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ABSTRACT

The search continues for possible interventions that delay and/or reverse biological aging, resulting in extended
healthspan and lifespan. Interventions delaying aging in animal models are well established; however, most
lack validation in humans. The length of human lifespan makes it impractical to perform survival analysis.
Instead, aging biomarkers, such as DNA methylation (DNAm) clocks, have been developed to monitor biological
age. Herein we report a retrospective analysis of DNA methylation age in 42 individuals taking Rejuvant®, an
alpha-ketoglutarate based formulation, for an average period of 7 months. DNAm testing was performed at
baseline and by the end of treatment with Rejuvant® supplementation. Remarkably, individuals showed an
average decrease in biological aging of 8 years (p-value=6.538x10?). Furthermore, the supplementation with
Rejuvant® is robust to individual differences, as indicated by the fact that a large majority of participants
decreased their biological age. Moreover, we found that Rejuvant® is of additional benefit to chronologically
and biologically older individuals. While continued testing, particularly in a placebo-controlled design, is
required, the nearly 8-year reversal in the biological age of individuals taking Rejuvant® for 4 to 10 months is
noteworthy, making the natural product cocktail an intriguing candidate to affect human aging.

INTRODUCTION

Aging is a near universal biological process that manifests
as a general decline in health and vitality, eventually
leading to death. Aging is associated with the
development of a wide range of chronic diseases,
including cancer, Alzheimer's, diabetes, cardiovascular
disease and many other conditions [1, 2]. If aging can be

delayed, chronic disease onset will be forestalled,
functional capacity maintained and, in all likelihood,
complications due to infectious diseases, such as Covid-
19 and influenza, reduced [3]. In short, humans will have
a longer healthspan and lifespan.

Aging is typically measured chronologically in days or
years, with median human survival on the order of
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eight decades. If we hope to control the aging process,
we need to learn how to measure the rate of aging in
shorter time periods. Moreover, aging progresses at
different rates in different individuals. Our true
biological age is influenced by many additional
factors, such as genetic background, lifestyle, and
disease. To address this challenge, several biological
markers of aging have been developed. These markers
are unique sets of molecules or changes in the
epigenetic state of an individual's DNA that reflect
their current aging status [4-6]. Among the most
promising biomarkers of the aging process are
DNA methylation patterns. DNA methylation is an
epigenetic mechanism that plays an important role
in the regulation of gene expression, organism
development and disease [7, 8].

Methylation of lysine residues within core histones, H3
and H4, initiates a conformational modification in the
chromatin structure that is associated with changes in
transcriptional activity. However, the most widely
studied epigenetic mark is the direct methylation of
DNA itself. This modification involves the conversion
of cytosine to 5’-methylcytosine, catalyzed by DNA
methyltransferases, and typically occurs within the CpG
dinucleotide sequences (CpGs). These CpG sequences,
clustered in regions known as CpG islands (CGls), are
most often found in promoters of housekeeping genes
[9, 10]. It has been shown that hypermethylation of
CpG islands is linked with transcriptional silencing,
whereas demethylated CpG islands are more often
found during embryogenesis and serve as a hallmark of
actively transcribed genes. During aging, two types of
changes in DNA methylation have been observed and
carefully characterized: (1) epigenetic drift, or
progressive stochastic changes in DNA methylation
patterns between individuals that occurs with increasing
age [11], and (2) the epigenetic clock — a DNA
methylation-derived measure that is highly correlated
with chronological age and proposed to measure
biological age [9, 12, 13].

The epigenetic clock is an attractive biomarker of aging
because it applies to most human tissues, capturing
aspects of biological age such as frailty [14],
cognitive/physical fitness in the elderly [15], age-
acceleration in obesity [16], premature aging in Down’s
syndrome [17] and HIV infection [18], Parkinson’s [19]
and Alzheimer’s disease-related neuropathologies [20],
as well as cancer [21] and lifetime stress [22]. Markers
of biological aging represent an important tool to
clinically validate the effects of longevity-based
interventions. For the first time, these biomarkers of
aging give scientists the opportunity to study the effects
of anti-aging compounds in real-time and directly in
humans. One of the most promising anti-aging

compounds discovered to date is Alpha-Ketoglutarate
(AKG) [23].

AKG is an endogenous intermediary metabolite in the
Krebs cycle whose levels naturally decline during
aging. AKG is involved in multiple metabolic and
cellular pathways. These include functioning as a (an)
signaling molecule, energy donor, precursor in the
amino acid biosynthesis, and a regulator of epigenetic
processes and cellular signaling via protein binding
[24-26]. AKG deficiency in stem and progenitor
cells increases with age [27]. As animals age,
mitochondrial function is progressively impaired
and cellular metabolic flux in the mitochondria
declines, which exacerbates AKG deficiency. Chin et
al. reported that AKG increased the lifespan of
C. elegans [28]. Building on these results, AKG
(and calcium salt) combined with other Generally
Recognized as Safe (GRAS) compounds were studied
in mice. The non-genetically altered mouse is the
preferred mammalian model to study aging, since the
biochemical processes involved in mice aging may
apply to other mammals, including humans [29]. In a
recent study, sponsored by Ponce de Leon Health and
performed at the Buck Institute for Research on
Aging, the effect of alpha-ketoglutarate (delivered in
the form of a calcium salt - CaAKG) on healthspan
and lifespan in C57BL/6 mice was reported. The
authors showed that in the mice, AKG reduced frailty
and enhanced longevity, indicating a compression of
morbidity [23]. These and other discoveries suggest
that AKG may be an ideal candidate for pro-longevity
human studies.

In this study, we examined the cross-sectional and
longitudinal association between the epigenetic clock,
health status, physical fitness and the effects of taking
Rejuvant® (sustained release CaAKG + a specific
vitamin depending on sex) on human biological aging.
We followed 42 self-reported healthy individuals who
had taken AKG supplementation for a period of 4 to 10
months. The effects of AKG on biological aging, and
the possible correlation of other physiological effects,
are discussed.

RESULTS

For this study, we reviewed 42 participants who had
elected to take Rejuvant® for a period of 4 to 10
months. All participants were actively on the Rejuvant®
product. The need to follow this study with a placebo-
controlled study is described in the Discussion. The
general characteristics of this cohort are described in
Table 1. All participants reported good or excellent
health status without any chronic medical conditions.
Only one participant was a smoker at baseline and
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Table 1. Descriptive characteristics of the study participants.

Total Participants
Gender (Female/ Male)
Female:

Chronological Age (median; range)
Biological Age at Baseline (median; range)
Biological Age at T7* (median; range)

Male:

Chronological Age (median; range)
Biological Age at Baseline (median; range)
Biological Age at T7* (median; range)

42
14/ 28

64.09; 43.49 to 72.46
62.15; 46.4to 73
55.55; 33.4 to 63.7

62.78; 41.31to 79.57
61.85;41.9t0 79.7
53.3; 3310 74.9

*Indicates biological age as measured by TruMe test after an average of

seven months of treatment.

continued to smoke throughout the study. The majority of
the study participants (66.7%, n = 28) were male. The
mean chronological age of this cohort was approximately
63 years old.

For all 42 participants, we were able to measure the
baseline biological age using the TruMe age prediction
model before they began taking Rejuvant®. We utilized
the TruAge prediction model with Sanger sequencing
for DNA methylation analysis. In total, 3 genes
including 9 CpG sites were analyzed by the Sanger
sequencing. The DNA methylation values obtained for
all CpG sites were included in the TruMe age-prediction
model (pending publication).

We assessed the prediction error of the TruAge
epigenetic test, as previously described. Comparison of
the predicted vs. actual age values yields a median
absolute error of 4.23 years. The mean error of 0.35
years shows that this population as a whole may be
slightly younger than expected. It is known that pre-
processing normalization of DNA methylation datasets
and their age variance can bias the difference between
the estimated and chronological age. A measure of
robustness to these factors involves calculating the
residuals of a linear regression of predicted vs. actual
age. We found the estimated age to have a regression
coefficient of 0.88 and that the linear regression (line
fitted in Figure 1) displayed an adjusted R-squared of
0.59 with a median absolute error of 3.97 years. Finally,
we also found a statistically significant (p-
value=2.026x10°) Pearson linear correlation of 0.77
(95% CI: 0.61 to 0.87) between our cohort's estimated
and actual age at baseline.

We also considered whether there was a sex bias of the
biological age assessment by analyzing males (28) and
females (14) separately. Following the same procedure
as before, for males we found a median absolute error of

the predicted vs actual age of 4.92 years, and a mean
error of -0.22 years. The median absolute error of the
linear regression was 4.64 years, with an adjusted R-
squared of 0.6 and a regression coefficient of 0.90
(Figure 2). Additionally, estimated and actual age at
baseline for males were linearly correlated (p-
value=7.74x107") with a magnitude of 0.78 (95% CI:
0.58 to 0.9). For females the analogous regression
procedure displayed a median absolute error of 3.887
years, with an adjusted R-square of 0.51 and a regression
coefficient of 0.83 (Figure 2). Furthermore, we found a
median absolute error of the predicted vs actual age of
3.41 years. The mean error of 1.48 years could indicate
that the females of our cohort are likely to be younger
than expected. To explore this, we applied a multilinear
regression with gender as an additional variable to our
entire cohort. Gender was not found to be a statistically
significant predictor of chronological age at baseline
(Table 2). Moreover, there was a statistically significant
(p-value=0.002) linear correlation of 0.74 (95% CI: 0.35
to 0.91) between the estimated and real age at baseline
for females. In conclusion, within the context of this
limited dataset, there was no statistical difference in the
predictive ability of the TruAge epigenetic test with
respect to males and females.

Participants completed a survey at the start and end of the
trial. This self-reported questionnaire included
information about diet, alcohol intake, previous
consumption of Rejuvant®, health, height and weight
(which allowed for estimation of BMI), sleep duration,
smoking status, exercise frequency, physical activity
level, meal frequency, snacking frequency, number of
additional dietary supplements consumed and frequency,
hair status, education, healthy lifestyle mindset and trust
in dietary supplements (Supplementary Table 1).

We leveraged baseline survey information to check if
there were other confounders in our cohort, performing
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Figure 1. TruAge age estimation and baseline chronological age are linearly correlated. The TruAge biological age is highly
(adjusted R-squared = 0.77) statistically significantly (p-value = 2x10-°) correlated with chronological age of the 42 patients.
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Figure 2. TruAge age estimation and baseline chronological age are linearly correlated, in both genders. The x-axis depicts DNA
methylation age estimated by TruAge, and the y-axis the chronological age of the 42 patients at baseline. The pink and blue linear correlation
plots depict the similarly high statistically significant linear correlation between both axes, for female and male patients, respectively.
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Table 2. Effect of Rejuvant® on biological age of study participants.

Biological age distributions

Male participants (in years)

Female participants (in years)

Minimum Biological Age at Baseline
Median Biological Age at Baseline
Mean Biological Age at Baseline
Maximum Biological Age at Baseline
Minimum Biological Age at T7*
Median Biological Age at T7*

Mean Biological Age at T7*
Maximum Biological Age at T7*
Minimum change in Biological Age
Median change in Biological Age
Mean change in Biological Age
Maximum change in Biological Age

41.9 46.4
61.85 62.15
61.38 61.09
79.7 73
33 33.4
53.3 55.55
53.53 54.66
74.9 63.7
-1.86 -0.41
7.09 5.83
8.44 6.98
22.7 14.09

*Indicates biological age as measured by TruMe test after an average of seven months of treatment.

a multivariable linear regression. Due to the
considerable number of predicative variables, we
performed a stepwise linear regression. Although there
were additional covariates selected in the stepwise
model, when this was compared, by means of analysis
of variance, with the simpler univariate linear regression
using solely the TruAge estimated age, the obtained p-
value was 0.12 (Supplementary Table 2). This indicates
that in terms of comparison, the two models are not
statistically significantly different, and, therefore, the
simpler model was selected.

It was of interest to determine whether the difference
between chronological age and TruAge is related to
lifestyle or demographic factors. In other words, it is
important to assess if these covariates are associated with
biologically younger or older individuals. We selected
BMI, alcohol consumption, self-assessed health, sleep
duration, smoking history, exercise frequency and
intensity, and hair abundance as predictor variables, since
this subset of the survey information collected may
clearly be associated with and/or influence biological
age. The stepwise linear regression did not find any
statistically significant association between any of these
variables with the difference between chronological and
TruAge biological age (Supplementary Table 2). Of note,
the number of participants is quite small (for instance,
there was one smoker, and only 6 who reported a history
of smoking). Therefore, it is likely that one or more of
these lifestyle parameters influence the biological age as
measured by the TruAge test and that a larger dataset
would uncover associations.

Results of the CaAKG consumption on biological age

The goal of the study was to determine the effect of
Rejuvant® supplementation on human biological aging

by measuring DNA methylation. Following the baseline
measurement, each study participant was supplied
Rejuvant® for the duration of the study. Even though
the participants were advised to use the treatment for
4 to 6 months, there was considerably individual
differences in treatment duration. Upon completion of
the self-chosen treatment period, participants submitted
their saliva samples for analysis of their biological age
using commercially available TruMe tests.

Based on the questionnaires submitted at baseline and the
end of the trial, we identified a subset of 13 individuals
who reported no changes in diet type, drinking frequency,
additional dietary supplements intake, sleep duration and
exercise frequency. This homogeneous subset was
therefore used for the preliminary assessment of the
independent effect of CaAKG, as the other covariates are
controlled for by design.

At baseline, this subset or our cohort was on average 2.06
years biologically younger than their chronological age.
By the end of the treatment this sub-population was on
average 9.74 years biologically younger than their
respective chronological age. Using one-sided Welch two
sample paired t-test, this difference in means of 7.69
years was found to be statistically significant, with a p-
value of 7.263x10°° (Figure 3). It is noteworthy that every
subject in this small group decreased their biological age.

After discovering that CaAKG supplementation
consistently decreased epigenetic age in a small
homogenous population, we continued by assessing its
effects on the entire cohort of 42 patients. At baseline,
the cohort was on average 0.35 years biologically
younger than their chronological age. By the end of
the treatment, this value changed to an average of
8.31 years biologically younger than their respective
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chronological age. Using one-sided Welch two sample
paired t-test, this difference in means of 7.96 years was
found to be statistically significant, with a p-value of
6.538x10%2 (Figure 4).

The formulation of the Rejuvant® supplement is itself
different for males and females. More specifically, in
addition to CaAKG, vitamin A and vitamin D are added

to the men’s or women’s commercial formulation,
respectively (see Methods). Regardless, the effect of
supplementation with Rejuvant® decreases epigenetic
age in a statistically significant manner in males and
females (Figure 5). The paired mean decrease is 8.44
years in males and 6.98 years in females. Only
2 individuals (1 male and 1 female) exhibited a slightly
increase in biological age.
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Figure 3. CaAKG decreased methylation age among a homogeneous sub-population. The paired box plots represent the treatment
effects at the patient and group level (n=13), between baseline and end of the trial (which on average had a duration of 7 months). The box
plots depict the median and the 25t and 75t quartiles.
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The validity of the statistical analysis using the entire
cohort is predicated on covariate modelling, for the
detection of variables that result in a statistically
significant difference in the TruMe DNA methylation test,
we used stepwise regressions iteratively. This procedure
culminated in the most parsimonious model using only
baseline chronological age, and the difference between

baseline chronological and biological ages, as the only
statistically significant predictors of the magnitude of the
decrease in epigenetic age by Rejuvant®. Accordingly,
we modelled the effect of Rejuvant® supplementation on
methylation age as a linear regression of these two
variables. These data indicate that those people with
higher biological age (relative to their chronological age)
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Figure 4. CaAKG decreased methylation age in the entire cohort. The paired box plots represent the treatment effects at the patient
and group level (n=42), between baseline and end of the trial (which on average had a duration of 7 months). The box plots depict the

median and the 25t and 75t quartiles.
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and/or people with high baseline chronological age have
the largest response to Rejuvant®.

Using the final reduced model, with only the two
variables found to be statistically significantly related
with a decrease in epigenetic age over the course of the
treatment, the epigenetic age difference (in years) of
about 7 months of CaAKG supplementation can be
modeled by the equation:

DecreaseinTruAge =—5.41+ 0.22 x age — 0.45 x diffAge

with “age” standing for chronological age at the start of
the treatment and “diffAge” defined as the difference
between chronological age and TruMe age at baseline.
The plane representing this regression is depicted
(Figure 6).

Interestingly, duration of the treatment is not correlated
with the magnitude of the effect of Rejuvant®
supplementation. This indicates that the median treatment
duration of our cohort, approximately 7 months, may be
sufficient to saturate the benefits of the supplementation.
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Figure 5. CaAKG decreases methylation age regardless of gender. The image displays the effects of CaAKG on methylation age
between the start and end of treatment, broken down by gender. For each gender, the red and blue paired box plots, depict the data at
baseline and endpoint, respectively. The boxplots are based on the median and the 25t and 75t quartiles.
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Interestingly, this finding is consistent with mathematical
extrapolations from a large-scale study of complete blood
count measurements, which forecast that the effects of a
longevity intervention in a healthy population will saturate
in a short period of time [30]. This same study predicted
that the benefits of such interventions would be greater in
individuals closer to a frail state, consistent with our data.

Having said this, there remains very little data on longer
term use of Rejuvant® or higher doses of the product, and
further effects on biological age are feasible. We also did
not measure whether the benefits in biological age are lost
if the supplement is discontinued, therefore, continual
supplementation may be needed to maintain any effects
observed.

Years gained after treatment

80

Baseline chronological age

t 40
10 15

Chronological age minus TruAge at baseline

Figure 6. 3D scatter plot of the covariates influencing CaAKG treatment efficacy. The x-axis refers to the difference, in years,
between the chronological and biological ages at baseline (a patient in an older state will have larger positive value). The y-axis depicts the
effect of CaAKG treatment in terms of years that the methylation age decreased (higher values indicate larger benefits). The z-axis is the
chronological age at baseline (older patients will be “deeper”). The 3D plane was traced by using the linear regression of both covariates to

treatment effect.
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DISCUSSION

AKG has been shown to extend lifespan in various
model systems. In this study, we used a previously
developed algorithm that predicts human biological age
to determine if Rejuvant®, sustained release CaAKG +
vitamins has a beneficial effect on human longevity. A
total of 42 individuals, known to be taking Rejuvant®
and who had submitted saliva samples for DNA
methylation testing, were selected to participate in a
customer biological aging result survey and analysis.
Their DNAm TruAge Index had been measured at
baseline (before starting Rejuvant®) and retested after
an average of 7 months of use. Overall, these 42
individuals showed statistically significant average
reduction in their biological age of approximately 8
years.

General thinking in the aging research field is that
interventions are likely to affect subsets of the
population, and no one intervention (lifestyle or small
molecule) will delay or reduce biological age in the
entire population. Surprisingly, in this group the vast
majority of participants responded with a reduced
biological age after Rejuvant® treatment. While the
study does have limitations (described below), these
findings are encouraging. Interestingly, there were two
parameters that influenced the magnitude of the
response: those participants with higher biologic age
relative to chronological age and those with higher
chronological age at baseline. This suggests, perhaps
contrary to expectations given the known role of AKG
in augmenting exercise performance, that Rejuvant®
has a larger response in participants biologically older
than their chronological age. One might also predict this
outcome for a longevity intervention on the basis of the
hypothesis that individuals with low relative biological
age are already undergoing near optimized aging and
have less to gain. Currently, there is insufficient data on
human aging to predict which populations will respond
to a particular intervention.

The TruAge methylation test, which remains
proprietary, was developed by examining a limited
number of methylation sites in CpG islands of
promoters, based on optimization to chronological age
using a machine learning approach. While it surveys a
smaller portion of the genome than other methylation
clocks, it has the advantage of being more affordable. In
addition, TruAge test is easily used by consumers, who
place saliva on a paper card and mail in the sample for
analysis. The TruAge test was shown to report similar
results when compared to other epigenetic clocks
(unpublished), yet further testing using other
methylation clocks and different biomarkers of aging
would be beneficial to measure the effects of Rejuvant®

on human longevity. A fundamental question regarding
different biological aging measures relates to their level
of concordance: do they measure the same, overlapping
or completely different aspects of the aging process?

The data in this study, while limited, suggests that
CaAKG may indeed impact aging, at least as measured
by methylation. It is also worth noting that AKG is a
known substrate for DNA demethylases [31], which
potentially demethylate DNA sites interrogated by
TruAge. However, the AKG supplementation leads to
both demethylation and hyper methylation of some CpG
sites in saliva cells, suggesting that Rejuvant® may
have a larger effect on methylation-based aging clocks
than other indicators of biologic age.

There are several limitations to this study. Primarily, it
is not placebo controlled. Therefore, one potential
concern is that the placebo effect may have contributed
to some extent to the changes observed. However, the
self-reported trust in the efficacy of dietary supplements
was not deemed a statistically significant predictor in
any of our regression models, which mitigates risk to an
extent. Moreover, the study describes a limited sample
size and we were unable to collect other kinds of data
relevant to aging, for instance clinical markers of aging
and disease, and apply other biological aging clocks [6].
Future randomized clinical trials will be required to
confirm the findings presented here. Nevertheless, the
results in this manuscript suggest that Rejuvant® may
have significant effects on biological age as measured
by DNA methylation of saliva samples.

MATERIALS AND METHODS
Participants

A group of 42 self-reported healthy individuals (14
females and 28 males) who had submitted saliva
samples (two samples per subject). Saliva samples were
collected at Baseline (TO) and 4-10 months after the
participant began taking Rejuvant® (T7) at a fixed dose
of two tablets per day. Each dose contained 1 gram of
Calcium Alpha-Ketoglutarate, along with Vitamin A for
the male participant’s formulation or Vitamin D for the
female participant’s formulation, and delivered in a
timed-release formulation, as illustrated in the
formulation labels.

TruMe identified prospective study participants from all
customers with two previously completed DNAm tests
(one baseline before starting and a second test 4 to 10
months Rejuvant(R) supplementation. Prospective
subjects were consented and asked to fill out a
questionnaire reporting lifestyle changes before and
after supplementation in diet, exercise, sleep, alcohol
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consumption, smoking and nutritional supplement use.
The consent form included the following statement:
"TruMe would like to have your permission to use your
biological age results for scientific and academic
purposes. You will always be anonymous and no
personally identifiable information will ever be shared.
TruMe does not use full genome sequencing and
therefore does not generate nor maintain any genetically
identifiable data. We never sell your data or personal
information.” Participants who provided appropriate
consent following GCP principles, were included in the
study. Analysis of participant data was performed in
aggregate and anonymously (Table 1).

Vitamin A (as retinyl palmitate) 900 mg  100%
Calcium 190 mg 15%
Calcium Alpha-Ketoglutarate

Monohydrate (LifeAKG™) 1000 mg i
Vitamin C 25 mg
Calcium 100 mg
Calcium Alpha-Ketoglutarate 1000 mg

Monohydrate (LifeAKG™)

Sample collection and bisulfate sequencing

Saliva samples were self-collected by participants at
home using commercially available TruMe sampling Kits.
Participants were instructed to collect about 200-300 mL
of their saliva samples onto FTA Classic Cards (FTA
Classic Cards, #WB120205, from GE Healthcare Life
Sciences). Saliva samples were allowed to air dry for 30-
45 minutes, before they were shipped to TruMe Labs.

DNA methylation and DNAm age calculation

From each sample, 1 inch diameter circles were
obtained, and DNA eluted with Quick-DNA Microprep
Plus Kit (ZymoResearch, CA, USA) according to the
manufacturer’s protocol. 200-500ng of eluted DNA was
bisulfite converted with the EZ DNA Methylation-
Lighting™ Kit according to the manufacturer’s
instructions  (ZymoResearch, CA, USA). PCR
amplification of bisulfite converted DNA was
performed using standard target specific primers (IDT,
Newark, NJ, USA). The PCR reaction was set up using
ZymoTaqg PreMix E2004 (ZymoResearch, CA, USA).

Each PCR fragment was analyzed using the standard
Sanger sequencing protocol and methylation levels were
analyzed using a proprietary algorithm, developed by
TruMe Inc. The TruMe age-prediction algorithm uses a

multivariate model to predict biological age of the
individual.

Statistical analysis

The data was analyzed, and the plots generated using
the R programming language. Continuous variables
were tested for normality using the Shapiro-Wilk test.
In cases, where we fail to reject the null hypothesis (p-
value not less than 0.05) the one-sided Welch two
sample paired t-test was used, otherwise the one-sided
Wilcoxon signed rank paired test with continuity
correction was deployed [32]. Figures 1-5 were done
using the ‘ggpubr’ R package. Figure 6 was created
using the ‘scatterplot3d’ R package [33].
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SUPPLEMENTARY MATERIALS

Supplementary Tables

Please browse Full Text version to see the data of Supplementary Table 2.

Supplementary Table 1. Characteristics of participants at baseline.

Female Male

n 14 28
Ethnicity (%)

Asian 1(7.2) 1(3.6)

Hispanic/Latino 1(7.2) 1(3.6)

White/Caucasian 12 (85.7) 23(82.1)

White/Caucasian, American Indian or Alaskan Native 0(0.0) 2(7.2)

White/Caucasian, Native Hawaiian or other Pacific islander 0(0.0) 1(3.6)
Chronological Age TO (mean (SD)) 62.57 (8.11) 61.16 (11.03)
Chronological Age T7* (mean (SD)) 63.12 (8.11) 61.76 (11.01)
Biological Age TO (mean (SD)) 61.09 (7.27) 61.38 (9.64)
Biological Age T7* (mean (SD)) 54.66 (8.17) 53.53 (8.62)
Weekly alcohol consumption in drinks (%)

0 5(35.7) 5(17.9)

1to4 2(14.3) 10 (35.7)

5to8 6 (42.9) 8(28.6)

9to 14 1(7.1) 5(17.9)
Current number of dietary supplements (%)

0 2(14.3) 4(14.3)

1to2 4 (28.6) 3(10.7)

3to4 5(35.7) 6(21.4)

5 3(21.4) 15 (53.6)
Self-rated general health (%)

Moderate 1(7.2) 1(3.6)

Good 7 (50.0) 9(321)

Very good 6 (42.9) 18 (64.3)
Sleep duration (%)

4-6 hours 1(7.2) 2(7.1)

7-8 hours 13 (92.9) 24 (85.7)

More than 8 hours 0(0.0) 2(7.1)
Smoking history (%)

Past smoker but quit 3(21.4) 3(10.7)

Never smoker
Weekly exercise frequency (%)

Rarely 1(7.2) 0(0.0)

1-2 times/week 0(0.0) 5(17.9)

3+ times/week 7 (50.0) 17 (60.7)

Daily 6 (42.9) 6(21.4)
BMI (mean (SD)) 21.84 (2.60) 25.70 (3.97)
Days of treatment (mean (SD)) 200.57 (35.78) 218.36 (41.57)
Education (%)

High school diploma (or GED) 1(7.1) 0(0.0)

Some college 3(21.4) 4(143)

4-year college degree 2(14.3) 10 (35.7)

Graduate-level degree 8 (57.1) 14 (50.0)
Average number of daily meals (%)

2 6 (42.9) 11 (39.3)
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3 7 (50.0) 14 (50.0)

4 or more 1(7.2) 3(10.7)
Number of daily snacks (%)

1 6 (42.9) 18 (64.3)

2 6 (42.9) 8 (128.6)

3 2 (14.3) 2(7.1)
Opinion about dietary supplements (%)

Skeptical 2(14.3) 3(10.7)

No opinion 2 (14.3) 0(0.0)

Interested 6 (42.9) 4(14.3)

Firm believer 4 (28.6) 21 (75.0)
Weekly frequency of dietary supplements (%)

Never 1(7.2) 0(0.0)

Rarely 0(0.0) 1(3.6)

Daily 13 (92.9) 27 (96.4)
Healthy living mindset (%)

Ready to get started 1(7.2) 1(3.6)

Practicing 10 (71.4) 15 (53.6)

Dedicated 3(21.4) 12 (42.9)
Activity level (%)

Sedentary 1(7.2) 2(7.0)

Mildly Active 2(14.3) 5(17.9)

Active 5 (35.7) 12 (42.9)

Very Active 6 (42.9) 9(32.1)

Athletic 0(0.0) 0(0.0)
Hair (%)

Bald 0(0.0) 4(14.3)

Thinning 5(35.7) 11 (39.3)

Thick and/or Full 9 (64.3) 13 (46.4)

*Indicates biologic age as measured by TruMe test after an average of seven months of treatment.

Supplementary Table 2. Regression models used (with coefficients).
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