Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 November 2021 doi:10.20944/preprints202012.0506.v3

The principle of continuous biological information
flow as the fundamental foundation for the biological
sciences. Implications for ageing research.

Short-title: Life as a continuous flow of information.

Xavi Marsellach'
1 Independent Researcher, (L' Hospitalet de Llobregat, Barcelona, Catalonia).

* Correspondence to: xavi.marsellach@gmail.com

Abstract

The current state of biological knowledge contains an unresolved paradox: life as a continuity in the
face of the phenomenon of ageing. In this manuscript I propose a theoretical framework that offers
a solution for this apparent contradiction. The framework proposed is based on a rethinking of what
ageing is at a molecular level, as well as on a rethinking of the mechanisms in charge of the flow of
information from one generation to the following ones. I propose an information-based conception
of ageing instead of the widely accepted damage-based conception of ageing and propose a full
recovery of the chromosome theory of inheritance to describe the intergenerational flow of
information. Altogether the proposed framework allows a precise and unique definition of what life
is: a continuous flow of biological information. The proposed framework also implies that ageing is
merely a consequence of the way in which epigenetically-coded phenotypic characteristics are

passed from one generation to the next ones.

1. Life as a continuity vs the intrinsic discontinuity that aging

imposes on lifespan.

Life as a continuity

We all recognize a living organism. This is thanks that we humans can recognise ourselves as such.
This is something not obvious though, just a handful of species are recognized with the ability of

mirror self-recognition (MSR) and the meaningfulness that this might mean for self-awareness is
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still an open debate (de Waal, 2019). We humans do not only have the ability of MSR, but to do
much more complex achievements such as creating and recording knowledge. In the field of life
sciences, we can create biological knowledge. This biological knowledge should allow us to define,
in a clear and precise manner, what is the fundamental definition of a life being. In short: we
should be able to provide an indubitable answer to the question “What is life?”. A definition of life
that would allow us to identify an alien form of life should we ever were able to find one. However,
to date there is not yet a consensus answer to this question (Koshland, 2002; Benner, 2010; Tirard

et al., 2010; Abel, 2011; Currais, 2017; Vitas & Dobovisek, 2019; Tetz & Tetz, 2020).

One thing that is widely accepted is that the origin of all living organisms currently on earth can be
traced back to a unique event. Although multiple independent origins of life have been
hypothesized, just one of them seems to have prevailed . An overwhelming number of observations
points towards a shared origin of all living organisms on earth. To name some: 1) the fact that
common aspects are shared at the molecular level, including fundamental biological polymers:
nucleic acid as genetic material and L-amino acids as components of proteins; 2) the general unit of
biochemistry in terms of basic metabolic and energy processes; 3) the existence of a nearly universal
genetic code; 4) the congruence of morphological and molecular phylogenies; 5) the discovery of
homologous protein families in the three domains of life (bacteria, archaea and eukaryotes); 6) the
correspondence between phylogeny and the palaeontological record and 7) the existence of
numerous predicted transitional fossils. Some attempts have been done to show the existence of a
common ancestor with a formal quantitative testing (Theobald, 2010; Penny et al., 1982), although
an agreement about if this can formally be tested has not been achieved (Velasco, 2018; de Oliveira
Martins & Posada, 2016; Koskela & Annila, 2012; Koonin & Wolf, 2010; Theobald, 2010; Penny et
al., 1982). The idea of a common ancestry dates to Darwin itself (Darwin, 1871), but the idea of
continuity in life is even older. Rudolf Virchow introduced the famous third dictum of cell theory:
"Omnis cellula e cellula" (Virchow, 1859), which implicitly contains the idea of continuity ("All cells

come from cells").

Ageing and the discontinuity of life

At the evolutionary level, it seems quite clear that there is continuity throughout the history of life
on earth, but this is not at all obvious when analysing biological processes at the individual level.

The phenomenon of ageing seems to impose a discontinuity on almost all living organisms.

As it happens with a definition of life, a common definition of what is ageing is not yet agreed
(Fulop et al., 2019), and many controversies are still in place (Marsellach, 2017). Anyway, there is
a definition of ageing widely used by many ageing researchers in the ageing research community:
ageing, although an individual feature, can be defined at populational level as an increase in the
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mortality rate with time (Rose, 1994; McDonald, 2013). However, this definition is only a
macroscopic phenotypic description of ageing. It should be noted as well that, as it refers to
mortality, this definition of ageing, is not independent of the definition of life considered. In
summary, this definition of ageing only describes what an external observer sees about the
phenotypic characteristics of living organisms that do age but tells nothing about the molecular
determinants that drives ageing. Nine hallmarks have been proposed (Lépez-Otin et al., 2013), but
no complete consensus is agreed yet (Zhang & Gladyshev, 2020; Fulop et al., 2019; Fuellen et al.,
2019; Marsellach, 2017; Gladyshev, 2016).

Since there is no consensus on what ageing itself is, it is also difficult to agree on how aging arose.
It was initially thought that aging evolved after the origin of eukaryotes, but observations of aging
phenomena in prokaryotes questioned this initial belief (Ackermann et al., 2007). Some proposals
have been made to tackle these observations: i.e., ageing is possible in single-celled organisms
thanks to the dilution of the damage that takes place during cell division (Gladyshev, 2016;
Gladyshev, 2013), and/or ageing evolved in single-celled organisms thanks to mechanisms that
differently sequestrated damage to one of the two dividing cells (Moger-Reischer & Lennon, 2019),
creating in this way an incipient difference between the soma and the germline (as predicted by the
disposable soma theory of ageing (Kirkwood, 1977)). This kind of studies are particularly important
in Saccharomyces cerevisiae (where there is a non-symmetrical division, but have been observed as

well in symmetrically dividing organisms (Coelho et al., 2013))

A coherent information-based conception of both phenomena: life and ageing

In nowadays ageing research, ageing is almost a synonymous or a derivate of the concept of
damage and damage accumulation (Ogrodnik et al., 2019; Moger-Reischer & Lennon, 2019;
Gladyshev, 2016). Something must be damaged for an organism to age and die (because of that

damage).

In the last decade though, there has been a growing interest in the involvement of the epigenome in
ageing. An astonishing observation of a high correlation of some epigenomic marks and ageing
started all this interest (Gibbs, 2014; Horvath, 2013; Bocklandt et al., 2011). However, to date
there is no clear agreement on whether the epigenome has a central role in ageing (is it the cause or
the consequence?), and neither is a consensus on what the epigenetic clocks might mean, which are
the role that methylation marks do play on ageing and health or even the involvement of them in
the rejuvenation process (Gladyshev, 2020; Niehrs & Calkhoven, 2020; Bertucci & Parrott, 2020;
Zhang & Gladyshev, 2020; Jiang & Guo, 2020; Field et al., 2018; Horvath & Raj, 2018).
Epigenetics, although recognized as one of the factors implicated in ageing (Lépez-Otin et al.,

2013), is hardly considered the sole cause of aging in some studies (Chiavellini et al., 2021;
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Ashapkin et al., 2017; Marsellach, 2017; Lopez-Leén & Goya, 2017; Ocampo et al., 2016; Gibbs,
2014). In this manuscript I develop in detail an information-based conception of ageing, previously
proposed by this author (Marsellach, 2018), in addition to proposing a coherent and testable
definition of what life is based solely on the concept of biological information. In my proposal, the

notion of continuity is a fundamental concept for defining both life and ageing.

In recent years there has been an active work on an information centric definition of life and
individuality. (Jost, 2021; Kempes & Krakauer, 2021; Krakauer et al., 2020; Jost, 2020; Adami,
2012; Adami, 2002) It is not the intention of this essay to reproduce the work done from those
authors, but to complement it from theoretical considerations, and to centre in its implications on
the study of ageing as part of one of the most relevant biological information-centred related
processes. This essay also pretends to propose experimental ways to test the information-based

nature of life by proposing ways to address the information-based nature of ageing.

As a summary: there is life while the biological information, necessary to maintain homeostasis and
to overcome lethal environmental barriers (anything that could destroy the biological structures
constructed with the biological information) is still useful for such a purpose. Death is caused by
loss of homeostasis or by the inability to overcome lethal environmental barriers due to 1) extrinsic
lethality factors (i.e., accidentality that destroys the usefulness of the biological structures
constructed with the biological information, the greater the complex lifestyle, the greater the risk of
extrinsic lethality factors); or 2) intrinsic loss of the usability of the biological information maintain
homeostasis or to overcome the lethal environmental barriers. This last-mentioned process is,
according to my proposal, the ageing process, and is due to the way in which biological information
is treated by the ageing living beings (see below for detailed development). Ageing is overcome
during intergenerational steps due to specific information retrieval processes (epigenetic
reprograming or rejuvenation process (Denoth-Lippuner & Jessberger, 2019)). Ageing, therefore,
implies a discontinuity in the flow of biological information, while life continues in ageing species
thanks to the continuous flow of useful biological information provided by the parents to their

offspring during the rejuvenation process that takes place in the intergenerational steps.

To describe my proposal, I need to delve deeper into the history of genetics and epigenetics to
identify some misconceptions that might have led us to the inability to find coherent definitions to
describe life and ageing. This historical review has led me to propose a modified description of the
central dogma of molecular biology, first defined by Francis Crick (Crick, 1970), as well as to
propose a complete retrieval of the chromosomal theory of inheritance (Boveri, 1904; Sutton, 1903)
to describe the intergenerational flow of biological information. The next sections of this article

contain a development of all these concepts in detail.
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2. Biological information and the battle for Mendel’s legacy

Since Mendel uncovered the laws of inheritance in hybrids (Mendel, 1866), the question of where
and how the biological information is stored was an open question in the biological field. The
rediscovery of Mendel’s Laws in the early 1900s independently by Hugo de Vries, Carl Correns and
Erich von Tschermak, and works made by prominent scientist William Bateson marks the start of

genetic studies as the science to study heredity (Bateson et al., 1902).

The first clue about where the biological information could be stored came from the chromosomal
theory of inheritance in the early 1900s. Works by Walter Sutton and Theodor Boveri proposed to
consider the chromosomes as the bearers of the Mendelian factors (Boveri, 1904; Sutton, 1903).
This theory was finally fused with Mendelian laws by Thomas Hunt Morgan (Morgan, 1915),
leading to the establishment of genetics as a new discipline, separated from other biological
disciplines. This had as a side effect the development of classical genetics, with an abstract non-
chemical concept of the gene, and therefore a decline in the interest in the molecular nature of the

genetic material (Deichmann, 2004).

During the first half of the XX century, the main consensus in the scientific community about what
could be the molecular nature of the genetic material responsible for the Mendel’s Laws was that
the genetic material was made of proteins (Deichmann, 2004). The chromosomal theory of
inheritance established the chromosomes as the bearers of the mendelian factors. At that time
proteins and DNA were already identified as the main components of the chromosome. Proteins
were considered a complex compound capable of encoding genetic information, while DNA was
considered a simpler compound, and therefore was not the first choice (Deichmann, 2004). Two
experiments, though, brought the attention to the DNA as the bearer of the genetic information:
first, the paper by Oswald Avery, Colin McLeod and Maclyn McCarty, where purified DNA was
shown to be able to transform a non-virulent strain of pneumococcus into a virulent strain (Avery et
al.,, 1944), and second, the paper by Alfred D. Hersey and Martha C. Chase, in which they
demonstrated that DNA was responsible for multiplication of bacteriophages (Hershey & CHASE,
1952). However, it was not only after the Watson and Crick’s proposal of a structure for the DNA,
that the DNA was widely accepted as the source of the genetic information (WATSON & CRICK,
1953b; WATSON & CRICK, 1953a). Watson and Crick’s model gave a coherent explanation on how
information was stored: a double helix, with twice the information, would allow the information to

be stored, copied, and transmitted from one ancestor to its descendants.
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Although DNA was clearly accepted as the source of genetic information, it soon became clear that
the specific phenotype of a cell was not only due to its DNA content. In parallel to all the
development of the genetics field, the epigenetics field started to develop (Allis & Jenuwein, 2016).
Historically, the word “epigenetics” was used to describe events that could not be explained by the
genetic principles. Waddington defined epigenetics as “the branch of biology which studies the
causal interactions between genes and their products, which bring the phenotype into being”
(WADDINGTON, 1942; Goldberg et al., 2007). Even before the Watson and Crick’s model, some
phenomena were clearly away from what it was expected just from the well-established genetic
principles. As examples: position-effect variegation (MULLER & Altenburg, 1930), transposable
elements (McCLINTOCK, 1951), X-chromosome inactivation (LYON, 1961) and imprinting
(McGrath & Solter, 1984). Together with this, the concept of genomic equivalence made clear that
the DNA sequence of a given cell was not the only factor governing the phenotype that a given cell

shows (GURDON, 1962; GURDON et al., 1958).

Proteins were later shown, as well, to be able to transmit biological information from one organism
to another. In 1982, the identification of a protein as the “Infectious Particle” in the scrapie disease,
showed this (Prusiner, 1982). Strikingly, the problems that both, characterization of DNA as the
“Transforming Principle” and prion proteins as “Infectious Particle” had, were similar. In both cases
they had to prove the absence of the “opposite” component: proteins or DNA respectively (Prusiner

& McCarty, 2006).

Although, the previous example of prions as the “Infectious Particle” example, nowadays almost
everybody identifies mainly biological information with the DNA. DNA is indeed synonymous of
biological information. To be more precise, DNA is considered the source of the genetic information
of an organism, and all the biological information that this organism has is thought to be derived
from its own genetic information (with the rare exception of the well-known maternal effects

characterized in Drosophila (Dobzhansky, 1935)).

Biological information could have many faces: from the DNA sequences itself, the RNA sequences,
the protein sequences, the modifications of histone marks in a given histone tail, or the ordered
response to a stimulus (external or internal) that generates a biological pathway, just to name
some, but, since the fierce discussion about the molecular nature of the genetic information was
clearly won by the DNA (WATSON & CRICK, 1953b; WATSON & CRICK, 1953a), we all see this
cellular component as the ultimate source for all the biological information contained in a given
living organisms. In other words: all the biological information of a given individual is ultimately
dictated by the genetic information contained in its own DNA. This later statement is the hidden
assumption that underline all the “Genome Wide Association Studies” (GWAS). Those studies try to
find a relationship from the phenotypic characteristics of an individual and its own DNA sequence.
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The concept that all information contained in the DNA of an individual could give rise to all its
phenotypic characteristics has its foundation in the central dogma of the molecular biology, as
proposed by Crick 50 years ago (Crick, 1970) (from now on referred just as the central dogma). In
recent years, the central dogma has been updated (Morange, 2009; Shapiro, 2009; Koonin, 2012;
Koonin, 2015; Tan & Anderson, 2020), but basically no change has been made in the role of DNA as
the ultimate carrier of all heritable information passed on to new generations. In recent years,
however, there has been increasing interest in transgenerational epigenetic inheritance in the
scientific research community, increasing the focus on heritable information that is not transmitted
through the genome, but through the epigenome (Lange & Schneider, 2010; Prokopuk et al., 2015;
Blake & Watson, 2016; Xavier et al., 2019; Liberman et al., 2019; Duempelmann et al., 2020;
Senaldi & Smith-Raska, 2020). On top of that, the GWAS studies, mentioned before, are part of a
central problem nowadays in biology: the missing heritability problem (Manolio et al., 2009). This
problem goes into the heart of the concept of the transgenerational transmission of the biological
information. Several solutions have been proposed for this problem, among them that the
epigenome could be one possible answer for the missing heritability problem (Bourrat et al., 2017).
In this paper I defend a complete recovery of the chromosomal theory of inheritance as a main
framework for the understanding of how the biological information flows from one generation to
the following ones. This means that both, the DNA and the proteins bound to that DNA (or
modifications of that DNA; altogether known as the epigenome) do transfer biological information
from the parental generations to the following ones. In fact, since the beginning of the questioning
of where the biological information was physically stored, there has been a dispute between nucleic
acids and proteins as the real agents of biological information. Therefore, it was considered that
either DNA or proteins were the carriers of biological information. This fact assumes that if one of
the two contenders won the battle the other has zero contribution to the heredity. But it could

simply be that this dispute was, in fact, a human artificially created dispute (Marsellach, 2018).

In summary, the central dogma should be updated to include all new relevant findings, but specially
to account for non-genetic generation-to-generation information transfer. To discuss all this I
develop in the following sections an updated version of the central dogma with the focus on the
epigenetic information and discuss the convenience to recover in full the chromosomal theory of

inheritance to account for the intergenerational information flow.
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3. The epigenome, the hereditary code that depends on the genome

but that is inherited per se separately from the genome.

The epigenetic code

As explained above, the word “code” in biology leads mainly to think in DNA and the central
dogma, and therefore to reduce the meaning of the word code to a sequence of either nucleotides
(in the case of DNA and RNA) or sequence of amino acids (in the case of proteins). This is starting
to be seen as a clear simplification, and many more codes are being recognized inside the biological
world. Although ultimately all the information is encoded in the DNA sequence, the products of that
code are needed to produce the decoding tools used to read the code (Tan & Anderson, 2020; Jost,
2020). Therefore, the DNA alone is useless and needs from other components to be executed.
Francis Crick’s statement that there is no route to transfer back information from proteins to DNA is
useful just when one thinks in the word “code” as “a sequence of”, but it must be recognized that

proteins do affect DNA function through other codes.

Epigenetics, like genetics started as an abstract concept with no idea of the mechanism that
underlies them (Allis & Jenuwein, 2016; Deichmann, 2004). As molecular biology developed, and
epigenetic mechanisms were started to be known, it soon become clear that it represents a code for
itself (Jenuwein & Allis, 2001). The epigenetic code though is not as simple code as the genetic one
(which can be reduced to “a sequence of”) but a much more complicated one and that allow to

store much more information on the same length of the DNA fibre (see Table 1 and Figure 1).

GENOME/TRANSCRIPTOME EPIGENOME

H3K4
H3K9
H3K14
H3K27
Histone based codes H3K29
H3K122
H4K20
H2BK5

Transcriptional machinery
Translational machinery

DlEEE i £y i RNA splicing and/or editing machinery

5mC
6mA

DNA-methylation based codes 4mC

Non-coding RNA based codes

Coding component +decoding partner
Position in the genome

Position in the nucleus

Other nearby epigenetic codes

. . Sequence of nucleotides
Information container

Product Proteins, non-coding RNAs, etc. Epigenetically mediated cell functions, etc.
Table 1: Simplified comparison between the levels of complexity of the genome and the epigenome codes
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As an analogy, the use of an epigenetic code “on top” of a genetic code can be seen as a similar
transition of the one that happened in computer programming with the introduction of object-
oriented programming languages (OOP) compared to previous procedural programming languages
(see Figure 2). As discussed earlier, even the simplest task to be done over the DNA needs from
extra components to be executed. In this regard always there is feedback between the DNA and

their products.

o

Epigenetic code

S

Genetic code (DNA)

Figure 1: The Epigenetic Layer of Information. The epigenetic information adds an extra layer of information (blue cylinder) to the sequence
information contained in the DNA (red cylinder). Arrows represent the exported functional information that comes from the DNA (red) or the
epigenome (blue). Note that adding an additional layer of information "on top" of the DNA information allows more functional information
to be stored for the same length of DNA fibre.

The existence of a dual code, the genome, and the epigenome, allows to achieve many more
complex achievements. This has some parallelism with the OOP paradigm with allow many more
complex achievements thanks to definitory aspects of the OOP paradigm like for example the code
reuse. The analogy is not perfect as one can apply the class-object paradigm not only to DNA
binding proteins (as plotted in Figure 2) but to the whole transcriptome and proteome. What makes
the DNA binding factors (or to any biological component that affects DNA or biological components
“on top” of the DNA) different from other players from the whole transcriptome or the whole
proteome is that, by lying “on top” of the DNA fibre they create a new layer of “recorded”
information that can be transmitted into the progeny and affect its phenotype. In this way, an
individual inherits biological information through all the components of the chromosomes
transmitted by their ancestors (not only through the DNA sequence). On top of that, the recorded
epigenetic information is not only restricted to “a sequence of” but could be of many more types
such as which kind of message contains (the concrete epigenetic modification), where it lies in the
genome (on top of which concrete DNA sequence), or even how this affects the location of the DNA

fibre inside the 3D structure of the nucleus, to name some (see Table 1). The fact that epigenetic
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information is recorded in ancestral chromosomes, and that those are transmitted independently
from the DNA sequence (see below) is what gives to this extra layer of information a crucial

importance in the intergenerational transfer of information.

In summary, the existence of a dual coding layer: the genome plus the epigenome creates richer
information repository around the DNA: its coding sequence (the genome) and its associated factors

(the epigenome); see Figure 1 and Figure 2.

PROCEDURAL OBJECT-ORIENTED

CLASS 1

GLOBAL GLOBAL GLOBAL
DATA DATA DATA

OBJECTS: instances of a CLASS VARIABLE:
class belongs to the class

FUNCTION AUNEmE RILIEEL INSTANCE VARIABLES: METHODS: functions of

belongs to object aclass

GENE 1 i.e. Histone H3

GENE 2i.e. Histone H3
modifying enzyme
SET OF
PRODUCTS N

GENE 1 variable i.e, CENH3

Nageld
PRODUCTS 2

LEDNAINTERACTING

Nagel

PRODUCTS 1
RNAS o PROTEINS

/

Bl o ///‘//

GENE N

. X
Chromatln with a particular
fian Centromeric chromatin

Particular cellular function Centromeric function

Figure 2: The OOP Epigenetic code. Comparison between the computer programming languages paradigms of procedural programming
(left) and OOP programming (right). A schematization of the of both types of computer languages paradigms are plotted on the top part
of the figure (top left: procedural programming schema; top right: OOP programming schema). A biological example is provided in the
bottom part of the figure. Colour coding is used to reflect comparable elements. Note that, as describe in the main text, this proposal does
not pretend to be an exact analogy. On the procedural part of the figure: functions = genes are plotted in orange, while “global data” =
“genome products” are plotted in blue. In the OOP part of the figure: class = gene are plotted in orange, while objects = “epigenetic

factors” are plotted in blue.

An updated version of the central dogma

In the Figure 3 I have plotted an updated version of the central dogma to account for the additional
codes that exist inside biological information and that are not restricted to the genetic code as in the
Crick’s version of the central dogma (Crick, 1970). This proposal just wants to emphasize the

existence of additional codes (especially the epigenetic ones) and does not pretend to be a final
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word in relation to the flow of biological information inside and between cells. As mentioned before

some other proposals have already been made to update the central dogma.

A
Most
Transcription Translation .
[ DNA T— — | Proteins Ce”u Ia r
DNA Replication fu n ctio n S
B
J L Activators
Translation
Coding RNAs : Proteins |-
Transcription .
— *| /@ Other chromatin
ONA Rentionm H Non-coding RNAs funCtions
eplication eplication
et * T .\ + @ Repressors
Other cellular * Other cellular
functions functions

Figure 3: Central Dogma of molecular biology. (A) Classical schematisation of the Central Dogma of molecular biology proposed
by Francis Crick (Crick, 1970). (B) A new schematisation of the Central Dogma of molecular biology which include the effect of
epigenetic factors in the flow of information. Black lines stand for Watson-Crick based information. Solid lines stand for main
pathways of information flow. Dotted lines stand for less frequent alternatives. DNA replication black line points only to active DNA
for clarity purposes. Purple lines stand for epigenetically-coded information. For purpose of clarity a single colour was used, but as
detailed in Table 1, many different epigenetic codes do exist. Epigenetic factors are arbitrarily divided in three colour coded
categories: activators (green), other chromatin functions (blue) and repressors (red). This affects both proteins and non-coding RNAs,
but it should not be limited to those components (there is no certainty that other kind of epigenetic components might exist). Adapted
from Marsellach 2018 (Marsellach, 2018).

Chromosomal theory of inheritance

What the chromosomal theory of inheritance says is that the information that is passed from the
parents to their offspring is the one contained in the chromosome, the whole chromosome. At the
time it was formulated the term genetics did not even exist (Deichmann, 2004). Genetics started as
a science in which an external observer, who has direct access to some phenotypical characteristics,
tried to use them to deduce the underlying phenomena that can explain how they flow from one
generation to the following ones. Later, with the birth of the molecular biology, the interest was not
only in the heredity of those phenotypic characters, but on how they are mechanistically achieved.
Genetically based characteristics (DNA based) were easily identified thanks to the work of Mendel
and followers (Morgan, 1915; Bateson et al., 1902; Mendel, 1866). The beauty of Mendel’s Laws
and its astonishing correspondence with some early experimental observations made genetics a
flourishing field with many successes. The discovery of the double strand structure of the DNA

seemed to close the circle about how the biological information was passed from the parent to their
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descendants (WATSON & CRICK, 1953b; WATSON & CRICK, 1953a). Together with many more
achievements in the molecular biology field this led to the concept of the central dogma and to
almost identify the biological information uniquely with the information contained in the double
helix of the DNA. This means genetic information almost became synonymous of biological

information.

An external observer, however, has only access to the phenotypic information, with no a priori
knowledge of the mechanisms by which this is achieved. A phenotypic characteristic that is only
genetically-coded, will nicely follow the Laws of Mendel. This is easy to detect in the case of
genetically-coded phenotypic characteristic coded in just one Jocus, but much more complicated for
more complex genetic scenarios. To date, however, there is no accepted proposal of which pattern
of inheritance one should expect for an epigenetically-coded phenotypic characteristic. In a previous
manuscript (Marsellach, 2018), and in more detail in this paper, I propose a model to describe the
intergenerational flow of epigenetic information from one generation to the following ones (see

below).

I propose to recover the chromosomal theory of inheritance in full. This means that the biological
information that the offspring get from their parents is the full information contained in the
chromosome, the one contained in the DNA fibre (the genetic information) and the one contained
in the factors and modifications that are linked to that genetic information (the epigenetic
information). In the next section I discus about how the epigenetic information is handled during

the meiotic and developmental processes that lead to a new generation.

Flow of epigenetic information between a parental cell and its meiotically

derived descendants.

The study of the transmission of epigenetic information through the meiotic divisions is a hot topic
in current research. Mammal studies showing full epigenetic erasure during gametogenesis and
development prompted the view that almost no epigenetic information was transferred from
parental cells to its meiotically derived descendants. Two main waves of epigenetic full
reprograming have been described in mammals: 1) the gametic epigenetic reprograming (Hackett &
Surani, 2013; Cowley & Oakey, 2012; Hill et al., 2018), and 2) the embryonic epigenetic
reprograming (Smith et al., 2012; Kobayashi et al., 2012; Hirasawa et al., 2008; Kono et al., 2004).
However, insights from recent studies suggest that there is not a complete erasure of previous
generations epigenome, and so that the contribution of epigenetic information to the following
generations seems to be something quite usual (Xavier et al., 2019). Indeed, evidence of

transgenerational epigenetic inheritance is present not only in mammals, but in a wide variety of
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species ranging from yeast, plants, worms or mammals (Perez & Lehner, 2018; Yu et al., 2018;
Klosin et al., 2017; Miska & Ferguson-Smith, 2016; Heard & Martienssen, 2014; Becker & Weigel,
2012; Greer et al., 2011; Grewal & Klar, 1996).

This author has identified two main misconceptions in studies dealing with transgenerational
epigenetic inheritance: first, some studies in higher organism use yeast data to compare or explain
studies of transgenerational epigenetic inheritance without looking properly if those studies refer to
mitotic or meiotic processes. Unicellular eukaryotic organisms like yeast can have descendants by
both an asexual cycle (mitotic) or a sexual cycle (meiotic), but this is not the case in multicellular
eukaryotic organism, where there is a differentiated type of cells in which those two processes
happen separately (the somatic cells and the germline cells). In multicellular organism only the
germline can transfer epigenetic information from then parents to the offspring. Examples of recent
literature include cases in which meiotic epigenetic inheritance is referred as a known issue in yeast
(Skvortsova et al., 2018) while citing yeast work dealing with mitotic epigenetic inheritance
(Rusche et al., 2003). Meiotic epigenetic inheritance is certainly a known issue in yeast (Grewal &
Klar, 1996; Yu et al., 2018; Ragunathan et al., 2015; Recht et al., 2006), but the level of meiotic
epigenetic inheritance characterization is not as high as the characterization of mitotic epigenetic
inheritance in yeast (O’Kane & Hyland, 2019); and second transgenerational epigenetic inheritance
has led to a renaissance of Lamarckian-like evolutionary processes, which is still an open debate in
the field of evolution and epigenetics (Koonin, 2014; Deichmann, 2016; Koonin & Wolf, 2009;
Loison, 2018; Danchin et al., 2019; Jablonka & Lamb, 1995; Jablonka & Lamb, 2020). A
Lamarckian view of transgenerational epigenetic inheritance implies that the biological information
acquired by the parents is transmitted to the progeny, and so, anything that leads to an erasure of
previously accumulated epigenetic information is seen as a loss of information event. This view
implies that the reprogramming processes happening in mammal’s gametogenesis and development
are a loss of information events. However, this is not at all true. For a given epigenetic mark to
accomplish its function it must be present when this is needed (in timely manner). A given
epigenetic marks (or enzymes that builds them), needs to be expressed at certain cellular types
and/or in certain developmental processes. If a particular epigenetic mark is lost, after the host cell
has lost the ability to re-create it, then an epimutation is generated (Marsellach, 2017). Therefore,
the reprogramming processes happening during meiosis or developmental processes are in fact a
gain of information process like the ones happening in the cell differentiation processes (see Figure
4). In summary, in both cases, reprogramming and cell differentiation, the right epigenetic
information is put in the right place at the right time. Reprogramming (rejuvenation in fact) is
nothing else but and specialized form of cell differentiation that puts the previous epigenetic
information in place (the young epigenetic information according to the model proposed in this
paper).
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Figure 4: Cyclical, differentiation-like nature of the ageing process. (A) Schematic representation on how a simple cyclical process, with
two different phases, can allow explaining the ageing process: 1) the mitotic/G1 phase (top), in which non-genetic defects are
accumulated; and 2) a meiotic phase (bottom), in which non-genetic defects are specifically repaired. The non-continuous line in the
meiotic process indicates that, in most cases, this process did not go back to the same individual cell, but to its next generation. S.
pombe is used as an example of an organism affected by ageing. (B) Schematic representation of how the rejuvenation process can be
understood as a specialized differentiation process. Adapted from (Marsellach, 2017).

The Laws of Mendel, Schrodinger's cat-like interpreted

Not all the approaches to transgenerational epigenetic inheritance deal with the problem with a
Lamarckian biased approach. I have previously proposed a non-Lamarckian model for the
inheritance of epigenetically coded characteristics (Marsellach, 2018) that is further developed in
this manuscript (see below). The epigenetic reprogramming is thought to be a process that corrects
epigenetic errors accumulated in previous generations (Reik, 2007; Faulk & Dolinoy, 2011; Chen et
al., 2006; Bruno et al., 2015; de Waal et al., 2012; McCarrey, 2014; Marsellach, 2017). This is the
foundation of the model that I propose. During the epigenetic reprogramming there is a rewriting of
information and a repair of accumulated epigenetic mistakes (or epimutations). In most cases, the
right information is put on place (i.e., the newly functional information is written at the right place,
and the accumulated epimutations are corrected), but eventually some of them might be overlooked
and passes on to subsequent generations. This leads to transgenerational epigenetic inheritance (in
the case of non-corrected epimutations) or newly acquired defects (in the case of failure into put
the newly functional information into the right place). According to this model two kind of
epigenetic defects would be transferred to newly born individuals: 1) previously not repaired
epimutations (Figure 5B), and/or 2) newly generated epimutations (Figure 5C). The lack of
repair/deposition of some epiloci could be due to a limitation of resources (or time) to rewrite all of

them, which would lead to a scenario where a certain number of mistakes would be passed to the
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newly born generations. This happens randomly. In accordance with this, it is predicted that, in
cells with lots of epimutations a higher number of them would not be repaired; and, at the same
time, in the other way around in cells with few epimutations it is more likely that all of them are

repaired (Marsellach, 2018).

In an ideal scenario a cell with few epimutations entering meiosis would have most of them
repaired/rewritten. Therefore, for the phenotypic characteristic,c coded by those particular
epigenetic factors a non-Mendelian ratio will be observed (see Figure 5B left and middle panels, and
5C left panel). However, if a cell with lots of epimutations do enter meiosis, then, in some given
epimutations repair would not happen and/or newly generated epigenetic defects would be passed
to the new generations. For the phenotypic characteristics coded by these given epi/oci a mixture of
Mendelian and non-Mendelian ratios will be observed (see Figure 5B right panel and 5C three

rightmost panels).
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Figure 5. Schriodinger’s cat-like Laws of Mendel for the segregation of the epigenetic information. Schematic representation of
a several meiotic processes. (A) the Laws of Mendel governing the segregation of the genetic alleles. (B) Three panels to outline the
segregation of epigenetic alleles according to a repair/not-repair scenario. In the examples showing the segregation of those
epialleles, three scenarios are contemplated: 1) Full meiotic repair (left panel), 2) half meiotic repair (middle panel), and 3) no
meiotic repair (right panel), of a given epiallele. (C) Four panels to outline the segregation of epigenetic alleles according to
writing/not-writing of newly deposited information. In the examples showing the segregation of those epialleles, four scenarios are
contemplated: 1) Full differentiation (left panel), 2) and 3) half differentiation (middle panels), and 4) incorrect differentiation (right
panel). Cells are represented as big circles, one pair of independent solid black lines inside those circles represents one pair of
homologous chromosomes (just one pair for simplification purposes). Sister chromatids, once DNA has been replicated, are plotted
as joined solid black lines. Pairs of homologous chromosomes are joined by a dotted black line. Genetic DNA alleles are represented
as red (defective) or green (wild type) dots, inside the solid black lines (to show that they are part of the DNA fibre). Epigenetic
factors are plotted as small, coloured circles (green, yellow or purple). The absence of a given epigenetic factor in one locus are
plotted as red dotted circle lines instead of the epigenetic factor. Epialleles are plotted on top of the solid black line (the
chromosome), to show that they do not strictly form part of the DNA fibre. In (B), two scenarios are contemplated for a meiotic
epigenetic repair: full meiotic epigenetic repair (left panel), and half meiotic epigenetic repair (middle panel). This is done to
contemplate all theoretically possible scenarios. In (C) old epigenetic marks are plotted as yellow circles, while newly incorporated
epialleles are plotted as purple circles. For the middle panels picturing a half differentiation process two different scenarios are
contemplated. Adapted from Marsellach 2018 (Marsellach, 2018).

As seen in Figure 5 this leads to a Schrodinger’s cat-like scenario when an external observer

analyses the pattern followed by an epigenetically-coded phenotypic characteristic (see Figure 5). In
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comparison with the nice and easy Mendelian ratios followed by genetically-coded phenotypic
characteristics (see Figure 5A). The model that I am presenting it simply implies that epigenetically
inherited characters have a similar inheritance to the well-known maternal effects characterized in

Drosophila (Dobzhansky, 1935), but with maternal and paternal contribution (Marsellach, 2018).

In summary, the randomness nature of the epigenetic repair/rewriting program happening in all
meiotic cells might lead to a Schrodinger’s cat-like scenario when studying the segregation of the

phenotypic characteristics coded by epigenetic factors.

4. Life and ageing as information-based phenomena.

The model

As detailed earlier, an increasing interest in ageing and epigenetics has recently appeared in the
scientific research community. Ageing has been traditionally linked to damage, as if it was a wear
and tear phenomenon. Recently, some works have proposed epigenetics as a unique cause of ageing
(Chiavellini et al., 2021; Ashapkin et al., 2017; Marsellach, 2017; Lopez-Leén & Goya, 2017;
Ocampo et al., 2016; Gibbs, 2014), but a formal probe of that is still missing. Below I propose a
testable model that could help solve the epigenetic nature of the ageing process, and, at the same

time, give a coherent description of what life is.

I propose to conceive life and ageing solely as information-based phenomena, this has already been
done previously, but separately: for life (Krakauer et al., 2020; Jost, 2020; Adami, 2012), and for
ageing (Yang et al.,, 2021; Sinclair & LaPlante, 2019; Marsellach, 2017; Marsellach, 2018).
According to my proposal, though, live and ageing are indeed two sides of the same coin, and so
equal approaches should be used to study them. Below I propose ways to put under test the
epigenetic nature of the ageing process. Those experiments could serve as well to reinforce the

linkage between ageing and life due its shared nature based on information.

Life is a continuous use of the biological information to overcome the extrinsic or intrinsic factors
that prevents biological information from still being useful for its maintenance “purpose”. Ageing is
a random or programmed (see below) temporary loss of epigenetic information that creates an
intrinsic factor preventing the biological information from being useful. Ageing of a given individual
is therefore a half-cyclical process, that although ends with its own death, allows the continuity of

life thanks to a full cyclical reuse of biological information that this individual transfer to its
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descendants (see Figure 4A, and Figure 6). Previous proposals of ageing as a loss of epigenetic
information have been made (Yang et al.,, 2021; Sinclair & LaPlante, 2019; Marsellach, 2017;
Marsellach, 2018).

This proposal has two unproven premises: first to conceive the ageing process as a loss of epigenetic
information process. The epigenetic information inherited from the meiotically derived parental
cells have the right information to produce a young phenotype. During the lifespan of a
multicellular organism both the soma and the germline change their epigenetic marks due to
developmental processes and accumulated epimutations. The somatic cells will never read again the
relevant epigenetic information for achieving a young phenotype (the “young epigenome”), while
the germline cells will do so when producing the following generation. In the germline the relevant
information to restart the developmental process is read again, and the accumulated epimutations
of previous generations are repaired. In summary, the relevant epigenetic information is put in the
right place to achieve a “young epigenome”. A second premise of the proposed model is that the
difference between these two scenarios is to continue alive (in the germline by receiving the
appropriate functional information) or to die (in the soma due to a lack of adequate functional
information due to loss of epigenetic information and the accumulation of epimutations). This later

premise implies that lethality due to intrinsic factors is mainly epigenetically caused (see below).

The conception of life that I propose looks like a nonsense from a human individual perspective: the
soma accumulates epimutations that know how to repair, germline does it to create the new
generations that would overcome us, but somatic cells do not do it because the tools for doing so
are simply not used in those cells. According to the model, this has a severe consequence: death of
the somatic cells (and germline cells not emancipated from the organism). Why could this happen?
Why dying if you have the right information for not to do it. The answer to this question is that this

simply works to allow life continuity and acquisition of further complexity (see below).

The emergence of the phenomenon of ageing

As discussed earlier, there is no consensus on when and why ageing arose (see above). I propose
that ageing arose due to the appearance of epigenetic information and the complexity increase that
this allowed. I propose that this is the case given that there is a trade-off between the complexity of

the lifestyle and the lifespan than an organism can have due to extrinsic mortality causes.

Trade-off between complexity lifestyle and lifespan

The less complex your lifestyle, the less likely you are to die from an extrinsic factor and therefore

you are more able to “afford” a long lifespan. The opposite is as well true, the more complex your
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lifestyle, the more chances to die from am extrinsic factor and therefore having biological

mechanism that provide you a long lifespan would not increase your chances to live longer.

As detailed in the sections above, the acquisition of an epigenetic code during evolution might have
allowed to achieve much more complex biological structures (there is more information available
and more ways to bring this information into functional outcomes). Therefore, the more complexity
was accumulated during evolution through the epigenetic code, the more complex lifestyles were
developed. This had as a side effect the increase of chances of dying due to extrinsic factors (and
therefore not to keep transferring the accumulated information to the offspring). The complexity-
lifespan trade-off due to extrinsic mortality causes might had reached a point in which a further
complexity acquisition did not increase the chances to keep storing new information (complexity-
lifespan trade-off limit; see Figure 6A). In other words, if an amortal organism with a complex
lifestyle has ever appeared during evolution, it might have gone extinct because the chances of
dying by extrinsic factors would probably have been higher than the advantages that amortality
provides. In consequence, all organism above a certain level of complexity would probably die due
to extrinsic factors and therefore not contribute further to the pool of living organism and neither to

the pool of accumulated information.

The appearance of sexual reproduction: the mastering of ageing.

The observation of ageing-like behaviours in prokaryotic cells (Ackermann et al., 2007) opened the
debate on when ageing arose. Before it was assumed that ageing appeared after the origin of
eukaryotic cells. I propose that, although ageing was not an all or nothing transition from one day
to another, the appearance of the eukaryotic cells meant a mastering of the ageing process, and
therefore, one can trace back the origin of a full ageing-era into the origin of the eukaryotic cells.
However, there was (and there is already) a pre-full-ageing era in which ageing like phenomena
was (are) observed in procaryotic organisms. In this sense non-eukaryotic cells are still trapped in a

pre-full-ageing era (see Figure 6).

DNA alone (genetic material) is useless without non-genetic material that decodes it. A slow
increase in the acquisition of non-genetic information and the use of it, allowed a further
complexity increase, but at the same time created a need to maintain both the correct genetic
information and the correct non-genetic information to maintain properly working conditions

(homeostasis).

However, with the appearance of eukaryotic organism and sexual reproduction (Speijer et al.,
2015) an incipient distinction between the soma and the germline was created. The key aspect is
the acquisition of a meiotic division. The meiotic division allowed to achieve a soma-germline

distinction inside a single cell (in unicellular organism). This was achieved by separating in time
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two kind of cell divisions: the mitotic division (which did not lead to a sexual cycle; this is the
ancestral division) and the meiotic divisions (which led to a sexual cycle, the newly achieved
mechanism). This incipient distinction between the soma and the germline created two different
paths: the path of irremediable epigenetic information loss (in the soma-like cells) which eventually
leads to death, this is the ancestral scenario; and the path of epigenetic information recovery (in the
germline-like cells), the newly create scenario to allow to maintain the continuity of life across
several generations although earlier born individuals died due to extrinsic factors (environmental
factors) or intrinsic factors (loss of useful information needed to keep the correct functional

homeostasis or overcome lethal environmental barriers, in other words: ageing).

The eukaryotic cell, however, is not only characterized by the meiotic division, but by the presence
of a nuclear compartment, isolated from the cytoplasm which contains the genetic, and epigenetic
information. The appearance of a cellular membrane allowed a structural compartmentalization of
the biological information (genetic and epigenetic) that itself is part of the epigenetic information
(see Table 1). In this sense, the eukaryotic cells mastered the ageing process, by creating the meiotic
step (which implies a recovery of the epigenetic information, see below), and by acquiring a nuclear

membrane that allowed a further usability of the epigenetic information.

The incipient distinction between soma and germline was further increased with the appearance of
multicellular organism. In the next section I propose how this allowed to accommodate the ageing

phenomenon without harming the continuity of life.

Life as a continuity in the face of ageing phenomenon.

To analyse the pathways that allow life as a continuity in this new scenario one has to differentiate

between unicellular and multicellular organism.
1) Unicellular organism:

Unicellular organisms divide by mitosis (prokaryotes) or by mitosis and meiosis (eukaryotes), those
organisms though, are far less complex than multicellular organism which needs from a
developmental process to be shaped. The multicellular organism therefore needs much more
information (either genetic or epigenetic) for its proper development and function than unicellular
organism. A process of epigenetic information loss (as the ageing process is proposed to be in this
essay) would then be affected by how many epigenetic information the organism has and how and
for what is this information used for. In other words, ageing should be affected by the functions that

the organism must achieve via its epigenetic information.
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Figure 6. Complexity-lifespan trade-off and lethality avoidance strategies. (A) Complexity-lifespan trade-off schematization.
Likelihood of complexity increase is represented with respect to time. During pre-full-ageing era (left axis) this likelihood reached
the value of zero due to increased chances of extrinsic death as complexity increases. In full ageing era (right axis) the mastering of
ageing in eukaryotic cells (cyclical reuse of epigenetic information) allowed a further increase in complexity acquisition despite
further increases in extrinsic lethality. In both cases a linear increase is plotted for simplicity purposes. No value (other than >0) is
plotted at the starting of the ageing era as formal quantification of those phenomena is out of the scope of this paper. Complexity-
lifespan trade-off limit line is plotted in red dotted line. (B) and (C), Lethality avoidance strategies of unicellular (B) or multicellular
(C) organism. (B) An example of grow of unicellular organism in laboratory test tubes is shown. Epi-wild-type individuals are
plotted in orange, while epimutants are plotted in red. (C) A schematization of the overlapping generation mechanism of lethality
avoidance used by multicellular organism. Individual lifespans are plotted in quadrants shaped gradients that evolve from blue (epi-
wild-type) to red (epimutants) organism. Lethality of epimutants occurs when they reach the temporal black line. Blue arrow
represents transgenerational information transfer that gives an epigenetic young phenotype (epi-wild-type) to newer generations. This
figure was, in some parts, adapted from the “Test tube true C.png” file created by Theresa Knott and obtained via Wikimedia
Commons.

Unicellular organisms do not have complex developmental processes in their life cycle and use
mainly epigenetic processes to deal with environmental changes (i.e., to switch from a nutrient rich
media to a nutrient poor or and stressful media (Lépez-Maury et al., 2008)). Epigenetics does not
describe a developmental program as it does in multicellular organism. In this scenario, epigenetic
information loss, and therefore the ageing process, might be reduced mainly to a random

accumulation of epimutations.

Unicellular organism (prokaryotic or eukaryotic) does not need for a complex system to maintain
the continuity of life thanks to their ability to produce millions of identical copies of themselves
(generated by mitosis). Among all those copies, the ones that have less epimutations accumulated

(by chance) will overgrow the more epimutated ones (see Figure 6B).

In prokaryotic organisms life could be maintained by a continuous reading of the genetic
information that allows to replace the eventually lost epigenetic information. This is the situation
defined above as pre-full-ageing era. Death by loss of epigenetic information could happen in this
scenario by a quicker rate of information loss compared with the rate of information recovery. In
summary: unicellular procaryotes, like bacteria and archaea, are probably still trapped in a pre-full-
ageing era where viability is maintained by a more or least constant reading of the relevant
information for survival (no distinction between soma and germline) and for the ability to quickly

produce millions of descendants from just one single organism (see Figure 6B).

In eukaryotic organisms though, the sexual reproduction creates a clear distinction on when the
information is lost (mitotic division, soma-like scenario) or when the information is recovered
(meiotic division, germline-like scenario). Unicellular eukaryotes, thanks to their null or relatively
simple developmental process, are still able to maintain randomly the correct epigenetic
information thanks to their ability to produce millions of descendants from themselves (see Figure
6B). It should be noted that, the conditions in which for example yeast is grown in the laboratory, is
far from the scenario that they find in the nature. It is probable then, that although they are able to
grow for many generations under mitotic cycles in the rich media used in labs, in the nature they

require a frequent passage through a sexual cycle for a prolongate survival. It should be noted as
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well that some unicellular eukaryotic organism like yeast (highly used in ageing research) are
indeed simplified multicellular organisms (Kiss et al., 2019), and so they live in between two
worlds: are able to survive through the production of millions of identical copies of themselves (as
prokaryotes do) and might be affected by the more program-like scenario of ageing in multicellular
organisms (see below). In summary: unicellular eukaryotes are in a full-ageing era, but still retain

mechanism from the pre-full-ageing era to maintain the continuity of life.
2) Multicellular organism

Multicellular organisms have at least one program to follow: the development from the zygote to
the newborns organisms. On top of that epigenetic information might regulate further
developmental stages after birth. This requires a higher use of epigenetic information than in
unicellular organisms for bringing the biological information (genetic plus epigenetic) into a
phenotype outcome. In multicellular organisms the strategy of producing millions of descendants is
not useful, or simply less useful and less useful with every bit on increase in complexity. Newer
lethality avoidance strategies had to be developed to avoid extinction. Conceiving ageing as a loss of
epigenetic information phenomenon allows an envisage an easy solution for this problem:
overlapping generations of mortal individuals (see Figure 6C). The full distinction between the
soma and the germline allowed the appearance of a specific program to rewrite the epigenetic
information in the germline so the functional information is recovered and passed to a newborns
individuals, which not only starts its existence with the youngest epigenetic information, but as well
with its chances of dying by extrinsic factors reset to zero. Before its “conception” this organism
didn’t even exist. Neither did its chances of dying by an extrinsic factor, Importantly, even with a
high ratio of newborns lethality, the production of a high number of descendants, might allow to
achieve a continuity in life by overlapping generations of mortal individuals. In summary, by
overlapping generations of mortal individuals, the full development of the ageing process allowed
to overcome the limitation of complexity acquisition due to extrinsic lethality factors (see Figure 6A
and 6C), and to keep accumulating and storing genetic and epigenetic information that allow a
further increase in complexity beyond the limit given by the complexity-lifespan trade-off limit (see

above).

In multicellular organisms, the epigenetic information is not only used in gametogenic (meiotic)
and/or developmental processes, but by many processes through all the lifespan of the organism. In
this sense ageing, understood as a loss of epigenetic information process, might be affected by all
those processes making that, in multicellular organisms, ageing is probably more a program-like
process than a random-like process. In fact, it is probably a mixture of both: a program-like process

and a random-like process (environmentally affected).
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Summary:

Altogether in all scenarios (unicellular or multicellular organism) according to the model presented
in this paper, ageing is a consequence on how information is handled during vegetative grow and
during the meiosis (and subsequent steps). During vegetative growth the epigenetic information is
lost, while during processed happening in germline derived cells the relevant epigenetic information
is read and used to create a young newborns organisms. Ageing is therefore merely a consequence
of how epigenetically coded information is inherited. From a conscious perspective, ageing is the
price that we complex organism, pay for being complex (all our ancestors paid their bills, we just

keep doing so).

5. The present and potential experimental evidence for the proposed

model

The above proposed model is so far a speculation based in two premises (see above). In this section
I summarize the experimental evidence already obtained to support this model, as well as I list
some easy-to-check experimental frameworks that could help clarify whether the proposed model is

accurate or not.

Experimental observations in accordance with the proposed model

The ageing field is starting to be hit by an epigenetic reprograming revolution. Through epigenetic
reprograming some never before thought achievements are being accomplished, mainly by
ectopically inducing reprograming via the four Yamanaka factors: Oct4, Sox2, Kif4 and c-Myc
(OSKM) (Takahashi & Yamanaka, 2006). From resetting ageing hallmarks of cells from centenarian
individuals (Lapasset et al., 2011) to ameliorating age associated hallmarks in aged organism in
vivo (Ocampo et al., 2016; Sarkar et al., 2020; Rodriguez-Matellan et al., 2020; Lu et al., 2020). All
these new scenarios are difficult to explain with most of the long-time proposed models of ageing,
especially the damage-based models of ageing, but are very easily explainable by the model
presented in this paper: ageing as an epigenetic information-based phenomenon and epigenetic
reprograming as a regain access to an always kept information. This information is never read again
in somatic cells but read again during meiotic and developmental processes that start from germline
cells to give rise to the newer generations. Ectopic reading of the relevant information can be
induced ectopically in somatic cells by cell reprograming strategies (Takahashi & Yamanaka, 2006),
leading to a rejuvenation of markers of ageing in those cells (Horvath, 2013). In physiological

conditions though this reading of relevant information only happens in germline derived cells.
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These great achievements have been preceded by almost a decade of increasing involvement of
epigenetic processes in ageing (Zhang et al., 2020). This includes, among many more studies, the
thriving field of epigenetic clock development (Liu et al., 2020; Ryan, 2020; Bell et al., 2019;
Horvath, 2013; Bocklandt et al., 2011), and its relationship to all-cause mortality in humans
(McCrory et al.,, 2020; Marioni et al., 2015). The relation between all-cause mortality and
epigenetic clock signature suggests a somehow epigenetically caused mortality, as predicted by the
model described in this paper. According to the model, lethality is mainly epigenetically caused and

the end of the further flow of information (which, as proposed, describes life).

Altogether all these studies relating epigenetics and ageing favours an information-based conception
of ageing rather than a damage-based conception of ageing. It has already been shown that
modifying the epigenome (through reprograming) does reduce the impact of damage accumulated
to the cells (Sarkar et al., 2020; Lu et al., 2020). This directly suggest that damage is not the cause

of ageing but one of its consequences.

Another observation that is difficult to accommodate in a damage-based conception of ageing is the
fact that Hutchinson-Gilford progeria syndrome (HGPS) is caused by a single point mutation in the
Lamin A gene (Wang et al., 2020; Eriksson et al., 2003).This observation is difficult to explain in a
damage-based conception of ageing, where damage accumulation occurs during lifespan due to
changes into balance between damage generation and damage repair, and the consequent
accumulation of damage that this implies all along the lifespan of the organism. Could all these
complex mechanisms be caused by a point mutation? An information-based conception of ageing
offers a more parsimonious explanation for such observation. As proposed, eukaryotic cells
mastered the ageing process that had already begun in prokaryotic cells. The Lamin A protein is an
integral part of the nuclear membrane, and by lying there could contribute to the spatial
organization of the chromatin, that as proposed, could be an epigenetic information container (see
Table 1). A single point mutation in Lamin A protein could therefore imply a sudden
disorganization of nuclear architecture, characteristics that has been shown to happen in ageing and
to HGPS affected cells (Cenni et al., 2020; Reddy et al., 2020; Liu et al., 2011), and creating a quick
information loss that could explain the premature manifestation of ageing phenotypes in HGPS

patients.

At last, it should be noted that, as implicit with the model, the rejuvenation information should be
kept silenced in the somatic cells. Indeed, meiotic genes has been shown to be specifically silenced
in somatic (or somatic-like) cells (Turner, 2015; Hiriart et al., 2012; Harigaya et al., 2006). In
germline (or germline-like) cells, the “old” epigenetic information should be substituted by the

“young” epigenetic information, so that, as shown in ectopically induced scenarios (Sarkar et al.,
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2020; Lu et al., 2020), decrease (or erase) the aged phenotype. This has already been shown to be

the case in physiological conditions (Unal et al., 2011).

Easy-to-check experimental frameworks for the proposed model

The model proposed in this paper offers a possible explanation for the differences observed in
lifespan duration in several examples based on the trade-off between lifespan and complexity (or
extrinsic mortality likelihood): 1) most longest-lived organism known are organism showing a low-
risk lifestyle (i.e., comb jellies, sponges, placozoans, hydras, jellyfish, corals, sea anemones,
myxozoans, planarias, acoels, red sea urchin, etc.). In those animals the low extrinsic lethality
linked to their lifestyles could allow that they have a high non-meiotic reading of “young
information” (or rejuvenation) leading them to extends its lifespan by delaying the epigenetic-
mistakes-based lethality linked to ageing; 2) In organisms with highly efficient protective elements
like turtles or clamps, or animals with low risk of predation due their constitutions (i.e., elephants,
whales, sharks, etc.). In those cases, a slower speed of the ageing program or a higher non-meiotic
rejuvenation could as well give rise to longer lifespans due to low extrinsic mortality likelihood; and
3) A lifestyle difference could as well explain big lifespan differences between phylogenetically
related animals (i.e., long lived rodents like naked mole rat (NMR) compared with shorter-lived
rats). Experiments could be designed to test (i.e., via epigenetic clocks) how epigenetic drifts are
affected in all those animals in comparison with short-lived examples. Note that, since the first
version of this manuscript was submitted as a preprint (Marsellach, 2020), another study is indeed
showing that NMR show an epigenetic ageing more similar to primates that to more evolutionary
related mice, and that inside NMR, which shows a eusocial behaviour (Jarvis, 1981), the NMR
queen ages more slowly than NMR non-breeders (Horvath et al., 2021). This results clearly support
a mayor role of epigenetics in regulating lifespan, and indirectly backs the epigenetically caused

lethality proposed in this paper.

At last, this author detected clues of epigenetically caused lethality in S. pombe (Marsellach, 2017).
The framework that I developed allowed to put on test many predictions derived from the proposed
model, in especial could allow to test whether life and ageing are indeed information-based
phenomena by for example uncoupling meiosis from next generation production (Marsellach,
2017). Those experiments, with a careful monitoring of information lost/gain could allow to put on
test the above proposed model to describe life and ageing. This author’s proposals could help to
easily elucidate that lethality due to ageing depends primarily on epigenetics (Marsellach, 2017).
This is by far the most provocative and game changer prediction of the model presented in this
paper. This author asks the scientific community for help towards achieving the goal of proving this

prediction. The serendipity scenario in which these observations were made did not help this author
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from promoting in the academic world in a way that he could do that for himself (Marsellach,

2017).

6. Conclusion

This author came up with this theoretical framework from unforeseen and incomplete observations
(Marsellach, 2017). The model shows up from these partial observations by asking if they are the
exception or the rule. Answering that those partial observations are the rule rather than the
exception allows to build the proposed theoretical framework (Marsellach, 2018). Anyway, the
model is coherent enough independently of the partial observations obtained by this author and can
be built by itself just by the paradigmatic shift of considering ageing as an information-based
phenomenon rather than a damage-based one. In other words, by considering damage as the
consequence of ageing rather than the cause of it. On top of that, the model is not only fully testable
(as detailed above) but has already experimental support by data obtained by Sarkar and colleagues
and by Lu and colleagues which shows that by reprograming aged tissues they could obtain a
measurable reduction of the already accumulated damage (Sarkar et al., 2020; Lu et al., 2020).
These studies strongly support than damage is a consequence of ageing rather than its cause and

provide evidence for an information-based nature of ageing.

In summary, the model proposed in this paper provides both a definition of life and ageing that are
complementary and coherent with each other, and, more importantly, are testable. To the best of
my knowledge this is a first proposal for an experimental test aimed at answering what life is. Based
on all the considerations included in this paper, I would like to encourage the scientific community
to consider the information-based nature of ageing as a plausible and more parsimonious
explanation for the ageing phenomenon in their future studies, and to consider life and biological

sciences as mainly information-based sciences. Biology is all about information handling.
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