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Understanding how the brain computes choice from sensory information is a central question in perceptual 
decision-making research. From a behavioral perspective, paradigms suitable to study perceptual decision-making 
condition choice on invariant properties of the stimuli, thus decoupling stimulus-specific information from 
decision-related variables. From a neural perspective, powerful tools for the dissection of brain circuits are needed, 
which suggests the mouse as a suitable animal model. However, whether and how mice can perform an invariant 
visual discrimination task has not yet been fully established. Here, we show that mice can solve a complex 
orientation discrimination task where the choices are decoupled from the orientation of individual stimuli. 
Moreover, we demonstrate a discrimination acuity of at least 6°, challenging the common belief that mice are 
poor visual discriminators. We reached these conclusions by introducing a novel probabilistic choice model that 
explained behavioral strategies in (n = 40) mice and identified unreported dimensions of variation associated with 
the circularity of the stimulus space. Furthermore, the model showed a dependence of history biases on task 
engagement, demonstrating behavioral sensitivity to the availability of cognitive resources. In conclusion, our 
results reveal that mice are capable of decoupling decision-relevant information from stimulus-specific 
information, thus demonstrating they are a useful animal model for studying neural representation of abstract 
learned categories in perceptual decision-making research.  

Introduction  

Most behaviorally relevant information in visual 
scenes is provided by the objects and relationships 
between them rather than the low-level visual 
features. Relative properties of objects, such as 
spatial arrangement (Krechevsky, 1938; Lashley, 
1938), shape and color similarity (Martinho and 
Kacelnik, 2016), relative contrast (Burgess et al., 
2017), and relative density or numerosity (Dakin et 
al., 2011), can condition behavior, which necessarily 
relies on the corresponding abstract, stimulus-
invariant neural representations.  

In perceptual decision-making research, tasks that 
enable neural-to-behavioral coupling need to fulfill 
specific requirements. First, they should rely on 
these relative or more abstract categories to 
separate the neural representation of the decision 

information from sensory representations, which are 
often encoded in the same neural populations 
(Akrami et al., 2018; Pho et al., 2018; Romo et al., 
1999; Steinmetz et al., 2019). Second, sensory stimuli 
should be sufficiently complex to engage cortical 
computations (DiCarlo and Cox, 2007), but with 
known neural encoding characteristics to permit 
targeted neural recordings (Hubel and Wiesel, 1962; 
Huberman and Niell, 2011). Finally, a rich set of 
experimental tools for the dissection of the 
underlying neural circuits should be available in the 
animal model of choice (Abbott et al., 2020; Luo et 
al., 2018; Madisen et al., 2015). 

Visual discrimination tasks in rodents do, in principle, 
fulfill all these requirements. However, previous 
studies have typically traded-off some of them. For 
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instance, simple visual stimuli (e.g., light bars, 
contrast gratings) are easy to parametrize and their 
neural encoding is well characterized, but to which 
extent they engage cortical computations is a matter 
of debate (Wang et al., 2018, 2020). Similarly, visual 
objects or natural images are probably more 
effective at driving cortical computations, but the 
stimulus parametrization is challenging, and their 
neural substrate and encoding characteristics are 
still largely unexplored (DiCarlo and Cox, 2007; 
DiCarlo et al., 2012; Riesenhuber and Poggio, 2000). 
A viable alternative could be to condition choice on 
a relative property of stimuli that are easy to 
parametrize, and that have a well-defined cortical 
representation.  

Here, we sought to establish if mice can learn to 
discriminate relative orientations, and if so, to 
identify their choice determinants. To this end, we 

developed a task, in which the animal indicates the 
more vertically oriented grating stimulus of two 
simultaneously presented. To quantify the behavior, 
we developed a novel probabilistic model of choice 
that captured choice variability and choice biases 
including the history-dependent ones. With the help 
of the model, we established how individual animals 
combine information about the two orientations, 
estimated their discrimination acuity, and 
demonstrated the dependency of history biases on 
the task engagement. We suggest that our task will 
allow the exploration of complex decision-making 
and visual-to-cognitive links in mice, particularly 
when studying the computation of decision in visual 
areas (DiCarlo and Cox, 2007), the link between 
neural and behavioral variability (Beck et al., 2012), 
and a role of heuristics and suboptimal choice 
strategies (Gardner, 2019). 

Results 

Relative orientation discrimination task 

Task details 
We trained transgenic mice (n = 40) in a two-
alternative forced-choice (2AFC) orientation 
discrimination task using an automated setup, in 
which the animal voluntarily fixed its head to initiate 
an experimental session (Fig. 1a, top), as previously 
described (Aoki et al., 2017). In this task, two 
oriented Gabor patches were simultaneously shown 
on the left and right sides of a screen; to obtain water, 
the animals had to identify the oriented patch that 
was more vertical (n = 28; more horizontal, n = 12) 
and move it to the center of the screen by rotating a 
wheel manipulator (Aoki et al., 2017; Burgess et al., 
2017). Crucially, because the target in most trials was 
not vertical, the animals had to compare the angular 
distance to the vertical (verticality) of the two 
orientations. The same physical stimulus could thus 
be a target or a nontarget in different trials, thereby 
making the task invariant relative to the orientation 
of individual stimuli (Fig. 1a, middle). The 
orientations of both stimuli (𝜃𝐿 , 𝜃𝑅) were sampled 
at random from angles between -90° and 90° with a 
minimal angular difference of 9° (3° for one animal), 
with positive angles corresponding to clockwise and 

negative to counterclockwise orientations relative to 
vertical (Fig. 1a, bottom). We used this 9° spacing for 
most animals to sample a high number of responses 
for every angle condition, which was important for 
subsequent imaging experiments (not shown in this 
study). We analyzed a total of 1,313,355 trials, 
ranging from 4591 to 82,065 per animal, with an 
average of 32,834 ± 2962 trials per animal (mean ± 
s.e.), in 256 ± 22.28 sessions of 128.02 ± 1.34 trials 
each (Supplementary Fig. 1, Supplementary Table 1).  

Mice reach a high success rate in a relative 
orientation discrimination task 
As an initial step in the analysis of choice behavior, 
we quantified performance as a function of task 
difficulty using a standard cumulative Gaussian 
psychometric function (Wichmann and Hill, 2001). 
We modelled the probability of choosing the right 
stimulus, P(R), as a function of the angular separation 
Δ𝜃 = |𝜃𝐿| − |𝜃𝑅|  between the two orientations, 
where |∙| denotes the verticality, with small angular 
separations corresponding to difficult conditions and 
large angular separations corresponding to easy 
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conditions. An angular separation Δ𝜃 = 0 
corresponds to two equally vertical orientations, 
which are not necessarily parallel. Conditions with 
Δ𝜃 < 0  and Δ𝜃 > 0  correspond to a more vertical 
orientation on the left and right side, respectively 
(example animal, Fig. 1b; population, Fig. 1c). The 
mice reached an average performance of 74.7 ± 0.7% 
correct, with an average sensitivity parameter of the 
psychometric curve 𝜎  = 42.93 ± 1.18°. Animals 
retained their performance level after introducing 
changes in spatial frequencies and stimulus sizes, 
suggesting their decision-making strategy did not 
rely upon these low-level statistical properties of the 
stimuli (average psychometric curves over the 3 
sessions before and after changing either of these 
parameters did not differ from each other, 
Supplementary Fig. 2). 

As this task disentangles any given probability of 
choice from specific orientations, a fixed difficulty Δ𝜃 
that corresponds to one point on the psychometric 
curve is given by many possible pairs of orientations 
(𝜃𝐿 , 𝜃𝑅) . For example, Δ𝜃  = 30° corresponds to 
orientation pairs (30°, 0°), (-60°, 30°), and many 
others (Fig. 1d). Conversely, no given orientation was 

always rewarded, since for any orientation (except 
0°), there was a possibility that the other orientation 
was more vertical. For equally vertical orientation 
pairs, a side chosen at random was rewarded. 
Consequently, this task design compels the animal to 
estimate the verticality of the left and right 
orientations, |𝜃𝐿|  and |𝜃𝑅| , and compare their 
estimates, rather than detect a learned orientation. 

Animals may not strictly adhere to this ideal strategy, 
so long as they obtain sufficient amount of water 
reward in each experimental session. This amount 
can be difficult to estimate precisely, since it varies 
significantly from animal to animal, and depends on 
age, gender, food intake, and genetic background. 
We estimated that, with the choice variability taken 
into account, an animal looking at only one of the 
two stimuli will perform at 63.1 ± 0.6% correct, 
exceeding the 50% chance level, but, on average, not 
being able to maintain its weight at the pre-training 
level, assumed to be a heathy reference baseline. In 
the following section, we introduce a model that 
quantifies how animals combine information from 
the two orientations while also capturing deviations 
from the ideal strategy. 

Probabilistic choice model 

Accounting for stimulus space and biases in the 
model 
The psychometric curve quantifies an animal’s 
behavior along a single dimension of difficulty, Δ𝜃. 
However, given the task structure, the complete 
representation of the stimulus space is two-
dimensional, with a unique stimulus condition 
corresponding to a pair of angles (𝜃𝐿 , 𝜃𝑅) . In this 
space, a fixed Δ𝜃 is given by all stimulus conditions 
along the iso-difficulty lines (branches) that lie in the 
four quadrants of the space and correspond to four 
different combinations of angle signs (Fig. 1d). We 
therefore considered the probability of choosing the 
right orientation, P(R), for all stimulus conditions in 
this space.  

To get a better insight into the factors that affect the 
animals’ choices, we developed a psychometric 
model that provided a functional mapping from the 
two-dimensional stimulus space to the probability of 

the right choice, P(R). We assume that in every trial, 
a mouse makes noisy estimates (𝜃𝐿

∗, 𝜃𝑅
∗)  of both 

orientations (𝜃𝐿 , 𝜃𝑅) , compares their verticalities 
( |𝜃𝐿

∗| , |𝜃𝑅
∗ | ), and makes a choice (Fig. 2a). The 

probability of a right choice P(R) in this procedure is 
expressed as an integral of the distribution of 
estimates 𝑝(𝜃𝑅

∗ , 𝜃𝐿
∗)  over the |𝜃𝑅

∗ | < |𝜃𝐿
∗|  subspace 

(Fig. 2b) (Methods: Eqs. 1-4). The shape of the P(R) 
surface over the stimulus space (𝜃𝐿 , 𝜃𝑅) (Fig. 2c, left) 
is therefore determined only by the parameters of 
the distribution 𝑝(𝜃𝑅

∗ , 𝜃𝐿
∗), which we represent as a 

product of animal’s likelihood function over percepts 
and its prior distribution.  

We model the likelihood 𝑝(𝑥, 𝑦)  as a product of 
circular von Mises functions 𝑝(𝑥|𝜃𝑅; 𝜅𝑅)  and 
𝑝(𝑦|𝜃𝐿; 𝜅𝐿)  centered at the values of 𝜃𝑅  and 𝜃𝐿 
equal to the true orientations and with variability for 
each target quantified by the concentration 
parameters 𝜅𝑅  and 𝜅𝐿 . High concentrations 
correspond to low variability in the percepts, and 𝜅 
is thus qualitatively inverse to the standard deviation 
and can be interpreted as the certainty (Drugowitsch 
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et al., 2016; Laquitaine and Gardner, 2018). For 
example, a distribution of percepts 𝑝(𝑥, 𝑦)  is 
broader and shallower along the axis of lower 
concentration (Fig. 2d, left column, top), making P(R) 
more independent of the respective stimulus (Fig. 2d, 
left column, middle).  

Percepts of each orientation can be systematically 
biased, with an animal consistently making choices 
as if the right or the left orientation were rotated 
more clockwise or counterclockwise. These 
systematic errors are accounted for by translational 
biases 𝑏𝑅  and 𝑏𝐿  (Fig. 2d, center column example: 
𝑏𝑅  > 0, 𝑏𝐿  = 0), which move 𝑝(𝑥, 𝑦)  and 
consequently the P(R) surface relative to the angle 
axes without changing their values.  

Both the translational biases and the certainty 
parameters change the slope of the psychometric 
curve but not its left-right choice bias (Fig. 2d, 
bottom row), with the effects generally 
indistinguishable in the Δ𝜃 space as opposed to the 
complete stimulus space. A lower or higher certainty 
results in a shallower or steeper P(R) respectively, 
and a shallower or a steeper psychometric curve. On 
the other hand, a translational bias displaces the 
entire P(R) surface, overall decreasing performance 
for every Δ𝜃 in the space of the psychometric curve.  

To model a choice bias towards the right or left, we 
introduced a family of prior distribution functions or 
choice priors 𝑝𝑏(𝑥, 𝑦; 𝜅𝑏)  parameterized by prior 
concentrations 𝜅𝑏  (Fig. 2e). These choice priors 
cause an orientation on the right or on the left to 
effectively appear more vertical—as opposed to 
more clockwise or counterclockwise—or 
equivalently make an animal more certain about the 
verticality of that stimulus, or can be associated with 
procedural factors that similarly bias choices (Fig. 2d, 
right column) (Methods, Eq.2). For example, the 
choice prior for a rightward bias has a peak at (90°, 

0°) (Fig. 2e, right, 𝜅𝑏 > 0 ) and increases the 
probability of a right choice for any pair of 
orientations (Fig. 2d, right column) by biasing 
𝑝(𝜃𝑅

∗ , 𝜃𝐿
∗)  to the |𝜃𝑅

∗ | < |𝜃𝐿
∗|  region (Fig. 2d, right 

column, green arrows).  

Concentrations, translational biases, and a prior 
concentration {𝜅𝑅 , 𝜅𝐿 , 𝑏𝑅 , 𝑏𝐿 , 𝜅𝑏}  thus determine 
our model of choice, which allows a more complete 
analysis of P(R) than the psychometric curve. The 
model predicts a previously unexplored property of 
P(R): its variation along the branches of a fixed Δ𝜃. A 
model with zero biases and an equal certainty for 
both orientations (𝜅𝑅 = 𝜅𝐿) predicts a decrease in 
P(R) whenever either orientation is close to 0° or 90°, 
and an increase when close to 45° (Fig. 2b-c). We 
parameterized this variation using the reference 
orientation 𝜃𝑟𝑒𝑓 = min⁡(|𝜃𝐿|, |𝜃𝑅|) , i.e., the 

orientation of the more vertical stimulus. The source 
of this variation is clear from the position of 
𝑝(𝜃𝑅

∗ , 𝜃𝐿
∗) relative to the category boundary |𝜃𝑅

∗ | =
|𝜃𝐿

∗| when considered along one branch of a fixed Δ𝜃 
(Fig. 2b): the probability mass of orientation 
estimates that result in error judgments (e.g., |𝜃𝑅

∗ | >
|𝜃𝐿

∗|  when |𝜃𝑅| < |𝜃𝐿| ) is higher around 𝜃𝑟𝑒𝑓  = 0° 

and 𝜃𝑟𝑒𝑓  = 90° than around 𝜃𝑟𝑒𝑓  = 45°. This effect 

arises from the variability in both orientation 
estimates and their interaction with the category 
boundary in the circular space and cannot be 
replicated by the psychometric curve whose only 
input variable is Δ𝜃. 

In summary, by combining information from two 
orientations, our model predicts a dependency of 
probability of choice not only on difficulty but also on 
reference orientation. This latter variability 
necessarily follows from the circularity in the input 
stimulus space given a limited certainty in 
orientation estimates. 

The model captures the animals’ choices 
We next analyzed the choices of the mice in the two-
dimensional stimulus space. For the population of 
animals, P(R) varied with difficulty Δ𝜃, as expected 
from the psychometric curves (Fig. 1b-c), and with 
the reference 𝜃𝑟𝑒𝑓  (Fig. 2f), as predicted by our 

model (Fig. 2b-c). For a fixed Δ𝜃 > 0, P(R) was higher 

(and choices were more often correct) when the 
orientations were far from horizontal or vertical (Fig. 
2f), while for Δ𝜃 < 0  P(R) was smaller (and the 
choices were also more often correct) when the 
orientations were far from horizontal or vertical.  

The model reproduced this performance variation 
for individual animals (Fig. 2g). However, due to 
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individual biases, the P(R) curves for fixed Δ𝜃 were 
more distorted than in the unbiased case (cf. Fig. 2c, 
right). Counterintuitively, P(R) for the same Δ𝜃  in 
different quadrants of the stimulus space could 
represent on average opposite choices (Fig. 2g, 
center, right), which our model accounted for thanks 
to translational biases. The model successfully 
captured animal-specific differences in choice 
probabilities (Supplementary Fig. 3), explained the 
data significantly better than the psychometric curve 
(ΔAIC = 798.8 ± 141.9; ΔAIC > 0 for all animals), and 
explained significantly more deviance (Runyan et al., 
2017) (ΔFDE = 9.03 ± 1.48%, p = 1.07 · 10-6, signed-
rank test).  

Across the population of animals, the average 
stimulus concentration values were high and positive 
(𝜅𝑅  = 2.22 ± 0.69, p = 3.73 · 10-7; 𝜅𝐿 = 1.76 ± 0.52, p = 
1.34 · 10-7, t-tests) (Fig. 2h, left) showing that the 
animals used both targets for the decision. The bias 
concentration 𝜅𝑏  was small (𝜅𝑏  = -0.06 ± 0.05, p = 
0.01), indicating a mixed bias across the population. 
The translational biases (𝑏𝑅 = 0.14 ± 0.05, p = 3.71 · 
10-6; 𝑏𝐿 = 0.19 ± 0.05, p = 1.21 · 10-7) were similarly 
small but significant. 

Although the stimulus protocol, reward sizes, and 
session schedules were designed to motivate 
animals to use information about both orientations 
equally, we found that the strategies of individual 
animals ranged from a balanced orientation 
comparison to a reliance on one target more than 
the other. We quantified this range of strategies with 
the ratio of the log of the concentrations 𝜅𝑅  and 𝜅𝐿, 
with ratios closer to 1 representing more balanced 
strategies (Fig. 2h, center). The right and left 
concentrations were significantly anti-correlated (ρ = 
-0.57, p = 4.45 · 10-4; t-test, criterion α = 5 · 10-3 
corrected for multiple comparisons), reflecting a 
trade-off in animals that preferentially used 
information from one of the stimuli (Fig. 2h, right). 
Despite this trade-off, the best-performing animals 
also had higher concentrations overall (p < 0.05; 
ANCOVA, F-test of intercept with fixed slope), 
showing that while the task permitted relative 
flexibility in choice strategies, a more accurate 
estimation of the orientations was necessary to 
achieve a high success rate. Other parameters of the 

model did not significantly correlate with each other 
or with the concentration ratios.  

In summary, our model accounted for biases in the 
animals’ behavior and explained the performance 
variation with 𝜃𝑟𝑒𝑓 . Individual animals weighted 

sensory information from the two orientations 
differently, following strategies that were sufficient 
to obtain needed amounts of reward, but were not 
perfectly aligned with the true stimulus-reward 
space. While left and right concentrations were anti-
correlated across the population, high success rates 
required overall high certainty in the orientation 
estimates. 

Discrimination acuity 
We next used our model to estimate the minimal 
orientation difference the animals could reliably 
discriminate. A change in a pair of orientations that 
results in a significant change in P(R) is the smallest 
for conditions with the largest gradient of P(R). Since 
the numerical gradient directly computed from the 
data can be too noisy, we used our model to more 
accurately find the maximum gradient conditions. 
After identifying these conditions, we used 
experimentally obtained trial outcomes to test the 
significance of P(R) change. 

Following this procedure, we compared probability 
of a right choice in stimulus conditions with the 
highest gradient and in neighboring conditions (Fig. 
3). We found that a change in either left or right 
orientation by 9° resulted in a significant change in 
P(R) for 62.5% (n = 25) of animals, and that a change 
by 27° resulted in a significant change for all (n = 40) 
animals (Fig. 3a-e). For the only animal tested with a 
3° sampling of stimuli, we found that changing both 
orientations by 3° along or against the gradient—
amounting to a total change of 6°—resulted in a 
significantly different P(R) (p < 0.0005, both cases) 
(Fig. 3f-i).  

In summary, our model allowed an in-depth analysis 
of discrimination acuity by utilizing a complete 
picture of the P(R) gradient and identifying stimulus 
conditions where the sensitivity to angle change was 
the highest. We found that an angle change of 6° can 
be significantly detected based on the change of 
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probability of choice, thus establishing a lower 
bound for mouse orientation discrimination acuity.  

Effects of trial history 
Choice strategies are determined not only by 
preferential weighting of available sensory 
information but also by trial history (Abrahamyan et 
al., 2016; Akrami et al., 2018; Busse et al., 2011; 
Corrado et al., 2005; Fründ et al., 2014; Urai et al., 
2017; Yu and Cohen, 2008). To account for history-
related biases, we included a history prior 𝑝ℎ(𝑥, 𝑦) 
parameterized with a concentration parameter 𝜅ℎ 
and a term ℎ that linearly depended on the choice 𝑟 
and target orientation 𝑠 in the previous trial through 
history weights (Busse et al., 2011; Corrado et al., 
2005; Fründ et al., 2014), ℎ = 𝑠ℎ𝑠 + 𝑟ℎ𝑟 . A pair of 
weights (ℎ𝑠 , ℎ𝑟) determined the choice strategy of 
an animal, such as “win-stay” (Fig. 4a, model 
example) or “lose-stay” (Fig. 4b, example animal) 
throughout all trials, and in combination with the 
choice and target of the previous trial (𝑟, 𝑠) resulted 
in the history-dependent change of the P(R) 
(Supplementary Fig. 4a-e) and the psychometric 
curve (Fründ et al., 2014) (Fig. 4a,b).  

Through the flexible family of history priors, our 
model captured a variety of strategies in addition to 
win-stay (Supplementary Fig. 4f). Most of our mice 
showed a mild tendency for the “stay” strategy, 
followed by the “win-stay”, and, rarely, the “lose-
stay” strategy (Fig. 4c), largely in consistency with 
the previous report (Odoemene et al., 2018). The 
history-dependent model explained the data 
significantly better than the history-independent 
model (ΔAIC = 211.8 ± 40.1; ΔAIC > 0 for all but n = 4 
animals), and explained significantly more deviance 
(ΔFDE = 5.07 ± 0.98 %, p = 8.1 · 10-6, signed-rank test).  

We investigated whether the animals relied on 
history to a different extent during periods of 

relatively high and low engagement in the task, 
which we identified based on performance within a 
session. Performance fluctuations correlated with 
changes in biomarkers typically associated with task 
engagement and overall attentiveness to the task 
(McGinley et al., 2015; Reimer et al., 2016) (shown 
using the same behavioral protocol in Abdolrahmani 
et al., 2021) (Abdolrahmani et al., 2021). For each of 
the two engagement levels, we computed the 
difference between the trial-average log-likelihood 
of choices given a model with a history prior and 
without: Δ𝐿𝑙  for low-engagement trials, and Δ𝐿ℎ for 
high-engagement trials. The increase in explanatory 
power was larger for the low-engagement trials 
(Δ𝐿𝑙 > Δ𝐿ℎ) (Wilcoxon test, p=2.12 · 10-7) (Fig. 4d), 
which indicated that during the low engagement 
trials, the choices were more strongly driven by the 
history biases. 

Difficult stimulus conditions were more susceptible 
to the influence of history priors than easy conditions 
(Fig. 4e, left), in a way that depended on the 
engagement state of the animal. During periods of 
high engagement, the inclusion of history priors led 
to a substantial improvement in the model 
performance only for the most difficult conditions 
(Fig. 4e, center), while in the low-engagement 
periods, most stimulus conditions were affected (Fig. 
4e, right). 

In summary, after expanding our model to capture 
history-dependent biases, we found that the most 
prominent strategies were “win-stay” and “stay”, 
and that choices were affected by history biases to a 
greater extent during periods of lower engagement. 
Our observations demonstrate that choice heuristics 
can fluctuate together with the cognitive state of the 
subject. 

Discussion

Using high-throughput automated cages with 
voluntary head fixation, we trained a large cohort of 
mice (n = 40; 1,313,355 trials) in a complex variant of 
a 2AFC orientation discrimination task. The task 
required the mice to measure the relative 
orientations of two stimuli, thereby decoupling 

choice from the particular orientation of an 
individual stimulus. We quantified their behavior 
with a novel model of choice that accounted for the 
circularity of the stimulus space and for individual 
choice biases and strategies. The model explained 
variation in the probability of choice not only with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2021. ; https://doi.org/10.1101/2020.12.20.423700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.20.423700
http://creativecommons.org/licenses/by-nc-nd/4.0/


the task difficulty Δ𝜃 , but also with the reference 
orientation 𝜃𝑟𝑒𝑓 , an effect not reported previously. 

With the help of the model we found that the 
maximum acuity of orientation discrimination in 
expert animals can be as small as 6°. Our model could 
be easily extended to examine history biases, 
ubiquitous in human and animal psychophysical 
experiments (Abrahamyan et al., 2016; Akrami et al., 
2018; Busse et al., 2011; Corrado et al., 2005; Fründ 
et al., 2014; Urai et al., 2017; Yu and Cohen, 2008), 
revealing a modulation of history components by the 
animals’ engagement, affecting choices more 
strongly and over a broader set of stimulus 

conditions whenever the engagement was relatively 
low. Our work responds to the need for a visual task 
that depends on abstract choice categories and is 
invariant to specific visual stimuli, but can be learned 
by mice, relies on basic visual features, and allows 
straightforward quantification within the 
probabilistic modelling framework. We argue that in 
addition to these advantages, our task can be useful 
in engaging higher visual areas in the computation of 
decision (DiCarlo and Cox, 2007), and can provide 
valuable insight into the relationship between neural 
and behavioral variability (Beck et al., 2012; Britten 
et al., 1996; Brunton et al., 2013; Drugowitsch et al., 
2016; Renart and Machens, 2014). 

Behavioral assays for studies of perceptual 

invariances and their quantifications 

Our task will be particularly advantageous for the 
study of the neural mechanisms underlying 
perceptual invariances. With the availability of 
unique experimental toolboxes, the mouse is 
currently the animal model of choice for the 
dissection of neural circuits (Abbott et al., 2020; Luo 
et al., 2018; Madisen et al., 2015). However, 
although visual behaviors elicited by low-level visual 
features have been well characterized (Huberman 
and Niell, 2011; Zoccolan et al., 2015), intermediate 
(e.g. textures) and high-level vision (e.g. objects) are 
largely unexplored in this species. Therefore, mouse 
studies that utilize complex visual stimuli are 
challenged by (1) the well-known difficulty of 
parameterizing complex objects (DiCarlo and Cox, 
2007; DiCarlo et al., 2012; Riesenhuber and Poggio, 
2000), (2) the unknown neural substrate that 
encodes these parameters, (3) the uncertainty about 
whether mice can learn the task in a reasonable 
time—if at all—and (4) the difficulty in inferring 
behavioral strategies given the parametric 
complexity of the stimulus space (Alemi-Neissi et al., 
2013; Vermaercke and Op de Beeck, 2012). Our task 
represents a convenient solution: it builds upon 
existing orientation discrimination tasks in mice 
(Andermann et al., 2010; Goard et al., 2016; Long et 
al., 2015; Reuter, 1987; You and Mysore, 2020), in 
which a specific orientation is to be chosen over a 
distractor orientation (Andermann et al., 2010; Long 

et al., 2015; Pinto et al., 2013; Poort et al., 2015; 
Resulaj et al., 2018; Reuter, 1987; You and Mysore, 
2020), or in which a change relative to a specific 
orientation is to be detected (Glickfeld et al., 2013; 
Jin et al., 2019; Wang et al., 2018, 2020). However, it 
complexifies the discrimination by introducing well-
controlled invariances (to specific orientations, 
spatial frequency, and stimulus size), exploring 
stimulus dimensions that are easy to parameterize 
and that have a clear neural representation, and can 
be learned by mice in a reasonable time.  

Our model helped estimate orientation 
discrimination acuity, which reached a 6° angle 
difference for one mouse tested with the smallest 
angular separation of 3°. Constrained by limitations 
related to a different study, we did not attempt to 
train animals at smaller angular differences, so it is 
possible mice can discriminate orientation 
differences even smaller than 6°.  The orientation 
discrimination acuity of mice has been previously 
measured in a 2AFC tasks with a distractor (Reuter, 
1987), and change detection tasks (Glickfeld et al., 
2013; Jin et al., 2019; Wang et al., 2018, 2020). Acuity 
measures have been reported as thresholds or just-
noticeable differences (JNDs) and commonly rely on 
model-derived values, such as the model-based 
inverse of a certain success rate (Glickfeld et al., 
2013; Jin et al., 2019), the mean of the fitted 

Gaussian (Wang et al., 2018, 2020), or √2 times its 
standard deviation (Wang et al., 2018, 2020). We 
developed a new acuity estimation procedure 
suitable for our stimulus space, in which we 
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identified stimulus conditions with the highest 
gradient of model-predicted P(R) and compared the 
performance in these and neighboring conditions. 
Our approach took advantage of the complete 

stimulus space representation of P(R) instead of 
relying on a cruder psychometric model to compute 
a JND or a threshold value.  

Task- and behavior-related factors 

influencing choice 

By parameterizing biases, history effects, and 
orientation certainties, our model showed that 
animals largely followed the intended choice 
strategy, but also exhibited variation that could be 
interpreted as animal-specific choice heuristics. One 
such heuristic was evident in the trade-off of 
concentration values, with some animals unequally 
weighting stimulus information. Accuracy of 
orientation estimation was still necessary for high 
success rates, but even among the best-performing 
animals right and left concentrations were anti-
correlated. This trade-off demonstrated that animals 
followed a range of “sufficiently good” strategies 
when solving the discrimination problem.  

Such strategies can be interpreted as examples of 
suboptimal or approximate inference in an uncertain 
environment. Suboptimal inference is sometimes 
thought of as an adaptive phenomenon, a way for a 
subject to deal with the complexity of the task at 
hand by constructing and acting upon its 
approximate model (Beck et al., 2012). Adherence to 
a suboptimal strategy can be linked to limited 
cognitive resources (Whiteley and Sahani, 2012; 
Wyart and Koechlin, 2016), which in our task 
fluctuate together with task engagement. Indeed, 
we find that history-dependent biases—another 
manifestation of suboptimal behavior—are stronger 
during periods of lower engagement. We 
demonstrate this by introducing history priors—in a 
form that allows their analytical inclusion into our 
model—that increase the explanatory power of the 
model more in periods of lower engagement than in 
periods of higher engagement. These fluctuations of 
the history biases are driven by the internal state of 
the animal, are independent of the stimulus protocol, 
and thus will occur in addition to difficulty- or 
confidence-dependent fluctuations, as recently 
described (Lak et al., 2020). During periods of 
decreased performance, higher explanatory power 

of history terms is not guaranteed, but it is consistent 
with switching between history-driven and stimulus-
driven choice modes (Ashwood et al., 2020). 

Limitations of our approach 

Although we believe that our work substantially 
advances the understanding of mouse behavior 
during complex orientation discrimination, our 
approach has limitations at the level of model 
design and strategy interpretation. First, our model 
assumes fixed psychometric parameters across 
sessions and trials, and thus a more flexible, 
dynamically parameterized model could give a 
better insight into biases and choice strategies of 
mice. Second, the goodness of fit of the model with 
respect to the variation of P(R) with 𝜃𝑟𝑒𝑓  could be 

further improved: in some animals this variation is 
larger than the model prediction (Supplementary 
Fig. 5, example animal), which could be explained 
by a dependency of 𝜅𝑅  and 𝜅𝐿 on the proximity to 
the category boundary (|𝜃𝑅

∗ | = |𝜃𝐿
∗|) (Jazayeri and 

Movshon, 2007). Finally, direct interpretation of 
concentration values might not be directly relatable 
to perceptual sensitivity, since they were likely 
decreased by nonsensory factors, such as noise in 
the decision computation (Beck et al., 2012; Dosher 
and Lu, 1998; Drugowitsch et al., 2016), inherent 
priors (Girshick et al., 2011), and choice heuristics 
(Beck et al., 2012; Gardner, 2019).   

Future directions and potential implications 

Since our task relies on perceptual invariances and 
decouples the decision information from specific 
sensory stimuli, it can be useful for exploring the 
neural basis of decision-making in the future studies.  
A similar task design relying on combinations of 
stimuli has been used extensively in the decision-
making literature (Constantinople et al., 2019; 
Hernández et al., 1997; Jogan and Stocker, 2014; 
Pinto et al., 2018; Scott et al., 2015; Steinmetz et al., 
2019), but has not been reported in mouse 
orientation discrimination experiments.  
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Furthermore, our task can give a valuable insight into 
the relationship between neural and behavioral 
variability. Whether behavioral variability arises 
predominantly from sensory sources (Brunton et al., 
2013), or from the deterministic or stochastic 
suboptimality of decision computation (Beck et al., 
2012) is one of the central questions in the 
neuroscience of decision-making. The complexity of 
our orientation discrimination task will increase the 
role of suboptimal decision computation, as has 
been predicted theoretically (Beck et al., 2012; 
Gardner, 2019; Whiteley and Sahani, 2012), and will 
provide an opportunity to study the correlates of this 
suboptimality in the neural responses.   

Finally, our task is well suited for isolating the 
contributions of visual cortical areas in the 

computation of decision. The importance of a 
particular visual area for decision-making depends 
on the type of task (Pinto et al., 2019): mice with a 
lesioned or silenced visual cortex have shown above-
chance performance in detection paradigms 
(Glickfeld et al., 2013; Prusky and Douglas, 2004), 
possibly reflecting a predominant role of the 
superior colliculus (Wang et al., 2020), while for 
orientation discrimination tasks with a distractor, the 
visual cortex is necessary (Jurjut et al., 2017; Poort et 
al., 2015; Resulaj et al., 2018). Our incrementally 
more complex version of the orientation 
discrimination task could provide further insight into 
the role of V1 and downstream visual areas in the 
computation of decision (DiCarlo and Cox, 2007), and 
thus could be a useful addition to the common 
behavioral protocols for mice.   
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Methods 

Experimental Model and Subject Details 

All surgical and experimental procedures were 
approved by the Support Unit for Animal Resources 
Development of RIKEN CBS. We used n = 40 
transgenic mice: Thy1-GCaMP6f (n = 37), Camk2-tTA 
TRE-GCaMP6s (n = 2), Emx1-tTA TRE-GCaMP6s (n = 
1), with a total of 30 male and 10 female animals, 
aged 4 to 25 months. The triple transgenic strain 
Camk2-tTA TRE-GCaMP6s was established by cross-
mating Camk2a-cre and Camk2a-tTA. The triple 
transgenic strain Emx1-tTA TRE-GCaMP6s was 
established by cross-mating Emx1-cre and Camk2a-
tTA.  

Animals were anesthetized with gas anesthesia 
(Isoflurane 1.5-2.5%; Pfizer) and injected with an 
antibiotic (Baytril®, 0.5 ml, 2%; Bayer Yakuhin), a 
steroidal anti-inflammatory drug (Dexamethasone; 
Kyoritsu Seiyaku), an anti-edema agent (Glyceol®, 
100 μl, Chugai Pharmaceutical) to reduce swelling of 
the brain, and a painkiller (Lepetan®, Otsuka 
Pharmaceutical). The scalp and periosteum were 
retracted, exposing the skull, then a 4 mm-diameter 
trephination was made with a micro drill (Meisinger 
LLC). A 4 mm coverslip (120~170 μm thickness) was 
positioned in the center of the craniotomy in direct 
contact with the brain, topped by a 6 mm diameter 
coverslip with the same thickness. When needed, 
Gelfoam® (Pfizer) was applied around the 4 mm 
coverslip to stop any bleeding. The 6 mm coverslip 
was fixed to the bone with cyanoacrylic glue (Aron 
Alpha®, Toagosei). A round metal chamber (6.1 mm 
diameter) combined with a head-post was centered 
on the craniotomy and cemented to the bone with 
dental adhesive (Super-Bond C&B®, Sun Medical), 
mixed to a black dye for improved light absorbance 
during imaging.  

After the implantation of the head-post and recovery 
from the surgery, for 2 weeks mice were placed in 
habituation cages with enriched environment, where 
they learned to obtain water from an apparatus 
similar to the automatically latching part of the 
behavioural setup. Next, mice were placed under a 
water restriction plan for 2 weeks, obtaining 3 ml of 

water a day during the first week, and 2 ml during the 
second, with a target of maintaining their body 
weight at 75-80% of the initial weight. If at this or any 
later point their weight dropped below the target 
level, mice were given additional water 
proportionate to the weight to be restored. After 2 
weeks animals were moved to the training cages.  

Behavioral training 

During training, animals were housed in individual 
cages connected to automated setups (Aoki et al., 
2017) (O’Hara & CO., LTD., http://ohara-time.co.jp/) 
where two experimental sessions per animal per day 
were carried out. Sessions were initiated by animals 
themselves as they entered the setup and their head 
plate was automatically latched. Animals were 
trained in a 2AFC orientation discrimination task. 
Two oriented Gabor patches (20° visual angle static 
sinusoidal gratings, sf = 0.08 cpd, with randomized 
spatial phase, and windowed by a 2D Gaussian 
envelope with 4𝜎 equal to stimulus diameter) were 
shown on the left and right side of a screen 
positioned in front of the animal (LCD monitor, 25 cm 
distance from the animal, 33.6 cm × 59.8 cm 
[~58° × 100°dva], 1080 x 1920 pixels, PROLITE 
B2776HDS-B1, IIYAMA) at ±35° eccentricity relative 
to the body’s midline. Mice reported which of the 
two stimuli was more vertical (more horizontal for n 
= 12 animals; task details in “Phases of training”) by 
rotating a rubber wheel with their front paws, which 
shifted the stimuli horizontally on the screen. For a 
response to be correct, the target stimulus had to be 
shifted to the center of the screen, upon which the 
animal was rewarded with 4 µL of water (amount 
adjusted for a few animals with non-typical weight 
and age). Incorrect responses were discouraged with 
a prolonged (10 s) inter-trial interval and a flickering 
checkerboard stimulus (2 Hz). If no response was 
made within 10 s (time-out trials), neither reward 
nor discouragement was given.  

All trials consisted of an open-loop period (OL, 1.5 s) 
during which the wheel manipulator did not move 
the stimuli on the screen, and a closed-loop period 
(CL: 0—10 s) during which the wheel controlled their 
position. Inter-trial interval was randomized (ITI: 3—
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5 s). Stimuli appeared on the screen at the beginning 
of the OL.  

Phases of training 

Training in the automated behavioral setup went 
through three phases. First, the animal learned to 
rotate the wheel manipulator and was rewarded for 
consistent rotations to either side. During this phase 
no visual stimulus was presented. In the next phase, 
the animal was shown one vertical target (horizontal, 
n = 12), on one side of the screen chosen at random, 
and was rewarded for moving it into the center of the 
screen. In the final phase, the animal was shown two 
orientations, and had to move the more vertical 
(horizontal) one into the center of the screen. Since 
both stimuli moved synchronously with wheel 
rotation, the non-target stimulus moved out of the 
screen. In this phase, we sampled both orientations 
at random from a range of angles between -90° and 
90°, with 𝜃 > 0 corresponding to clockwise and 𝜃 <
0 – to counter-clockwise orientations relative to the 
vertical (Fig. 1a). Orientations were initially sampled 
with a minimal angular difference of 30°, i.e. with 
specific angles from the set {-90°,-60°,-

30°,0°,30°,60°} (-90° and 90° are the same 
orientation). As the animal’s performance reached 
70% success rate on 5-10 consecutive days, we 
increased the difficulty by sampling angles at 15° 
angle difference, and later in the training – at 9°, with 
one animal’s conditions eventually sampled at 3°. 

Data selection 

We analyzed trials from sessions in which the 
average success rate was at least 60%, and the 
proportion of time-out trials did not exceed 20%. We 
only used animals that had reached the minimal 
angular difference of 9°, and included the choice 
data from preceding sessions with minimal 
differences starting from 30°. We excluded the first 
trial of every session, all time-out trials and every 
trial that followed a time-out. The two dimensions of 
the stimulus space were flipped for horizontal-
reporting animals when fitting our model. Same 
stimulus space transformation was done for all the 
population summaries where mice trained on 
horizontal targets were pooled together with mice 
trained on vertical targets.    

Psychometric curve 

We fitted the animal’s probability of making a right 
choice P(R) as a function of task difficulty using a 
psychometric function 𝜓(Δ𝜃; ⁡𝛼, 𝛽, 𝛾, 𝜆) = ⁡𝛾 +
(1 − 𝛾 − 𝜆)⁡𝐹(Δ𝜃; 𝛼, 𝛽),  where 𝐹(𝑥)  is a Gaussian 
cumulative probability function, α  and β  are the 
mean and standard deviation, γ and λ are left and 
right (L/R) lapse rates, Δ𝜃  is the difference in the 
angular distance to the vertical, Δ𝜃 = |𝜃𝐿| − |𝜃𝑅| . 
Confidence intervals were computed by 
bootstrapping (n = 999). 

Model design 

On each trial 𝑖 the animal was shown a pair of stimuli 
{𝜃𝑅𝑖 , 𝜃𝐿𝑖}, and made a right or a left choice 𝑟𝑖, which 
we set by convention to be 𝑟𝑖 = 1  or 𝑟𝑖 = 0 
respectively. We denote response and correct target 
on the previous trial as 𝑟ℎ𝑖 and 𝑠ℎ𝑖 respectively, with 
𝑟ℎ𝑖 = −1 or 𝑟ℎ𝑖 = 1 if the animal chose left or right 
respectively, and 𝑠ℎ𝑖 = −1 or 𝑠ℎ𝑖 = 1 if the correct 

answer was respectively left or right, and 𝑠ℎ𝑖 = 0 if 
targets had an equal verticality.  

A choice in trial i was based on animal’s estimates 
{𝜃𝑅𝑖

∗ , 𝜃𝐿𝑖
∗ }  of the presented stimulus orientations 

{𝜃𝑅𝑖 , 𝜃𝐿𝑖} . We model 𝜃𝑅𝑖
∗  and 𝜃𝐿𝑖

∗  as random 
variables distributed according to a posterior 
distribution 𝑝(𝜃𝑅

∗ , 𝜃𝐿
∗)  obtained after combining an 

animal’s likelihood distribution over percepts 𝑝(𝑥, 𝑦) 
with prior terms 𝑝𝑏(𝑥, 𝑦)  and 𝑝ℎ(𝑥, 𝑦)  that model 
choice bias and history-dependent bias respectively. 
We reserve the ( 𝑥, 𝑦 ) notation for the random 
variables modelling percepts and biases, and (𝜃𝑅

∗ , 𝜃𝐿
∗) 

to refer specifically to the posterior over animal’s 
estimates, to which the decision rule is applied. We 
model the likelihood as a product of von Mises 
distributions 𝑝(𝑥) and 𝑝(𝑦) centered at 𝜃𝑅𝑖  and 𝜃𝐿𝑖  
respectively, with additional angle estimation biases 
(translational biases) 𝑏𝑅 , 𝑏𝐿 and with concentrations 
𝜅𝑅 , 𝜅𝐿  (high concentration means smaller spread, 
with 𝜅  analogous to 1/𝜎  of a normal distribution; 
only 𝜅 ≥ 0 were allowed) (Fig. 2b,d):  
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𝑝(𝑥) = C(𝜅𝑅)𝑒

𝜅𝑅cos⁡(𝑥−𝑏𝑅−𝜃𝑅𝑖) 

𝑝(𝑦) = C(𝜅𝐿)𝑒
𝜅𝐿cos⁡(𝑦−𝑏𝐿−𝜃𝐿𝑖) 

(1) 

where C(𝜅) = 1/2𝜋𝐼0(𝜅), and 𝐼0 is modified Bessel 
function of order 0. A bias prior 𝑝𝑏(𝑥, 𝑦) that induces 
choice bias for right or left stimuli, and a history prior 
𝑝ℎ(𝑥, 𝑦) that models choice dependency on previous 
choice and stimulus (𝑟ℎ𝑖 and 𝑠ℎ𝑖), are modeled as: 

 𝑝𝑏(𝑥, 𝑦) = 𝐶𝑏
2(𝜅𝑏)𝑒

𝜅𝑏(cos(𝑥)−cos(𝑦)) (2) 

 𝑝ℎ(𝑥, 𝑦) = 𝐶ℎ
2(𝜅ℎ)𝑒

ℎ𝑖𝜅ℎ(cos(𝑥)−cos(𝑦)) (3) 

Here, 𝜅𝑏  is a concentration parameter that regulates 
the strength and sign of choice bias, 𝜅ℎ  is a 
concentration parameter of history prior, ℎ𝑖 =
ℎ𝑠𝑠ℎ𝑖 + ℎ𝑟𝑟ℎ𝑖  determines the influence of the 
previous stimulus 𝑠ℎ𝑖 and choice 𝑟ℎ𝑖 with respective 
weights ℎ𝑠 and ℎ𝑟 fixed for a given animal, and 𝐶ℎ =
1/2𝜋𝐼0(𝜅ℎℎ𝑖)  and 𝐶𝑏 = 1/2𝜋𝐼0(𝜅𝑏)  are 
normalization constants. 

Since by convention we set vertical orientation to 
zero, the angle with the smaller absolute value is the 
correct choice. Hence, the probability of choosing 
right on a given trial is given by: 

 𝑃(𝑅)𝑖 = 𝑝(𝑟𝑖 = 1) = 

𝑝(|𝜃𝑅𝑖
∗ | < |𝜃𝐿𝑖

∗ |) = 

∬ 𝑝(𝑥, 𝑦)𝑝𝑏(𝑥, 𝑦)𝑝ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦
⁡

|𝑥|<|𝑦|

∬𝑝(𝑥, 𝑦)𝑝𝑏(𝑥, 𝑦)𝑝ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦
 

(4) 

Overall, the model has eight fitted parameters 
( ℎ𝑟, ℎ𝑠 , 𝜅𝑅 , 𝜅𝐿 , 𝜅ℎ , 𝑏𝑅 , 𝑏𝐿 , 𝜅𝑏 ), or five parameters 
(𝜅𝑅 , 𝜅𝐿 , 𝑏𝑅 , 𝑏𝐿 , 𝜅𝑏) when we fit a history-free model. 
All angles were converted from (-90°, 90°) range to (-
180°, 180°) to satisfy periodicity. 

Our model design follows similar models of 
perceptual inference(Girshick et al., 2011; Laquitaine 
and Gardner, 2018; Stocker and Simoncelli, 2006) 
with two distinctions. First, since our animals never 
report point estimates of the observed 
orientations—usually modeled as maximum a 
posteriori (MAP)—estimates only enter our model as 
not directly observed random variables. Second, 
since all orientations in our study are presented at 
100% contrast, without added noise or any other 
form of stochasticity, and are displayed for the full 
duration of the trial (11.5 s or less if the choice is 
made earlier), we assume that the sensory evidence 
given by a specific orientation is the same on all trials.  

Optimization 

To fit the model, we minimize the log-likelihood cost 
function  

 𝐿 = − ∑ 𝑟𝑖
𝑖=1…𝑁

log 𝑃(𝑅)𝑖 + 

(1 − 𝑟𝑖)log⁡(1 − 𝑃(𝑅)𝑖) 

(5) 

using MATLAB built-in function fmincon. At every 
iteration of the optimizer we evaluated equation (4), 
first computing values of all probability densities on 
a grid of 300 by 300 points in the 2d domain 
[−𝜋, 𝜋] × [−𝜋, 𝜋], and integrating numerically using 
MATLAB function trapz over |𝑥| < |𝑦|  for the 
numerator and over the whole domain for the 
denominator. We ran these calculations on GPU 
(NVIDIA RTX 2080Ti) using MATLAB Parallel 
Computing Toolbox. 

Success rate with a one-sided strategy 

We estimated the success rate that animals could 
reach when taking into account only one stimulus by 
first computing P(R) for every trial using a model 
where one concentration was set to zero and the 
other one to √𝜅𝑅𝜅𝐿  of that animal. We sampled 
choices using the stimulus conditions as they 
appeared in the experimental dataset 1000 times 
and computed an average percent correct over 
repetitions and an average across animals.   

Maximum perceptual acuity 

By analogy with a 1d psychometric curve, we defined 
points of maximum perceptual acuity in the stimulus 
space as conditions (pairs of angles) where the 
change in 𝑃(𝑅)  was the largest for a small fixed 
change in the stimuli. We found these conditions 
from the probability surface⁡𝑃(𝑅) given by the full 
model by computing the squared norm of the 
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gradient vector, 𝑔(𝜃𝑅 , 𝜃𝐿) = (
𝑑

𝑑𝜃𝑅
𝑃(𝑅))

2

+

(
𝑑

𝑑𝜃𝐿
𝑃(𝑅))

2

 and selecting {𝜃𝑅 , 𝜃𝐿}  conditions for 

which the values of g were in the top 5%. Among 
these conditions, we analyzed those with P(R) ≈ 0.5 
(0.48 ≤ P(R) ≤ 0.52), which we call maximum gradient 
conditions (Fig. 3c,h, white) with a pooled right-
choice probability of P0.5. For n = 28 animals this 
procedure gave at least 3 unique maximum gradient 
conditions. For n = 12 animals, the initial criterion 
gave fewer than three maximum gradient conditions, 
and we expanded the allowed range to have at least 
3: we set (0.47 ≤ P(R) ≤ 0.53) for n = 7 animals, (0.46 
≤ P(R) ≤ 0.54) for n = 1, (0.42 ≤ P(R) ≤ 0.58) for n = 1, 
(0.40 ≤ P(R) ≤ 0.60) for n = 1, (0.38 ≤ P(R) ≤ 0.62) for 
n = 1, and (0.28 ≤ P(R) ≤ 0.72) for n = 1.  

We then determined the neighboring conditions by 
changing one orientation at a time by 9°, which 
resulted in an increase (“+”) or decrease (“-”) of P(R) 
relative to P0.5 (Fig. 3c). For example, PR- 
corresponded to the probability of right choice 
pooled from all conditions in which 𝜃𝑅  changed 
relative to maximum gradient conditions in the 
direction of P(R) decrease. Here, the stimulus space 
was binned to a 9° grid. In a separate analysis, for an 
animal with 3° condition binning, we changed both 
orientations simultaneously by +-3°, “along” and 
“against” the gradient of P(R), and obtaining P+ and 
P+ respectively (Fig. 3h).  

We tested that probabilities in the neighboring 
conditions (PL+, PR+, PL-, PR- in case of 9°-binned 
conditions, and P+, P-  in case of 3°-binned conditions) 
were significantly different from maximum gradient 
probabilities P0.5 using a two-tailed 𝜒2 test with df = 
1, and doing pairwise comparisons of right choice 
frequencies, with a correction for multiple 
comparisons. For a population summary (Fig. 3e) we 
computed PL+, PR+, PL-, PR- with increasing angle 
increments of 9°, 18°, and 27° and reported the 
cumulative number of animals for which at least one 
of the four probabilities was significantly different 
from P0.5, using a two-tailed 𝜒2 test with df = 1 and a 
criterion α=0.05/4.  

History biases during high and low 

engagement 

We first identified periods of high and low 
engagement in every session. For a given session, we 
computed a running estimate of the success rate in a 
sliding window of 10 trials (average performance in 
the window was assigned to the last trial of that 
window). We centered the running estimate by 
subtracting the mean success rate of the session. All 
trials with the centered success rate estimate 
exceeding a fixed threshold of 10% were labeled as 
high engagement, and all trials in which the centered 
success rate estimate was lower than -10% were 
labeled as low engagement. We confirmed the 
stability of our results using threshold values of 5%, 
15%, and 20% (data not shown). When identifying 
engagement epochs, time-out trials were counted as 
failures, but we discarded these trials for all the 
analysis that followed, consistently with the rest of 
this study. 

Next, we computed the log-likelihood 𝐿 of outcomes 

in high- and low-engagement trials ( 𝑟ℎ  and 𝑟𝑙  
respectively) given the probabilities predicted by the 
full model that accounted for trial history, and by a 
history-free model fitted separately ( 𝑝ℎ  and 𝑝0 
respectively) (see Methods: Model Design). For 
binary outcomes 𝑟 and model-derived probabilities 
𝑝, we computed trial-wise the log-likelihood using 
the formula 𝐿(𝑟, 𝑝) = 𝑟 log(𝑝) + (1 − 𝑟) log(1 −
𝑝)  with stimulus conditions binned to a 9° grid. 
Applying two different trial selections and two 

different models we obtained 𝐿(𝑟ℎ , 𝑝ℎ) for the log-
likelihoods of high-engagement trial outcomes given 

the model with history, 𝐿(𝑟𝑙 , 𝑝ℎ)  for the log-
likelihoods of low-engagement trial outcomes given 

the model with history, 𝐿(𝑟ℎ , 𝑝0)  for the log-
likelihoods of high-engagement trials given the 

history-free model, and 𝐿(𝑟𝑙 , 𝑝0)  for the log-
likelihoods of low-engagement trials given the 
history-free model. We next computed the 
differences of log-likelihood averages between 
models with and without history terms, using high-

engagement trials, Δ𝐿ℎ = 〈𝐿(𝑟ℎ , 𝑝ℎ)〉 − 〈𝐿(𝑟ℎ , 𝑝0)〉 

and low-engagement trials, Δ𝐿𝑙 = 〈𝐿(𝑟𝑙 , 𝑝ℎ)〉 −

〈𝐿(𝑟𝑙 , 𝑝0)〉, (Fig. 4d).  
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Next, we computed the average of each of these log-
likelihoods across all trials for every pair of 
orientations (𝜃𝐿 , 𝜃𝑅)  thus obtaining maps of 
〈𝐿(𝑟∗, 𝑝∗)〉𝜃  as a function of orientations (𝜃𝐿 , 𝜃𝑅) . 
We discarded any stimulus conditions where the 
number of trials was < 10. We computed the 
difference between history-dependent and history-
free maps of 〈𝐿(𝑟∗, 𝑝∗)〉𝜃  separately for high- and 

low-performance trials, i.e. Δ𝐿ℎ𝜃 = 〈𝐿(𝑟ℎ , 𝑝ℎ)〉𝜃 −

⁡〈𝐿(𝑟ℎ , 𝑝0)〉𝜃  and Δ𝐿𝑙𝜃 = 〈𝐿(𝑟𝑙 , 𝑝ℎ)〉𝜃 −

⁡〈𝐿(𝑟𝑙 , 𝑝0)〉𝜃 , and for all trials together, Δ𝐿𝜃 =
〈𝐿(𝑦, 𝑝ℎ)〉𝜃 −⁡〈𝐿(𝑦, 𝑝0)〉𝜃 . For a population 
summary (Fig. 4e) of Δ𝐿𝜃 , Δ𝐿ℎ𝜃 , and Δ𝐿𝑙𝜃 , we 
normalized Δ𝐿∗  maps of every animal by the 
standard deviation across all stimulus conditions, 
and averaged the resulting maps across animals.  

Model comparison 

AIC 
We compared the cumulative Gaussian 
psychometric model to our history-free model, and 
the history-free model to the model with history 
priors, using the Akaike Information Criterion (AIC) 
defined as 𝐴𝐼𝐶 = −2𝐿 + 2𝑘 where 𝑘 is the number 
of parameters (4 for Gaussian model, 5 for the 
history-free model, 8 for model with history) and 𝐿 is 
the log-likelihood value of the best fit. We computed 
𝐿 using the binomial log-likelihood formula  

𝐿 =∑𝑦𝑖𝑛𝑖 log(𝑝𝑖) + 𝑛𝑖(1 − 𝑦𝑖)log⁡(1 − 𝑝𝑖)

𝑖

+ log⁡(
𝑛𝑖
𝑦𝑖𝑛𝑖

) 

where 𝑖 corresponds to a 9°-binned unique stimulus 
condition defined by (𝜃𝐿 , 𝜃𝑅) for the history-free to 
Gaussian model comparison and (𝜃𝐿 , 𝜃𝑅 , 𝑟ℎ , 𝑠ℎ) for 
the history-free to the history-dependent model 
comparison, 𝑦𝑖  is the proportion of successes, 𝑛𝑖  is 
the total number of trials, and 𝑝𝑖 is the success rate 
given by either one of three models. We computed 
and reported Δ𝐴𝐼𝐶 = 𝐴𝐼𝐶(𝐺𝑎𝑢𝑠𝑠) −
𝐴𝐼𝐶(𝐻𝑖𝑠𝑡𝐹𝑟𝑒𝑒) , and Δ𝐴𝐼𝐶 = 𝐴𝐼𝐶(𝐻𝑖𝑠𝑡𝐹𝑟𝑒𝑒) −
𝐴𝐼𝐶(𝐻𝑖𝑠𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡) for the final quantification.   

Fraction of explained deviance 
To estimate how much explanatory power is gained 
by fitting the history-free model in comparison to the 

Gaussian psychometric model, and by the history-
dependent model in comparison to the history-free 
model, we computed the fraction of explained 
deviance. Deviance is defined as two times the log of 
the ratio of the saturated model likelihood 

𝑙(𝜃𝑚𝑎𝑥; 𝑦) to optimal model likelihood 𝑙(𝜃̂; 𝑦) 

 
𝐷 = 2 log (

𝑙(𝜃𝑚𝑎𝑥; 𝑦)

𝑙(𝜃; 𝑦)
) (6) 

where 𝑦  are observations, 𝜃  are estimated 
parameters, and 𝜃𝑚𝑎𝑥  are parameters of the 
saturated model.  

For binomial data, deviance is  

 𝐷 = 2∑ 𝑦𝑖𝑛𝑖 log (
𝑦𝑖
𝑝𝑖
)

𝑖
− 

(1 − 𝑦𝑖)𝑛𝑖 log (
1 − 𝑦𝑖
1 − 𝑝𝑖

) 

(7) 

where 𝑦𝑖𝑛𝑖 is the number of successes for stimulus 
condition 𝑖, ⁡𝑛𝑖 is the number of trials, and 𝑝𝑖 is the 
probability of success in condition 𝑖  given by the 

fitted model with parameters 𝜃. For the cumulative 
Gaussian psychometric function 𝜓(Δ𝜃; ⁡𝛼, 𝛽, 𝛾, 𝜆) a 
stimulus condition is defined by a pair of angles 
{𝜃𝑅 , 𝜃𝐿} in a history-free model, and a pair of angles 
with trial history {𝜃𝑅 , 𝜃𝐿 , 𝑠ℎ , 𝑟ℎ}  in a model with 
history.  

We first computed the deviance of the null model, 
with the same P(R) = 𝑝𝑛𝑢𝑙𝑙  rate for all conditions 
(computed as a grand average P(R) across trials). We 
then used the formula for deviance 𝐷 (7), with 𝑝𝑖 =
𝑝𝑛𝑢𝑙𝑙  when computing null deviance 𝐷𝑛𝑢𝑙𝑙 , 𝑝𝑖 =
𝑝𝑖(𝐻𝐹)  as predicted by history-free model when 
computing history-free deviance 𝐷𝐻𝐹 , 𝑝𝑖 = 𝑝𝑖(𝐻𝐷) 
as predicted by the history-dependent model when 
computing history-dependent deviance 𝐷𝐻𝐷 , and 
𝑝𝑖 = 𝑝𝑖(𝐺𝑎𝑢𝑠𝑠) as predicted by the Gaussian model 
when computing Gaussian deviance 𝐷𝐺𝑎𝑢𝑠𝑠. Here a 
condition 𝑖  corresponded to a unique pair of 
orientations (𝜃𝐿 , 𝜃𝑅) when comparing the Gaussian 
model with the history-free model, and to a pair of 
orientations together with history inputs 
(𝜃𝐿 , 𝜃𝑅 , 𝑠ℎ , 𝑟ℎ)  when comparing the history-free 
model and the history-dependent model; the 
fraction of right choices 𝑦𝑖 and the total number of 
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trials per condition 𝑛𝑖  changed accordingly. We 
computed the fraction of explained deviance (𝐹𝐷𝐸) 
for the three models as 𝐹𝐷𝐸𝐻𝐹 = 100% · (𝐷𝑛𝑢𝑙𝑙 −
𝐷𝐻𝐹)/𝐷𝑛𝑢𝑙𝑙 , 𝐹𝐷𝐸𝐻𝐷 = 100% · (𝐷𝑛𝑢𝑙𝑙 −𝐷𝐻𝐷)/
𝐷𝑛𝑢𝑙𝑙  and 𝐹𝐷𝐸𝐺𝑎𝑢𝑠𝑠 = 100% · (𝐷𝑛𝑢𝑙𝑙 − 𝐷𝐺𝑎𝑢𝑠𝑠)/
𝐷𝑛𝑢𝑙𝑙 , and finally we computed difference in the 
fraction of deviance explained as Δ𝐹𝐷𝐸 = 𝐹𝐷𝐸𝐻𝐹 −

𝐹𝐷𝐸𝐺𝑎𝑢𝑠𝑠  or Δ𝐹𝐷𝐸 = 𝐹𝐷𝐸𝐻𝐷 − 𝐹𝐷𝐸𝐻𝐹 . For this 
analysis, we trained each model on 50% randomly 
sampled trials and computed deviances from the 
other 50% of trials. We tested the significance of 
Δ𝐹𝐷𝐸 > 0  for a population of animals using the 
Wilcoxon signed rank test. 
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Figures 

 

Figure 1. Mice successfully learned a novel invariant orientation discrimination task. a. Top. Schematic of a mouse 

during an experimental session. Middle. Epochs of one trial. OL – open loop, during which the wheel manipulator 

did not move the stimuli on the screen, CL – closed loop, during which it could. Bottom. Convention for the angle 

signs. b. Psychometric curve of an example animal. Solid line – best fit of the cumulative Gaussian psychometric 

function, circles – data points, circle sizes represent numbers of trials, colors correspond to colors in d, gray circles 

are data points not explicitly marked in d. c. Psychometric curves for all animals in the study, solid black line – 

population average. d. Many orientation pairs give the same task-relevant information quantified by angular 

separation or difficulty (Δ𝜃). Conditions with a fixed Δ𝜃 in the 2d stimulus space (colored lines) correspond to Δ𝜃 

conditions (circles) of the same color in b. Example stimuli for four branches of constant Δ𝜃 (two branches for 18°, 

and two for -18°) are displayed along the sides of the stimulus space map. Labels next to the images of orientation 

pairs correspond to labels on the stimulus space map.  
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Figure 2. The choice model characterizes individual biases and strategies, and predicts variation of performance 

with reference orientation, as found in the data. a. Choice model schematic. The angles of two oriented Gabor 

patches (white dashed lines, left column) are estimated as samples from circular distributions (density – in purple, 

estimates – black crosses), their absolute values are measured as angular distances to the vertical and compared 

between each other (middle column), which generates a choice. b. Distribution 𝑝(𝜃𝑅
∗ , 𝜃𝐿

∗) of orientation estimates 

as in a, in 2d space, for (𝜃𝐿 , 𝜃𝑅) = (30°, 0°) (red cross) in an unbiased model with (𝜅𝑅 , 𝜅𝐿) = (2, 2), and a sample 

from this distribution (black cross). Probability mass inside the shaded areas ( |𝜃𝑅
∗ | < |𝜃𝐿

∗| ) is equal to the 

probability of right choice P(R). Dashed lines – distribution quartiles. c. Left. P(R) of model in b evaluated at all 
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stimulus pairs (𝜃𝐿 , 𝜃𝑅). Red and black lines – one example branch of Δ𝜃 = 18° and Δ𝜃 = −18° respectively. Right. 

P(R) along the branches of constant Δ𝜃 marked on the left panel with a red and black lines. d. Effect of model 

parameters on animals’ likelihood distributions over percepts (top row), P(R) surface assuming uniform priors 

(middle row), and the corresponding psychometric curves (bottom row); red crosses – distribution means before 

parameter manipulation, green arrows – transformation of the distributions with parameter change; blue 

psychometric curves – before parameter change, red curves – after. The center panel in middle column shows 

P(R) values displaced relative to Δ𝜃 isolines (solid black: example isoline for Δ𝜃=15°). e. Choice priors 𝑝𝑏(𝑥, 𝑦) 

with 𝜅𝑏  equal to -1 (left panel; left choice bias) and 1 (right panel; right choice bias). f. Left. Population average 

P(R) (n = 40 mice) with one example branch of Δ𝜃 = 9° and Δ𝜃 = −9° marked with red and black lines. Right: P(R) 

values as on the left panel (dots with error bars, mean ± c.i.), and average of model predictions (black lines with 

shaded areas, mean ± c.i.) across all animals. See Supplementary Fig. 3a for P(R) of every animal. g. Example mouse, 

left: P(R) of the fitted model, middle: P(R) along the red dashed and solid lines on the left panel predicted by the 

model (lines) and computed from the data (dots with error bars, darker dots correspond to the dashed line), right: 

P(R) along the black dashed and solid lines on the left panel, as predicted by the model (lines) and computed from 

the data (dots with error bars, darker dots correspond to the dashed line). See Supplementary Fig. 4d for the 

model of P(R) for every animal. h. Left: population summary of model parameters fitted to all mice (n=35; n=5 

animals with 𝜅𝑅  or 𝜅𝐿  estimated on the edge of the allowed range of values are excluded). Middle: ratio of 

log⁡(𝜅𝑅 + 1) and log⁡(𝜅𝐿 + 1) with the smaller of the two values divided by the larger value for each mouse (n=35). 

Circles – individual animals. Box plot – population summary: red line – median value, box borders – 25th and 75th 

percentiles, whiskers are up to most extreme parameter values, red crosses – outliers. Right: log⁡(𝜅𝑅 + 1) and 

log⁡(𝜅𝐿 + 1) across the population are significantly anti-correlated. Linear regression line for all animals together. 

Red circles – 10 mice with best performance. 
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Figure 3. Mice can reach an orientation acuity of 6°. a. P(R) model surface of an example mouse. b. |∇P(R)| 

absolute value of the gradient of P(R) surface in a. c. Four stimulus conditions (white) with |∇P(R)| in the top 5% 

of values and P(R) close to 0.5 (0.48 < P(R) < 0.52). Arrows of the same color show angle change yielding 

neighboring conditions: PL+ (yellow; “L+” for left stim. change that increases P(R)), PR+ (green), PL- (blue), PR- (red). 

Insets (right) show these conditions in the stimulus space. d. Pooled P(R) in maximum gradient conditions (white), 

P0.5 = 0.52 ± 0.04, differs from P(R) in the four neighboring conditions PL+ = 0.67 ± 0.04, p < 2.5 · 10-4 (yellow), PR+ = 

0.63 ± 0.05, p < 2.5 · 10-3 (green), PL- = 0.40 ± 0.05, p < 2.5 · 10-3 (blue), PR- = 0.39 ± 0.05, p < 2.5 · 10-4 (red) (binomial 

confidence intervals, χ2 test, df = 1, n = 4 comparisons). e. Cumulative number of animals for which at least one 

direction of angle change gives a P(R) significantly different from P0.5, as a function of angle change. f,g. Similar to 

a,b for an animal trained with 3° angle binning. h. Maximum gradient conditions (white, same criteria as in c), and 

neighboring conditions obtained by changing both angles by ±3° in the direction of P(R) increase (P+, red), and 

decrease (P-, green). i. Pooled P(R) in three groups highlighted in h: P0.5 = 0.52 ± 0.04, P+ = 0.69 ± 0.07 (red), P- = 

0.36 ± 0.05 (green), both different from P0.5 with p < 0.0005 (χ2 test, df = 1; n = 2 comparisons).  
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Figure 4. The probability of choice is affected by the choice and reward on the previous trial, with a larger effect 

during periods of lower task engagement. a. P(R) of an unbiased example model (𝜅𝑅 , 𝜅𝐿 , 𝜅𝑏 , 𝑏𝑅 , 𝑏𝐿) =

(1.5, 1.5, 0, 0, 0) with a win-stay strategy (ℎ𝑠 , ℎ𝑟, 𝜅𝑝) = (0.4, 0.4, 0.5); from left to right: [1] without history bias 

(after a ‘neutral’ trial, (𝑠ℎ , 𝑟ℎ) = (0,0)), [2] after a successful right choice (𝑠ℎ , 𝑟ℎ) = (1,1) with P(R) biased to the 

right choices as a result, [3] after a successful left choice (𝑠ℎ , 𝑟ℎ) = (−1,−1) with P(R) biased to the left choices, 

[4] psychometric curves corresponding to [1-3]: without a history effect (black), after a correct right choice (red), 
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after a correct left choice (blue). b. P(R) of an example animal with large history biases (ℎ𝑠 , ℎ𝑟) = (−0.26, 0.55) 

(lose-stay strategy); from left to right: [1] average P(R) on all trials, [2] P(R) after an unsuccessful right choice 

(𝑠ℎ , 𝑟ℎ) = (−1,1) biased to right choices, [3] P(R) after an unsuccessful left choice (𝑠ℎ , 𝑟ℎ) = (1,−1) biased to 

left choices; P(R) of all conditions in [2] and [3] with fewer than N = 5 trials was set to the average P(R) of its 

neighbors; [2] and [3] are conditioned on preceding errors and thus had a relatively low number of trials since the 

performance of all mice exceeded a 65% success rate, [4] psychometric curves of the corresponding surfaces, 

colors as in a. c. History weights (ℎ𝑠 , ℎ𝑟) and corresponding strategies of all animals (4 outliers not shown); “stay” 

and “win-stay” strategies are predominant, with few examples of “lose-stay”. Blue circles – animals trained to 

detect a more vertical orientation, red circles - more horizontal orientation. d. Increase in the log-likelihood due 

to inclusion of history terms is larger for low-engagement trials than high-engagement trials. Abscissa – difference 

(Δ𝐿ℎ ) between average log-likelihood under the model with history (𝑝ℎ ) and without history (𝑝0 ) of high-

engagement trial outcomes (𝑟ℎ), Δ𝐿ℎ = 〈𝐿(𝑟ℎ , 𝑝ℎ)〉 − 〈𝐿(𝑟ℎ , 𝑝0)〉, ordinate – difference (Δ𝐿𝑙) between average 

log-likelihood under the model with and without history of the low-engagement trial outcomes (𝑦𝑙 ), Δ𝐿𝑙 =

〈𝐿(𝑟𝑙 , 𝑝ℎ)〉 − 〈𝐿(𝑟𝑙 , 𝑝0)〉. e. Increase in the log-likelihood due to inclusion of history terms changes with stimulus 

conditions and engagement modes; left to right: [1] Δ𝐿𝜃  – average log-likelihood difference for every stimulus 

condition, Δ𝐿𝜃 = 〈𝐿(𝑟, 𝑝ℎ)〉𝜃 −⁡〈𝐿(𝑟, 𝑝0)〉𝜃, all trials are taken, maps are Z-scored and averaged across animals, 

conditions with fewer than 10 trials are excluded, [2] Δ𝐿ℎ𝜃 – same value computed for high-engagement trials 

only, [3] Δ𝐿𝑙𝜃 – same value computed for low-engagement trials only.  
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Supplementary Figure 1. A high number of trials was collected from n = 40 animals. a. Total number of trials collected for all animals. b. Population-average 
number of trials for every stimulus condition (pair of angles); color bar – number of trials, log scale. c. Median number of trials across conditions for every 
animal. d. Number of trials for every stimulus condition and every animal, axes as in b; number in black square - animal ID, the same as in Supplementary 
Figure 3 and Supplementary Table 1.
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Supplementary Figure 2. Performance is invariant relative to size and spatial frequency transformations 
of the stimulus. a. Correct rate as a function of trial easiness |Δθ|, comparing 3 sessions (divided into 6 
groups of trials—one dot per group, dots may overlap—with ~75 trials/group) before a change in spatial 
frequency of the gratings (red dots) and after the change (blue dots) (spatial frequency, SF = 0.008 ‐> 0.016 
cpd for mouse A, left panel, and SF = 0.0016 ‐> 0.032 cpd for mouse B, right panel). Open circles for correct 
rates {0, 1}. Data for the right panel (mouse B, minimal angular di�erence 3°) was grouped into 9° bins to 
improve visualization. For statistical comparison, we compared binned data (non‐overlapping 18° bins) 
from before vs after conditions and found no signi�cant di�erence (p > 0.05, Wilcoxon rank‐sum test). b. 
Psychometric curves from 3 sessions before (red) and after (blue) changing the spatial frequency of stimuli. 
Same data as in a, used as right/left choices; dots for average P(R) as in the data; dotted lines for the �ts; 
colored bands for bootstrap con�dence intervals. c. Comparison of �tting parameters: slope, lapse rate, 
and bias, before and after changing spatial frequency of stimuli (mean ± s.e.m., n = 2 mice, n.s. for p > 0.05, 
and ‘*’ for p < 0.05, unpaired t‐test for individual animals, paired t‐test for comparison across animals). d-f. 
Same as a-c, but for changes in stimulus size (20° ‐> 25° visual angle, n = 2 mice B, C). Data sampled at 3° 
angle di�erence has been grouped into 9° bins to improve visualization. Left panels: statistical di�erence 
for |Δθ| bin = 18° (‘*’ for p < 0.05) re�ects an improvement in the performance after changing stimulus size.
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Supplementary Figure 3. Choices of mice are largely determined by the rewarded side in the two-dimensional stimulus space, and choice model recapitulates 
choice probability. a. Probability of right choice, P(R), for all mice. Stimulus conditions are binned to 9°. Color limits are the same in all panels and in b-c. Animal 
IDs (number in a black square) are as in Supplementary Figure 1 and Supplementary Table 1. b. Average P(R) across animals trained to �nd a more vertical orienta-
tion. c. Average P(R) across animals trained to �nd a more horizontal orientation. d. Model P(R) surfaces for every animal, same color bar on all panels, and as in e 
and f. e. Average P(R) surface of all animals trained to �nd the more vertical target. Dashed lines at P(R) values of 0.25, 0.5, 0.75. f. Average P(R) surface of all animals 
trained to �nd the more horizontal target.
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Supplementary Figure 4. History priors can represent many possible strategies, and a�ect choice probability , 
P(R), by shifting the probability density p(x, y) inside or outside the |x| < |y| region a. Probability density (p.d., 
shown by color saturation) p(x, y) (Methods, Eq. 1) induced by stimuli (θR, θL) = (30°, 60°) (red cross) in a model 
with κR = κL = 2, bR = bL = 0, and κb = 0; dashed lines show distribution quartiles. b. History prior ph(x, y) (Methods, 
Eq. 3) corresponding to the win-stay/lose-switch strategy, (hs, hr) = (0, 1), with κh = 5, and four possible target-re-
sponse combinations (sh, rh) on the previous trial. Top to bottom: (sh, rh) = (R, R); (R, L); (L, R); (L, L). c. Posterior p.d. 
p(θR*, θL*): normalized product of p(x, y) and ph(x, y) before integration over |x| < |y|, with (sh, rh) same as in b in the 
same row. d. probability of right choice P(R) for (θR, θL)=(30°, 60°) with and without history bias. e. P(R) with strat-
egy for all (θR, θL) corresponding to (sh, rh) in b in the same row. f. History priors ph(x, y) for �ve example histo-
ry-based strategies (columns) shown for all four possible combinations of target and choice on the previous trial 
(rows); κh = 1 in all cases.
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Supplementary Figure 5. Variation of P(R) with reference orientation θref is larger in the data than in the 
model. Left. Example mouse, selected here for its low translational bias and approximately equal concen-
trations for right and left stimuli, which results in a regularly shaped P(R) dependency on θref (cf. Figure 2c). 
Center and right. P(R) along θref for the Δθ = const conditions marked on the left panel, as predicted by the 
model (lines) and as in the data (dots with whiskers). Dots of a lighter shade (orange, light blue) correspond 
to the solid lines. 
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ID N trials ID N trials ID N trials ID N trials 
1 82065 11 38624 21 30078 31 18637 
2 76488 12 38583 22 29646 32 17624 
3 66929 13 38263 23 28228 33 15681 
4 63074 14 37961 24 27659 34 13006 
5 58747 15 37189 25 27425 35 11893 
6 56392 16 36422 26 25509 36 11885 
7 48118 17 33938 27 22222 37 11465 
8 46872 18 33003 28 20926 38 10069 
9 45415 19 32946 29 20113 39 5602 

10 39673 20 30988 30 19406 40 4591 
 1 

Supplementary Table 1. Total number of trials per animal. “ID” columns show animal identi�cation num-
bers as in Supplementary Figures 1 and 3, “N Trials” columns show total number of trials of the correspond-
ing mouse used in the analysis throughout the paper.
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