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To realize intelligent manufacturing, a controllable factory must be built, and manufacturing competitiveness must be achieved
through the improvement of product quality and yield. The yield in the micromanufacturing process is gaining importance as a
management factor used in deciding the production cost and product quality as product functions becomes more sophisticated.
Because the micromanufacturing process involves manufacturing products through multiple steps, it is difficult to determine the
process or equipment that has encountered failure, which can lead to difficulty in securing high yields. This study presents a
structural model for building a factory integration system to analyze big data at manufacturing sites and a hierarchical factor
analysis methodology to increase product yield and quality in an intelligent manufacturing environment. To improve the product
yield, it is necessary to analyze the fault factors that cause low yields and locate and manage the critical processes and equipment
factors that affect these fault factors. However, yield management is a difficult problem because there exists a correlation between
equipment, and in the sequence of process equipment that the lot passed through, the downstream and the upstream cause
complex faults. This study used data-mining techniques to identify suspected processes and equipment that affect the yield of
products in the manufacturing process and to analyze the key factors of the equipment. Ultimately, we propose a methodology to
find the key factors of the suspected process and equipment that directly affect the implementation of the intelligent
manufacturing scheme and the yield of the product. To verify the effect of key parameters of critical processes and equipment on
the yield, the proposed methodology was applied to actual manufacturing sites.

1. Introduction

Owing to the rapid evolution of technological environments
and the gradual decrease in development periods, techno-
logical gaps in micromanufacturing processes have been
gradually shrinking. In particular, in the case of semicon-
ductor and printed circuit board (PCB) products, as cus-
tomer demands diversify and demand levels increase, the
process of high integration, high functionalization, and
microfabrication of products becomes increasingly complex,
and thus customized production is required. This compli-
cated product structure and process increase the production
cost and limit the maintenance of high yields and quality. To
achieve a high product yield, quality control has been
performed in the manufacturing process for a long time by
introducing a statistical process control technique that

checks for faults by measuring the circuit inspection of the
substrate or measuring the plating thickness or line width
after the product has been processed. However, it is prac-
tically impossible to inspect all production lots because it
requires considerable cost and effort; thus, sample inspec-
tion is performed in the major process of the product. In the
flip chip ball grid array (FCBGA) manufacturing process
which is the target of this study, approximately 30 fault types
were examined during inspection after the etching process.
Faults discovered during the inspection process are im-
portant factors that lead to high production costs when the
process progresses downstream; furthermore, they increase
the overall production costs. Activities that minimize faults
and maximize yield are necessary. Therefore, it is important
to analyze the fault types that are the major causes of low
yields and to accurately find and manage the equipment and
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processes where faults occur. Each process in the FCBGA
manufacturing line is set up with equal equipment and is a
complex process. Therefore, it is difficult to determine which
process and equipment are the main faults that cause the low
yield. Furthermore, the FCBGA process is not only a sus-
pected process that causes faults but a complex process
through several processes and equipment.

First, this study analyzes the suspected processes and
machines that affect the yield of the manufacturing process
based on the data of equipment routing paths traversed by
each manufacturing lot. Suspected machines include not
only a single piece of equipment that influences the fault but
also a complex group of equipment that leads to a higher
level of faults as the downstream participates in the up-
stream. Such a problem is attributed to a phenomenon in
which the possibility of faults increases because of the
chemical and physical correlation between the processes.
Second, this study analyzes parameters (among the various
parameters of the suspected machines) that directly affect
the faults of the product.

Furthermore, the analysis of big data at the
manufacturing site needs to be preceded by the establish-
ment of an environment in which the lot history of critical
processes, inspection/measurement, and equipment data is
gathered and fed back in real time through sensors and the
Internet of things (IoT). Conversely, an environment that
can collect and control the data of the manufacturing site in
real time, which is the core function of a factory integration
system, needs to be established first. The key to imple-
menting a factory integration system is to construct a
platform that can support the interconnection between
internal and external resources in a factory based on
manufacturing  IoT  technology, which optimizes
manufacturing and services [1]. For this platform configu-
ration, the real-time collection of production data and the
analysis and application of manufacturing big data must be
performed [2], and an analysis methodology for complex
process structures is required [3]. In addition, the com-
plexity and problems of big data management in the IoT
field were introduced [4], and a digital design and simulation
method for an automated factory were presented [5].

This study presents a factory integration architecture
model of a manufacturing factory required for analyzing
manufacturing big data. In section 2, the related literature is
presented. Section 3 presents a factory integration system
implementation plan, analyzes the suspected processes and
machines, and presents a hierarchical analysis model that
identifies the key factors of suspected machines. Section 4
describes the experimental and data analysis processes and
the results of the proposed model. Section 5 discusses the
conclusions and further research topics.

2. Related Research

FCBGA-PCB and semiconductor processes comprise
dozens of unit processes, such as circuits, plating, and
etching, and specific processes are repeated. To analyze the
manufacturing process with these characteristics, various
studies have been conducted on the methodology for
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detecting and diagnosing defects in product quality at
manufacturing sites for a long time. For univariate quality
control, the control charts presented by Montgomery and
Douglas are commonly used; however, the increase in
control variables has confronted many constraints [6].

In the case of multivariate quality control, a method of
reducing dimensions using principal component analysis for
numerous variables occurring in the process and monitoring
product quality with multivariate statistics such as Hotel-
ling’s T> was proposed [7]. In a study on finding the
equipment and equipment variables that affect the yield in
multistage manufacturing processes, Ma et al. applied a
statistical method to the chemical vapor deposition process
to increase the yield based on important variables that affect
the quality variables [8]. In addition, a methodology for
monitoring and predicting equipment status by analyzing
data collected from sensors [9], a method for integrated
maintenance according to equipment performance reduc-
tion [10], and a reliability evaluation method for a fuzzy
multistate manufacturing system based on ESEN (extended
stochastic flow network) are presented [11]. In addition, an
intelligent control system that monitors process parameters
and detects abnormalities [12] and a framework for rec-
ognizing and obtaining big data for each product
manufacturing cycle were presented [13].

However, these methods have limitations in that they
analyze only a single process without considering the phe-
nomenon that multiple machines of multiple processes si-
multaneously affect the yield while going through many
processes. The approaches mentioned so far are all applicable
methods for analyzing single processes and equipment factors.

However, Sim [14] presented a methodology to locate
suspected machines by analyzing the cumulative effect of not
only a single machine in a complex microfabrication process
but also a number of machines in multiple processes.
However, this method has a limitation in that although the
suspected process or machine that affects the yield (fault) has
been analyzed, the equipment factor to be managed in the
actual site cannot be known.

To analyze the big data of manufacturing sites, all devices
and equipment in the factory should be interconnected, and
data collection and analysis should be based on such
interconnectivity. Thus, functions connecting all equipment
at the site and collecting and analyzing the required data can
be regarded as the most basic functions of factory integration
[15]. Previously, a wide variety of construction methods have
been proposed for the establishment of smart factories and
equipment management systems of manufacturing com-
panies. Such existing methods are limited to implementing a
smart factory using information systems and implementing
individual modules required in the field. No studies on the
methodology for the implementation of a practical intelli-
gent factory by linking the big data of the manufacturing site
have been reported so far.

Therefore, this study presents a novel methodology for
determining the factors of the suspected machine that affects
the yield by applying the hierarchical factor analysis
methodology and for building the required intelligent
manufacturing scheme of the manufacturing site.
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3. Methodology

3.1. Factory Integration System. The Manufacturing Enter-
prise  Solutions  Association (MESA) defines the
manufacturing execution system (MES) as follows: “MES
delivers information that enables the optimization of pro-
duction activities from order launch to finished goods,
monitors, controls, and reports factory activities with ac-
curate real-time data” [16].

As the MES model connects the manufacturing site and
the enterprise system, the ANSI/ISA-95 (2000) model, which
is an enterprise control integration model proposed by
MESA and ISA (Instrument Society of America), is most
often used [17]. A factory integration system is an intelligent
factory where information and communications technolo-
gies are applied to the equipment and machines for auto-
mated manufacturing processes and where factory
automation, IoT, and big data are combined [18]. To im-
plement such an intelligent factory, all necessary informa-
tion regarding the manufacturing site should be organically
connected through IoT, and predictable manufacturing
should be enabled through big data analysis [19, 20].

The integration-based factory integration system model
provided by MESA and ISA can be categorized into three
levels, as illustrated in Figure 1. At the control level, the
necessary information is collected and controlled by oper-
ating equipment and machines and managing IoT or sen-
sors. At the management level, WIP tracking, schedule
management, equipment engineering system (EES) man-
agement, and process control are performed. The analysis
level serves the function of analyzing the manufacturing and
equipment, processing, and inspecting data collected from
the manufacturing site; it can be categorized into
manufacturing analysis and big data analysis. Thus, the
factory integration system can be implemented only when
the equipment is controlled (see @ in Figure 1) and when
equipment management (see ® in Figure 1) and big data
analysis (see @ in Figure 1) modules are realized in addition
to the existing MES functions.

In the hierarchical factor analysis stage, first, a data set is
constructed by collecting data necessary for analysis such as
yield, work history, and equipment parameters for each
product and lot. Analysis stage 1 (Layerl) determines the
suspected processes and machines that affect the product
yield by using a data-mining algorithm. Stage 2 identifies the
critical equipment parameters that can be managed. Stage 3
utilizes the fault detection and classification module or
control function to perform real-time monitoring of the
critical parameters found in Stage 2; the system is configured
such that an interlock may be set in the case of anomaly
detection.

This study proposes a methodology to determine the
suspected processes and machines that affect the yield and to
analyze the critical parameters of suspected equipment by
proceeding with Stages 1 and 2. Studies on the management
and control of the derived critical parameters and a big data
platform will be conducted as a follow-up.

3.2. Hierarchical Analysis

3.2.1. Hierarchical Analysis Methodology. In this study, the
suspected machine and critical parameters that directly
affect the product yield in a factory integration environment
were analyzed using two-stage layers. After identifying the
fault items that cause low yields, the processes that affect the
yield are identified.

In Layer 1, the suspected processes and machines that
affect the yield (fault parameters) of the inspection process
are searched, and in Layer 2 the study of Layer 1 is further
advanced, and the relationship between the critical pa-
rameters of the suspected machines and the process pa-
rameter (y) is analyzed to determine the factors that cause
the fault (see Figure 2).

Layer 1 uses an association analysis to preprocess data
regarding the equipment trace data before finding the
suspected machines that cause these faults. The equipment
trace data are also called process history, which refers to the
sequence of process equipment that one lot has passed. If 1
indicates that the lot has passed through a specific piece of
equipment and 0 indicates otherwise, the trace can be
regarded as a sequence comprising 0s and 1s. The partial
least squares with variable importance of the projection
(PLS-VIP) method is applied to equipment trace data to
solve the multicollinearity existing between machines. In
addition, because there are numerous machines, a number of
rules are created if the association rules are applied im-
mediately; thus, the important machines that cause the
defect are first selected through PLS-VIP analysis, and the
suspected machines that affect the yield are found using the
association rules. In addition, not only a single machine but
also the relationship that a plurality of suspected machines,
such as a single machine, affects the fault was analyzed.

In Layer 2, a linear regression equation is derived using
the parameters of the suspected machines, and the rela-
tionship between the suspected machine and process pa-
rameters was analyzed. The output (y) of the suspected
process found in Layer 1 was used as the dependent variable,
and the equipment variable that affected y was set as the
independent variable. That is, by analyzing the relationship
between the process parameter (y) and the equipment
variable (x), the equipment variables that affect the process
parameter are found.

3.2.2. Layer 1 Analysis. In this section, using the PLS-VIP
analysis, an important machine that causes defects is first
selected, and then association analysis is used to find sus-
pected machines that affect the yield. In addition, the cu-
mulative effect methodology was applied in consideration of
the association analysis and complexity of the process.
First, the PLS analysis method was used to solve the
multicollinearity problem found in the multivariate analysis,
whereas the PLS-VIP method was used to select only the
machines with high contribution to defects and applied the
association rule for ease of analysis. The PLS analysis, which



is commonly used, derives latent variables that simulta-
neously explain independent and dependent variables, en-
abling a more meaningful analysis. PLS is a robust model for
noise and missing values, and it can be applied to a small
amount of data and has the advantage of handling various
types of variables, such as nominal and continuous variables.
When selecting an important variable, the PLS regression
analysis considers the degree of influence of the independent
variable on the latent variable and the influence of the latent
variable on the dependent variable simultaneously. The
variable importance of projection (VIP) score of the inde-
pendent variable is expressed as follows [21]:

kT (i) wollwd)]
AR
(1)

In equation (1), k is the number of independent variables
and a is the latent variable. a* indicates the number of latent
variables generated by the PL model. In equation (1), var-
iable w,; is the loading weight of variable j when the latent
variable a is used. b’ t,, comprises the variance represented
by latent variable a and y-loading (b,), which can be
considered the contribution of latent variable ¢, to the
dependent variable y. In conclusion, VIP; can be considered
a measure to evaluate the importance of variable j based on
the variance explained by the latent variable and the im-
portance of the independent variable constituting the latent
variable.

Second, the machines that affect the yield are analyzed
using association analysis for the machines selected above.

VIP; =

CE value (%) =

accuracy of downstream — accuracy of upstream
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Association rules help extract useful hidden rules from vast
amounts of data. Rules divide the relationships between
items into left-hand side (lhs) and right-hand side (rhs), and
they are expressed in the {lhs—rhs} format. In this study,
lhs refers to the process and equipment sequence and rhs is a
good or bad class.

The association analysis shows different items, a and b, in
the {a— b} format, where a denotes the process and equip-
ment sequence and b denotes the class. The association rule
strength is a measure of the support and confidence values of
the rule [22]. In this study, the support is defined as the ratio of
many faults that have passed through a specific equipment
among all lots. Confidence is the ratio in which a and b occur
together when a occurs and refers to the frequency of faults
occurring when passing through certain machines.

Finally, in this study, the cumulative effect algorithm was
used in consideration of the association analysis and
complexity of the process. The core of this analysis is not
only to discover a single suspected machine but also to grasp
the extent to which the downstream affects faults along with
the upstream and simultaneously manage the suspected
machines to increase the yield. Conversely, the accuracy of
the upstream and the accuracy when the downstream is
included in the upstream must be compared. If the accuracy
ratio increases upon the participation of the downstream in
the process, then compared with the accuracy when the
downstream does not participate (i.e., the accuracy of the
upstream only), the accuracy is above a fixed level, which
means that the rule is a cumulative factor. In this study, this
ratio is called the cumulative effect, and the cumulative effect
is expressed as follows:

accuracy of upstream

The cumulative effect is measured in rules with a length
of two or more. In this process, the rules are expressed in a
tree form to easily understand the relationship between
upstream and downstream. In the tree, which shows the
inclusion relationships between rules, a rule is placed on the
upper layer of the tree as its length increases. In this study,
this was defined as an upper rule. The subsets constituting
the upper rule are called lower rules, and the lower rules
naturally have smaller lengths than the upper rules. The
author followed the methodology of Sim [14] in Layer 1 and
extended it one step further and applied it to the failure
mode (Y,) of the FCBGA products.

Figure 3 shows a relationship tree model expressed by
the rules generated using the Apriori algorithm [23] when
minimum confidence and minimum support are 0.05, and
the minimum lift is set to a value greater than 1. Rules of
length 1 in the relationship tree represent a single factor.
Therefore, the single factors in Figure 3 are the rules (x3: e3)
and (x10:4a10). In Figure 3, the numerical value expressed
on the right side of the rule constituting the tree refers to the

x 100%. (2)

number of good and bad products found when passing
through the equipment represented by the rule. In Figure 3,
(x3:€3, x10:a10) [4, 46] indicates that when the lot passed
through the equipment (e3) in the x3 process and the
machine (410) in the x10 process, the normal four times and
46 faults occurred. Therefore, the accuracy of this rule is 0.92.
The number on the line connecting both rules indicates the
rate of increase in accuracy between the upper and lower
rules, and a positive value indicates that the accuracy in-
creases when moving from the lower rule to the upper rule
immediately above. In Figure 3, to examine the cumulative
effect of the downstream (x10:al0) on upstream (x3:e3),
the accuracies of the rules (x3:e3, x10:a10) and (x3: e3) are
used. The cumulative effect represents the ratio of the ac-
curacy of the upstream and the accuracy increases upon the
participation of the downstream. In Figure 3, the cumulative
effect between the two rules is 17.5% (=0.137/0.783 x 100%).
Because this value is greater than the minimum cumulative
effect threshold, the rule (x3:e3, x10:a10) becomes a cu-
mulative factor.
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3.2.3. Layer 2 Analysis. The previous section described a
method for analyzing the suspected processes and equip-
ment that affected the quality variables. This section iden-
tifies the relationship between the output of the suspected
process described in the previous section and the relevant
equipment parameters. The process and equipment pa-
rameters are linearly related, and a regression model is
selected as the analysis method for determining the
equipment parameters that affect the process parameters
(output) of the suspected processes [24]. To describe the
dependent variable in the regression analysis, the relation-
ship with the independent variable that affects it is expressed
as a functional expression and is mainly used to predict the
change in the dependent variable based on the change in the
independent variable [25]. This study employs a regression
model in the case of two or more independent variables;
thus, the model is referred to as a multiple regression model
[26]. This results in the following equation:

yi =Po+ Bixi + &
&=y~ Bo—Pixi»

where y; denotes the process parameter, x; is the equipment
variable, and ¢; is the random error term. Additionally, 3,
denotes the intercept of the regression equation and f3; is the
slope, which can be estimated using 8, and f3; [27]. The least
squares method is an estimation approach that minimizes
the error between the actual value y and the predicted value
7. It is widely used to estimate the regression coeflicients f3,
and f3;. The main reason for calculating the sum of squares of
the error term is that even if a severe error occurs, the
calculation result may indicate that almost no error is caused
by the errors of the (+) and (-) values canceling each other
out. The sum of squares for error (SSE), which represents the
SSE terms, is expressed as follows [28]:

i=1,2,...,n,
(3)

n

SSE = Zs =Y (v

i=1

ﬁixi)z- (4)

Herein, the estimated values of 3, and 3;, that is, 8, and
B> can be derived using the least squares method. The
condition of minimizing the SSE is that the partial deriv-
atives of the SSE with respect to 3, and f; should satisfy 0
Conversely, it can be obtained by satisfying (dSSE/df,) =
and (dSSE/d;) = 0. This results in the following equat10n

= B+ Bix; + &. (5)

The coefficient of determination (R?) for verifying the
fitness of the model serves as a coefficient that indicates the
contribution of the independent variable to describing the
dependent variable in the regression equation. That is, it
shows the extent to which the independent variable de-
scribes the change in the dependent variable. This results in
the following equation:

5
oSSR SSE
SST ~ ~SST
% —\2
$ST=% (yi-7) 6)

i=1

n

SSE = Z (yi - )7i)2~

i=1

SST indicates the total variation, and it is expressed as
SST = SSR + SSE. The sum of squares for regression (SSR) is
a variation of a regression equation, and a variation amount
can be explained by an estimated regression equation. If the
SSR exceeds the SST, the regression equation can be used to
explain the dependent variable. SSE represents the variation
caused by the error. If the value of the SSE decreases, the
variation decreases, indicating a strong statistical signifi-
cance of the regression equation.

The regression analysis algorithm is executed through
the following five stages [29]:

Stage 1. Prediction model selection and data definition:
A multiple regression model was selected, and de-
pendent and independent variables, as well as data
properties, were defined.

Stage 2. Selection of critical variables using a variable
selection method: The optimal value is selected using a
stepwise variable selection method.

Stage 3. Model optimization: An optimal model was
selected based on the validation data from the models
generated by the training data after dividing the pre-
defined training and validation data.

Stage 4. Verification of the statistical significance of the
variables: To verify the significance of individual var-
iables, a variable with a p value of 0.05 is selected.

Stage 5. Target value prediction:

Vi =Po+Pix; +

The model can be regarded as valid when the estimated
regression equation does not deviate by more than 0.05, with
respect to the threshold value. Therefore, the key variables
that affect the process parameters have a significant influ-
ence on the possibility of faults. In the above algorithm, the
variable selection method employs a stepwise approach that
supplements the drawbacks of the forward and backward
methods. Although there are various methods, the reason for
selecting a stepwise method is to minimize the number of
variables and to select only good variables efficiently [30].
The stepwise method checks whether the existing variables
can be eliminated at each step of adding a variable when the
importance of each existing variable is lowered because of a

s Bix; + g (7)
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FiGure 1: Factory integration system architecture.

newly added variable [31]. Thus, this study selected key
equipment variables based on a stepwise variable selection
method. Stepwise regression analysis estimates the regres-
sion coeflicient using the least squares method and calculates
the coeflicient of determination to display the extent to
which the regression model explains the given data.

4. A Case Study
4.1. Setup

4.1.1. Layer 1 Setup. The example in this section is the result
of analyzing the suspected processes and machines that
affect the failure mode (Y,) of FCBGA products. Here, the
failure mode (Y,) refers to a defect item in the test process
and is referred to as a quality variable. The FCBGA-PCB
manufacturing line considered in the case study comprises
10 processes and 33 machines (see Table 1). The detailed
process comprised nine processes in addition to the plating
process (x3), which is a Layer 2 analysis process. Because the
10 processes comprise several machines for each process, the
number of all possible combinations of trace types was
calculated to be approximately 90,000. If we reorganize this
combination by trace type, we can find approximately 300
trace types. In this study, the number of representative faults
was calculated as the average value of all faults generated
when the machines specified in the trace passed. After
preprocessing, x;; constituting the trace for the 300 trace
types was defined as the independent variable, and the

number of representative faults was defined as the depen-
dent variable.

4.1.2. Layer 2 Setup. Layer 2 analyzes the equipment vari-
ables that affect the process parameters. In this section, the
target processes and equipment for the analysis are selected,
and the equipment variables that affect the process pa-
rameters are identified. The analysis results for Layer 1
revealed that processes x5 and x6 were critical suspected
processes, and that process x5 affected six Y parameters.
Although process x6 was included as a critical process that
affected the Y, parameter, it was excluded from the ex-
periment because the lot traceability of the data could not be
secured. The regression model was constructed using the
critical parameters of the suspected machine (a5) of process
x5, and the relationship between the process parameters and
equipment parameters was identified. The typical process
parameters of process x5 include thickness, width, and
space. Table 2 presents the target process, process param-
eters, and equipment parameters that affect them.

4.2. Analysis Results for Layer 1. In this section, the suspected
machine is selected using the PLS-VIP value, and the single
and cumulative effects are analyzed. First, based on the VIP
value, we look at the degree of importance that the machines
constituting the trace {xn, X1gs- - s x,»j} have on the fault of
the quality variable Y. In the PLS regression analysis, the
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FIGURE 2: Hierarchical factor analysis framework.

number of latent variables was selected through five-fold
cross validation, which is widely used to estimate prediction
errors. The VIP value for the quality variable Y, can be
determined from Figure 4. Generally, the mean of the square
of the VIP value is 1; therefore, an independent variable
greater than 1 is selected as a meaningful variable.
Following the results of a study that showed good perfor-
mance when the VIP value was between 0.8 and 1.2, in this
experiment, a variable with a value of 0.8 or more was se-
lected [32].

Figure 4 shows the VIP values of the 33 independent
variables for quality variable Y. The (x8:b8) variable had the
lowest VIP values of (0.10), and (x5:¢5) had the highest
value of (2.14). Table 3 presents the suspected machine
candidates selected for quality variable Y,. Here, Y, denotes
a major item among the defective items in the inspection
process.

The association rule applies to suspected machines and
machine groups that affect the yield of the quality variable
selected above. First, to apply the association rule, the
minimum confidence and minimum support parameters
must be set. In this study, the experiment was conducted
with both minimum confidence and minimum support set
at 0.05. The value is set to such a low level because even a
single fault can be a significant loss from the perspective of a
company in an environment where the technological
changes introduced above and the technology level between
competitors are similar. Moreover, it might result in a
suspected machine or machine group that causes potential
faults beyond the limit and accumulates data even if it
currently shows a low frequency. Under the support and
confidence conditions set here, as a result of selecting rule
sets with a min-lift value greater than 1, 19 rule sets were
found.

Consequently, out of the 19 rules found, 15 rules have a
confidence value of 0.8 or higher and three rules show a

confidence value of 1. When rule generation is completed,
the machine that affects the fault independently and the
machine group that affects the fault together with the up-
stream and downstream are obtained from the generated
rule based on the previously suggested algorithm. Figures 5
and 6 show the tree shape, composed of upper and lower
rules based on the rule length to find the single factor and
cumulative factor in quality variable Y.

To discover the cumulative factor in the relationship tree,
we set the minimum cumulative effect threshold to 5%. That
is, the cumulative factor was chosen by selecting the rules
that showed a cumulative effect of 5% or more based on the
accuracies before and after the downstream participation.
Based on the results in Figure 5, the rule (x1:b1, x6:a6)
refers to the upstream of the upper layer rule (x1: b1, x6: a6,
x9:a9). The cumulative effect of downstream (x9:a9) is
calculated to be 7.7% (=0.066/0.857 x 100%), which is greater
than the minimum cumulative effect threshold; hence, rule
(x1:b1,x6:a6,x9:a9) becomes a cumulative factor. Figure 6
shows the relationship tree of parameter y when the length of
the rule is 2. From the figure, it is evident that if the lot goes
through equipment a5 in process x5 and then through
equipment a6 in process x6, then 100.0% of the faults will be
found out of the total lot, and it is 10.1% higher than the fault
detection performance by a single factor (x5:a5). This
implies that there is a performance. Table 4 presents the
cumulative factors for the quality variable, accuracy, and
cumulative effect values indicated by the cumulative factor.

There are six cumulative factors that cause faults in the
quality variable Y, and the cumulative effect of these factors
is distributed from 5.3% to 12.9%. An accuracy that indicates
a relatively high cumulative factor can be observed, and the
cumulative factors discovered in this experiment have an
average accuracy of 87.7%. The cumulative factor (x5:a5,
x6: a6) in Table 4 shows that faults are found in 100.0% of all
the lots that go through equipment a5 in process x5 and then
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Accuracy: 0.92
[ x3:e3,x10:al0 (4, 46) ]
17.5%
[ x3: ¢3 (102, 368) ]
Accuracy: 0.783
FIGURE 3: Relationship tree between upstream and downstream process.
TaBLE 1: FCBGA-PCB processes and machines configuration.
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
al a2 a3 a4 a5 a6 a7 a8 a9 al0
bl b2 b3 b4 b5 b6 b7 b8 b9 b10
cl c3 c4 c5 c6 c7 c8 9
d3 d4 d7
e3 e7
TaBLE 2: Target process, process, and equipment parameters.
Process 1 Control variable Process 2 Control variable Process 3 Process parameter
Templ Temp2 Temp 1 Temp 2 Thickness
Voltage 1 Voltage 2 Speed pressure Width
Plating Current 1 Etching Current 1 Measurement Space
Current 2 Current 2
Flux 1 Concentration

through equipment a6 in process x6. Furthermore, the
cumulative factor shows a 10.1% higher performance than
the fault detection performance of a single factor (x5:4a5).

4.3. Analysis Results for Layer 2. This section analyzes the
critical suspected processes (x5) and equipment (a5) iden-
tified in the previous section. The analysis model employed a
multiple regression model and was used for plating. The
criterion variables (y) are the width (y1), thickness (y2), and
space (y3), which were divided into 200 (57 variables) and
137 lots (200 variables) based on six conditions. The input
variable (x) is selected from the temperature, voltage, cur-
rent, and flux, and the effect of the input variable on the
process parameter was analyzed using stepwise regression
analysis. To verify the analysis, the data were divided into
training (70%) and validation sets (30%). Subsequently, the
optimal model was selected based on validation data from
the models generated using the training data. Herein, for
each parameter by the selected factor, the variable satisfying
a p value of 0.05 is deemed significant. Finally, the criterion
variable value was predicted by setting a regression equation
using the selected parameters.

To verify the conditional regression equation for the
criterion variables y1, y2, and y3, the regression models for
y1 (137 Lot) and y2 (137 Lot) were selected as the optimal
models (see Table 5). The regression model was diagnosed
after setting the explanatory power to more than 0.7; to
enhance the model fitness, the root mean squared error and

the SSE were derived to be close to 70:30 (training: vali-
dation). The criterion variables were analyzed by prioritizing
y2 between variables y1 and y2. For the equipment variables
that affect the process parameter (y2), a significant variable
with a p value of less than 0.05 was selected using the
stepwise variable selection method. The selected equipment
variables were Rectl24_vtg, Rectl25_vtg, Rectl50_vtg,
c_temp_003, and a_col 143. Based on these variables, it was
determined that the plating thickness of the PCB is affected
by the temperature, voltage, and electric current of the
plating equipment.

To verify the conditional regression equation for the
criterion variables y1, y2, and y3, the regression models for
y1 (137Lot) and y2 (137Lot) were selected as the optimal
models (see Table 5). The regression model was diagnosed
after setting the explanatory power to more than 0.7; to
enhance the model fitness, the root mean squared error and
the SSE were derived to be close to 70:30 (training: vali-
dation). The criterion variables were analyzed by prioritizing
y2 between variables y1 and y2. For the equipment variables
that affect the process parameter (y2), a significant variable
with a p value of less than 0.05 was selected using the
stepwise variable selection method. The selected equipment
parameters were Rect124_vtg, Rectl125_vtg, Rect150_vtg,
c_temp_003, and a_col 143. Based on these variables, it was
determined that the plating thickness of the PCB is affected
by the temperature, voltage, and electric current of the
plating equipment.
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FIGURE 4: VIP values for the quality variable (V).

The ANOV A test results on the criterion variable (y2) are
as follows.

Table 6 shows that the p value of the model is less than
0.0001. This indicates that the p value of the regression
equation is less than 0.05, thereby confirming the statistical
significance. The value of R?*(R-square) was found to be

0.7614, which indicates that the estimated regression line can
describe more than 76.14% of the actual sample. Because the
p values of the five selected variables are smaller than 0.05,
the  variables of c_temp_003, Rectl24 vtg 00,
Rect125_vtg_00, Rectl50_vtg 00, and a_coll43 can be
considered statistically significant (see Table 6).

y (thickness) = —86.9 + 3.4 c_temp + 3.9 Rect124_vtg + 8.7 Rect125_vtg — 3.5 Rect150_vtg — 10.1 a_col143. (8)

4.4. Verification. The experimental results of this study
were verified in the field using a theoretical approach. The
plating process provides decorative esthetics, corrosion

resistance, and electrical conductivity by forming a metal
film on the surface of a metal or nonmetal. There are two
main types of plating. Electrical plating employs a method
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TABLE 3: Machine factors selected as VIP value.

Quality variable

Selected machines (independent variable)

Y, X1t ap, X1 by, x5t as, x50 by, X3t €3, X5t As, X5t C5Xg Agy X' Cgr Xob Gy Xob Dy, X197 Aygs X19° by

Accuracy: 0.923

[ x1:b1,x6:a6,x9:a9 (1,12) ]

7.7%

[ x1:b1,x6:a6(2,12) ]

Accuracy: 0.857

FIGURE 5: Tree of rule length 3 for quality variable Y.

Accuracy: 1.0

[ x5 : a5, x6 : a6 (0, 15) ]
10.1%
[ x5:a3 (9, 89) ]

Accuracy: 0.908

FIGURE 6: Tree of rule length 2 for quality variable Y.

of plating using electrolysis by flowing electricity to the
anode and cathode, whereas chemical plating employs a
method of plating using Cu ions as a catalyst and a
precipitating metal (Cu) as a reducing agent. Faraday’s
law of electrolysis states that the amount of substances
generated on electrodes by electrolysis in an aqueous

solution is directly proportional to the amount of elec-
tricity charged (current x time). When a certain amount of
electricity is provided, the amount of substance precipi-
tated on the electrode in the aqueous solution is directly
proportional to the chemical equivalent (atomic weight/
valence). This results in the following equation:

electric current (A) x time(s) x lgequivalent(g) x 10,000

plating thickness (um) =

* Faraday constant (F) = 96, 500 C,

*1dm? = 100 cm?.

96,500 C x surface area(dmz) x 100 x density(g/cm3 )

(9)
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TaBLE 4: Cumulative factors for quality variable Y.
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Cumulative factor

Accuracy (%)

Cumulative effect (%)

(x1: b1, x9: a9) 80.1 5.3
(x3: €3, x9: a9) 85.3 6.4
(x1: b1, x6: a6) 85.7 12.9
(x5: a5, x6: a6) 100.0 10.1
(x1: al, x3: e3, x5: c5) 83.2 7.0
(x1: b1, x6: a6, x9: a9) 92.3 7.7
TaBLE 5: Summary of the target model.
Variable Target
y1 (width) y2 (thickness) y3 (space)

Lot size 137 200 137 200 137 200

Variable 200 57 200 57 200 57
Data set Trainin;

. .g 70:30 70:30 70:30 70:30 70:30 70:30
validation
Pump5, 6, .c_temp_003
Pump flux 12 flux Pumpl_flux a col 143 Pumpé6_flux Pumpl2 flux  Pumpl_flux

Variable Rectifier ~ .Rectl19, 124, .Rect27_vig 'ﬁzztgg—ggg Rectl3_vtg  .Rectl24_vtg 'R“”; 620’ 27,

voltage 149, 62, 86_vtg .Rect36_vtg Rectl SO:Vtg Rect45_vtg .Rect135_vtg Rect3
Coefficient of R-square 0.83 0.36 0.76 0.29 0.52 0.41
determination
Validation RMSE 1.22:1.28 0.90:0.91 0.87:1.04 0.84:0.76 0.93:1.0 0.90:1.08
(training; SSE 130.9:65.5  111.5:49.9 68.8:43.6 95:34.7 80.1:40.6 107.2:70.1
validation)

TABLE 6: Analysis of variance.

Source DF Sum of Sq Mean Sq F value Pr (> | F |)
Model 5 31.6454 6.3290 22.98 <.0001
Error 36 9.9145 0.2754
Corrected total 41 41.5599
R-square 0.7614 Adj R-Sq 0.7283
AIC —48.6340 BIC
SBC ~38.2080 Clp)
Variables DF Estimate Standard error T value Pr> |t|
Intercept 1 -86.9945 45.8186 -1.90 0.0656
c_temp_003 1 3.4276 1.2003 2.86 0.0071
Rect124_vtg 00 1 3.9345 0.9224 4.27 0.0001
Rect125_vtg 00 1 8.7680 1.9205 4.57 <0.0001
Rect150_vtg 00 1 —3.5887 0.9794 -3.66 0.0008
a_col143 1 —10.1484 1.8758 -5.41 <0.0001

The plating thickness is directly proportional to the
amount of electricity applied to the rectifier (P=V xI).
Conversely, the control of the plating thickness is affected
by the temperature of the plating equipment and the
applied voltage.

5. Conclusion

The purpose of this study is to find processes and machines
that affect the yield of micromanufacturing processes and to
secure corporate competitiveness by improving product
yield and productivity through the analysis of equipment

parameters of suspected machines. Consequently, by ana-
lyzing the fault data and equipment parameters of the
manufacturing line, the process affecting the yield and the
suspected machine that significantly affects the fault were
determined by analyzing the machine that processed the
product by the process. The experimental results revealed
that the factors that cause faults are not only the single
process variables but also the cumulative factor in which the
downstream and upstream contribute to the faults. From the
experimental results, the cumulative factor (x5: a5, x6: a6)
suggested that 100.0% of the faults were found in all lots that
went through equipment a5 in process x5 and equipment a6
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in process x6. Furthermore, it was demonstrated that the
cumulative effect had a 10.1% higher performance than the
fault detection performance by a single factor (x5:a5).
Stepwise analysis of the process parameters (thickness) and
equipment parameters of the x5 (a5) process—the critical
suspected process found in Layer 1—helped identify four
equipment parameters, in addition to c_temp, as significant
parameters. The proposed methodology might significantly
improve product yield and quality by identifying the cause of
product faults in manufacturing enterprises. Meanwhile,
processes, machines, and critical parameters classified as
critical factors should be managed thoroughly by collecting
opinions from field engineers. Furthermore, to perform big
data analysis for such manufacturing sites, it is necessary to
establish an environment wherein the history of the critical
processes and the data of inspection/measurement and
manufacturing equipment are gathered and fed back in real
time through sensors and IoT. Conversely, an environment
that can collect and control the manufacturing site data in
real time, which are the core functions of intelligent
manufacturing, needs to be established. Therefore, in this
study, we propose a factory integration system and system
architecture of a PCB line to realize a practical intelligent
factory in connection with the analysis of big data at the
manufacturing site.

Follow-up studies will be conducted on the methods of
critical parameter management and control for processes
and equipment and on manufacturing big data platforms.
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