genome (v.97). VconTACT?2 is used to affiliate a family or a genus rank group to
viral populations and thus to determine taxonomic diversity.

A recent study was published by Gregory et al.” where a human GVD harbours
33,242 viral populations, including 0.1% archaeal viruses resulting from 2,697 gut
metagenomes in 32 studies. This dataset was used as a reference database to scan
the identified viral scaffolds using MMseqs2 ‘easy-linclust’ function at 50, 80, 90
and 95% identity.

Comparison to environmental archaea. For considerations based on 16S
rRNA genes, 16S rRNA genes of representative genomes were extracted using
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Metaxa2 (ref. ''") (n=314; not all 16S rRNA genes could be recovered). This
dataset was supplemented with data from amplicon sequencing studies and
clone sequences from archaeal signatures from human gastrointestinal samples
(dataset described in ref. % n=381 in total). These sequences were aligned and
classified using the SILVA rRNA database''?. More specifically, the retrieved
16S rRNA genes were subjected to the ACT tool (alignment, classification and
tree service)'"”, using the following parameters: basic alignment parameters:
‘removed’; search and classify, minimum identity with query sequence: ‘0.95’;
number of neighbours per query sequence: ‘10’; compute tree; workflow:
‘Denovo including neighbours’ and default parameters; and advanced tree
computation parameters, positional variability filter: ‘none, domain: ‘archaea’
Unclassified sequences were removed from the dataset. Via SILVA SINA, ten
next neighbours were selected, and information on their isolation source was
gathered through NCBI (Supplementary Material 3 and Supplementary Table
12a; the final dataset contained 566 sequences). Grouping was performed at
the genus/species level, and information on the percentage of host-associated
archaea in all groups was displayed as a circle packing plot (RawGraphs online
tool, https://app.rawgraphs.io).

For genome-based analyses, a set of 623 archaeal MAGs identified from
environmental and gastrointestinal samples (for example, rumen, guinea-pigs
and baboon faeces) was used as a reference dataset for comparison to the set of
archaea isolated from the human gut microbiome>'"*. All environmental genomes
used were >50% complete, and also up to 90% complete, with <5% contamination
as well. To estimate the pairwise ANI distance between environmental archaeal
genome dataset (Supplementary Table 12) and the archaeal genomes from the
human gut microbiome, we used fastANI”, a tool that effectively discriminated
intra- and interspecies boundaries for >90,000 prokaryotic genomes.

Metabolic interaction of the archaeome with the gastrointestinal environment.
Proteins involved in methanogenesis were searched in all genomes using
customized Hidden Markov Model profiles (threshold e-value 10~°) implemented
in Macsyfinder'"*. This allowed us to determine the presence of enzymatic
complexes on the basis of the presence of all or most subunits. The presence in the
26 methanogenic species was first evaluated based on the representative genome
(which are the most complete/less contaminated). If most of the MAGs in a species
have an enzyme, then this enzyme was considered to be present in the species, even
if absent from the best representative genome.

Functional interaction of the archacome with the gastrointestinal environment.
Specific functions were searched for (‘search by keywords’-function) in MaGe’.
Presence and absence information was used for tree annotation through iTOL®.
The backbone tree was based on ANI similarity as described above.

Tools used for data visualization. Principal coordinate analyses (PCoAs) and
other graphic displays based on the unified archaeal protein matrix were calculated
and visualized in Qiime2 (ref. ''°) and Calypso'". Venn diagrams were created with
creately (https://creately.com). Alluvial plots, circle packing plots and contour plots
were generated with RAWGraphs (https://app.rawgraphs.io). Strip charts were
created with Calypso. Dendrograms, based on the ANI tree matrix, were annotated
using the iTOL tool. All figure panels were created using InkScape.

Quantification and statistical analysis. All statistical analyses were conducted
using R, Qiime2"'*, Calypso'” and MaAsLin2 (ref. ''*). Where applicable, data
distribution was tested using Shapiro-Wilk normality tests. Statistical significance
was determined by nonparametric tests including Spearman’s rank correlations,
PERMANOVA and Wilcoxon’s rank-sum tests for pairwise analysis, Mann—
Whitney U-tests for unpaired data and Kruskal-Wallis tests if the significance
had to be determined for all groups. Significance was considered at an « < 0.05
after 999 permutations. P values were corrected for multi-hypothesis testing
using the false discovery rate. To control for potential batch effects resulting from
different isolation methods, DNA extraction protocols, assembly methods and/or
sampling depth, etc., the study accession was set as a random effect in MaAsLin2
analysis. In addition, linear mixed effect models®' were calculated to test whether
Bray-Curtis distances and « diversity (Shannon’s diversity index) of the mapped
archaeal protein matrix changed over age, BMI, genome completeness or growth
rate (GRiD), and in response to the use of antibiotics, geography (continent or
country), disease, sex, health status or lifestyle in the dataset.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All the recovered genomes are available for bulk download in an archived folder
‘archaea_gut-genomes.tar.gz’ in generic feature format at http://ftp.ebi.ac.uk/pub/
databases/metagenomics/genome_sets. All used genomes and metagenomes in the
present study are publicly available on NCBI and MGnify resource. Accession no.
details and paper references of used genomes and metagenomes are summarized in
Supplementary Table la—f.

Code availability
The present study did not generate code, and mentioned tools used for the data
analysis were applied with default parameters unless specified otherwise.
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Extended Data Fig. 6 | Profiles of human- associated Methanosphaera genomes. For comparison, eleven genomes from animal-associated
Methanosphaera were included. PCoA plots (Bray-Curtis distance) of the genomic profiles according to taxonomy (a), geography (b), genome type (c), and
host (d) and dendrogram of the genus Methanosphaera with human- and animal-associated representatives (e). Human-associated species are highlighted
in green colors. Colored bar displays the origin: human (yellow) and animals (shades of brown). (f): Forest plot showing the outcome of the Wilcoxon rank
test comparison of genomes from humans vs. animals (only proteins with FDR < 0.05 are shown), bar displays the odds ratio (OR) (Supplementary Table
7). Arrowheads represent OR that extend beyond the range of the shown X-axis.
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Extended Data Fig. 9 | Contribution of bacterial-annotated genes in human- (left) and animal- (right) associated Methanobrevibacter and
Methanosphaera species: Krona chart proportion in percent indicated by the small circles (the yellow wedge refers to proportion of bacterial annota-
tion: human Methanobrevibacter: 2.84%; animal Methanobrevibacter: 6.09%; human Methanosphaera: 2.11%; animal Methanosphaera: 6.74%) and
potential bacterial origin (taxa as displayed in the large circles). Unclassified taxa are whitened out. Only MAGs with 0% contamination and of high
quality (taken from ‘strain list') and genomes from isolates were analyzed (full details are provided in Supplementary Table 11) using eggNOG mapper

v2.0.0. Annotated genes were sorted according to their taxonomic affiliation (eggNOG output information: ‘best_tax_level), and the proportion of
archaeal and bacterial genes was calculated.
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Data collection  Data collection is described in "Dataset description"
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- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All the recovered genomes are available at [http://ftp.ebi.ac.uk/pub/databases/metagenomics/genome_sets/archaea_gut-genomes.tar.gz]. All the other considered
genomes and metagenomes are publicly available in NCBI, and referenced.
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