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ABSTRACT: 

In a world where researchers are more and more confronted to large sets of micro- data, new algorithms are 

constantly developed that have to be translated into usable programs. Modular GIS toolkits such as GRASS GIS 

offer a middle way between low-level programming approaches and GUI-based desktop GIS. The modules can 

be seen as elements of a programming language which makes the implementation of algorithms for spatial 

analysis very easy for researchers. Using two examples of algorithms in economic geography, for estimating 

regional exports and for determining raster-object neighbourhood matrices, this paper shows how just a few 

module calls can replace more complicated low-level programs, as long as the re- searcher can change 

perspective from a pixel-by-pixel view to a map view of the problem at hand. Combining GRASS GIS with 

Python as general glue between modules also offers options for easy multi-processing, as well as supporting the 

increasingly loud call for open research, including open source computing tools in research. 

                                                           

* Corresponding author 
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1 Introduction 

Science is constantly evolving and new indicators and analyses have to be developed. All to often, researchers 

reinvent the wheel by programming their algorithms in low-level code. This can possibly make this code very 

machine efficient if it is coded correctly, but it can also lead to a waste of time and energy that could better be 

spent on the content instead of the programming. Obviously many efforts to wrap existing, and well-tested, 

routines into libraries and other forms of packages exist, and most researchers use those. In spatial sciences, 

however, it seems that re- searchers often either use very high-level GUI-oriented desktop analysis systems, or 

they use fairly low-level systems, such as, for example, the fiona and rasterio Python libraries or their equivalent 

in other programming languages. 

In the FOSS4G ecosystem, there is a middle species, though: tools that are composed of multiple command-line 

modules that can be chained to form very efficient work processes. In this approach each module can possibly be 

viewed as a very high-level programming function, but since they exist as independent executables, these 

modules can very easily be chained using standard shell scripting, thus easily building complex applications. 

Examples of such modular systems are OS- SIM, SAGA, the Orfeo Toolbox, to a certain extent the GDAL and 

OGR command line tools and others. One of the oldest of these toolboxes is GRASS GIS. 

The use of such existing, and highly optimized, bricks, which, in this context, can almost be considered as the 

elements of a “programming language” of their own, allows to quite rapidly construct a program for calculating 

desired spatial indicators, generally using some general-purpose programming language as glue. One can, 

therefore, concentrate on the higher-level logic and not on the concrete implementation. The modular structure, 

with each module being its own executive, makes the programs chaining them particularly robust, with failure in 

one module not necessarily meaning failure in the rest. It also provides an easy entry point to speeding up 

analyses through high-level parallel processing. In addition, the fact that all the components are open source 

allows to possibly adapt them if necessary, but, more importantly in a research context, allows to control how 

they work. 

In this article I, thus, argue that using existing FOSS4G modular software al- lows the researcher in economic 

geography to easily elaborate efficient analyses on large datasets without having to focus on every aspect of 

programming. I present two examples of algorithms useful in economic geography (and other spatial disciplines) 

that were easy to code using a modular system such as GRASS GIS: the main example concerns the elaboration 

of new indicators for estimating regional exports based on firm micro-data. A second, small, example covers 

calculating a neighborhood matrix for raster objects. I begin by presenting the tools more in detail. I then explain 

each of the two use cases and the way they were implemented in GRASS GIS. 

2 The tools 

2.1 A modular GIS for efficient raster processing and projection handling 

GRASS GIS (Neteler et al., 2012) is a generalist GIS software package that has been under constant 

development for over 30 years. Although it now offers very sophisticated vector handling, at its origin it was 

almost purely raster based and as such its raster routines have known a constant scrutiny and improvement over a 

long period of time. Because of this history, with much of the code written in times of much lower machine 

performances, many of these routines are particularly memory efficient and can thus easily handle large data 

sets. 

GRASS GIS can be used as a straightforward desktop GIS, but its aforementioned modular structure invites the 

user to construct targeted applications through chaining of module calls. Two elements make the use of a GIS 

toolbox such as GRASS GIS particularly interesting for economic geography, especially when working in 

continuous space: i) handling location, space and projections and ii) existing (efficient) matrix/raster processing 

routines. 

By definition economic geography studies the spatial aspect of economic production and development. In that 

context the notions of location and distance take up particular importance. Many theoretical economic geography 

studies use abstract representations of space, often only including a virtual distance in a virtual plane, without 

real localisation. Empirical studies on real firms in real space, however, need to be localised using the relevant 

coordinate systems: either non- projected latitude-longitude coordinates in degrees on a given ellipsoid or 



 

 

projected coordinates in meters on a plane defined by a specific projection system. Often different sources 

provide their data in different projection systems and data has to be reprojected from one to the other in order to 

be able to combine these different sources. Handling such projection issues is not easy, and errors can lead to 

wrong results, including erroneous distance measurements. As most of the FOSS4G ecosystem, GRASS GIS 

relies on a well-tested and constantly peer-reviewed open source system of projection handling, proj.4, and 

provides sophisticated options for projection management. Instead of having to worry about these issues on 

library level, the researcher can thus rely on these tools to provide the necessary processes with sufficient 

accuracy. 

The second advantage of using GIS software when working in continuous space is the existence of routines 

handling raster data as a whole, including raster data that do not fit into the computer’s memory. Using modules 

as bricks the researcher does not have to worry about the individual treatment of pixels, nor about processing 

data in chunks (row-tiles or tiles). GRASS GIS has particularly excellent memory handling, using something that 

can be considered as disk-based external memory. Implementing such routines from scratch is quite complicated 

and thus, using well-tested existing tools avoids reinventing the wheel. 

2.2 The glue: Python 

Although one can use any shell scripting language to elaborate processing chains by combining modules, 

GRASS GIS specifically proposes a simple python scripting API that allows to call the individual GRASS GIS 

modules from within a Python script. This allows combining the power of the GRASS GIS modules with the 

ease of an interpreted language such as Python for the necessary glue and house-keeping. Python is open-source, 

widely used and well-documented, notably in the geospatial community, and I will not present generalities here. 

Two Python libraries, however, were particularly useful in the context of this study: the GRASS Python scripting 

API and the multiprocessing module. 

2.3 The GRASS Python scripting library 

GRASS GIS provides two Python application programming interfaces (API) to its functionalities. A very simple 

Python scripting API which mainly aims at easing calls to GRASS GIS modules from Python code, and in 

addition adds a small series of specific convenience functions, and a more sophisticated, more low-level, API 

which provides access to internal C-function via ctypes, in addition to higher-level module access (Zambelli et 

al., 2013). Both allow to easily chaining GRASS GIS modules while profiting from a more sophisticated 

scripting language than those offered by standard command line shells. 

In the examples here, I use the simple scripting API, essentially the run command(), read command(), parse 

command(), etc functions that allow to launch a GRASS GIS module and, if relevant, to capture its output. The 

core modules used in the central algorithms can all be called through run command(). Other smaller tasks, such 

as calculating the total sum all pixel values or collecting individual pixel values, can be done by calling read 

/parse command, loading the result into Python variables that can then be treated through Python tools. 

For the scientific programmer this API is particularly easy to use as the translation from the command-line usage 

of the GRASS modules to the GRASS Python scripting API is very straightforward. A classic development flow 

would therefore start with interactive usage of GRASS GIS modules, possibly via the graphical user interface, to 

go on to the assembly of these modules into a simple shell script to then be finalised in a more complete python 

script (possibly a new GRASS module) using the API. Another alternative is to construct the script using the 

graphical modeller which provides the option to export the process as a Python script. 

The accelerator: Simple parallel processing using Python’s multiprocessing module 

Researchers have to handle ever larger data sets. Very sophisticated environments and tools exist for high-

performance computing dealing with really “big data”. There are data sizes, however, which push the normal 

desktop computer to its limits, but for which the use of complex distributed file systems and cluster computing 

seem a bit overkill. Through its already mentioned memory handling, many of GRASS GIS’ raster routines are 

mostly CPU-bound, not memory-bound. Using the increasing number of cores in standard desktop machines, 

can thus provide an easily accessible approach to significantly speed up processing time. 

This is where the Python multiprocessing module comes in. It makes it easy to distribute the computation load 

across multiple nodes. It does not provide multithreading, but allows to launch parts of a Python script as 

multiple parallel processes. This allows to do high-level parallel processing, enough to gain significant 

calculation speed for medium to large datasets. The modular structure of toolboxes such as GRASS GIS, provide 

an excellent opportunity to divide tasks into separate processes. Thus, without any advanced programming 
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knowledge and using just a few simple calls to the Python module’s functions, one can easily spread the work- 

load amongst the increasing number of cores on the typical desktop machine, but also amongst the much larger 

number of cores available in university computing centers. 

3 Example 1: Elaboration of new indicators for flexible-scale estimation of 
exports 

3.1 Continuous space analysis in economic geography 

Economic geography has long used, and still is using, aggregate data, mostly in administrative units. Such data is 

generally easily available and, through its aggregation, does not represent a heavy data load. Many indicators 

have been developed for such aggregated data and much useful information has been extracted from such 

indicators. 

It has been known for a long time, however, that such aggregated data can cause a series of issues, non the least 

of which the modifiable areal unit problem (Briant et al., 2010; Gehlke and Biehl, 1934; Grasland and Madelin, 

2006; Openshaw, 1983). Some voices plead for a renewed economic geography based on continuous-space 

analysis of data. Tobler and Grasland et al., as well as, and more specifically in the field of economic geography, 

Arbia, all propose the use of continuous space in order to transcend the issues raised by discrete boundaries, or 

the use of the flexibility of aggregation provided by point-located micro-data (Arbia, 2001a; Arbia et al., 2009, 

2014a; Grasland et al., 2000; Tobler, 1979, 1989). 

Micro-data forms the basis of such analyses and more and more analyses exist based on such data. As stated by 

Grasland and Madelin, “the access to individual data is of course the ideal situation, not because the individual 

level is in all cases the most appropriate one to observe or model a phenomenon, but mainly because it gives the 

choice to observe information at all possible levels and for all forms of spatial partitions” (Grasland and 

Madelin, 2006, p. 26). Examples of the use of such micro-data include birth, survival and growth analysis of 

firms (Arbia, 2001a; Arbia et al., 2014a, 2014b), clustering (Boix et al., 2011), the link between agglomeration 

and exports (Farole and Winkler, 2013; Koenig, 2009) and the heterogeneity literature (Bernard et al., 2012; 

Greenaway and Kneller, 2007; Melitz and Redding, 2015; Redding, 2011). However, dealing with such data 

creates new challenges for analysis, such as the development of new forms of analysis in continuous space, but 

also more practical challenge of dealing with geocoding the data and treating large amounts of data in an 

efficient manner. This is where the use of existing GIS tools can facilitate the work of the researcher. 

3.2 Estimation of regional exports 

Depending on the country, we have more or less precise data about international exports of firms, even at 

regional level. However, we know little about the pro- portion of the economic production that is exported to 

other regions in the same country. 

Generally, estimates of the share of exported production are based on notions of concentration, most notably on 

location quotients, or derivatives thereof. Such approaches are often severely criticized (Isserman, 1980; 

Richardson, 1985), but are nevertheless subject to ongoing research and use (Billings and Johnson, 2012; 

Crawley et al., 2013; Strotebeck, 2010; Tian, 2013), because of their simplicity, but also because of a lack of 

credible and feasible alternatives. One of the biggest issues with concentration based analyses is the issue of the 

size of the space for which concentration is measured, often leading to the already mentioned modifiable areal 

unit problems (Arbia, 2001b; Tiebout, 1956). 

In order to avoid such problems, in line with the literature analyzed above, I propose to work in continuous space 

using micro-data by adapting two existing indicators to the estimation of regional exports, based on existing 

work by Huff (1964) and by Marcon & Puech (2010). The details of these new indicators are explained 

elsewhere (Lennert, 2015), so I will only present them briefly and concentrate here on the practical 

implementation of their calculation. 

3.3 Huff-like indicator 

Huff (1964) defined his famous model in the context of market area and market share analysis. It relates the sales 

capacity of a given unit j (measured in number of employees) to the sales capacity of all sales units in the 



 

 

reference space, weighted according to their distance to the point i in space considered. The result gives the 

probability of resident at point i to consume at sales unit j: 

 

 

𝑃𝑖𝑗 =
𝐴𝑗 𝐷𝑖𝑗
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I propose to use the same equation, but for all production units of a given sector, not only for retail, following the 

already mentioned basic idea that the more the production of a sector is concentrated in comparison to the 

consuming population the more this production is exported from the producing regions to other regions in the 

country. Consuming population can be employment, resident population or income, total production or any 

combination of these in order to combine intermediate and final consumption. In addition, this consuming 

population can be corrected by the relative trade balance of the sector at national level in order to take into 

account the amount of production that is exported or imported. In the following, however, I will concentrate on 

the simple version of the indicator as the mentioned additions do not change the fundamental logic. 

The following algorithm represents the practical translation of the indicator into program flow: 

 For each economic sector (NACE): 

 Extract all vector points representing firms of that NACE 

 Get γ of NACE (see below for details) 

 For each firm: 

o For each pixel: 

 Calculate distance to that firm 

 Calculate distance-weighted attraction to firm 

 For each pixel calculate sum of attractions to all firms 

 For each firm: 

o For each pixel: 

 Calculate probability of that pixel to buy products of firm 

 Calculate population of that pixel that buys products of firm 

In the absence of empirical data, the choice of per-NACE γ coefficients is somewhat arbitrary, even in the 

original Huff model. For this exercise I simply linearly scaled the γ per NACE between 0 (no influence of 

distance) and 2 (very local sales area) depending on the distance between all points (pixels) in the total covered 

space and production units of that NACE. See the annex for the detailed algorithm. 

In order to then analyze regional exports, several options are now open from there. One can: 

 Calculate for each point in space the proportion of its population catered to by a specific area in space 

 Calculate total population that is supplied by firms of given spatial units, possibly comparing that population 

to the resident population of these spatial units to deduce exports (thus going back to spatial aggregation, but 

after having calculated the spatial concentration in continuous space). 

3.4 The modified Marcon-Puech indicator 

Marcon & Puech (2010) propose a function, called the M function, that can be considered as a local location 

coefficient in varying radius reference spaces. The authors use it to measure the average spatial concentration of 

industries in a given sector. The function is defined as follows: 

 

𝑀𝑠(𝑟) =

∑ (
∑ (𝑐𝑠(𝑖, 𝑗, 𝑟) ⋅ 𝑤𝑗)𝑗≠𝑖

∑ (𝑐(𝑖, 𝑗, 𝑟) ⋅ 𝑤𝑗)𝑗≠𝑖

)𝑖

∑ ((𝑊𝑠–𝑤𝑖) (𝑊–𝑤𝑖)⁄ )𝑖
 

where i,j = firms, r = radius, s = sector, c = neighborhood function [0,1] within a given r, w = weight of firm (e.g. 

employment), W = total sum of weights. 
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One can either run this program with a different radius for each sector depend- ing on the general geography of 

its production units (similar to the γ coefficient in the Huff-model), or with a fixed radius for all sectors, possibly 

testing for the effect of distance by looping through a series of fixed radii around the production units and 

estimating trade balance or export employment rate by pixel for each radius. 

In order to estimate exports, I rewrite their equation in line with Isserman’s modification of the classic location 

quotient (Isserman, 1980): 

𝑋𝑠𝑟 = (𝐿𝑠𝑟 𝐿𝑠𝑛⁄ − 𝐿𝑟 𝐿𝑛⁄ ) ⋅ 𝐿𝑠𝑛, 

where 𝐿𝑠𝑟 = ∑ (𝑐𝑠(𝑖, 𝑗, 𝑟) ⋅ 𝑤𝑗)𝑗 and𝐿𝑠𝑛 = 𝑊𝑠.. 

Again, one can refine this equation with the introduction of different measures of consumption and by taking 

into account the sectors relative international trade balance, but I will not do that here. 

Translating this equation into algorithmic logic gives the following program flow: 

 For each NACE: 

 Create a raster map with sum of employment per 1km pixel 

 Determine radius of reference space 

 For each pixel (and the respective reference space around the pixel): 

o Calculate total employment in that NACE within the reference space 

o Calculate total employment of all NACE combined within the reference space 

o Estimate employment trade balance within the reference space based on location quotient 

(in comparison to national rates) 

o Possibly: If trade balance is > 0: Calculate total export employ- ment of the pixel by 

multiplying export employment rate by the total employment in that pixel 

3.5 Translating these equations into GRASS GIS “language” 

This section presents the practical implementation of the above theoretical developments in GRASS GIS. For 

each indicator, I present the modules used in the core of the analysis. I do not present the complete program 

flow, including general input output handling and intermediate storage of results, but only the part which 

implements the fundamental elements. In order to ease readability, I also do not present the code in its Python 

API form, but as pure GRASS module calls. The entire source code of each example of these export estimation 

indicators as well as the code for a more sophisticated evolution of the Huff-like indicator into a doubly-

constrained spatial interaction model can be found at https://github.com/mlennert/RegionalTradeModel/. 

3.6 Huff-like indicator 

For the Huff-like indicator, the first loop across all pixels to calculate the distance- weighted attraction to a given 

production unit (i.e. the nominator in equation 1) was easily calculated with fundamentally two module calls for 

each production unit: 

r.grow.distance MapOfFirm output=distance 

r.mapcalc "PerPixelAttractiveness = NbrEmployees / (distance^gamma)" 

Here, distance is a map with for each pixel the distance to the production unit. r.mapcalc is a map 

calculator that applies the given formula pixel by pixel, with NbrEmployees and gamma available 

respectively for each production unit or for each NACE code. 

In order to calculate the share of the population of a pixel that is catered to by a specific production unit, again 

only very few module calls are necessary: 

r.series file=ListOfAttractivenessMaps method=sum output=TotalSum 

For each production unit: 

 r.mapcalc "PerPixelShare = PerPixelAttractiveness / TotalSum"  

 r.mapcalc "PerPixelConsumingPopulation = PerPixelShare *  

    PerPixelPopulation" 

r.series creates a map with pixel-by-pixel aggregate statistics of all input maps which are given here through 

a text file ListOfAttractivenessMaps that contains a list of all relevant map names. 



 

 

The rest of the code is mostly just logistics (extracting the point of location of each firm from a vector map, 

transforming to raster, correcting the distance measure for the pixel in which the firm is located, compiling the 

text file with the list of input maps, etc) or housekeeping (taking stock of the existing maps, erasing temporary 

maps, etc). 

3.7 The modified Marcon-Puech indicator 

As for the Huff-like indicator, the main core of the calculation of the Marcon- Puech-inspired indicator consists 

of only three module calls, based on existing per-NACE maps of total employment per pixel: 

r.neighbors input=EmploymentPerPixelPerNACE method=sum nsize=radius \  

  output=NaceEmploymentNeighborhood  

 

r.neighbors input=TotalEmploymentPerPixel method=sum nsize=radius \   

  output=TotalEmploymentNeighborhood  

 

r.mapcalc "ExportEmploymentNeighborhood = \ 

  (NaceEmploymentNeighborhood / NaceEmploymentReference - \     

  TotalEmploymentNeighborhood/TotalEmploymentReference) \   

  NaceEmploymentReference" 

The module r.neighbors provides a map with moving window stats for each pixel in the radius nsize 

expressed in number of pixels. 

3.8 Parallelization of the processes 

For both of the above routines, where each calculation has to be done NACE by NACE (and sometimes even 

firm by firm), parallel processing can significantly increase processing speed, thus allowing to upscale the 

analyses to even larger data sets. Parallel processes fetch the next non-treated NACE code in an input queue 

listing of all sectors to be treated, launch the necessary processing and either add alphanumeric results to a result 

queue, or just create new output maps. The fact that each module call can be launched as a separate process, as 

each GRASS GIS module is an autonomous executable, this very high-level approach is straighforward to 

implement, by adding just a few lines of code. As much documentation exists, I will not go further into details 

here. The code will be in the complementary material accompanying the final version of the paper. 

4 Example 2: Calculating neighborhood matrices of raster objects 

The notion of proximity is central in spatial analysis and very much so in economic geography. Tobler’s first law 

of geography states that “everything is related to everything else, but near things are more related than distant 

things” (Tobler, 1970). Many models in geography are based upon this law and many tools exist to evaluate the 

importance of proximity, notably spatial autocorrelation (Geary, 1954; Moran, 1950). In many of these analyses, 

the notion of neighborhood plays a particularly important role. Tools already exist in FOSS4G environments for 

the elaboration of neighborhood matrices. In GRASS GIS, the addon module v.neighborhoodmatrix does just 

that for vector polygons, profiting of the topological nature of the internal vector format (Lennert and GRASS 

GIS Development Team, 2014). R’s spdep package provides flexible options for analyzing neighborhood 

relations (Bivand et al., 2013; Bivand and Piras, 2015). However, none of these seem to take into account the 

situation where objects (i.e. clumps of pixels) are represented in raster maps. Such objects can obviously be 

vectorized and submitted to vector-based algorithms, but sometimes going through such an extra step can be 

computation- ally intensive. In the context of the elaboration of tools for object-based image analysis for GRASS 

GIS, the need thus arose for the elaboration of a tool that can provide a neighborhood matrix of raster objects. In 

this, very brief, section I show how this was implemented in the form of a new publicly available addon module 

r.neighborhoodmatrix (Lennert and GRASS GIS Development Team, 2016). 

Raster objects are defined by clumps of adjacent pixels that have the same pixel value. This value is considered 

the object id. The algorithm to determine a neighborhood matrix based on such maps is quite simple: 

 For each direction (4, 8 or even more): 

o For each pixel i: 

 Check if neighboring pixel value Vj ! = Vi  

 If true: add i, j to the list of neighbors  
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 If false: ignore 

The practical implementation of this algorithm in GRASS GIS is again also very straightforward and consists in 

basically two module calls for each direction: 

r.mapcalc "NeighborMap = if( \ 

  OriginalMap[NeighborhoodModifier] != OriginalMap, \  

  OriginalMap[NeighborhoodModifier], \ null())"  

r.stats -1n input=OriginalMap,NeighborMap 

The r.mapcalc call has to be read as follows: if(expression, then, else). For a 4-direction analysis, 

NeighborhoodModifier is one of [0,-1], [0,1], [1,0], or [-1,0], representing respectively the left, right, 

upper and lower neighbor. Each pixel in NeighborMap thus contains the id of the neighbor if it is different, 

and a null value otherwise. 

With the '1' flag set r.stats exports pixel values one by one and if more than one map is given as input (as is the 

case here) each output row contains the values of the equivalent pixels of all input maps. The 'n' flag instructs it 

to ignore null values, thus only taking into account those pixels that actually are on the border between two 

objects. The GRASS Python scripting API’s read_command() function is used to capture the output of 

r.stats into a Python list which is filled direction by direction. As the result of these two module calls is 

pixel by pixel, and not object by object, as well as direction by direction, the list contains multiple entries of 

neighborhood pairs. A last step thus consists in uniquifying the list of neighborhood relations. This can be done 

by a simple Python call:  

  unique_neighbors = list(set(neighbors)) 

The rest of the code just handles general input and output. This second small example shows, again, how the use 

of a modular GIS tool- box such as GRASS GIS, allows to code algorithms in a very high-level language which 

takes away all of the hassle of handling the spatial data in detail. In order to accelerate the process, it is obviously 

possible to divide the per-direction r.mapcalc and r.stats calls amongst several computational cores. Again, this 

can be done very easily using Python’s multiprocessing module. 

5 Conclusion 

The main aim of this paper was to show that using the modules of a modular GIS toolbox such as GRASS GIS 

(or others such as SAGA or Orfeo Toolbox for image processing) as bricks allows to very easily and quickly 

construct more elaborate spatial analyses. As mentioned, the modules can be envisioned as elements of a 

particular programming language. In combination with a more general-purpose language such as Python, very 

sophisticated applications can be built quite easily. 

The main difficulty, in my experience, is to change the paradigm of thinking from an individual data point for 

data point (in this case pixel for pixel) perspective to a map perspective, trusting the GIS modules to handle the 

looping across all of the data. Once this change of perspective is realized, what used to seem complicated 

algorithms suddenly become quite easy to implement. 

GRASS GIS’ excellent memory handling in its raster modules, fruit of its long history and some significant 

revisions along the way, brings the additional added value of freeing the researcher of having to deal with the 

memory issues raised by large data sets. GRASS GIS modules can process gigabyte-heavy datasets while only 

using a few hundred megabytes of memory. 

For CPU-bound applications, the combination of the modular approach, potentially treating each call to a GIS 

function as a separate process, allows the use of very simple parallelization strategies, such as Python’s 

multiprocessing module. This approach cannot always rival with specifically programmed, targeted multi-

threaded routines, but it can be a very good compromise between the need for upscaling and the limited time and 

energy available for programming. 

Thus, as soon as the analysis the researcher aims to implement goes beyond the standard set of tools a normal 

spatial analysis or GIS package provides, combining modular elements makes application development easier, 

and possibly more efficient by using simple multi-processing. Obviously, one is not limited to only one set of 

modules, but can combine, in one single application, calls to the modules of different toolboxes. 

This is also where the strength of FOSS4G comes in: although many proprietary tools also provide such modular 

access to functionality, each additional toolbox adds to the overall licencing costs and it is not always easy to 

combine tools from different vendors. The free and open nature of FOSS4G projects, combined with the 



 

 

communication between developers, such as at FOSS4G conferences, creates an ecosystem where teams 

collaborate and thus ease the combination of different tools, without extra costs. In addition, the open source 

nature also provides the possibility to review the code, down to the very routines provided by the toolboxes, 

something that has gained in importance as efforts increase towards openness and reproductibility of research. 

As others have argued, peer review of code is just as important as peer review of methods and results (Barnes, 

2010; Ince et al., 2012; Nosek et al., 2015). 
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Annexe 

Calculation of the gamma coefficient in the Huff model 

 For each NACE: 

o Calculate distance from each pixel in the total space to the closest production unit in that 

NACE 

o Calculate summary statistics (e.g. 90th percentile) of these distances 

 Chose one of the summary statistics 

 Determine the per-NACE γ as: 

o 0 if summary statistics of NACE is above a threshold max value of distance (i.e. distance does 

not really matter) 

o 2 if summary statistics of NACE is below a certain threshold min value (i.e. very local 

distribution of goods) 

o else: scale linearly between 0 and 2 according to the position of the summary statistic between 

the max and min threshold values 

 


	Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings
	2016

	Building applications with FOSS4G bricks: two examples of the use of GRASS GIS modules as a high-level “language” for the analyses of continuous space data in economic geography
	Moritz Lennert
	Recommended Citation


	Building applications with FOSS4G bricks: two examples of the use of GRASS GIS modules as a high-level â•œlanguageâ•š for the analyses of continuous space data in economic geography

