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Understanding how the brain computes choice from sensory information is a central question in perceptual
decision-making research. From a behavioral perspective, paradigms suitable to study perceptual decision-making
condition choice on invariant properties of the stimuli, thus decoupling stimulus-specific information from
decision-related variables. From a neural perspective, powerful tools for the dissection of brain circuits are needed,
which suggests the mouse as a suitable animal model. However, whether and how mice can perform an invariant
visual discrimination task has not yet been fully established. Here, we show that mice can solve a complex
orientation discrimination task where the choices are decoupled from the orientation of individual stimuli.
Moreover, we demonstrate a discrimination acuity of at least 6°, challenging the common belief that mice are
poor visual discriminators. We reached these conclusions by introducing a novel probabilistic choice model that
explained behavioral strategies in (n = 40) mice and identified unreported dimensions of variation associated with
the circularity of the stimulus space. Furthermore, the model showed a dependence of history biases on task
engagement, demonstrating behavioral sensitivity to the availability of cognitive resources. In conclusion, our
results reveal that mice are capable of decoupling decision-relevant information from stimulus-specific
information, thus demonstrating they are a useful animal model for studying neural representation of abstract
learned categories in perceptual decision-making research.

Introduction

Most behaviorally relevant information in visual
scenes is provided by the objects and relationships
between them rather than the low-level visual
features. Relative properties of objects, such as
spatial arrangement (Krechevsky, 1938; Lashley,
1938), shape and color similarity (Martinho and
Kacelnik, 2016), relative contrast (Burgess et al.,
2017), and relative density or numerosity (Dakin et
al., 2011), can condition behavior, which necessarily
relies on the corresponding abstract, stimulus-
invariant neural representations.

In perceptual decision-making research, tasks that
enable neural-to-behavioral coupling need to fulfill
specific requirements. First, they should rely on
these relative or more abstract categories to
separate the neural representation of the decision

information from sensory representations, which are
often encoded in the same neural populations
(Akrami et al., 2018; Pho et al., 2018; Romo et al.,
1999; Steinmetz et al., 2019). Second, sensory stimuli
should be sufficiently complex to engage cortical
computations (DiCarlo and Cox, 2007), but with
known neural encoding characteristics to permit
targeted neural recordings (Hubel and Wiesel, 1962;
Huberman and Niell, 2011). Finally, a rich set of
experimental tools for the dissection of the
underlying neural circuits should be available in the
animal model of choice (Abbott et al., 2020; Luo et
al., 2018; Madisen et al., 2015).

Visual discrimination tasks in rodents do, in principle,
fulfill all these requirements. However, previous
studies have typically traded-off some of them. For
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instance, simple visual stimuli (e.g., light bars,
contrast gratings) are easy to parametrize and their
neural encoding is well characterized, but to which
extent they engage cortical computations is a matter
of debate (Wang et al., 2018, 2020). Similarly, visual
objects or natural images are probably more
effective at driving cortical computations, but the
stimulus parametrization is challenging, and their
neural substrate and encoding characteristics are
still largely unexplored (DiCarlo and Cox, 2007;
DiCarlo et al., 2012; Riesenhuber and Poggio, 2000).
A viable alternative could be to condition choice on
a relative property of stimuli that are easy to
parametrize, and that have a well-defined cortical
representation.

Here, we sought to establish if mice can learn to
discriminate relative orientations, and if so, to
identify their choice determinants. To this end, we

Results

Relative orientation discrimination task

Task details

We trained transgenic mice (n = 40) in a two-
alternative  forced-choice  (2AFC) orientation
discrimination task using an automated setup, in
which the animal voluntarily fixed its head to initiate
an experimental session (Fig. 1a, top), as previously
described (Aoki et al., 2017). In this task, two
oriented Gabor patches were simultaneously shown
on the left and right sides of a screen; to obtain water,
the animals had to identify the oriented patch that
was more vertical (n = 28; more horizontal, n = 12)
and move it to the center of the screen by rotating a
wheel manipulator (Aoki et al., 2017; Burgess et al.,
2017). Crucially, because the target in most trials was
not vertical, the animals had to compare the angular
distance to the vertical (verticality) of the two
orientations. The same physical stimulus could thus
be a target or a nontarget in different trials, thereby
making the task invariant relative to the orientation
of individual stimuli (Fig. 1a, middle). The
orientations of both stimuli (8, 6z) were sampled
at random from angles between -90° and 90° with a
minimal angular difference of 9° (3° for one animal),
with positive angles corresponding to clockwise and

developed a task, in which the animal indicates the
more vertically oriented grating stimulus of two
simultaneously presented. To quantify the behavior,
we developed a novel probabilistic model of choice
that captured choice variability and choice biases
including the history-dependent ones. With the help
of the model, we established how individual animals
combine information about the two orientations,
estimated their discrimination acuity, and
demonstrated the dependency of history biases on
the task engagement. We suggest that our task will
allow the exploration of complex decision-making
and visual-to-cognitive links in mice, particularly
when studying the computation of decision in visual
areas (DiCarlo and Cox, 2007), the link between
neural and behavioral variability (Beck et al., 2012),
and a role of heuristics and suboptimal choice
strategies (Gardner, 2019).

negative to counterclockwise orientations relative to
vertical (Fig. 1a, bottom). We used this 9° spacing for
most animals to sample a high number of responses
for every angle condition, which was important for
subsequent imaging experiments (not shown in this
study). We analyzed a total of 1,313,355 trials,
ranging from 4591 to 82,065 per animal, with an
average of 32,834 + 2962 trials per animal (mean *
s.e.), in 256 + 22.28 sessions of 128.02 + 1.34 trials
each (Supplementary Fig. 1, Supplementary Table 1).

Mice reach a high success rate in a relative
orientation discrimination task

As an initial step in the analysis of choice behavior,
we quantified performance as a function of task
difficulty using a standard cumulative Gaussian
psychometric function (Wichmann and Hill, 2001).
We modelled the probability of choosing the right
stimulus, P(R), as a function of the angular separation
A6 = |6, | — |6z| between the two orientations,
where |-| denotes the verticality, with small angular
separations corresponding to difficult conditions and
large angular separations corresponding to easy
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conditions. An angular separation A6 =0
corresponds to two equally vertical orientations,
which are not necessarily parallel. Conditions with
AB < 0 and Af > 0 correspond to a more vertical
orientation on the left and right side, respectively
(example animal, Fig. 1b; population, Fig. 1c). The
mice reached an average performance of 74.7 £ 0.7%
correct, with an average sensitivity parameter of the
psychometric curve o = 42.93 + 1.18°. Animals
retained their performance level after introducing
changes in spatial frequencies and stimulus sizes,
suggesting their decision-making strategy did not
rely upon these low-level statistical properties of the
stimuli (average psychometric curves over the 3
sessions before and after changing either of these
parameters did not differ from each other,
Supplementary Fig. 2).

As this task disentangles any given probability of
choice from specific orientations, a fixed difficulty A8
that corresponds to one point on the psychometric
curve is given by many possible pairs of orientations
(6;,6g) . For example, A8 = 30° corresponds to
orientation pairs (30°, 0°), (-60°, 30°), and many
others (Fig. 1d). Conversely, no given orientation was

Probabilistic choice model

Accounting for stimulus space and biases in the
model

The psychometric curve quantifies an animal’s
behavior along a single dimension of difficulty, A6.
However, given the task structure, the complete
representation of the stimulus space is two-
dimensional, with a unique stimulus condition
corresponding to a pair of angles (6;,0g). In this
space, a fixed A8 is given by all stimulus conditions
along the iso-difficulty lines (branches) that lie in the
four quadrants of the space and correspond to four
different combinations of angle signs (Fig. 1d). We
therefore considered the probability of choosing the
right orientation, P(R), for all stimulus conditions in
this space.

To get a better insight into the factors that affect the
animals’ choices, we developed a psychometric
model that provided a functional mapping from the
two-dimensional stimulus space to the probability of

always rewarded, since for any orientation (except
0°), there was a possibility that the other orientation
was more vertical. For equally vertical orientation
pairs, a side chosen at random was rewarded.
Consequently, this task design compels the animal to
estimate the verticality of the left and right
orientations, |6,| and |6g|, and compare their
estimates, rather than detect a learned orientation.

Animals may not strictly adhere to this ideal strategy,
so long as they obtain sufficient amount of water
reward in each experimental session. This amount
can be difficult to estimate precisely, since it varies
significantly from animal to animal, and depends on
age, gender, food intake, and genetic background.
We estimated that, with the choice variability taken
into account, an animal looking at only one of the
two stimuli will perform at 63.1 + 0.6% correct,
exceeding the 50% chance level, but, on average, not
being able to maintain its weight at the pre-training
level, assumed to be a heathy reference baseline. In
the following section, we introduce a model that
quantifies how animals combine information from
the two orientations while also capturing deviations
from the ideal strategy.

the right choice, P(R). We assume that in every trial,
a mouse makes noisy estimates (6;,6g) of both
orientations (8, 0z), compares their verticalities
(1671, 16gl), and makes a choice (Fig. 2a). The
probability of a right choice P(R) in this procedure is
expressed as an integral of the distribution of
estimates p(0g, 0;) over the |6;| < |6]| subspace
(Fig. 2b) (Methods: Eqgs. 1-4). The shape of the P(R)
surface over the stimulus space (6;, ) (Fig. 2c, left)
is therefore determined only by the parameters of
the distribution p(6y, 6;), which we represent as a
product of animal’s likelihood function over percepts
and its prior distribution.

We model the likelihood p(x,y) as a product of
circular von Mises functions p(x|0g;kg) and
p(y|6.; k) centered at the values of 85 and 6,
equal to the true orientations and with variability for
each target quantified by the concentration
parameters kp and k; . High concentrations
correspond to low variability in the percepts, and k
is thus qualitatively inverse to the standard deviation
and can be interpreted as the certainty (Drugowitsch
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et al.,, 2016; Laquitaine and Gardner, 2018). For
example, a distribution of percepts p(x,y) is
broader and shallower along the axis of lower
concentration (Fig. 2d, left column, top), making P(R)
more independent of the respective stimulus (Fig. 2d,
left column, middle).

Percepts of each orientation can be systematically
biased, with an animal consistently making choices
as if the right or the left orientation were rotated
more clockwise or counterclockwise. These
systematic errors are accounted for by translational
biases bg and b, (Fig. 2d, center column example:
bg > 0, by = 0), which move p(x,y) and
consequently the P(R) surface relative to the angle
axes without changing their values.

Both the translational biases and the certainty
parameters change the slope of the psychometric
curve but not its left-right choice bias (Fig. 2d,
bottom row), with the effects generally
indistinguishable in the A8 space as opposed to the
complete stimulus space. A lower or higher certainty
results in a shallower or steeper P(R) respectively,
and a shallower or a steeper psychometric curve. On
the other hand, a translational bias displaces the
entire P(R) surface, overall decreasing performance
for every A8 in the space of the psychometric curve.

To model a choice bias towards the right or left, we
introduced a family of prior distribution functions or
choice priors py(x,y; k) parameterized by prior
concentrations k; (Fig. 2e). These choice priors
cause an orientation on the right or on the left to
effectively appear more vertical—as opposed to
more clockwise or counterclockwise—or
equivalently make an animal more certain about the
verticality of that stimulus, or can be associated with
procedural factors that similarly bias choices (Fig. 2d,
right column) (Methods, Eq.2). For example, the
choice prior for a rightward bias has a peak at (90°,

The model captures the animals’ choices

We next analyzed the choices of the mice in the two-
dimensional stimulus space. For the population of
animals, P(R) varied with difficulty A8, as expected
from the psychometric curves (Fig. 1b-c), and with
the reference 0,5 (Fig. 2f), as predicted by our
model (Fig. 2b-c). For a fixed A@ > 0, P(R) was higher

0°) (Fig. 2e, right, kK, > 0 ) and increases the
probability of a right choice for any pair of
orientations (Fig. 2d, right column) by biasing
p(6g,0;]) to the |6z| < |6;]| region (Fig. 2d, right
column, green arrows).

Concentrations, translational biases, and a prior
concentration {ig,k;,bg, by, Kkp} thus determine
our model of choice, which allows a more complete
analysis of P(R) than the psychometric curve. The
model predicts a previously unexplored property of
P(R): its variation along the branches of a fixed A9. A
model with zero biases and an equal certainty for
both orientations (ki = k;) predicts a decrease in
P(R) whenever either orientation is close to 0° or 90°,
and an increase when close to 45° (Fig. 2b-c). We
parameterized this variation using the reference
orientation 6. = min(|6,],16r]) , i.e., the
orientation of the more vertical stimulus. The source
of this variation is clear from the position of
p(0%, 0;) relative to the category boundary |03| =
|8] | when considered along one branch of a fixed A8
(Fig. 2b): the probability mass of orientation
estimates that result in error judgments (e.g., |0x| >
|67 when [6g| < |6,]) is higher around 6,..f = 0°
and 60,..r = 90° than around 6,.r = 45°. This effect
arises from the variability in both orientation
estimates and their interaction with the category
boundary in the circular space and cannot be
replicated by the psychometric curve whose only
input variable is A9.

In summary, by combining information from two
orientations, our model predicts a dependency of
probability of choice not only on difficulty but also on
reference orientation. This latter variability
necessarily follows from the circularity in the input
stimulus space given a limited certainty in
orientation estimates.

(and choices were more often correct) when the
orientations were far from horizontal or vertical (Fig.
2f), while for AG < 0 P(R) was smaller (and the
choices were also more often correct) when the
orientations were far from horizontal or vertical.

The model reproduced this performance variation
for individual animals (Fig. 2g). However, due to
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individual biases, the P(R) curves for fixed A6 were
more distorted than in the unbiased case (cf. Fig. 2c,
right). Counterintuitively, P(R) for the same A@ in
different quadrants of the stimulus space could
represent on average opposite choices (Fig. 2g,
center, right), which our model accounted for thanks
to translational biases. The model successfully
captured animal-specific differences in choice
probabilities (Supplementary Fig. 3), explained the
data significantly better than the psychometric curve
(AAIC = 798.8 £ 141.9; AAIC > O for all animals), and
explained significantly more deviance (Runyan et al.,
2017) (AFDE = 9.03 + 1.48%, p = 1.07 - 10, signed-
rank test).

Across the population of animals, the average
stimulus concentration values were high and positive
(kg =2.22+0.69,p=3.73-107; k, =1.76 £0.52,p =
1.34 - 107, t-tests) (Fig. 2h, left) showing that the
animals used both targets for the decision. The bias
concentration kj; was small (k; = -0.06 £ 0.05, p =
0.01), indicating a mixed bias across the population.
The translational biases (bg = 0.14 + 0.05, p = 3.71 -
10°%; b, = 0.19 £ 0.05, p = 1.21 - 107) were similarly
small but significant.

Although the stimulus protocol, reward sizes, and
session schedules were designed to motivate
animals to use information about both orientations
equally, we found that the strategies of individual
animals ranged from a balanced orientation
comparison to a reliance on one target more than
the other. We quantified this range of strategies with
the ratio of the log of the concentrations kp and k;,
with ratios closer to 1 representing more balanced
strategies (Fig. 2h, center). The right and left
concentrations were significantly anti-correlated (p =
-0.57, p = 4.45 - 10%; t-test, criterion a = 5 - 103
corrected for multiple comparisons), reflecting a
trade-off in animals that preferentially used
information from one of the stimuli (Fig. 2h, right).
Despite this trade-off, the best-performing animals
also had higher concentrations overall (p < 0.05;
ANCOVA, F-test of intercept with fixed slope),
showing that while the task permitted relative
flexibility in choice strategies, a more accurate
estimation of the orientations was necessary to
achieve a high success rate. Other parameters of the

model did not significantly correlate with each other
or with the concentration ratios.

In summary, our model accounted for biases in the
animals’ behavior and explained the performance
variation with 6,.¢ . Individual animals weighted
sensory information from the two orientations
differently, following strategies that were sufficient
to obtain needed amounts of reward, but were not
perfectly aligned with the true stimulus-reward
space. While left and right concentrations were anti-
correlated across the population, high success rates
required overall high certainty in the orientation
estimates.

Discrimination acuity

We next used our model to estimate the minimal
orientation difference the animals could reliably
discriminate. A change in a pair of orientations that
results in a significant change in P(R) is the smallest
for conditions with the largest gradient of P(R). Since
the numerical gradient directly computed from the
data can be too noisy, we used our model to more
accurately find the maximum gradient conditions.
After identifying these conditions, we used
experimentally obtained trial outcomes to test the
significance of P(R) change.

Following this procedure, we compared probability
of a right choice in stimulus conditions with the
highest gradient and in neighboring conditions (Fig.
3). We found that a change in either left or right
orientation by 9° resulted in a significant change in
P(R) for 62.5% (n = 25) of animals, and that a change
by 27° resulted in a significant change for all (n = 40)
animals (Fig. 3a-e). For the only animal tested with a
3° sampling of stimuli, we found that changing both
orientations by 3° along or against the gradient—
amounting to a total change of 6°—resulted in a
significantly different P(R) (p < 0.0005, both cases)
(Fig. 3f-i).

In summary, our model allowed an in-depth analysis
of discrimination acuity by utilizing a complete
picture of the P(R) gradient and identifying stimulus
conditions where the sensitivity to angle change was
the highest. We found that an angle change of 6° can
be significantly detected based on the change of
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probability of choice, thus establishing a lower
bound for mouse orientation discrimination acuity.

Effects of trial history

Choice strategies are determined not only by
preferential weighting of available sensory
information but also by trial history (Abrahamyan et
al., 2016; Akrami et al., 2018; Busse et al., 2011;
Corrado et al., 2005; Friind et al., 2014; Urai et al.,
2017; Yu and Cohen, 2008). To account for history-
related biases, we included a history prior p, (x,y)
parameterized with a concentration parameter kj,
and a term h that linearly depended on the choice r
and target orientation s in the previous trial through
history weights (Busse et al., 2011; Corrado et al.,
2005; Frind et al., 2014), h = shy + rh,.. A pair of
weights (hg, h,-) determined the choice strategy of
an animal, such as “win-stay” (Fig. 4a, model
example) or “lose-stay” (Fig. 4b, example animal)
throughout all trials, and in combination with the
choice and target of the previous trial (r, s) resulted
in the history-dependent change of the P(R)
(Supplementary Fig. 4a-e) and the psychometric
curve (Friind et al., 2014) (Fig. 4a,b).

Through the flexible family of history priors, our
model captured a variety of strategies in addition to
win-stay (Supplementary Fig. 4f). Most of our mice
showed a mild tendency for the “stay” strategy,
followed by the “win-stay”, and, rarely, the “lose-
stay” strategy (Fig. 4c), largely in consistency with
the previous report (Odoemene et al., 2018). The
history-dependent model explained the data
significantly better than the history-independent
model (AAIC=211.8 £40.1; AAIC>0for allbutn=4
animals), and explained significantly more deviance
(AFDE=5.07+0.98 %, p=8.1- 10, signed-rank test).

We investigated whether the animals relied on
history to a different extent during periods of

Discussion

Using high-throughput automated cages with
voluntary head fixation, we trained a large cohort of
mice (n =40; 1,313,355 trials) in a complex variant of
a 2AFC orientation discrimination task. The task
required the mice to measure the relative
orientations of two stimuli, thereby decoupling

relatively high and low engagement in the task,
which we identified based on performance within a
session. Performance fluctuations correlated with
changes in biomarkers typically associated with task
engagement and overall attentiveness to the task
(McGinley et al., 2015; Reimer et al., 2016) (shown
using the same behavioral protocol in Abdolrahmani
et al., 2021) (Abdolrahmani et al., 2021). For each of
the two engagement levels, we computed the
difference between the trial-average log-likelihood
of choices given a model with a history prior and
without: AL; for low-engagement trials, and AL for
high-engagement trials. The increase in explanatory
power was larger for the low-engagement trials
(AL; > ALy) (Wilcoxon test, p=2.12 - 10”7) (Fig. 4d),
which indicated that during the low engagement
trials, the choices were more strongly driven by the
history biases.

Difficult stimulus conditions were more susceptible
to the influence of history priors than easy conditions
(Fig. 4e, left), in a way that depended on the
engagement state of the animal. During periods of
high engagement, the inclusion of history priors led
to a substantial improvement in the model
performance only for the most difficult conditions
(Fig. 4e, center), while in the low-engagement
periods, most stimulus conditions were affected (Fig.
4e, right).

In summary, after expanding our model to capture
history-dependent biases, we found that the most
prominent strategies were “win-stay” and “stay”,
and that choices were affected by history biases to a
greater extent during periods of lower engagement.
Our observations demonstrate that choice heuristics
can fluctuate together with the cognitive state of the
subject.

choice from the particular orientation of an
individual stimulus. We quantified their behavior
with a novel model of choice that accounted for the
circularity of the stimulus space and for individual
choice biases and strategies. The model explained
variation in the probability of choice not only with
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the task difficulty A8, but also with the reference
orientation 6,.¢, an effect not reported previously.
With the help of the model we found that the
maximum acuity of orientation discrimination in
expert animals can be as small as 6°. Our model could
be easily extended to examine history biases,
ubiquitous in human and animal psychophysical
experiments (Abrahamyan et al., 2016; Akrami et al.,
2018; Busse et al., 2011; Corrado et al., 2005; Frind
et al., 2014; Urai et al., 2017; Yu and Cohen, 2008),
revealing a modulation of history components by the
animals’ engagement, affecting choices more
strongly and over a broader set of stimulus

Behavioral assays for studies of perceptual
invariances and their quantifications

Our task will be particularly advantageous for the
study of the neural mechanisms underlying
perceptual invariances. With the availability of
unique experimental toolboxes, the mouse is
currently the animal model of choice for the
dissection of neural circuits (Abbott et al., 2020; Luo
et al., 2018; Madisen et al., 2015). However,
although visual behaviors elicited by low-level visual
features have been well characterized (Huberman
and Niell, 2011; Zoccolan et al., 2015), intermediate
(e.g. textures) and high-level vision (e.g. objects) are
largely unexplored in this species. Therefore, mouse
studies that utilize complex visual stimuli are
challenged by (1) the well-known difficulty of
parameterizing complex objects (DiCarlo and Cox,
2007; DiCarlo et al., 2012; Riesenhuber and Poggio,
2000), (2) the unknown neural substrate that
encodes these parameters, (3) the uncertainty about
whether mice can learn the task in a reasonable
time—if at all—and (4) the difficulty in inferring
behavioral strategies given the parametric
complexity of the stimulus space (Alemi-Neissi et al.,
2013; Vermaercke and Op de Beeck, 2012). Our task
represents a convenient solution: it builds upon
existing orientation discrimination tasks in mice
(Andermann et al., 2010; Goard et al., 2016; Long et
al., 2015; Reuter, 1987; You and Mysore, 2020), in
which a specific orientation is to be chosen over a
distractor orientation (Andermann et al., 2010; Long

conditions whenever the engagement was relatively
low. Our work responds to the need for a visual task
that depends on abstract choice categories and is
invariant to specific visual stimuli, but can be learned
by mice, relies on basic visual features, and allows
straightforward quantification within the
probabilistic modelling framework. We argue that in
addition to these advantages, our task can be useful
in engaging higher visual areas in the computation of
decision (DiCarlo and Cox, 2007), and can provide
valuable insight into the relationship between neural
and behavioral variability (Beck et al., 2012; Britten
et al., 1996; Brunton et al., 2013; Drugowitsch et al.,
2016; Renart and Machens, 2014).

et al., 2015; Pinto et al., 2013; Poort et al., 2015;
Resulaj et al., 2018; Reuter, 1987; You and Mysore,
2020), or in which a change relative to a specific
orientation is to be detected (Glickfeld et al., 2013;
Jinetal.,, 2019; Wang et al., 2018, 2020). However, it
complexifies the discrimination by introducing well-
controlled invariances (to specific orientations,
spatial frequency, and stimulus size), exploring
stimulus dimensions that are easy to parameterize
and that have a clear neural representation, and can
be learned by mice in a reasonable time.

Our model helped estimate orientation
discrimination acuity, which reached a 6° angle
difference for one mouse tested with the smallest
angular separation of 3°. Constrained by limitations
related to a different study, we did not attempt to
train animals at smaller angular differences, so it is
possible mice can discriminate orientation
differences even smaller than 6°. The orientation
discrimination acuity of mice has been previously
measured in a 2AFC tasks with a distractor (Reuter,
1987), and change detection tasks (Glickfeld et al.,
2013;Jinetal., 2019; Wang et al., 2018, 2020). Acuity
measures have been reported as thresholds or just-
noticeable differences (JNDs) and commonly rely on
model-derived values, such as the model-based
inverse of a certain success rate (Glickfeld et al.,
2013; lJin et al.,, 2019), the mean of the fitted
Gaussian (Wang et al., 2018, 2020), or V2 times its
standard deviation (Wang et al., 2018, 2020). We
developed a new acuity estimation procedure
suitable for our stimulus space, in which we
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identified stimulus conditions with the highest
gradient of model-predicted P(R) and compared the
performance in these and neighboring conditions.
Our approach took advantage of the complete

Task- and behavior-related factors
influencing choice

By parameterizing biases, history effects, and
orientation certainties, our model showed that
animals largely followed the intended choice
strategy, but also exhibited variation that could be
interpreted as animal-specific choice heuristics. One
such heuristic was evident in the trade-off of
concentration values, with some animals unequally
weighting stimulus information. Accuracy of
orientation estimation was still necessary for high
success rates, but even among the best-performing
animals right and left concentrations were anti-
correlated. This trade-off demonstrated that animals
followed a range of “sufficiently good” strategies
when solving the discrimination problem.

Such strategies can be interpreted as examples of
suboptimal or approximate inference in an uncertain
environment. Suboptimal inference is sometimes
thought of as an adaptive phenomenon, a way for a
subject to deal with the complexity of the task at
hand by constructing and acting upon its
approximate model (Beck et al., 2012). Adherence to
a suboptimal strategy can be linked to limited
cognitive resources (Whiteley and Sahani, 2012;
Wyart and Koechlin, 2016), which in our task
fluctuate together with task engagement. Indeed,
we find that history-dependent biases—another
manifestation of suboptimal behavior—are stronger
during periods of lower engagement. We
demonstrate this by introducing history priors—in a
form that allows their analytical inclusion into our
model—that increase the explanatory power of the
model more in periods of lower engagement than in
periods of higher engagement. These fluctuations of
the history biases are driven by the internal state of
the animal, are independent of the stimulus protocol,
and thus will occur in addition to difficulty- or
confidence-dependent fluctuations, as recently
described (Lak et al., 2020). During periods of
decreased performance, higher explanatory power

stimulus space representation of P(R) instead of
relying on a cruder psychometric model to compute
a JND or a threshold value.

of history terms is not guaranteed, but it is consistent
with switching between history-driven and stimulus-
driven choice modes (Ashwood et al., 2020).

Limitations of our approach

Although we believe that our work substantially
advances the understanding of mouse behavior
during complex orientation discrimination, our
approach has limitations at the level of model
design and strategy interpretation. First, our model
assumes fixed psychometric parameters across
sessions and trials, and thus a more flexible,
dynamically parameterized model could give a
better insight into biases and choice strategies of
mice. Second, the goodness of fit of the model with
respect to the variation of P(R) with 6,..5 could be
further improved: in some animals this variation is
larger than the model prediction (Supplementary
Fig. 5, example animal), which could be explained
by a dependency of kg and k;, on the proximity to
the category boundary (|6;| = 6] |) (Jazayeri and
Movshon, 2007). Finally, direct interpretation of
concentration values might not be directly relatable
to perceptual sensitivity, since they were likely
decreased by nonsensory factors, such as noise in
the decision computation (Beck et al., 2012; Dosher
and Lu, 1998; Drugowitsch et al., 2016), inherent
priors (Girshick et al., 2011), and choice heuristics
(Beck et al., 2012; Gardner, 2019).

Future directions and potential implications

Since our task relies on perceptual invariances and
decouples the decision information from specific
sensory stimuli, it can be useful for exploring the
neural basis of decision-making in the future studies.
A similar task design relying on combinations of
stimuli has been used extensively in the decision-
making literature (Constantinople et al.,, 2019;
Hernandez et al.,, 1997; Jogan and Stocker, 2014;
Pinto et al., 2018; Scott et al., 2015; Steinmetz et al.,
2019), but has not been reported in mouse
orientation discrimination experiments.
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Furthermore, our task can give a valuable insight into
the relationship between neural and behavioral
variability. Whether behavioral variability arises
predominantly from sensory sources (Brunton et al.,
2013), or from the deterministic or stochastic
suboptimality of decision computation (Beck et al.,
2012) is one of the central questions in the
neuroscience of decision-making. The complexity of
our orientation discrimination task will increase the
role of suboptimal decision computation, as has
been predicted theoretically (Beck et al., 2012;
Gardner, 2019; Whiteley and Sahani, 2012), and will
provide an opportunity to study the correlates of this
suboptimality in the neural responses.

Finally, our task is well suited for isolating the
contributions of visual cortical areas in the
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Methods

Experimental Model and Subject Details

All surgical and experimental procedures were
approved by the Support Unit for Animal Resources
Development of RIKEN CBS. We used n = 40
transgenic mice: Thyl-GCaMP6f (n = 37), Camk2-tTA
TRE-GCaMP6s (n = 2), Emx1-tTA TRE-GCaMP6s (n =
1), with a total of 30 male and 10 female animals,
aged 4 to 25 months. The triple transgenic strain
Camk2-tTA TRE-GCaMP6s was established by cross-
mating Camk2a-cre and Camk2a-tTA. The triple
transgenic strain Emx1-tTA TRE-GCaMP6s was
established by cross-mating Emx1-cre and Camk2a-
tTA.

Animals were anesthetized with gas anesthesia
(Isoflurane 1.5-2.5%; Pfizer) and injected with an
antibiotic (Baytril®, 0.5 ml, 2%; Bayer Yakuhin), a
steroidal anti-inflammatory drug (Dexamethasone;
Kyoritsu Seiyaku), an anti-edema agent (Glyceol®,
100 pl, Chugai Pharmaceutical) to reduce swelling of
the brain, and a painkiller (Lepetan® Otsuka
Pharmaceutical). The scalp and periosteum were
retracted, exposing the skull, then a 4 mm-diameter
trephination was made with a micro drill (Meisinger
LLC). A 4 mm coverslip (120~170 um thickness) was
positioned in the center of the craniotomy in direct
contact with the brain, topped by a 6 mm diameter
coverslip with the same thickness. When needed,
Gelfoam® (Pfizer) was applied around the 4 mm
coverslip to stop any bleeding. The 6 mm coverslip
was fixed to the bone with cyanoacrylic glue (Aron
Alpha®, Toagosei). A round metal chamber (6.1 mm
diameter) combined with a head-post was centered
on the craniotomy and cemented to the bone with
dental adhesive (Super-Bond C&B®, Sun Medical),
mixed to a black dye for improved light absorbance
during imaging.

After the implantation of the head-post and recovery
from the surgery, for 2 weeks mice were placed in
habituation cages with enriched environment, where
they learned to obtain water from an apparatus
similar to the automatically latching part of the
behavioural setup. Next, mice were placed under a
water restriction plan for 2 weeks, obtaining 3 ml of

water a day during the first week, and 2 ml during the
second, with a target of maintaining their body
weight at 75-80% of the initial weight. If at this or any
later point their weight dropped below the target
level, mice were given additional water
proportionate to the weight to be restored. After 2
weeks animals were moved to the training cages.

Behavioral training

During training, animals were housed in individual
cages connected to automated setups (Aoki et al.,
2017) (O’Hara & CO., LTD., http://ohara-time.co.jp/)
where two experimental sessions per animal per day
were carried out. Sessions were initiated by animals
themselves as they entered the setup and their head
plate was automatically latched. Animals were
trained in a 2AFC orientation discrimination task.
Two oriented Gabor patches (20° visual angle static
sinusoidal gratings, sf = 0.08 cpd, with randomized
spatial phase, and windowed by a 2D Gaussian
envelope with 4o equal to stimulus diameter) were
shown on the left and right side of a screen
positioned in front of the animal (LCD monitor, 25 cm
distance from the animal, 33.6cmx59.8 cm
[¥58° x 100°dva], 1080 x 1920 pixels, PROLITE
B2776HDS-B1, IIYAMA) at +35° eccentricity relative
to the body’s midline. Mice reported which of the
two stimuli was more vertical (more horizontal for n
= 12 animals; task details in “Phases of training”) by
rotating a rubber wheel with their front paws, which
shifted the stimuli horizontally on the screen. For a
response to be correct, the target stimulus had to be
shifted to the center of the screen, upon which the
animal was rewarded with 4 pL of water (amount
adjusted for a few animals with non-typical weight
and age). Incorrect responses were discouraged with
a prolonged (10 s) inter-trial interval and a flickering
checkerboard stimulus (2 Hz). If no response was
made within 10 s (time-out trials), neither reward
nor discouragement was given.

All trials consisted of an open-loop period (OL, 1.5 s)
during which the wheel manipulator did not move
the stimuli on the screen, and a closed-loop period
(CL: 0—10s) during which the wheel controlled their
position. Inter-trial interval was randomized (ITl: 3—
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5s). Stimuli appeared on the screen at the beginning
of the OL.

Phases of training

Training in the automated behavioral setup went
through three phases. First, the animal learned to
rotate the wheel manipulator and was rewarded for
consistent rotations to either side. During this phase
no visual stimulus was presented. In the next phase,
the animal was shown one vertical target (horizontal,
n =12), on one side of the screen chosen at random,
and was rewarded for movingitinto the center of the
screen. In the final phase, the animal was shown two
orientations, and had to move the more vertical
(horizontal) one into the center of the screen. Since
both stimuli moved synchronously with wheel
rotation, the non-target stimulus moved out of the
screen. In this phase, we sampled both orientations
at random from a range of angles between -90° and
90°, with 8 > 0 corresponding to clockwise and 8 <
0 — to counter-clockwise orientations relative to the
vertical (Fig. 1a). Orientations were initially sampled
with a minimal angular difference of 30°, i.e. with
specific angles from the set {-90°-60°-

Psychometric curve

We fitted the animal’s probability of making a right
choice P(R) as a function of task difficulty using a
psychometric  function (A6; a,B,y,4) =y +
(1 —y—21) F(AB; a, B), where F(x) is a Gaussian
cumulative probability function, a and 8 are the
mean and standard deviation, y and A are left and
right (L/R) lapse rates, A8 is the difference in the
angular distance to the vertical, AG = |6, — |6g|.
Confidence intervals were computed by
bootstrapping (n = 999).

Model design

On each trial i the animal was shown a pair of stimuli
{Or;, 0.i}, and made a right or a left choice 1}, which
we set by convention to be ;=1 or =0
respectively. We denote response and correct target
on the previous trial as 1,; and sy; respectively, with
i = —1 or r; = 1if the animal chose left or right
respectively, and s,; = —1 or sp; = 1 if the correct

30°,0°,30°,60°} (-90° and 90° are the same
orientation). As the animal’s performance reached
70% success rate on 5-10 consecutive days, we
increased the difficulty by sampling angles at 15°
angle difference, and later in the training —at 9°, with
one animal’s conditions eventually sampled at 3°.

Data selection

We analyzed trials from sessions in which the
average success rate was at least 60%, and the
proportion of time-out trials did not exceed 20%. We
only used animals that had reached the minimal
angular difference of 9°, and included the choice
data from preceding sessions with minimal
differences starting from 30°. We excluded the first
trial of every session, all time-out trials and every
trial that followed a time-out. The two dimensions of
the stimulus space were flipped for horizontal-
reporting animals when fitting our model. Same
stimulus space transformation was done for all the
population summaries where mice trained on
horizontal targets were pooled together with mice
trained on vertical targets.

answer was respectively left or right, and s,; = 0 if
targets had an equal verticality.

A choice in trial / was based on animal’s estimates
{Or;, 0;;} of the presented stimulus orientations
{Or;,0.i} - We model 6; and 6;; as random
variables distributed according to a posterior
distribution p(0, 8;) obtained after combining an
animal’s likelihood distribution over percepts p(x, y)
with prior terms p;,(x,y) and p;,(x,y) that model
choice bias and history-dependent bias respectively.
We reserve the (x,y) notation for the random
variables modelling percepts and biases, and (6, 8;)
to refer specifically to the posterior over animal’s
estimates, to which the decision rule is applied. We
model the likelihood as a product of von Mises
distributions p(x) and p(y) centered at fg; and 6;;
respectively, with additional angle estimation biases
(translational biases) by, b;, and with concentrations
Kgr, K;, (high concentration means smaller spread,
with k analogous to 1/0 of a normal distribution;
only k = 0 were allowed) (Fig. 2b,d):
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p(x) = C(KR)EKRCOS(x‘bR—QRi)
1
p(y) = C(KL)EKLCOS(y_bL—QLi) (1)

where C(k) = 1/2mly(k), and I, is modified Bessel
function of order 0. A bias prior p;, (x, ¥) thatinduces
choice bias for right or left stimuli, and a history prior
pr(x,y) that models choice dependency on previous
choice and stimulus (ry,; and sp;), are modeled as:

py(x,y) = Cg (}cb)e’cb(COS(x)—cos(y)) 2)
pr(x,y) = CF (i) ehirncost)—cos) (3

Here, K}, is a concentration parameter that regulates
the strength and sign of choice bias, K is a
concentration parameter of history prior, h; =
hgSpi + h,rp; determines the influence of the
previous stimulus sy; and choice ry; with respective
weights hg and h, fixed for a given animal, and C;, =
1/2mly(xph;) and C, = 1/2mly(kp) are
normalization constants.

Since by convention we set vertical orientation to
zero, the angle with the smaller absolute value is the
correct choice. Hence, the probability of choosing
right on a given trial is given by:

Optimization

To fit the model, we minimize the log-likelihood cost
function

L=— z r;log P(R); +
i=1..N (5)

(1 —r)log(1 = P(R)))

using MATLAB built-in function fmincon. At every
iteration of the optimizer we evaluated equation (4),
first computing values of all probability densities on
a grid of 300 by 300 points in the 2d domain
[—m, ] X [—m, 7], and integrating numerically using
MATLAB function trapz over |x| <|y| for the
numerator and over the whole domain for the
denominator. We ran these calculations on GPU
(NVIDIA RTX 2080Ti) using MATLAB Parallel
Computing Toolbox.

PR);=p(r;=1) =
p(165:1 < 1651 = “
ff|x|<|y| p(x, y)pp (x, y)pr(x, y)dxdy
II pCe, )b (6, )P (x, ¥)dxdy

Overall, the model has eight fitted parameters
( hy, hg, KR, Ky, Kp, br, by, Kp ), or five parameters
(g, KL, br, by, Kp) when we fit a history-free model.
All angles were converted from (-90°, 90°) range to (-
180°, 180°) to satisfy periodicity.

Our model design follows similar models of
perceptual inference(Girshick et al., 2011; Laquitaine
and Gardner, 2018; Stocker and Simoncelli, 2006)
with two distinctions. First, since our animals never
report point estimates of the observed
orientations—usually modeled as maximum a
posteriori (MAP)—estimates only enter our model as
not directly observed random variables. Second,
since all orientations in our study are presented at
100% contrast, without added noise or any other
form of stochasticity, and are displayed for the full
duration of the trial (11.5 s or less if the choice is
made earlier), we assume that the sensory evidence
given by a specific orientation is the same on all trials.

Success rate with a one-sided strategy

We estimated the success rate that animals could
reach when taking into account only one stimulus by
first computing P(R) for every trial using a model
where one concentration was set to zero and the
other one to \/kgzk, of that animal. We sampled
choices using the stimulus conditions as they
appeared in the experimental dataset 1000 times
and computed an average percent correct over
repetitions and an average across animals.

Maximum perceptual acuity

By analogy with a 1d psychometric curve, we defined
points of maximum perceptual acuity in the stimulus
space as conditions (pairs of angles) where the
change in P(R) was the largest for a small fixed
change in the stimuli. We found these conditions
from the probability surface P(R) given by the full
model by computing the squared norm of the
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2
gradient  vector, g(6,0.) = <%P(R)> +
R

2
<£P(R)> and selecting {0, 6.} conditions for
L

which the values of g were in the top 5%. Among
these conditions, we analyzed those with P(R) = 0.5
(0.48 < P(R) £0.52), which we call maximum gradient
conditions (Fig. 3c,h, white) with a pooled right-
choice probability of P%°. For n = 28 animals this
procedure gave at least 3 unique maximum gradient
conditions. For n = 12 animals, the initial criterion
gave fewer than three maximum gradient conditions,
and we expanded the allowed range to have at least
3: we set (0.47 < P(R) £0.53) for n = 7 animals, (0.46
<P(R)<0.54)forn=1,(0.42 <P(R)<0.58) forn=1,
(0.40 < P(R) £ 0.60) for n =1, (0.38 < P(R) < 0.62) for
n=1,and (0.28 <P(R) £0.72) for n=1.

We then determined the neighboring conditions by
changing one orientation at a time by 9°, which
resulted in an increase (“+”) or decrease (“-”) of P(R)
relative to P% (Fig. 3c). For example, P*
corresponded to the probability of right choice
pooled from all conditions in which 8 changed
relative to maximum gradient conditions in the
direction of P(R) decrease. Here, the stimulus space
was binned to a 9° grid. In a separate analysis, for an
animal with 3° condition binning, we changed both
orientations simultaneously by +-3°, “along” and
“against” the gradient of P(R), and obtaining P* and
P* respectively (Fig. 3h).

We tested that probabilities in the neighboring
conditions (P“, P*, PY, P* in case of 9°-binned
conditions, and P*, P~ in case of 3°-binned conditions)
were significantly different from maximum gradient
probabilities P*° using a two-tailed y? test with df =
1, and doing pairwise comparisons of right choice
frequencies, with a correction for multiple
comparisons. For a population summary (Fig. 3e) we
computed PY, P®, PY, PR with increasing angle
increments of 9°, 18°, and 27° and reported the
cumulative number of animals for which at least one
of the four probabilities was significantly different
from P%®, using a two-tailed y? test with df =1 and a
criterion a=0.05/4.

History biases during high and low
engagement

We first identified periods of high and low
engagement in every session. For a given session, we
computed a running estimate of the success rate in a
sliding window of 10 trials (average performance in
the window was assigned to the last trial of that
window). We centered the running estimate by
subtracting the mean success rate of the session. All
trials with the centered success rate estimate
exceeding a fixed threshold of 10% were labeled as
high engagement, and all trials in which the centered
success rate estimate was lower than -10% were
labeled as low engagement. We confirmed the
stability of our results using threshold values of 5%,
15%, and 20% (data not shown). When identifying
engagement epochs, time-out trials were counted as
failures, but we discarded these trials for all the
analysis that followed, consistently with the rest of
this study.

Next, we computed the log-likelihood L of outcomes
in high- and low-engagement trials (r" and r!
respectively) given the probabilities predicted by the
full model that accounted for trial history, and by a
history-free model fitted separately (p, and pg
respectively) (see Methods: Model Design). For
binary outcomes r and model-derived probabilities
p, we computed trial-wise the log-likelihood using
the formula L(r,p) =rlog(p)+ (1 —r)log(1l—
p) with stimulus conditions binned to a 9° grid.
Applying two different trial selections and two
different models we obtained L(r", py,) for the log-
likelihoods of high-engagement trial outcomes given
the model with history, L(rl,ph) for the log-
likelihoods of low-engagement trial outcomes given
the model with history, L(rh,po) for the log-
likelihoods of high-engagement trials given the
history-free model, and L(rl,po) for the log-
likelihoods of low-engagement trials given the
history-free model. We next computed the
differences of log-likelihood averages between
models with and without history terms, using high-
engagement trials, AL, = (L(r",p)) — (L(r", po))
and low-engagement trials, ALl=(L(rl,ph))—
(L@, po)), (Fig. 4d).
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Next, we computed the average of each of these log-
likelihoods across all trials for every pair of
orientations (6;,0z) thus obtaining maps of
(L(r*,p.))e as a function of orientations (6;,0g).
We discarded any stimulus conditions where the
number of trials was < 10. We computed the
difference between history-dependent and history-
free maps of (L(r*,p,))e separately for high- and
low-performance trials, i.e. ALpg = (L(r",pp))g —
(L(r"po)de  and ALy =(L(r',pn))e —
(L(rY,po)Ye , and for all trials together, ALy =
(L, pr)Ye — (L(y,po))g . For a population
summary (Fig. 4e) of ALy, ALpg, and ALy, we
normalized AL, maps of every animal by the
standard deviation across all stimulus conditions,
and averaged the resulting maps across animals.

Model comparison

AlC

We  compared the cumulative  Gaussian
psychometric model to our history-free model, and
the history-free model to the model with history
priors, using the Akaike Information Criterion (AIC)
defined as AIC = —2L + 2k where k is the number
of parameters (4 for Gaussian model, 5 for the
history-free model, 8 for model with history) and L is
the log-likelihood value of the best fit. We computed
L using the binomial log-likelihood formula

L= Z yin; log(p;) +n;(1 — y;)log(1 — p;)
i

+ log (}’7?7111)

where i corresponds to a 9°-binned unique stimulus
condition defined by (6,, 8z) for the history-free to
Gaussian model comparison and (6;, O, 13, S ) for
the history-free to the history-dependent model
comparison, y; is the proportion of successes, n; is
the total number of trials, and p; is the success rate
given by either one of three models. We computed
and reported AAIC = AIC(Gauss) —
AIC(HistFree) , and AAIC = AIC(HistFree) —
AIC (HistDependent) for the final quantification.

Fraction of explained deviance
To estimate how much explanatory power is gained
by fitting the history-free model in comparison to the

Gaussian psychometric model, and by the history-
dependent model in comparison to the history-free
model, we computed the fraction of explained
deviance. Deviance is defined as two times the log of
the ratio of the saturated model likelihood
1(61nax; ) to optimal model likelihood l(é; y)

L(Bmaxs
D = 2log (—(l(é' y)y)> (6)

where y are observations, O are estimated
parameters, and 6,,, are parameters of the
saturated model.

For binomial data, deviance is

D = Zz yin,; log (&) -
i Di

1-y;
1—y)ml

(7)

where y;n;is the number of successes for stimulus
condition i, n; is the number of trials, and p; is the
probability of success in condition i given by the
fitted model with parameters . For the cumulative
Gaussian psychometric function ¥(A8; a,fB,y,A) a
stimulus condition is defined by a pair of angles
{6, 6.} in a history-free model, and a pair of angles
with trial history {0, 0,5y, 7,} in a model with
history.

We first computed the deviance of the null model,
with the same P(R) = p,; rate for all conditions
(computed as a grand average P(R) across trials). We
then used the formula for deviance D (7), with p; =
DPnur When computing null deviance Dy, pi =
p;(HF) as predicted by history-free model when
computing history-free deviance Dyp, p; = p;(HD)
as predicted by the history-dependent model when
computing history-dependent deviance Dyp, and
p; = pi(Gauss) as predicted by the Gaussian model
when computing Gaussian deviance Dgqqss- Here a
condition i corresponded to a unique pair of
orientations (8;, 8z) when comparing the Gaussian
model with the history-free model, and to a pair of
orientations  together with  history inputs
(6., 0R,5K, 1) when comparing the history-free
model and the history-dependent model; the
fraction of right choices y; and the total number of
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trials per condition n; changed accordingly. We
computed the fraction of explained deviance (FDE)
for the three models as FDEyr = 100% - (D —
Dyr)/Dnun »  FDEyp =100% - (Dpun — Dup)/
Dpun and FDEgqyss = 100% - (Dnun — Dgauss)/
Dy, and finally we computed difference in the
fraction of deviance explained as AFDE = FDEyp —

FDE¢4uss of AFDE = FDEyp — FDEyg . For this
analysis, we trained each model on 50% randomly
sampled trials and computed deviances from the
other 50% of trials. We tested the significance of
AFDE > 0 for a population of animals using the
Wilcoxon signed rank test.
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Figure 1. Mice successfully learned a novel invariant orientation discrimination task. a. Top. Schematic of a mouse
during an experimental session. Middle. Epochs of one trial. OL — open loop, during which the wheel manipulator
did not move the stimuli on the screen, CL — closed loop, during which it could. Bottom. Convention for the angle
signs. b. Psychometric curve of an example animal. Solid line — best fit of the cumulative Gaussian psychometric
function, circles — data points, circle sizes represent numbers of trials, colors correspond to colors in d, gray circles
are data points not explicitly marked in d. c. Psychometric curves for all animals in the study, solid black line —
population average. d. Many orientation pairs give the same task-relevant information quantified by angular
separation or difficulty (Af). Conditions with a fixed A6 in the 2d stimulus space (colored lines) correspond to A@
conditions (circles) of the same color in b. Example stimuli for four branches of constant A8 (two branches for 18°,
and two for -18°) are displayed along the sides of the stimulus space map. Labels next to the images of orientation

pairs correspond to labels on the stimulus space map.
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Figure 2. The choice model characterizes individual biases and strategies, and predicts variation of performance
with reference orientation, as found in the data. a. Choice model schematic. The angles of two oriented Gabor
patches (white dashed lines, left column) are estimated as samples from circular distributions (density —in purple,
estimates — black crosses), their absolute values are measured as angular distances to the vertical and compared
between each other (middle column), which generates a choice. b. Distribution p(6x, 6;) of orientation estimates
asina, in 2d space, for (6;, 6g) = (30°,0°) (red cross) in an unbiased model with (kg, k;) = (2,2), and a sample
from this distribution (black cross). Probability mass inside the shaded areas (|6z| < |6;]) is equal to the
probability of right choice P(R). Dashed lines — distribution quartiles. c. Left. P(R) of model in b evaluated at all
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stimulus pairs (8, 8z ). Red and black lines — one example branch of AG = 18° and A@ = —18° respectively. Right.
P(R) along the branches of constant AB marked on the left panel with a red and black lines. d. Effect of model
parameters on animals’ likelihood distributions over percepts (top row), P(R) surface assuming uniform priors
(middle row), and the corresponding psychometric curves (bottom row); red crosses — distribution means before
parameter manipulation, green arrows — transformation of the distributions with parameter change; blue
psychometric curves — before parameter change, red curves — after. The center panel in middle column shows
P(R) values displaced relative to A6 isolines (solid black: example isoline for AG=15°). e. Choice priors p; (x,y)
with k;, equal to -1 (left panel; left choice bias) and 1 (right panel; right choice bias). f. Left. Population average
P(R) (n =40 mice) with one example branch of A8 = 9° and A6 = —9° marked with red and black lines. Right: P(R)
values as on the left panel (dots with error bars, mean * c.i.), and average of model predictions (black lines with
shaded areas, mean * c.i.) across all animals. See Supplementary Fig. 3a for P(R) of every animal. g. Example mouse,
left: P(R) of the fitted model, middle: P(R) along the red dashed and solid lines on the left panel predicted by the
model (lines) and computed from the data (dots with error bars, darker dots correspond to the dashed line), right:
P(R) along the black dashed and solid lines on the left panel, as predicted by the model (lines) and computed from
the data (dots with error bars, darker dots correspond to the dashed line). See Supplementary Fig. 4d for the
model of P(R) for every animal. h. Left: population summary of model parameters fitted to all mice (n=35; n=5
animals with k or k; estimated on the edge of the allowed range of values are excluded). Middle: ratio of
log(xr + 1) and log(x;, + 1) with the smaller of the two values divided by the larger value for each mouse (n=35).
Circles — individual animals. Box plot — population summary: red line — median value, box borders — 25" and 75"
percentiles, whiskers are up to most extreme parameter values, red crosses — outliers. Right: log(kxz + 1) and
log(x; + 1) across the population are significantly anti-correlated. Linear regression line for all animals together.
Red circles — 10 mice with best performance.
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Figure 3. Mice can reach an orientation acuity of 6°. a. P(R) model surface of an example mouse. b. |VP(R)|
absolute value of the gradient of P(R) surface in a. c. Four stimulus conditions (white) with | VP(R)| in the top 5%
of values and P(R) close to 0.5 (0.48 < P(R) < 0.52). Arrows of the same color show angle change yielding
neighboring conditions: P** (yellow; “L+” for left stim. change that increases P(R)), P** (green), P* (blue), P* (red).
Insets (right) show these conditions in the stimulus space. d. Pooled P(R) in maximum gradient conditions (white),
P%>=0.52 + 0.04, differs from P(R) in the four neighboring conditions P'*=0.67 + 0.04, p < 2.5 - 10* (yellow), P**=
0.63+0.05,p<2.5-103 (green), P=0.40 +0.05, p< 2.5 - 103 (blue), P*=0.39 £ 0.05, p < 2.5 - 10 (red) (binomial
confidence intervals, x* test, df = 1, n = 4 comparisons). e. Cumulative number of animals for which at least one
direction of angle change gives a P(R) significantly different from P°%, as a function of angle change. f,g. Similar to
a,b for an animal trained with 3° angle binning. h. Maximum gradient conditions (white, same criteria asin c), and
neighboring conditions obtained by changing both angles by £3° in the direction of P(R) increase (P*, red), and
decrease (P’ green). i. Pooled P(R) in three groups highlighted in h: P®>=0.52 + 0.04, P*= 0.69 * 0.07 (red), P =
0.36 + 0.05 (green), both different from P%° with p < 0.0005 (x? test, df = 1; n = 2 comparisons).
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Figure 4. The probability of choice is affected by the choice and reward on the previous trial, with a larger effect
during periods of lower task engagement. a. P(R) of an unbiased example model (kp, k;,Kp,bg, b)) =
(1.5,1.5,0,0,0) with a win-stay strategy (hs, h,, K'p) = (0.4,0.4,0.5); from left to right: [1] without history bias
(after a ‘neutral’ trial, (sp, 1) = (0,0)), [2] after a successful right choice (s,,1,) = (1,1) with P(R) biased to the
right choices as a result, [3] after a successful left choice (sp,1,) = (—1, —1) with P(R) biased to the left choices,
[4] psychometric curves corresponding to [1-3]: without a history effect (black), after a correct right choice (red),
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after a correct left choice (blue). b. P(R) of an example animal with large history biases (hg, h,) = (—0.26,0.55)
(lose-stay strategy); from left to right: [1] average P(R) on all trials, [2] P(R) after an unsuccessful right choice
(sn,m) = (—1,1) biased to right choices, [3] P(R) after an unsuccessful left choice (sp, 1) = (1, —1) biased to
left choices; P(R) of all conditions in [2] and [3] with fewer than N = 5 trials was set to the average P(R) of its
neighbors; [2] and [3] are conditioned on preceding errors and thus had a relatively low number of trials since the
performance of all mice exceeded a 65% success rate, [4] psychometric curves of the corresponding surfaces,
colors asin a. c. History weights (hg, h;-) and corresponding strategies of all animals (4 outliers not shown); “stay”
and “win-stay” strategies are predominant, with few examples of “lose-stay”. Blue circles — animals trained to
detect a more vertical orientation, red circles - more horizontal orientation. d. Increase in the log-likelihood due
to inclusion of history terms is larger for low-engagement trials than high-engagement trials. Abscissa — difference
(ALp ) between average log-likelihood under the model with history (py) and without history (pg) of high-
engagement trial outcomes (r"), AL, = (L(r",p)) — (L(r", o)), ordinate — difference (AL;) between average
log-likelihood under the model with and without history of the low-engagement trial outcomes (y;), AL; =
(L(rY, pr)) — (L(1%,po))- e. Increase in the log-likelihood due to inclusion of history terms changes with stimulus
conditions and engagement modes; left to right: [1] ALy — average log-likelihood difference for every stimulus
condition, ALy = (L(r,pp))e — (L(r,po))e, all trials are taken, maps are Z-scored and averaged across animals,
conditions with fewer than 10 trials are excluded, [2] AL,g — same value computed for high-engagement trials
only, [3] AL;g — same value computed for low-engagement trials only.
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Supplementary Figure 1. A high number of trials was collected from n = 40 animals. a. Total number of trials collected for all animals. b. Population-average
number of trials for every stimulus condition (pair of angles); color bar — number of trials, log scale. c. Median number of trials across conditions for every
animal. d. Number of trials for every stimulus condition and every animal, axes as in b; number in black square - animal ID, the same as in Supplementary
Figure 3 and Supplementary Table 1.
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Supplementary Figure 2. Performance is invariant relative to size and spatial frequency transformations
of the stimulus. a. Correct rate as a function of trial easiness |A8|, comparing 3 sessions (divided into 6
groups of trials—one dot per group, dots may overlap—with ~75 trials/group) before a change in spatial
frequency of the gratings (red dots) and after the change (blue dots) (spatial frequency, SF =0.008 -> 0.016
cpd for mouse A, left panel, and SF =0.0016 -> 0.032 cpd for mouse B, right panel). Open circles for correct
rates {0, 1}. Data for the right panel (mouse B, minimal angular difference 3°) was grouped into 9° bins to
improve visualization. For statistical comparison, we compared binned data (non-overlapping 18° bins)
from before vs after conditions and found no significant difference (p > 0.05, Wilcoxon rank-sum test). b.
Psychometric curves from 3 sessions before (red) and after (blue) changing the spatial frequency of stimuli.
Same data as in a, used as right/left choices; dots for average P(R) as in the data; dotted lines for the fits;
colored bands for bootstrap confidence intervals. c. Comparison of fitting parameters: slope, lapse rate,
and bias, before and after changing spatial frequency of stimuli (mean + s.e.m., n =2 mice, n.s. for p > 0.05,
and “*'for p < 0.05, unpaired t-test for individual animals, paired t-test for comparison across animals). d-f.
Same as a-¢, but for changes in stimulus size (20° -> 25° visual angle, n = 2 mice B, C). Data sampled at 3°
angle difference has been grouped into 9° bins to improve visualization. Left panels: statistical difference
for |AB| bin = 18° (*'for p < 0.05) reflects an improvement in the performance after changing stimulus size.


https://doi.org/10.1101/2020.12.20.423700
http://creativecommons.org/licenses/by-nc-nd/4.0/

deg

left orientation 6

left orientation 6, deg

-90
-90 -45 0 45 90
right orientation 6, deg

~ 90K
45
0
-45
-90

-90 -45 0 45 90
right orientation 8, deg

vertical target

1 Prob.
choose
right, S
P(R) -E
c
0.5 _g
S
=
R}
0
90 45 0 45 90
right orientation
e average, mice with
vertical target 1 Prob.
choose
c right, ©
2 PRI 2
8 8
& 05 &
1S o
= =
K} Qo
0 0
-90-60-30 0 30 60 90
1 right orientation
Prob.
choose
right,
P(R)

average, mice with C average, mice with

o horizontal target 4 Prob.
choose
right,

45 P(R)

0 0.5

-45

-90 0

90 45 0 45 90
right orientation
f average, mice with

%0 horizontal target 1 Prob.
choose
right,
P(R)

0.5

0
-90-60-30 0 30 60 90
right orientation

Supplementary Figure 3. Choices of mice are largely determined by the rewarded side in the two-dimensional stimulus space, and choice model recapitulates
choice probability. a. Probability of right choice, P(R), for all mice. Stimulus conditions are binned to 9°. Color limits are the same in all panels and in b-c. Animal
IDs (number in a black square) are as in Supplementary Figure 1 and Supplementary Table 1. b. Average P(R) across animals trained to find a more vertical orienta-
tion. c. Average P(R) across animals trained to find a more horizontal orientation. d. Model P(R) surfaces for every animal, same color bar on all panels, and as in e
and f. e. Average P(R) surface of all animals trained to find the more vertical target. Dashed lines at P(R) values of 0.25, 0.5, 0.75. f. Average P(R) surface of all animals

trained to find the more horizontal target.
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Supplementary Figure 4. History priors can represent many possible strategies, and affect choice probability ,
P(R), by shifting the probability density p(x, y) inside or outside the |x| < |y| region a. Probability density (p.d.,
shown by color saturation) p(x, y) (Methods, Eq. 1) induced by stimuli (6, 6) = (30°, 60°) (red cross) in a model
withk. =k =2,b.=b =0, and k = 0; dashed lines show distribution quartiles. b. History prior p, (x, y) (Methods,
Eq. 3) corresponding to the win-stay/lose-switch strategy, (h, h) = (0, 1), with k=5, and four possible target-re-
sponse combinations (s, r,) on the previous trial. Top to bottom: (s, r,) = (R, R); (R, L); (L, R); (L, L). c. Posterior p.d.
p(6, 6): normalized product of p(x, y) and p, (x, y) before integration over |x| < |y|, with (s, r,) same asinbin the
same row. d. probability of right choice P(R) for (6, 6)=(30°, 60°) with and without history bias. e. P(R) with strat-
egy for all (6, 6)) corresponding to (s, r,) in b in the same row. f. History priors p, (x, y) for five example histo-
ry-based strategies (columns) shown for all four possible combinations of target and choice on the previous trial
(rows); k, = 1in all cases.


https://doi.org/10.1101/2020.12.20.423700
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: httpg //doijorg/10 709; this vger ]on posted February 1%; 2021. The copyright holder for this preprint
e

(which was not certified Igpge eview) 1 who has grinted bioRxiv a licens display the preprint in perpetuity. It is made
p rlaCGeBY-NC- ND 4mr tional ||ce8566.
£ o g { = L]
|5 04 Q0.4 %LL di/ﬁ
— L T
S - 3 7
o 02 02 0.2t
b ]
0!l 0 ———
45 0 45 0 20 40 60 80 0 2040 60 80
right orientation 8,, deg 6., deg 8., deg

Supplementary Figure 5. Variation of P(R) with reference orientation 6__ is larger in the data than in the
model. Left. Example mouse, selected here for its low translational bias and approximately equal concen-
trations for right and left stimuli, which results in a regularly shaped P(R) dependency on 6 _ (cf. Figure 2c).
Center and right. P(R) along 6 , for the AB = const conditions marked on the left panel, as predicted by the
model (lines) and as in the data (dots with whiskers). Dots of a lighter shade (orange, light blue) correspond

to the solid lines.
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ID N trials ID N trials ID N trials ID N trials
1 82065 11 38624 21 30078 31 18637
2 76488 12 38583 22 29646 32 17624
3 66929 13 38263 23 28228 33 15681
4 63074 14 37961 24 27659 34 13006
5 58747 15 37189 25 27425 35 11893
6 56392 16 36422 26 25509 36 11885
7 48118 17 33938 27 22222 37 11465
8 46872 18 33003 28 20926 38 10069
9 45415 19 32946 29 20113 39 5602

10 39673 20 30988 30 19406 40 4591

Supplementary Table 1. Total number of trials per animal.“ID” columns show animal identification num-
bers as in Supplementary Figures 1 and 3,“N Trials” columns show total number of trials of the correspond-
ing mouse used in the analysis throughout the paper.
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