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1. Introduction

Corrosion is the main cause of material failure of key me-
chanical components, which more often than not leads to
financial misfortunes, security mishaps, and indeed casu-
alties [1]. In arrange to extend the service life of machine parts
in unforgiving situations, different surface modification
technologies and unused surface security materials have
gradually been developed. Ni—Fe alloy has been broadly uti-
lized in the field of industrial anti-corrosion because of its
fabulous corrosion resistance, mechanical properties, and
relatively low price [2—5]. The preparation methods of Ni—Fe
alloys include spraying [6], laser remelting [7], sintering [8],
vacuum melting [9], electrodeposition methods [10—14], etc.
Among them, electrodeposition is the foremost common
strategy because it can deposit nanostructure coatings with
better performance on many conductive substrates and is
simple to operate. During the preparation of alloy coatings,
the deposition temperature is an important factor that affects
the structure and performance of the coatings. Cui et al. [15]
found that as the temperature of the electrolyte increases, the
thermodynamic stability of the obtained coating is signifi-
cantly improved and the structure is denser when the Ni—P
alloy is electrodeposited. Rai et al. [16] found that when the
deposition temperature is low, the diffusion and solubility of
graphite are lower, and the prepared Ni-graphite coating is
thinner. As the temperature rises, the diffusion and solubility
of graphite become higher, and the obtained composite
coating is thicker and denser. Lee et al. [17] found that the
electrolyte temperature has a significant effect on the phase
structure and stability of the coating during the preparation of
Fe—Ni alloy. Specifically, as the temperature increases, the
effect of abnormal co-deposition gradually weakens, the
content of Fe gradually decreases, and the high temperature
stability of the obtained coating is better. Oliveira et al. [18]
found that the deposition temperature has a greater influence
on the alloy composition when electrodepositing Ni—W—Co
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coating. As the temperature increases, the ion mobility in-
creases, which is beneficial to the reduction of Ni and Co in the
coating and the improvement of the coating. Seo et al. [19]
studied the effect of temperature on the Ni—Fe—P alloy elec-
trodeposited by sulfanilic acid. When the temperature is
increased to 60 °C, the sulfur content in the coating decreases.
When the electrolyte temperature is increased from 60 °C to
70 °C, the residual stress of the coating is significantly
reduced, and the resistance of the coatingis greatly improved.
From the above research, it can be known that in the process
of electrodeposition of Ni-based alloy or Ni—Fe-based alloys,
the content of various elements in the coating can be
controlled by adjusting the temperature. However, there are
few studies on the mechanism of temperature on the depo-
sition of particles in composite coatings, and the mechanism
analysis of deposition temperature on the composition and
performance of the coating needs further research.

In recent years, the research on the preparation of particle
reinforced composite coatings by electrodeposition has
attracted the attention of researchers because the doped hard
particles can effectively improve the comprehensive proper-
ties of Ni—Fe alloy coatings. Starosta et al. [20] found that the
addition of Al,0; nanoparticles is beneficial to strengthen the
structure of Ni—Fe coating and significantly improve the me-
chanical performances of the coating. Li et al. [21] demon-
strated that the content of ZrO, affects the composition and
structure of the coating. Particularly, with the increment of
ZrO, particles, the roughness and corrosion resistance of
Ni—Fe coating also expanded. Safavi et al. [13] found that the
addition of Y,03 nanoparticles makes coating more compact,
which results in the prepared Ni—Fe—Y,03 composite coating
having excellent performance of anticorrosion. Yousefi et al.
[10] prepared Ni—Fe—TiO, composite coatings and examined
the impact of current on the coating performance. The results
showed that with the increment of current, the number of
TiO, nanoparticles increased, and the corrosion resistance of
the coating was positively correlated with the content of TiO,
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Fig. 1 — Schematic diagram of experimental equipment.
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particles. Rasooli et al. [22] evaluated the relationship between
the Ni—Fe—Cr,03 coating properties and the concentration of
the particles within the plating solution. The results showed
that the coating with 6 g/L Cr,05 particles concentration has
the best performance.

The above research focuses on the introduction of hard
particles in the conventional electrodeposition (CED) process
to strengthen the performance of Ni—Fe coating, and just ex-
plores the relationship between the concentration of hard
particles and the performance of the coating. Because the di-
ameters of those hard particles are all micro and nano grades,
they have higher surface energy, which makes most of them
exist within the plating solution in the agglomerated form
[23,24]. During the CED, it is difficult to break this agglomer-
ated state, and finally obtain a composite coating with uneven
particle distribution, which isn't conducive to the enhance-
ment of coating properties. JED is a high-speed electroplating
technique carried out in a part of the substrate [25,26]. As an
unconventional electrodeposition technology, compared with
CED, the high-speed flushing process can destroy the
agglomerated hard particles effectively when preparing
particle-reinforced composite coatings. Therefore, the pre-
pared coating by JED has excellent characteristics of high
preparation efficiency, uniform distribution of nanoparticles,
and tall surface quality [27,28]. In recent years, researchers
have also researched on the preparation of particle-enhanced
coatings by JED. Xia et al. [29] prepared Ni—TiN films by JED
and explored the corrosion properties of the film. The results
indicated that Ni—TiN film prepared at the 5 g/L TiN addition
has minimum corrosion potential and corrosion current. Ji
etal. [27] prepared the Ni-graphene films and explored the key
parameters of the JED. Results indicated that the mechanical
and corrosion resistance of coating achieved best when the
concentration of graphene was 0.5 g/L. Wang et al. [30] fabri-
cated Ni—CeO, coatings and explored the relationship be-
tween CeO, nanoparticles and the properties of the coating.
The comes about appeared that the coating with higher CeO,

nanoparticles had fewer surface defects and better corrosion
resistance. Jiang et al. [31] fabricated Ni—SiC coatings through
magnetic field-assisted JED and found that the addition of a
magnetic field would increase the number of SiC particles of
the coating. Meanwhile, the wear resistance of coating was
also improved accordingly. Ma et al. [32] fabricated Ni—AIN
coatings by JED with ultrasound technique and found that
the addition of ultrasound made the coating structure more
compact. The results showed that the friction performance of
coating was enhanced with the content of AIN particles
increased.

The above researches about the fabrication of particle-
reinforced coatings by JED mainly focus on single metal
composite coatings, and there are little researches on alloy
composite coatings. Moreover, these investigations tend to
explore the effect of particles content on the coating perfor-
mance or add some auxiliary means to improve the content of
hard particles. The mechanism of deposition of hard particles
during JED has not been studied in depth. Based on the above
analysis, this study prepared the Ni-Fe-WC composite coat-
ings by JED and found that coatings with more WC particles
have better corrosion resistance. At the same time, the
mechanism of WC particles adsorption during the fabrication
of particle-reinforced composite coatings during JED and the
impact of WC particles on the corrosion resistance were
deeply analyzed. Some innovative theories and technical re-
sults were obtained.

2. Materials and methods
2.1. Experimental equipment

Figure 1 shows the experimental equipment diagram. The
cathode of DC supply links to the substrate and the anode
connects to the titanium rod. Due to the stable chemical
properties of titanium, the titanium rod is not consumed
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Fig. 2 — (a) The composition of substrate, (b) SEM image of WC particles, (c—d) EDS mapping images of WG particles.
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during the electrodeposition process. At the same time, the
distance between the titanium rod and the substrate is rela-
tively close. The stable current distribution makes the elec-
trodeposition process more stable. The plating solution is
sprayed from the nozzle into the surface of the substrate at a
high speed, and the unreacted plating solution is magnetically
stirred and heated in the plating bath to prevent the WC
nanoparticles from agglomerating. The function of the dia-
phragm pump is to circulate the plating solution and control
the flow rate of the bath.

2.2. Experimental parameters

The substrate material is medium carbon steel, and its
composition is shown in Fig. 2(a). Before the experiment, the
substrate is pretreated as follows: first, use a grinder to
remove the oxide layer and rust on the surface, then use 400,
800, 1200, 1500, 2000 mesh sandpaper and nylon polishing
cloth for polishing, and finally ultrasonically clean with
alcohol for 30 min and dry. Figure 2(b) is the SEM image of WC
particles with a mean diameter size of 300 nm. Figure 2(c and
d) is the EDS mapping images of WC particles. The composi-
tion of the plating solution is as follows: 300 g/L of NiSO,.
-6H,0, 40 g/L of NiCl,-6H,0, 20 g/L of FeCl,-4H,0, 20 g/L of
H3BOs, 0.5 g/L of saccharin, 1.0 g/L of emulsifier OP-10, and
25 g/L of WC particles. All reagents were purchased from
Aladdin Biochemical Technology Co., Ltd., with a purity of
99.9%. The solvent is deionized water. Table 1 shows the
experimental parameters of JED.

2.3. Characterization methods

The surface morphology Ni-Fe-WC coating was demonstrated
utilizing SEM. The elements distribution and compound
structure of coating were characterized utilizing EDS and XPS.
The crystal structure and grain size of coating were measured
utilizing XRD. The surface 3D profile of coating were observed
utilizing a hyper-depth 3D microscope. The electrochemical
corrosion characteristics of Ni-Fe-WC coatings were evaluated
by polarization curve and EIS. The test solution was 3.5wt%
NaCl solution and the test environment was room tempera-
ture. All the tests were carried out in a three-electrode system,
with a reference electrode of Ag/AgCl, a counter electrode of
platinum plate, and a working electrode of coating. The po-
larization curve was recorded in the range of —300 to +300 mV
(relative to Eocp) with a 1 mV/s scan rate. The EIS was recorded
in the range of 10° to 1072 Hz with 10 mV sinusoidal signal
amplitude. The environmental corrosion behavior of coating
in the salt environment was measured by NSS experiment.

Table 1 — The experimental parameters of JED.

Experimental parameters Quantity
pH value of plating solution 4

Size of jet nozzle/mm 1x 15

Speed of jet nozzle/mm-min " 100

Gap between jet nozzle and cathode/mm 5

Flow rate of plating solution/L-min * 1.5

Current density/A-dm~? 100
Temperature/°C 25, 35, 45, 55, 65

The concentration of the Nacl salt solution was 5wt%, the pH
value was 7, the temperature was 35 °C, the sedimentation
volume after atomization was 2 mL/(h-cm?).

3. Results
3.1.  Composition of coating

The EDS images of coatings are shown in Fig. 3. As shown in
Fig. 3 (a-e), it is clear that all coatings just contain Ni, Fe, W, C,
and O elements. The mass percentage of WC particles can be
obtained by converting the W element content. According to
Fig. 3(f), as the deposition temperature rises from 25 °C to
65 °C, the content of WC particles is 0.53, 0.64, 0.73, 4.47, and
4.16 wt%, respectively.

The deposition rate of Ni**, Fe*", and WC particles at
different temperatures are calculated using the weighing
method. The samples were deposited for 30 min at different
deposition temperatures. The weight difference of the sam-
ples before and after deposition is the coating weight, and the
coating weight divided by the time is the coating deposition
rate. The deposition rate of Ni?*, Fe?*, and WC particles can be
obtained by multiplying the deposition rate of the coating
with the percentage of Ni, Fe, and WC particles in the coating,
respectively. The above experiment is performed 5 times and
the average value is taken. The measurement results are
shown in Fig. 4(a). It is found that the deposition rate of metal
ions and WC particles increase with the increase of temper-
ature. The main reason for this phenomenon is that
increasing the temperature can weaken the hydration of ions
and reduce the viscosity of the solution, which can increase
the particle movement speed, thereby increasing the con-
ductivity of the solution, and finally improve the reduction
speed of ions [15,18]. It can be seen from Fig. 4(b) that when the
deposition temperature is lower than 55 °C, the percentage of
deposition rate increment of Ni** and Fe?" is lower than that
of WC, which leads to WC particles content in the coating
increases as temperature increases. However, when the
deposition temperature is greater than 55 °C, the percentage
of deposition rate increment of Ni*" and Fe?' is higher than
that of WC particles, so the WC particles content in the coating
decreases slightly as temperature increases.

The XRD spectra of the Ni-Fe-WC coatings are shown in
Fig. 5. The Fitting illustrate that all coatings are (Ni, Fe) face-
centered cubic structure with significant (111), (200), (220) in-
tensity peaks. When the temperature is 55 °C and 65 °C, the
peak of the WC phase appear in the XRD pattern of the pre-
pared coating, while do not appear at other temperatures,
because the particles content in the coating is detected when
it is higher than a certain value [30,33].

The XPS test results of the Ni-Fe-WC coatings are shown in
Fig. 6. From the XPS survey spectra (Fig. 6(a)), it is clear that all
coatings have obvious Cag, O15, Was, Feyp, Niy, peaks, which are
mutually verified with the results in Fig. 3. From the high-
resolution XPS spectra of Ni,, (Fig. 6(b)), It can be seen that
there is an obvious intensity peak of about 852.9 eV, which
corresponds to the 2ps;, peak of Ni [34]. According to the
standard binding energy (Ni metal: 852.6 eV, NiO: 853.7 eV). It
can be considered that the Ni element composition on the
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Fig. 3 — The EDS images of Ni-Fe-WGC coatings.

surface of the coating is Ni metal and a few parts of NiO. From
the high-resolution XPS spectra of Fe,;, (Fig. 6(c)), it can be seen
that there are two obvious intensity peaks 707.0 and 709.8 eV,
which corresponds to the 2ps/, peaks of Fe [35]. According to
the standard binding energy (Fe metal: 706.7 eV, FeO: 709.6 eV,
Fe203: 710.8 eV). It can be considered that the Fe element
composition on the surface of the coating is mainly a large
mainly Fe metal, and a small part of iron oxide. In summary,
the prepared Ni-Fe-WC coating mainly consists of Ni, Fe, WC
particles, and a small amount of metal oxides.

3.2 Surface morphology of coating

The SEM images and 3D morphologies of coatings are shown
in Fig. 7. The surface morphologies and roughnesses of those
coatings are significantly different. When the temperature is
25°C, a large number of bulges larger than 6 um appear on the
surface. The microstructure of the coating shows a grind
arenaceous texture, and the maximum profile difference of
the surface is 8.09 um (Fig. 7(a-b)). When the temperature is

35 °C, the size of the bulges is reduced to 3—5 um, and the
number of bulges is reduced. The microstructure of the
coating still shows a grind arenaceous texture, and the
maximum profile difference of the surface is 6.91 um (Fig. 7(c-
d)). When the temperature is 45 °C, the size of the bulges is
reduced to 2—4 pm. The microstructure of the coating shows a
smooth texture, and the maximum profile difference of the
surface is 5.92 pm (Fig. 7(e-f)). When the temperature is 55 °C,
the size of the bulges is 2—4 um, but the number of bulges
increases sharply, even stacking together to form agglomer-
ates, and the profile height difference of the surface is
15.70 pm (Fig. 7(g-h)). When the temperature is 65 °C, the
morphology of the coating surface is consistent with the
deposition temperature of 55 °C, and the maximum height
difference of the coating surface profile is 12.66 pm (Fig. 7(i-j)).

Combined with Fig. 3(f) and Fig. 7, it can be concluded that
when the temperature is relatively low, the surface roughness
of the coating decreases with the temperature increases,
indicating that increasing the temperature appropriately can
effectively improve the surface quality of the coating.
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Fig. 5 — The XRD spectra of Ni-Fe-WGC coatings.

However, when the temperature achieves above 55 °C, the
coating suddenly develops a large number of bulges. From the
scanning diagram of the W element distribution of the high
magnification coating, it can be seen that the content of large
WC particles in the bulge is significantly higher than that in
the flat. When bulges gather, WC particles are also prone to
agglomeration, which leads to the increase of coating
roughness.

3.3. Electrochemical behavior of coating

The electrochemical corrosion behavior of coating was ob-
tained by measuring the polarization curve and EIS. The
corrosion potential (Ecorr) and corrosion current density (icorr)
of the coating were obtained by fitting the polarization curve.
The high E.y and low I, reveal that the coating has excel-
lent corrosion resistance. It is obvious from Fig. 8 that as the
temperature increments from 25 °C to 65 °C, the E.q,, is —0.402,
~0.335, —0.303, —0.281, —0.295 V, and the I, is 25.13, 16.61,

13.92,7.05, 8.23 pA/cm?, respectively. The corrosion resistance
of coating increases first and then decreases with the increase
of temperature, which is consistent with the law that the WC
particles content changes with temperature. The coating
prepared at 55 °C has the best corrosion resistance.

The electrochemical reaction of the coating/electrolyte
interface during electrochemical corrosion can be obtained by
the EIS method. The EIS spectrum includes Bode diagram or
Nyquist diagram forms [36—38]. Nyquist diagrams are
composed of incomplete semicircular arcs. Generally
speaking, the larger the diameter of the arc, the better the
anti-corrosion performance of the coating. As shown in
Fig. 9(a), the diameter of the arc increases first and then de-
creases with the increase of temperature. The Bode diagrams
of log(f) vs. log(|Z|) are shown in Fig. 9(b). In 10°~10° Hz fre-
quency range, the values of log|Z| are about 20 Q cm?, which
represents the solution impedance. In the 1072-10° Hz fre-
quency range, the values of log|Z| increase as the frequency
decreases, which represents the impedances of Ni-Fe-WC
coatings. At the fixed 0.01 Hz, as the temperature increases,
the value of polarization impedance is 12,720, 14,320, 15,470,
57,850, and 59,140 Q cm?, respectively.

The Bode diagrams of log(f) vs. angle are shown in Fig. 9(c),
with the temperature increases, the maximum phase angle is
68.9, 71.2, 74.8, 80.9, and 80.4°, respectively. The higher po-
larization impedance and the bigger phase angle indicate the
capacitance property of coating better. The better the capac-
itance of the coating is, the better the corrosion resistance is.

An equivalent circuit (EEC) can replace the reaction at the
electrode/solution interface during EIS testing. The EEC ob-
tained by using ZSimpWin software to fit the EIS test results is
shown in Fig. 9(d). In the EEC, R, R, and R are the solution
resistance, the coating resistance, and the charge transfer
resistance, respectively. CPE; and CPE, are constant phase
elements and their impedance can be obtained by Q =
[Y (jw)")
imaginary number (v—1), w stands angular frequency (rad
s, and n stands a value of 0—1. The CPE stands for pure
capacitance when n = 1. The fitting parameters of EEC are
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Fig. 6 — The XPS test results of the Ni-Fe-WG coatings: (a) survey spectra, (b) Ni 2p, (c) Fe 2p.
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shown in Table 2. All fitting errors are less than 5%, which
proves that the EEC is suitable for all coatings. As the tem-
perature rises from 25 to 65 °C, the n value of CPE; is 0.8863,
0.8819, 0.9256, 0.8402, and 0.8710, respectively, while the n
values of CPE, are all 1. The coating surface roughness affects
the n value of CPE;. The larger the roughness is, the smaller
the n value is, which is consistent with the change rule in
Fig. 7. As the temperature rises from 25 to 65 °C, the R. is
8.555 x 10°% 1.233 x 10% 1.246 x 10% 5.095 x 10* and
4.842 x 10* @ cm?, and the Ry is 4.058 x 103 5.377 x 103,
5.829 x 10°,1.538 x 10* and 1.465 x 10* Q cm?, respectively. It is
obvious that the R;, (Rc + Re) of the coating increases first and
then decreases with the temperature increases, which is the
same as the law that the WC particles content changes with
temperature.

3.4.  NSS corrosion behavior of coating

The NSS duration of coating is 10, 20, and 40 days, respec-
tively. Figure 10 shows the quality changes of coatings after
corrosion. It can be found that the corrosion products gradu-
ally increase with the increment of the corrosion time. In the
same corrosion time, the corrosion products show a trend of
first decreasing and then increasing as the deposition tem-
perature increases. When the temperature is 55 °C, the pre-
pared Ni-Fe-WC coating has the least corrosion products.
Figure 11 shows the optical images of the corroded coat-
ings. It is clear that as the corrosion time increases, the
corrosion degree of the coating surface intensifies. When the
corrosion time is 40 days, each coating shows a significantly
different degree of corrosion, according to the degree of
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Fig. 8 — The polarization curves of coatings.

corrosion from mild to severe corrosion is divided into the
areas of mild corrosion (A1), moderate corrosion (A2), and
severe corrosion (A3). As shown in Fig. 12, after 40 days of NSS,
the corrosion morphologies of the coatings have obvious
differences.

In the mild corrosion areas (A1), all the coatings show the
flocculent corroded surface, and the coatings are not
completely covered due to fewer corrosion products. Through
the analysis of EDS (Fig. 13), the O content of Al all has
increased compared with that before corrosion, indicating
that the corrosion products are metal oxides. Meantime, the O
content decreased first and then increased with the

temperature rising. The less the O content, the fewer the
corrosion products and the least corrosion.

In the moderate corrosion areas (A2), all surfaces of the
coatings are uniformly corroded. When the deposition tem-
perature is low (25°C—45 °C), numerous corrosion holes show
up on the surface. When the temperature is higher
(55°C—65 °C), there are without corrosion holes that appear on
the surface. The more corrosion holes, the easier the corrosion
will extend to the depth of the coatings. By observing the EDS
spectrum images of A2 areas (Fig. 13), it is found that the O
content in these areas has been increased again, indicating
that the degree of oxidation is further intensified (Compared
to Al). As the deposition temperature increases, the O content
shows a trend of first decreasing and then increasing.

In the severe corrosion areas (A3), the corrosion products
are significantly increased. By observing the EDS spectrum
images of the coatings, it is found that the O element contents
of all coatings reach the highest (compared to Al and A2). A
large number of corrosion products even form an oxide film,
which can effectively prevent the air from contacting the
coating for further oxidation. However, with the continuous
corrosion process, the internal stress of the coating is released
and it is easy to cause cracking of the oxide film. When the
deposition temperature is low (25°C—45 °C), the oxide film is
loose and there are more cracks. When the deposition tem-
perature is higher (55°C—65 °C), the oxide film is dense and
there are fewer cracks. The greater the internal stress of the
coating, the more cracks will be caused. Cracks more easily
lead to corrosion to the depths of the coating, accelerating the
failure of the coating. When the deposition temperature is
55 °C, the oxide film is the densest and the number of cracks is

60 o
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Fig. 9 — (a) Nyquist diagrams, (b—c) Bode diagrams and (d) EEC diagram of Ni-Fe-WC coatings.
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Table 2 — Fitting parameters of EEC.

Temperature/°C Rs/Q-cm? CPE, RJ/Q-cm? CPE, R./Q-cm? Error/%
Y1(S-cm2-s") n YyScm2s") n

25 20.31 1.110 x 10~° 0.8863 8.555 x 10° 3.644 x 10> 1 4.058 x 10° 4.139

35 19.93 1.341 x 10°° 0.8819 1.233 x 10* 3.603 x 10 1 5.377 x 10° 3.294

45 19.98 6.458 x 10° 0.9256 1.246 x 10* 4194 x 10~ 1 5.829 x 10° 1.798

55 20.12 7.926 x 10° 0.8402 5.095 x 10* 8.010 x 10°° 1 1.538 x 10* 3.574

65 20.18 6.689 x 10~ 0.8710 4.842 x 10* 6.986 x 10> 1 1.465 x 10* 2.856

the least, which can most effectively prevent the corrosion
from occurring in the depth of the coating.

It can be concluded from Figs. 10—-13 that the corrosion
resistance of Ni-Fe-WC coating prepared at different temper-
atures after NSS is significantly different. Specifically, with the
temperature rising, the corrosion resistance first strengthens
and then weakens. This is again consistent with the variation
of WC particles content within the coating with temperature.

4, Discussion

According to the section of results, it can be concluded that
increasing the content of WC particles within the coating is
beneficial to enhance the corrosion resistance of Ni-Fe-WC
coating. However, there was no specific explanation for the
promotion of corrosion resistance. Therefore, the reason why
WC particles enhance the corrosion resistance of Ni-Fe-WC
coating is systematically discussed in this section.

4.1. Influence of WC particles on the coating structure

The grain orientation coefficient is calculated by the formula
(1) [36], where Igu presents the (hkl) plane measured in-
tensity of XRD spectrum, Ippiy presents the Ni—Fe alloy pow-
der diffraction intensity.

Ty /Tognwry
Lo /Togwey (1)

n

> Ty /Togny
i

TC(hkl) =

The average grain size of coating is calculated by the
formula (2) and formula (3) [39], where K presents a constant, y
presents the Cu-Ka wavelength, B presents the diffraction
peak half height width, and 6 presents the Bragg angle.

D(hkl) =5 fc;/s 0 @)
Davg= Y D(hkl)-TC(hkl) 3)

It can be found from Fig. 14 that when the temperature
increases from 25 °C to 65 °C, the WC particles content in-
creases first from 0.53 wt% to 4.47 wt% and then decreases to
4.15 wt%. As the WC particles content increases, the grain
orientation of grain exchanges from (111) to (220). The TC(220)
of coating reaches a maximum of 42.2% when the tempera-
ture is 55 °C. At the same time, the average grain size of
coating is 12.20, 13.70, 14.13, 19.22, and 17.76 nm, respectively.
The average size of coating grains is proportional to the WC
particles content, which indicates that WC particles have the

positive effect on promoting the grain growth of Ni-Fe-WC
coating.

4.2.
stress

Influence of WC particles on the coating internal

During the electrodeposition process, the rapidly reduced
metal atoms will adsorb on the surface of the substrate, and
then the metal atoms will rapidly nucleate and grow to form
the coating, but the internal stress is prone to occur during
this process [40,41]. The coating internal stress is proportional
to the deposition speed and increasing the temperature will
accelerate the deposition rate, so the internal stress increases
with the rise of the temperature.

According to Fig. 15, when the temperature is below 45 °C,
with the increase of temperature, the (111), (200), and (220)
peaks all shift to a large angle, indicating that the lattice and
the interplanar spacing of the coating become smaller. In this
case, it shows that there is internal stress within the Ni-Fe-WC
coating, and the internal stress intensifies with the increment
of offset angle. However, when the deposition temperature
reaches 55 °C and 65 °C, the (111), (200), and (220) peaks of the
coating shift to a small angle, indicating that the lattice and
the interplanar spacing becomes larger, the internal stress in
the coating decreases. When residual stress exists in the
coating, the distance between crystal planes will change and
the diffraction peak will also change accordingly. The move-
ment of the diffraction peak is related to the residual stress.
The sin2¢ method proposed by E. Mchearauch is used to

25
—&— After 5 days of corrosion
—&— After 10 days of corrosion
2.0 - —&— After 20 days of corrosion
—w— After 40 days of corrosion
<« 154
g
o
)
S
5 1.0
0.5
0.0

251G 35C 45C 55C 65C
Deposition temperature (C)

Fig. 10 — The quality changes of the Ni-Fe-WC coatings
after NSS.
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Fig. 11 — The optical images of the corroded Ni-Fe-WC coatings after NSS.

accurately calculate the internal stress of the coating. For the
same diffraction surface (111), by changing different incident
angles, measuring the corresponding diffraction angle 26, and
obtaining the slope of 26 versus sin2¢, the internal stress can
be calculated. As shown in the formula (4), o, is the internal
stress, 6o is the Bragg Angle of the diffraction peak of the
stress-free sample (PDF#37—-0474), E is the elastic modulus
(217 GPa), v is poisson's ratio (0.33), ¢ is the Angle of incidence
(0°, 10°, 20°, 30°). The internal stress of Ni-Fe-WC composite
coating prepared at different deposition temperatures is
shown in Fig. 16. With the increase of deposition temperature

from 25 °C to 65 °C, the internal stress of the coating is 194.7,
219.5, 232.2, 165.3 and 174.5 MPa, respectively.

T 9(20)
9180 a(sin ? ) )

TRy

Researchers generally believe that the particles in the
composite coating have an important effect on the residual
stress. Ari-Gur et al. [42] electrodeposited Ni—SiC nano-
composite coating on 2024-T3 aluminum substrate and found
that the SiC particles have a greater impact on the crystal
texture, residual stress, and mechanical properties of the
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Fig. 12 — The surface morphologies of Ni-Fe-WC coatings after 40 days of NSS.

coating. Nanoparticles with smaller sizes produce compres-
sive stress at lower concentrations and tensile stress at higher
concentrations. Zhang et al. [43] studied the effect of ZrC
particles on residual stress of Ni/ZrC composite coatings. With
the increase of ZrC particles content in the coating, the texture
of the coating decreases, and the internal stress decreases
from 329.48 to 56.71 MPa. Gérala et al. [44] analyzed the in-
fluence of alumina nanoparticles on the residual stress in the

electrodeposited Ni/Al,03 composite coating and found that
the addition of alumina nanoparticles has a positive effect on
the residual stress. When the concentration increases from
0 to 80 g/L, the residual stress of the coating decreases from
294 to 221 MPa. In the process of preparing Ni-Fe-WC com-
posite coating by JED, when the temperature is low, as the
deposition temperature increases, the deposition rate of the
coating gradually increases, and the residual stress of the
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Fig. 13 — The EDS spectrums of Ni-Fe-WC coatings after 40 days of NSS.

coating gradually increases. However, when the deposition
temperature increases to 55 °C, the WC particles content of
coating increases significantly, while the residual stress of
coating decreases obviously. This shows that WC particles are
beneficial to reduce the residual stress of coating.

4.3.  Influence of WC particles on the coating corrosion
resistance

As shown in Fig. 17, the influence of temperature on the
adsorption of WC particles in JED can be obtained. A large
number of metal ions wrap single uniformly dispersed WC
particle, which can be simplified into individual ion clusters
[31]. The ion clusters quickly contact the substrate under the
action of high-speed flushing solution (Fig. 17(a)). During the
JED process, the particles near the substrate have the
following states: The first state is that most of the particles

rebound after contact and are washed away by the plating
solution, and a small part of the WC particles are adsorbed on
the substrate. According to the degree of adsorption, it is
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Fig. 14 — The average grain sizes and grain orientations of
coatings.
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divided into strongly adsorbed, intermediately adsorbed, and
weakly adsorbed (Fig. 17(b)). According to the initial nucle-
ation growth theory of composite co-deposition [45—48], the
strongly adsorbed particles are irreversible, which means
they must be surrounded by metal atoms to form a coating.
The intermediately and weakly adsorbed particles stay on the
surface of the substrate for a short period. During this period,
if the reduced metal atoms cannot fully capture the particles,
the particles will be washed away by the high-speed flowing
plating solution. As shown in Fig. 17(c), when the tempera-
ture is low, the strongly adsorbed WC particles are all sur-
rounded and fixed by the reduced Fe and Ni atoms. However,
due to the low deposition temperature, the deposition rate of
metal ions is relatively slow, the number of metal atoms
reduced per unit time is small, the intermediately adsorbed
WC particles cannot be fully captured, and the weakly

adsorbed WC particles are not captured. As shown in
Fig. 17(d), when the temperature is high, the deposition rate
of metal ions is significantly higher than that at low tem-
peratures. Except all strongly adsorbed WC particles are
surrounded and fixed by reduced Fe and Ni atoms, most of
the intermediately adsorbed WC particles and a small part of
the weakly adsorbed WC particles are likely to be captured to
form a composite coating. Therefore, as the deposition tem-
perature increases, the content of WC particles in the com-
posite coating increases. The nucleation growth mechanism
of the Ni-Fe-WC coating preparation process is shown in
Fig. 17(e-f). During the JED, the adsorbed WC particles affect
the surrounding electric field distribution, and there will
generally be fewer nucleation points and larger growth space
around them. Since the size of WC particles is much larger
than the size of surrounding grains, sufficient space is pro-
vided for nearby grains to grow, which can effectively release
the internal stress of the coating.

The corrosion type of Ni-Fe-WC coating in this research
mainly includes intergranular corrosion and stress corrosion
cracking. Intergranular corrosion is a common type of coating
corrosion, which generally extends to the inside along the
interface between metal grains, and greatly reduces the per-
formance of the coating by destroying the bond between the
grains and even making it invalid [49,50]. Therefore, the larger
the average grain size is, the smaller the proportion of grain
boundary is, and the lighter the intergranular corrosion is.
Stress corrosion cracking is caused by the release of stress in
the coating during the corrosion process, which is likely to
cause more serious damage to the coating. During the JED, a
reasonable increase of deposition temperature is helpful to
increase the WC particles content of Ni-Fe-WC coating. WC
particles can promote grain growth and release internal stress
in the coating, and significantly improve intergranular corro-
sion and stress corrosion.
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Fig. 17 — The schematic diagram of (a—d) WC particles adsorption mechanism and (e—f) nucleation growth mechanism of

coating preparation process.

5. Conclusions

(1) The WC particles content of coating increased with the
reasonable increase of temperature during the prepara-
tion of Ni-Fe-WC coatingbyJED. When the temperatureis
55°C, the highest WC particles content reaches 4.47 wt%.

(2) In the JED process, the grains around the WC particles
have more space to grow, which can increase the
average grain size and reduce internal stress.

(3) The more the WC particles in the Ni-Fe-WC coating, the
stronger coating's ability to resist intergranular corro-
sion and stress corrosion.
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