Level V Evidence

Clinical and Research Medical Applications of
Artificial Intelligence

Prem N. Ramkumar, M.D., M.B.A., Kyle N. Kunze, M.D., Heather S. Haeberle, M.D.,
Jaret M. Karnuta, M.S., Bryan C. Luu, B.S., Benedict U. Nwachukwu, M.D., M.B.A., and
Riley J. Williams, M.D.

Abstract: Artificial intelligence (AI), including machine learning (ML), has transformed numerous industries through
newfound efficiencies and supportive decision-making. With the exponential growth of computing power and large
datasets, AI has transitioned from theory to reality in teaching machines to automate tasks without human supervision.
Al-based computational algorithms analyze “training sets” using pattern recognition and learning from inputted data to
classify and predict outputs that otherwise could not be effectively analyzed with human processing or standard statistical
methods. Though widespread understanding of the fundamental principles and adoption of applications have yet to be
achieved, recent applications and research efforts implementing AI have demonstrated great promise in predicting future
injury risk, interpreting advanced imaging, evaluating patient-reported outcomes, reporting value-based metrics, and
augmenting telehealth. With appreciation, caution, and experience applying Al, the potential to automate tasks and
improve data-driven insights may be realized to fundamentally improve patient care. The purpose of this review is to

discuss the pearls, pitfalls, and applications associated with Al

he application of artificial intelligence (AI) in the
field of medicine has been widely forecasted since
the concept was first described by John McCarthy over
60 years ago.' Although the maturity of Al in the field
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of orthopaedics has lagged behind fields such as
ophthalmology,” dermatology,” and cardiology,” inter-
est has grown rapidly in the past 2 decades as tech-
niques have become accessible to researchers and
clinicians.

Broadly, Al is the science and engineering of creating
intelligent machines that can achieve tasks that otherwise
require human input.” Machine learning (ML) is a subset
of Al that uses computational algorithms to analyze large
data sets to classify and predict without explicit in-
structions.”® In its most rudimentary form, ML models
are given inputs and outputs of “training sets” using real-
world data to determine relationships using pattern
recognition.® As such, the model is dependent on the
accuracy and biases of the given data set. The models are
then tasked with creating predictions based on inputs
from a “testing set,” and these predictions are compared
with actual known outcomes. As the data in the training
sets grows and the number of testing repetitions increases,
the machine’s algorithm becomes more accurate and
predictive, not unlike “experiential learning” in arthros-
copy training. Thus, algorithms possess the capacity to
“reflect” by continually assessing and improving the
quality of its analyses, with the potential to continue in-
cremental learning after addition of new data so as to not
“reinvent the wheel,” thereby permitting global data
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sharing and interconnectivity.”” Understanding appro-
priate use for Al models is required prior for application to
clinical scenarios; further discussion of the various models
is outside the scope of this review.

Three drivers have accelerated AI implementation
in health care: (1) accessible computing power,
(2) spiraling systemic costs, and (3) omnipresence of
data. Although computing power and systemic costs
reflect trends from their respective technology and
health care sectors over the past few decades, the
generation of digital data is unprecedented. From high-
resolution medical imaging, continuously evolving
electronic health records, and numerous diagnostic
tests, each patient encounter produces tremendous
discrete data points, generating Big Data that cannot be
effectively analyzed with human processing or standard
statistical methods. One study of electronic health re-
cords found that a single patient’s health record was
associated with an average of approximately 32,000
unique data elements.*” With the fundamental un-
derstanding that AI should and could never replace the
patient-facing tasks of the sports medicine surgeon, the
most appropriate application involves removing time-
intensive, administrative burdens that drive nearly
40% of health care costs.” Supportive AI tools may
automate the redundant tasks from care coordination
to routine documentation and orders in the electronic
health record, in turn, allowing for increased focus on
patient-facing activities.

Limitations of Al

Al carries limitations. ML techniques create a “black
box” phenomenon, in which the user can only access
the inputs and outputs of an algorithm, but not the
inner workings or the specific relationships evaluated
by the algorithm.'® Some believe the “black box” phe-
nomenon risks deskilling of physicians and other
providers, the displacement of physician jobs, and the
devaluation of human experience and clinical intuition.
As an example for the sports surgeon, we may be able
to produce a suitable algorithm that decides which
biologic agents to use, but we will may not gain the
reasoning behind the algorithm’s prediction. However,
having supportive decision-making derived from the
global body of evidence would allow for improved
insights from improve data sharing.

As with all data analysis, the quality of the output and
conclusion is heavily dependent on the quality and
relevance of input data. Therefore, just as with any
other clinical research effort, application of algorithms
to databases of low quality and relevance are unlikely
to yield meaningful and accurate results. Examples of
low-quality input data include datasets with large
amounts of missing information, low-volume databases
that are not powered enough to draw meaningful
conclusions, and inaccurate databases. Therefore, ML

efforts must draw upon outcomes that are clinically
accurate and relevant to patients to be meaningful.

Despite the relatively autonomous nature of analysis
through machine learning algorithms, there is still a
potential for bias. This bias may be a result of the
algorithm that is used to analyze the data or with the
data itself (e.g., skewed datasets). For example, when
Amazon (Seattle, WA, U.S.A.) attempted to build an
Al-based tool to aid in recruiting new talent, the algo-
rithm negatively selected against females because the
training data consisted of male-dominated applica-
tions."' Moreover, although this bias may be unin-
tended, it may be difficult to recognize because of the
nature of the unsupervised learning techniques
inherent to these algorithms.

Applications: Al in the Sports Medicine
Literature
In this section, we review the use of Al-based tech-
niques in sports medicine as a prelude for what the
sports medicine surgeon may anticipate reading in
future literature.

Athlete Injury Prediction

Professional sports represent a multibillion-dollar in-
dustry that depends on the maintenance of player
health through coordinated efforts with the goal of
optimizing player performance and availability. With
the breadth of metrics surrounding professional sports,
ML may hold value in injury prevention and prediction.
Luu et al.'* compiled publicly reported National Hockey
League injury data, player-specific metrics, 85 different
performance metrics, and injury history to demonstrate
that the best machine learning algorithm predicted next
season injury with an accuracy of 94.6% (standard
deviation 0.5%). For Major League Baseball players,
Karnuta et al.'’ evaluated data 1931 position players
and 1245 pitchers and found that the best performing
algorithm demonstrated an accuracy of 70% (standard
deviation 2%) at predicting next season injury. In both
studies, ML techniques were superior to logistic
regression at predicting future player injury.

Imaging

The powerful pattern recognition capabilities of AI
naturally lend to the automated interpretation of imag-
ing. When presented with an unknown image, an
algorithm can interpret the imaging to provide a sup-
portive decision based on the query. With advanced
computed tomography or magnetic resonance imaging
(MRI) data, acute cartilage or ligamentous pathology
could be immediately detected for triage to a sports
specialist. Ramkumar et al. applied an ML model to
discern, for 1735 patients undergoing arthroscopic
correction of femoroacetabular impingement syndrome
(FAIS), which preoperative radiographic indices from
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computed tomography scans of the hip predicted sig-
nificant changes in 1- and 2-year patient-reported
outcome measures (PROMs).'* The study found that
no specific radiographic index or combination of indices
was found to be predictive of improvement in any of the
4 PROMs at either 1 or 2 years follow-up in the setting of
strict surgical indications. Similarly, Fritz et al. applied
deep learning to 100 MRIs and found the algorithm
detected meniscus tears with similar specificity but lower
sensitivity than musculoskeletal radiologists."” In a study
of 260 patients with knee MRIs, Chang et al. reported
anterior cruciate ligament tears were detected with 96 %
accuracy using a deep learning architecture.'®

Patient-Reported Outcome Measures

PROMs have become increasingly valuable quality
metrics in determining the success of an intervention.
Nwachukwu et al. investigated the application of ML to
predict changes in PROMs after arthroscopic FAIS sur-
gery.'” An ML model was built using the least absolute
shrinkage and selection operator algorithm for feature
selection, followed by logistic regression for the selected
features. The model, trained on 898 FAIS patients, was
able to identify across 3 separate hip-specific PROMs the
following predictors for failure to achieve clinically
meaningful outcomes: presence of anxiety/depression,
symptom duration > 2 years, preoperative intra-articular
injection, and high preoperative outcome scores.'”

Value-Based Metrics

Another relevant application of Al is the promotion of
value-conscious care. One key issue is the current
inability to preoperatively communicate value of care
rendered to a specific patient for elective surgery. Kar-
nuta et al. assessed the capability of artificial neural
networks to predict length of stay, discharge disposi-
tion, and inpatient charges for primary anatomic,
reverse, and hemi-shoulder arthroplasty.'® This model
predicted inpatient costs with an accuracy ranging from
69% to 77%, as well as discharge disposition and length
of stay with fair to good accuracy (72%-75% and 78%-
92%, respectively). Future ML models may provide
physicians with the ability to offer an evidence-based,
patient-specific tool that preoperatively communicates
value metrics for valuable discourse in terms of
expectation management and reimbursement arbitra-
tion from payor preauthorization.

Telehealth

In the era of the COVID-19 pandemic, the patient
experience is increasingly tied to access via remote patient
monitoring and telemedicine. One particular system
(FocusMotion, Santa Monica, CA, U.S.A.) implements Al
to remotely monitor patients recovering from knee
arthroplasty, arthroscopy, and anterior cruciate ligament
reconstruction through the use of Bluetooth-enabled

braces and mobile health data that relay data to an Al-
based algorithm.'””” These data are instantaneously
contextualized to highlight warning signs, as stipulated by
the surgeon, and display mobility, range of motion,
PROMs, opioid consumption, wound appearance, and
rehabilitation compliance in a central dashboard shared
with the patient and care team; this was found to increase
patient engagement to rehabilitate postoperatively after
knee surgery and remains under current prospective
evaluation.'”*’

Conclusion

Al is poised to transform medicine through automated
task performance and has demonstrated potential in
predicting future injury risk, interpreting imaging, eval-
uating patient-reported outcomes, reporting value-based
metrics, and augmenting telemedicine visits. This tech-
nology should be viewed as a tool to augment the
capabilities of physicians and researchers, rather than
replace their responsibilities. Though unfamiliar and
complex, we advocate for embracing the use of Al given
its many potential applications as the future of medicine
necessitates physicians and caregivers gain sufficient
familiarity with Al-based concepts for responsible
application.
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