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INTRODUCTION 
 

Aging is a near universal biological process that manifests 

as a general decline in health and vitality, eventually 

leading to death. Aging is associated with the 

development of a wide range of chronic diseases, 

including cancer, Alzheimer's, diabetes, cardiovascular 

disease and many other conditions [1, 2]. If aging can be 

delayed, chronic disease onset will be forestalled, 

functional capacity maintained and, in all likelihood, 

complications due to infectious diseases, such as Covid-

19 and influenza, reduced [3]. In short, humans will have 

a longer healthspan and lifespan. 

 

Aging is typically measured chronologically in days or 

years, with median human survival on the order of 
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ABSTRACT 
 

The search continues for possible interventions that delay and/or reverse biological aging, resulting in extended 
healthspan and lifespan. Interventions delaying aging in animal models are well established; however, most 
lack validation in humans. The length of human lifespan makes it impractical to perform survival analysis. 
Instead, aging biomarkers, such as DNA methylation (DNAm) clocks, have been developed to monitor biological 
age. Herein we report a retrospective analysis of DNA methylation age in 42 individuals taking Rejuvant®, an 
alpha-ketoglutarate based formulation, for an average period of 7 months. DNAm testing was performed at 
baseline and by the end of treatment with Rejuvant® supplementation. Remarkably, individuals showed an 
average decrease in biological aging of 8 years (p-value=6.538x10-12). Furthermore, the supplementation with 
Rejuvant® is robust to individual differences, as indicated by the fact that a large majority of participants 
decreased their biological age. Moreover, we found that Rejuvant® is of additional benefit to chronologically 
and biologically older individuals. While continued testing, particularly in a placebo-controlled design, is 
required, the nearly 8-year reversal in the biological age of individuals taking Rejuvant® for 4 to 10 months is 
noteworthy, making the natural product cocktail an intriguing candidate to affect human aging. 
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eight decades. If we hope to control the aging process, 

we need to learn how to measure the rate of aging in 

shorter time periods. Moreover, aging progresses at 

different rates in different individuals. Our true 

biological age is influenced by many additional 

factors, such as genetic background, lifestyle, and 

disease. To address this challenge, several biological 

markers of aging have been developed. These markers 

are unique sets of molecules or changes in the 

epigenetic state of an individual's DNA that reflect 

their current aging status [4–6]. Among the most 

promising biomarkers of the aging process are  

DNA methylation patterns. DNA methylation is an 

epigenetic mechanism that plays an important role  

in the regulation of gene expression, organism 

development and disease [7, 8].  

 

Methylation of lysine residues within core histones, H3 

and H4, initiates a conformational modification in the 

chromatin structure that is associated with changes in 

transcriptional activity. However, the most widely 

studied epigenetic mark is the direct methylation of 

DNA itself. This modification involves the conversion 

of cytosine to 5’-methylcytosine, catalyzed by DNA 

methyltransferases, and typically occurs within the CpG 

dinucleotide sequences (CpGs). These CpG sequences, 

clustered in regions known as CpG islands (CGIs), are 

most often found in promoters of housekeeping genes 

[9, 10]. It has been shown that hypermethylation of 

CpG islands is linked with transcriptional silencing, 

whereas demethylated CpG islands are more often 

found during embryogenesis and serve as a hallmark of 

actively transcribed genes. During aging, two types of 

changes in DNA methylation have been observed and 

carefully characterized: (1) epigenetic drift, or 

progressive stochastic changes in DNA methylation 

patterns between individuals that occurs with increasing 

age [11], and (2) the epigenetic clock – a DNA 

methylation-derived measure that is highly correlated 

with chronological age and proposed to measure 

biological age [9, 12, 13].  

 

The epigenetic clock is an attractive biomarker of aging 

because it applies to most human tissues, capturing 

aspects of biological age such as frailty [14], 

cognitive/physical fitness in the elderly [15], age-

acceleration in obesity [16], premature aging in Down’s 

syndrome [17] and HIV infection [18], Parkinson’s [19] 

and Alzheimer’s disease-related neuropathologies [20], 

as well as cancer [21] and lifetime stress [22]. Markers 

of biological aging represent an important tool to 

clinically validate the effects of longevity-based 

interventions. For the first time, these biomarkers of 

aging give scientists the opportunity to study the effects 

of anti-aging compounds in real-time and directly in 

humans. One of the most promising anti-aging 

compounds discovered to date is Alpha-Ketoglutarate 

(AKG) [23].  

 

AKG is an endogenous intermediary metabolite in the 

Krebs cycle whose levels naturally decline during 

aging. AKG is involved in multiple metabolic and 

cellular pathways. These include functioning as a (an) 

signaling molecule, energy donor, precursor in the 

amino acid biosynthesis, and a regulator of epigenetic 

processes and cellular signaling via protein binding 

[24–26]. AKG deficiency in stem and progenitor  

cells increases with age [27]. As animals age, 

mitochondrial function is progressively impaired  

and cellular metabolic flux in the mitochondria 

declines, which exacerbates AKG deficiency. Chin et 

al. reported that AKG increased the lifespan of  

C. elegans [28]. Building on these results, AKG  

(and calcium salt) combined with other Generally 

Recognized as Safe (GRAS) compounds were studied 

in mice. The non-genetically altered mouse is the 

preferred mammalian model to study aging, since the 

biochemical processes involved in mice aging may 

apply to other mammals, including humans [29]. In a 

recent study, sponsored by Ponce de Leon Health and 

performed at the Buck Institute for Research on 

Aging, the effect of alpha-ketoglutarate (delivered in 

the form of a calcium salt - CaAKG) on healthspan 

and lifespan in C57BL/6 mice was reported. The 

authors showed that in the mice, AKG reduced frailty 

and enhanced longevity, indicating a compression of 

morbidity [23]. These and other discoveries suggest 

that AKG may be an ideal candidate for pro-longevity 

human studies.  

 

In this study, we examined the cross-sectional and 

longitudinal association between the epigenetic clock, 

health status, physical fitness and the effects of taking 

Rejuvant® (sustained release CaAKG + a specific 

vitamin depending on sex) on human biological aging. 

We followed 42 self-reported healthy individuals who 

had taken AKG supplementation for a period of 4 to 10 

months. The effects of AKG on biological aging, and 

the possible correlation of other physiological effects, 

are discussed. 

 

RESULTS 
 

For this study, we reviewed 42 participants who had 

elected to take Rejuvant® for a period of 4 to 10 

months. All participants were actively on the Rejuvant® 

product. The need to follow this study with a placebo-

controlled study is described in the Discussion. The 

general characteristics of this cohort are described in 

Table 1. All participants reported good or excellent 

health status without any chronic medical conditions. 

Only one participant was a smoker at baseline and 
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Table 1. Descriptive characteristics of the study participants. 

Total Participants 42 

Gender (Female/ Male) 14/ 28 

Female:  

  Chronological Age (median; range) 64.09; 43.49 to 72.46 

   Biological Age at Baseline (median; range) 62.15; 46.4 to 73 

  Biological Age at T7* (median; range) 55.55; 33.4 to 63.7 

Male:  

  Chronological Age (median; range) 62.78; 41.31 to 79.57 

  Biological Age at Baseline (median; range) 61.85; 41.9 to 79.7 

  Biological Age at T7* (median; range) 53.3; 33 to 74.9 

*Indicates biological age as measured by TruMe test after an average of 
seven months of treatment. 

 

continued to smoke throughout the study. The majority of 

the study participants (66.7%, n = 28) were male. The 

mean chronological age of this cohort was approximately 

63 years old.  

 

For all 42 participants, we were able to measure the 

baseline biological age using the TruMe age prediction 

model before they began taking Rejuvant®. We utilized 

the TruAge prediction model with Sanger sequencing 

for DNA methylation analysis. In total, 3 genes 

including 9 CpG sites were analyzed by the Sanger 

sequencing. The DNA methylation values obtained for 

all CpG sites were included in the TruMe age-prediction 

model (pending publication). 

 

We assessed the prediction error of the TruAge 

epigenetic test, as previously described. Comparison of 

the predicted vs. actual age values yields a median 

absolute error of 4.23 years. The mean error of 0.35 

years shows that this population as a whole may be 

slightly younger than expected. It is known that pre-

processing normalization of DNA methylation datasets 

and their age variance can bias the difference between 

the estimated and chronological age. A measure of 

robustness to these factors involves calculating the 

residuals of a linear regression of predicted vs. actual 

age. We found the estimated age to have a regression 

coefficient of 0.88 and that the linear regression (line 

fitted in Figure 1) displayed an adjusted R-squared of 

0.59 with a median absolute error of 3.97 years. Finally, 

we also found a statistically significant (p-

value=2.026x10-9) Pearson linear correlation of 0.77 

(95% CI: 0.61 to 0.87) between our cohort's estimated 

and actual age at baseline. 

 

We also considered whether there was a sex bias of the 

biological age assessment by analyzing males (28) and 

females (14) separately. Following the same procedure 

as before, for males we found a median absolute error of 

the predicted vs actual age of 4.92 years, and a mean 

error of -0.22 years. The median absolute error of the 

linear regression was 4.64 years, with an adjusted R-

squared of 0.6 and a regression coefficient of 0.90 

(Figure 2). Additionally, estimated and actual age at 

baseline for males were linearly correlated (p-

value=7.74x10-7) with a magnitude of 0.78 (95% CI: 

0.58 to 0.9). For females the analogous regression 

procedure displayed a median absolute error of 3.887 

years, with an adjusted R-square of 0.51 and a regression 

coefficient of 0.83 (Figure 2). Furthermore, we found a 

median absolute error of the predicted vs actual age of 

3.41 years. The mean error of 1.48 years could indicate 

that the females of our cohort are likely to be younger 

than expected. To explore this, we applied a multilinear 

regression with gender as an additional variable to our 

entire cohort. Gender was not found to be a statistically 

significant predictor of chronological age at baseline 

(Table 2). Moreover, there was a statistically significant 

(p-value=0.002) linear correlation of 0.74 (95% CI: 0.35 

to 0.91) between the estimated and real age at baseline 

for females. In conclusion, within the context of this 

limited dataset, there was no statistical difference in the 

predictive ability of the TruAge epigenetic test with 

respect to males and females. 

 

Participants completed a survey at the start and end of the 

trial. This self-reported questionnaire included 

information about diet, alcohol intake, previous 

consumption of Rejuvant®, health, height and weight 

(which allowed for estimation of BMI), sleep duration, 

smoking status, exercise frequency, physical activity 

level, meal frequency, snacking frequency, number of 

additional dietary supplements consumed and frequency, 

hair status, education, healthy lifestyle mindset and trust 

in dietary supplements (Supplementary Table 1). 

 

We leveraged baseline survey information to check if 

there were other confounders in our cohort, performing 
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Figure 1. TruAge age estimation and baseline chronological age are linearly correlated. The TruAge biological age is highly 

(adjusted R-squared = 0.77) statistically significantly (p-value = 2x10-9) correlated with chronological age of the 42 patients. 

 

 
 

Figure 2. TruAge age estimation and baseline chronological age are linearly correlated, in both genders. The x-axis depicts DNA 
methylation age estimated by TruAge, and the y-axis the chronological age of the 42 patients at baseline. The pink and blue linear correlation 
plots depict the similarly high statistically significant linear correlation between both axes, for female and male patients, respectively. 
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Table 2. Effect of Rejuvant® on biological age of study participants. 

Biological age distributions Male participants (in years) Female participants (in years) 

Minimum Biological Age at Baseline 41.9 46.4 

Median Biological Age at Baseline 61.85 62.15 

Mean Biological Age at Baseline 61.38 61.09 

Maximum Biological Age at Baseline 79.7 73 

Minimum Biological Age at T7* 33 33.4 

Median Biological Age at T7* 53.3 55.55 

Mean Biological Age at T7* 53.53 54.66 

Maximum Biological Age at T7* 74.9 63.7 

Minimum change in Biological Age -1.86 -0.41 

Median change in Biological Age 7.09 5.83 

Mean change in Biological Age 8.44 6.98 

Maximum change in Biological Age 22.7 14.09 

*Indicates biological age as measured by TruMe test after an average of seven months of treatment. 

 

a multivariable linear regression. Due to the 

considerable number of predicative variables, we 

performed a stepwise linear regression. Although there 

were additional covariates selected in the stepwise 

model, when this was compared, by means of analysis 

of variance, with the simpler univariate linear regression 

using solely the TruAge estimated age, the obtained p-

value was 0.12 (Supplementary Table 2). This indicates 

that in terms of comparison, the two models are not 

statistically significantly different, and, therefore, the 

simpler model was selected. 

 

It was of interest to determine whether the difference 

between chronological age and TruAge is related to 

lifestyle or demographic factors. In other words, it is 

important to assess if these covariates are associated with 

biologically younger or older individuals. We selected 

BMI, alcohol consumption, self-assessed health, sleep 

duration, smoking history, exercise frequency and 

intensity, and hair abundance as predictor variables, since 

this subset of the survey information collected may 

clearly be associated with and/or influence biological 

age. The stepwise linear regression did not find any 

statistically significant association between any of these 

variables with the difference between chronological and 

TruAge biological age (Supplementary Table 2). Of note, 

the number of participants is quite small (for instance, 

there was one smoker, and only 6 who reported a history 

of smoking). Therefore, it is likely that one or more of 

these lifestyle parameters influence the biological age as 

measured by the TruAge test and that a larger dataset 

would uncover associations.  
 
Results of the CaAKG consumption on biological age 

 

The goal of the study was to determine the effect of 

Rejuvant® supplementation on human biological aging 

by measuring DNA methylation. Following the baseline 

measurement, each study participant was supplied 

Rejuvant® for the duration of the study. Even though 

the participants were advised to use the treatment for  

4 to 6 months, there was considerably individual 

differences in treatment duration. Upon completion of 

the self-chosen treatment period, participants submitted 

their saliva samples for analysis of their biological age 

using commercially available TruMe tests. 

 
Based on the questionnaires submitted at baseline and the 

end of the trial, we identified a subset of 13 individuals 

who reported no changes in diet type, drinking frequency, 

additional dietary supplements intake, sleep duration and 

exercise frequency. This homogeneous subset was 

therefore used for the preliminary assessment of the 

independent effect of CaAKG, as the other covariates are 

controlled for by design. 

 

At baseline, this subset or our cohort was on average 2.06 

years biologically younger than their chronological age. 

By the end of the treatment this sub-population was on 

average 9.74 years biologically younger than their 

respective chronological age. Using one-sided Welch two 

sample paired t-test, this difference in means of 7.69 

years was found to be statistically significant, with a p-

value of 7.263x10-5 (Figure 3). It is noteworthy that every 

subject in this small group decreased their biological age. 

 

After discovering that CaAKG supplementation 

consistently decreased epigenetic age in a small 

homogenous population, we continued by assessing its 

effects on the entire cohort of 42 patients. At baseline, 

the cohort was on average 0.35 years biologically 

younger than their chronological age. By the end of  

the treatment, this value changed to an average of  

8.31 years biologically younger than their respective 
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chronological age. Using one-sided Welch two sample 

paired t-test, this difference in means of 7.96 years was 

found to be statistically significant, with a p-value of 

6.538x10-12 (Figure 4). 

 

The formulation of the Rejuvant® supplement is itself 

different for males and females. More specifically, in 

addition to CaAKG, vitamin A and vitamin D are added 

to the men’s or women’s commercial formulation, 

respectively (see Methods). Regardless, the effect of 

supplementation with Rejuvant® decreases epigenetic 

age in a statistically significant manner in males and 

females (Figure 5). The paired mean decrease is 8.44 

years in males and 6.98 years in females. Only  

2 individuals (1 male and 1 female) exhibited a slightly 

increase in biological age. 

 

 
 

Figure 3. CaAKG decreased methylation age among a homogeneous sub-population. The paired box plots represent the treatment 
effects at the patient and group level (n=13), between baseline and end of the trial (which on average had a duration of 7 months). The box 
plots depict the median and the 25th and 75th quartiles. 
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The validity of the statistical analysis using the entire 

cohort is predicated on covariate modelling, for the 

detection of variables that result in a statistically 

significant difference in the TruMe DNA methylation test, 

we used stepwise regressions iteratively. This procedure 

culminated in the most parsimonious model using only 

baseline chronological age, and the difference between 

baseline chronological and biological ages, as the only 

statistically significant predictors of the magnitude of the 

decrease in epigenetic age by Rejuvant®. Accordingly, 

we modelled the effect of Rejuvant® supplementation on 

methylation age as a linear regression of these two 

variables. These data indicate that those people with 

higher biological age (relative to their chronological age) 

 

 
 

Figure 4. CaAKG decreased methylation age in the entire cohort. The paired box plots represent the treatment effects at the patient 
and group level (n=42), between baseline and end of the trial (which on average had a duration of 7 months). The box plots depict the 
median and the 25th and 75th quartiles. 
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and/or people with high baseline chronological age have 

the largest response to Rejuvant®. 

 

Using the final reduced model, with only the two 

variables found to be statistically significantly related 

with a decrease in epigenetic age over the course of the 

treatment, the epigenetic age difference (in years) of 

about 7 months of CaAKG supplementation can be 

modeled by the equation: 
 

  5.41 0.22 0.45DecreaseinTruAge age diffAge=− +  − 

 

with “age” standing for chronological age at the start of 

the treatment and “diffAge” defined as the difference 

between chronological age and TruMe age at baseline. 

The plane representing this regression is depicted 

(Figure 6). 

 

Interestingly, duration of the treatment is not correlated 

with the magnitude of the effect of Rejuvant® 

supplementation. This indicates that the median treatment 

duration of our cohort, approximately 7 months, may be 

sufficient to saturate the benefits of the supplementation. 

 

 
 

Figure 5. CaAKG decreases methylation age regardless of gender. The image displays the effects of CaAKG on methylation age 

between the start and end of treatment, broken down by gender. For each gender, the red and blue paired box plots, depict the data at 
baseline and endpoint, respectively. The boxplots are based on the median and the 25th and 75th quartiles. 
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Interestingly, this finding is consistent with mathematical 

extrapolations from a large-scale study of complete blood 

count measurements, which forecast that the effects of a 

longevity intervention in a healthy population will saturate 

in a short period of time [30]. This same study predicted 

that the benefits of such interventions would be greater in 

individuals closer to a frail state, consistent with our data. 

Having said this, there remains very little data on longer 

term use of Rejuvant® or higher doses of the product, and 

further effects on biological age are feasible. We also did 

not measure whether the benefits in biological age are lost 

if the supplement is discontinued, therefore, continual 

supplementation may be needed to maintain any effects 

observed.  
 

 
 

Figure 6. 3D scatter plot of the covariates influencing CaAKG treatment efficacy. The x-axis refers to the difference, in years, 

between the chronological and biological ages at baseline (a patient in an older state will have larger positive value). The y-axis depicts the 
effect of CaAKG treatment in terms of years that the methylation age decreased (higher values indicate larger benefits). The z-axis is the 
chronological age at baseline (older patients will be “deeper”). The 3D plane was traced by using the linear regression of both covariates to 
treatment effect. 
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DISCUSSION 
 

AKG has been shown to extend lifespan in various 

model systems. In this study, we used a previously 

developed algorithm that predicts human biological age 

to determine if Rejuvant®, sustained release CaAKG + 

vitamins has a beneficial effect on human longevity. A 

total of 42 individuals, known to be taking Rejuvant® 

and who had submitted saliva samples for DNA 

methylation testing, were selected to participate in a 

customer biological aging result survey and analysis. 

Their DNAm TruAge Index had been measured at 

baseline (before starting Rejuvant®) and retested after 

an average of 7 months of use. Overall, these 42 

individuals showed statistically significant average 

reduction in their biological age of approximately 8 

years. 

 

General thinking in the aging research field is that 

interventions are likely to affect subsets of the 

population, and no one intervention (lifestyle or small 

molecule) will delay or reduce biological age in the 

entire population. Surprisingly, in this group the vast 

majority of participants responded with a reduced 

biological age after Rejuvant® treatment. While the 

study does have limitations (described below), these 

findings are encouraging. Interestingly, there were two 

parameters that influenced the magnitude of the 

response: those participants with higher biologic age 

relative to chronological age and those with higher 

chronological age at baseline. This suggests, perhaps 

contrary to expectations given the known role of AKG 

in augmenting exercise performance, that Rejuvant® 

has a larger response in participants biologically older 

than their chronological age. One might also predict this 

outcome for a longevity intervention on the basis of the 

hypothesis that individuals with low relative biological 

age are already undergoing near optimized aging and 

have less to gain. Currently, there is insufficient data on 

human aging to predict which populations will respond 

to a particular intervention. 

 

The TruAge methylation test, which remains 

proprietary, was developed by examining a limited 

number of methylation sites in CpG islands of 

promoters, based on optimization to chronological age 

using a machine learning approach. While it surveys a 

smaller portion of the genome than other methylation 

clocks, it has the advantage of being more affordable. In 

addition, TruAge test is easily used by consumers, who 

place saliva on a paper card and mail in the sample for 

analysis. The TruAge test was shown to report similar 

results when compared to other epigenetic clocks 

(unpublished), yet further testing using other 

methylation clocks and different biomarkers of aging 

would be beneficial to measure the effects of Rejuvant® 

on human longevity. A fundamental question regarding 

different biological aging measures relates to their level 

of concordance: do they measure the same, overlapping 

or completely different aspects of the aging process?  

 

The data in this study, while limited, suggests that 

CaAKG may indeed impact aging, at least as measured 

by methylation. It is also worth noting that AKG is a 

known substrate for DNA demethylases [31], which 

potentially demethylate DNA sites interrogated by 

TruAge. However, the AKG supplementation leads to 

both demethylation and hyper methylation of some CpG 

sites in saliva cells, suggesting that Rejuvant® may 

have a larger effect on methylation-based aging clocks 

than other indicators of biologic age. 

 

There are several limitations to this study. Primarily, it 

is not placebo controlled. Therefore, one potential 

concern is that the placebo effect may have contributed 

to some extent to the changes observed. However, the 

self-reported trust in the efficacy of dietary supplements 

was not deemed a statistically significant predictor in 

any of our regression models, which mitigates risk to an 

extent. Moreover, the study describes a limited sample 

size and we were unable to collect other kinds of data 

relevant to aging, for instance clinical markers of aging 

and disease, and apply other biological aging clocks [6]. 

Future randomized clinical trials will be required to 

confirm the findings presented here. Nevertheless, the 

results in this manuscript suggest that Rejuvant® may 

have significant effects on biological age as measured 

by DNA methylation of saliva samples. 

 

MATERIALS AND METHODS 
 

Participants 

 

A group of 42 self-reported healthy individuals (14 

females and 28 males) who had submitted saliva 

samples (two samples per subject). Saliva samples were 

collected at Baseline (T0) and 4-10 months after the 

participant began taking Rejuvant® (T7) at a fixed dose 

of two tablets per day. Each dose contained 1 gram of 

Calcium Alpha-Ketoglutarate, along with Vitamin A for 

the male participant’s formulation or Vitamin D for the 

female participant’s formulation, and delivered in a 

timed-release formulation, as illustrated in the 

formulation labels. 

 

TruMe identified prospective study participants from all 

customers with two previously completed DNAm tests 

(one baseline before starting and a second test 4 to 10 

months Rejuvant(R) supplementation. Prospective 

subjects were consented and asked to fill out a 

questionnaire reporting lifestyle changes before and 

after supplementation in diet, exercise, sleep, alcohol 
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consumption, smoking and nutritional supplement use. 

The consent form included the following statement: 

"TruMe would like to have your permission to use your 

biological age results for scientific and academic 

purposes. You will always be anonymous and no 

personally identifiable information will ever be shared. 

TruMe does not use full genome sequencing and 

therefore does not generate nor maintain any genetically 

identifiable data. We never sell your data or personal 

information." Participants who provided appropriate 

consent following GCP principles, were included in the 

study. Analysis of participant data was performed in 

aggregate and anonymously (Table 1). 

 

Vitamin A (as retinyl palmitate) 900 mg 100% 

Calcium 190 mg 15% 

Calcium Alpha-Ketoglutarate 

Monohydrate (LifeAKG™) 
1000 mg † 

 

Vitamin C 25 mg 

Calcium 190 mg 

Calcium Alpha-Ketoglutarate 

Monohydrate (LifeAKG™) 
1000 mg 

 

Sample collection and bisulfate sequencing 

 

Saliva samples were self-collected by participants at 

home using commercially available TruMe sampling kits. 

Participants were instructed to collect about 200-300 mL 

of their saliva samples onto FTA Classic Cards (FTA 

Classic Cards, #WB120205, from GE Healthcare Life 

Sciences). Saliva samples were allowed to air dry for 30-

45 minutes, before they were shipped to TruMe Labs.  

 

DNA methylation and DNAm age calculation  

 
From each sample, 1 inch diameter circles were 

obtained, and DNA eluted with Quick-DNA Microprep 

Plus Kit (ZymoResearch, CA, USA) according to the 

manufacturer’s protocol. 200-500ng of eluted DNA was 

bisulfite converted with the EZ DNA Methylation-

Lighting™ Kit according to the manufacturer’s 

instructions (ZymoResearch, CA, USA). PCR 

amplification of bisulfite converted DNA was 

performed using standard target specific primers (IDT, 

Newark, NJ, USA). The PCR reaction was set up using 

ZymoTaq PreMix E2004 (ZymoResearch, CA, USA). 

 

Each PCR fragment was analyzed using the standard 

Sanger sequencing protocol and methylation levels were 

analyzed using a proprietary algorithm, developed by 

TruMe Inc. The TruMe age-prediction algorithm uses a 

multivariate model to predict biological age of the 

individual.  

 

Statistical analysis 

 

The data was analyzed, and the plots generated using 

the R programming language. Continuous variables 

were tested for normality using the Shapiro-Wilk test. 

In cases, where we fail to reject the null hypothesis (p-

value not less than 0.05) the one-sided Welch two 

sample paired t-test was used, otherwise the one-sided 

Wilcoxon signed rank paired test with continuity 

correction was deployed [32]. Figures 1–5 were done 

using the ‘ggpubr’ R package. Figure 6 was created 

using the ‘scatterplot3d’ R package [33]. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Characteristics of participants at baseline. 

 Female Male 

n 14 28 

Ethnicity (%)   

   Asian 1 ( 7.1)  1 ( 3.6)  

   Hispanic/Latino 1 ( 7.1)  1 ( 3.6)  

   White/Caucasian 12 (85.7)  23 ( 82.1)  
   White/Caucasian, American Indian or Alaskan Native 0 ( 0.0)  2 ( 7.1)  

   White/Caucasian, Native Hawaiian or other Pacific islander 0 ( 0.0)  1 ( 3.6)  

Chronological Age T0 (mean (SD)) 62.57 (8.11) 61.16 (11.03) 

Chronological Age T7* (mean (SD)) 63.12 (8.11) 61.76 (11.01) 

Biological Age T0 (mean (SD)) 61.09 (7.27) 61.38 (9.64) 

Biological Age T7* (mean (SD)) 54.66 (8.17) 53.53 (8.62) 

Weekly alcohol consumption in drinks (%)   

   0 5 (35.7)  5 ( 17.9)  

   1 to 4 2 (14.3)  10 ( 35.7)  

   5 to 8 6 (42.9)  8 ( 28.6)  

   9 to 14 1 ( 7.1)  5 ( 17.9)  

Current number of dietary supplements (%)   

   0 2 (14.3)  4 ( 14.3)  

   1 to 2 4 (28.6)  3 ( 10.7)  

   3 to 4 5 (35.7)  6 ( 21.4)  

   5 3 (21.4)  15 ( 53.6)  

Self-rated general health (%)    

   Moderate 1 ( 7.1)  1 ( 3.6)  

   Good 7 (50.0)  9 ( 32.1)  

   Very good 6 (42.9)  18 ( 64.3)  

Sleep duration (%)   

   4-6 hours 1 ( 7.1)  2 ( 7.1)  

   7-8 hours 13 (92.9)  24 ( 85.7)  

   More than 8 hours 0 ( 0.0)  2 ( 7.1)  

Smoking history (%)   

   Past smoker but quit 3 (21.4)  3 ( 10.7)  

   Never smoker   

Weekly exercise frequency (%)   

   Rarely 1 ( 7.1)  0 ( 0.0)  

   1-2 times/week 0 ( 0.0)  5 ( 17.9)  

   3+ times/week 7 (50.0)  17 ( 60.7)  

   Daily 6 (42.9)  6 ( 21.4)  

BMI (mean (SD)) 21.84 (2.60) 25.70 (3.97) 

Days of treatment (mean (SD)) 200.57 (35.78) 218.36 (41.57) 

Education (%)   

   High school diploma (or GED) 1 ( 7.1)  0 ( 0.0)  

   Some college 3 (21.4)  4 ( 14.3)  

   4-year college degree 2 (14.3)  10 ( 35.7)  

   Graduate-level degree 8 (57.1)  14 ( 50.0)  

Average number of daily meals (%)   

   2 6 (42.9)  11 ( 39.3)  
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   3 7 (50.0)  14 ( 50.0)  

   4 or more 1 ( 7.1)  3 ( 10.7)  

Number of daily snacks (%)   

   1 6 (42.9)  18 ( 64.3)  

   2 6 (42.9)  8 ( 28.6)  

   3 2 (14.3)  2 ( 7.1)  

Opinion about dietary supplements (%)   

   Skeptical 2 (14.3)  3 ( 10.7)  

   No opinion 2 (14.3)  0 ( 0.0)  

   Interested 6 (42.9)  4 ( 14.3)  

   Firm believer 4 (28.6)  21 ( 75.0)  

Weekly frequency of dietary supplements (%)   

   Never 1 ( 7.1)  0 ( 0.0)  

   Rarely 0 ( 0.0)  1 ( 3.6)  

   Daily 13 (92.9)  27 ( 96.4)  

Healthy living mindset (%)   

   Ready to get started 1 ( 7.1)  1 ( 3.6)  

   Practicing 10 (71.4)  15 ( 53.6)  

   Dedicated 3 (21.4)  12 ( 42.9)  

Activity level (%)   

   Sedentary 1 ( 7.1)  2 ( 7.1)  

   Mildly Active 2 (14.3)  5 ( 17.9)  

   Active 5 (35.7)  12 ( 42.9)  

   Very Active 6 (42.9)  9 ( 32.1)  

   Athletic 0 ( 0.0)  0 ( 0.0)  

Hair (%)   

   Bald 0 ( 0.0)  4 ( 14.3)  

   Thinning 5 (35.7)  11 ( 39.3)  

   Thick and/or Full 9 (64.3)  13 ( 46.4)  

*Indicates biologic age as measured by TruMe test after an average of seven months of treatment. 

 

Supplementary Table 2. Regression models used (with coefficients). 

 

 


