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Abstract

There is a growing discrepancy in computer vision between large-scale models that
achieve state-of-the-art performance and models that are affordable in practical
applications. In this paper we address this issue and significantly bridge the gap
between these two types of models. Throughout our empirical investigation we
do not aim to necessarily propose a new method, but strive to identify a robust
and effective recipe for making state-of-the-art large scale models affordable in
practice. We demonstrate that, when performed correctly, knowledge distillation
can be a powerful tool for reducing the size of large models without compromising
their performance. In particular, we uncover that there are certain implicit design
choices, which may drastically affect the effectiveness of distillation. Our key
contribution is the explicit identification of these design choices, which were not
previously articulated in the literature. We back up our findings by a comprehensive
empirical study, demonstrate compelling results on a wide range of vision datasets
and, in particular, obtain a state-of-the-art ResNet-50 model for ImageNet, which
achieves 82.8% top-1 accuracy.

1 Introduction

Large-scale vision models currently dominate many areas of computer vision. Recent state-of-
the-art models for image classification [22, 39, 48, 6, 41], object detection [7, 26] or semantic
segmentation [5 | ] push model size to the limits allowed by modern hardware. Despite their impressive
performance, these models are rarely used in practice due to high computational costs. Instead,
practitioners typically use much smaller models, such as ResNet-50 [22] or MobileNet [14], which
are order(s) of magnitude cheaper to run. According to the download counts of five BiT models
from Tensorflow Hub, the smallest ResNet-50 [1 1] model has been downloaded for significantly
more times than the larger ones. As a result, many recent improvements in vision do not translate to
real-world applications.

To address this problem, we concentrate on the following task: given a specific application and a
large model that performs very well on it, we aim to compress the model to a much smaller and more
efficient architecture without compromising performance. There are two widely used paradigms that
target this task: model pruning [18] and knowledge distillation [12]. Model pruning reduces the
large model’s size by stripping away its parts. This procedure can be restrictive in practice: first, it
does not allow changing the model family, say from a ResNet to a MobileNet. Second, there may be
architecture-dependent challenges; for example, if the large model uses group normalization [46],
pruning channels may result in the need to dynamically re-balance channel groups.

Instead, we concentrate on the knowledge distillation approach which does not suffer from these
drawbacks. The idea behind knowledge distillation is to “distill” a teacher model, in our case a
large and cumbersome model or ensemble of models, into a small and efficient student model. This
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Figure 1: Schematic illustrations of various design choices when doing knowledge distillation. Left:
Teacher receives a fixed image, while student receives a random augmentation. Center-left: Teacher
and student receive independent image augmentations. : Teacher and student receive
consistent image augmentations. : Teacher and student receive consistent image augmentations
plus the input image manifold is extended by including linear segments between pairs of images
(known as mixup [50] augmentation).

logit matching logit matching

works by forcing the student’s predictions (or internal activations) to match those of the reacher,
thus naturally allowing a change in the model family as part of compression. We closely follow the
original distillation setup from [12] and find it surprisingly effective when done right: We interpret
distillation as a task of matching the functions implemented by the teacher and student, as illustrated
in Figure 1. With this interpretation, we discover two crucial principles of knowledge distillation
for model compression. First, teacher and student should process the exact same input image views
or, more specifically, same crop and augmentations. Second, we want the functions to match on a
large number of support points to generalize well. Using an aggressive variant of mixup [50], we can
generate support points outside the original image manifold. With this in mind, we experimentally
demonstrate that consistent image views, aggressive augmentations and very long training schedules
are the key to make model compression via knowledge distillation work well in practice.

Despite the apparent simplicity of our findings, there are multiple reasons that may commonly prevent
researchers (and practitioners) from making the design choices that we suggest. First, it is tempting
to precompute the teacher’s activations for an image offline once to save compute, especially for
very large teachers. As we will show, this fixed teacher approach does not work well. Second,
knowledge distillation is also commonly used in different contexts (other than model compression),
where authors recommend different or even opposite design choices [48, 40], see Figure 1 for a
schematic overview. Third, knowledge distillation requires an atypically large number of epochs to
reach best performance, much more than commonly used for supervised training. To make things
worse, choices which may look suboptimal in training of regular length often end up being best for
long runs, and vice-versa.

In our empirical study, we mostly concentrate on compressing the large BiT-ResNet-152x2 from [22]
that was pretrained on the ImageNet-21k dataset [36] and fine-tuned to the relevant datasets of interest.
We distill it to a standard ResNet-50 architecture [1 1] (but replace batch normalization with group
normalization) on a range of small and mid-sized datasets without compromising accuracy. We
also achieve very strong results on the ImageNet [35] dataset: with a total number of 9600 epochs
for distillation, we set the new ResNet-50 SOTA 82.8% on ImageNet. This is 4.4% better than the
ResNet-50 model from [22], and 2.2% better than the best ResNet-50 model in the literature, which
uses a more complex setup [37]. Finally, we demonstrate that our distillation recipe also works when
simultaneously compressing and changing the model family, e.g. BiT-ResNet architecture to the
MobileNet architecture.

2 Experimental setup

In this section, we introduce the experimental setup and benchmarks we use throughout the paper.
Given a large-scale vision model (the teacher, or T) with high accuracy on a particular task, we



aim to compress this model to a much smaller model (the student, or S) without compromising its
performance. Our compression recipe relies on knowledge distillation, as introduced in [12], and a
careful investigation of several key ingredients in the training setup.

Datasets, metrics and evaluation protocol. We conduct experiments on five popular image classi-
fication datasets: flowers102 [30], pets [32], food101 [20], sun397 [47] and ILSVRC-2012 (“Ima-
geNet”) [35]. These datasets span diverse image classification scenarios; In particular, they vary in
the number of classes, from 37 to 1000 classes, and total number of training images, from 1020 to
1281167 training images. This allows us to verify our distillation recipe for a broad range of practical
settings and ensure its robustness.

As a metric, we always report classification accuracy. For all datasets, we perform design choices
and hyperparameters selection using a validation split, and report final flagship results on the fest set.
These splits are defined in the appendix E.

Teacher and student models. Throughout the paper, we opt for using pre-trained teacher models
from BiT [22], which provides a large collection of ResNet models pretrained on ILSVRC-2012
and ImageNet-21k datasets, with state-of-the-art accuracy. The only significant differences be-
tween BiT-ResNets and standard ResNets is their use of group normalization layer [46] and weight
standardization [33], which are used instead of batch normalization [16].

In particular, we concentrate on the BiT-M-R152x2 architecture: a BiT-ResNet-152x2 (152 layers,
‘x2°‘ indicates the width multiplier) pretrained on ImageNet-21k. This model demonstrates excellent
performance on a variety of vision benchmarks and it is still manageable to run extensive ablation
studies with it. It is nonetheless expensive to deploy (it requires roughly 10x more compute than the
standard ResNet-50), and thus effective compression of this model is of practical importance. For the
student’s architecture, we use a BiT-ResNet-50 variant, referred to as ResNet-50 for brevity.

Distillation loss. We use the KL-divergence between the teacher’s p;, and the student’s p predicted
class probability vectors as a distillation loss, as was originally introduced in [12]. We do not use any
additional loss term with respect to the original dataset’s hard labels:

KL(ptl[ps) = Y _ [~pr.ilogpei + prilogpil (D
ieC

where C is a set of classes. Also, as in [12], we introduce a temperature parameter 7', which is used

to adjust the entropy of the predicted softmax-probability distributions before they are used in the

loss computation: ps o exp(log%) and p; exp(%).

Training setup. For optimization, we train our models with the Adam optimizer [21] with default
parameters, except for the initial learning rate that is part of our hyperparameter exploration. We use
a cosine learning rate schedule [27] without warm restarts. We also sweep over the weight decay loss
coefficient for all our experiments (for which we use a “decoupled” weight decay convention [28]).
To stabilize training we enable gradient clipping with a threshold of 1.0 on the global L2-norm of
a gradient. Finally, we use batch size 512 for all our experiments, except for models trained on
ImageNet, where we train with large batch size 4096. For the remaining hyperparameters, we discuss
their sweeping range together with corresponding experiments in the next section.

One additional important component of our recipe is the mixup data augmentation strategy [50]. In
particular, we introduce a mixup variant in our “function matching” strategy (see Section 3.1.1), in
which we use “agressive” mixing coefficients sampled uniformly from [0, 1], which can be seen as an
extreme case of the originally proposed sampling from S-distribution.

Unless explicitly specified otherwise, for prepossessing we use an “inception-style” crop [38] and
then resize images to a fixed square size. Furthermore, in order to make our extensive analysis
computationally feasible (overall we trained dozens of thousands of models), we use relatively low
input resolution and resize input images to 128 x 128 size, except for our ImageNet experiments,
that use the standard input 224 x 224 resolution.

For all our experiments we use Google Cloud TPU accelerators [19]. We also report our batch
sizes, epochs or total number of update steps, which allow to estimate resource requirements for any
particular experiment of interest.
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Figure 2: Experimental validation of the “consistency” requirement on the Flowersl02 dataset.
Colors match different knowledge distillation design choices as introduced in Figure 1 and Section
3.1.1. Note that while the fixed teacher settings achieve significantly lower distillation loss, they lead
to students which do not generalize well. In contrast, and

approaches lead to significantly higher student performance. Similar results on more datasets are
reported in Appendix C.

3 Distillation for model compression

3.1 Investigating the '"consistent and patient teacher'' hypothesis

In this section, we perform an experimental verification of our hypothesis formulated in the introduc-
tion and visualised in Figure 1, that distillation works best when seen as function matching, i.e. when
the student and teacher see consistent views of the input images, synthetically "filled" via mixup, and
when student is trained using long training schedule (i.e. the “teacher” is patient).

To make sure that our findings are robust, we perform a very thorough analysis on four small and
medium scale datasets, namely FlowersI02 [30] (1020 training images), Pets [32] (3312 training
images), Food101 [20] (about 68k training images), and SUN397 [47] (about 76k training images).

In an effort to remove any confounding factors, for each individual distillation setting we sweep over
all combinations of learning rates {0.0003,0.001, 0.003,0.01}, weight decays {1-107°,3-1075,1-
1074,3-107%,1- 1073}, and distillation temperatures {1, 2,5, 10}. In all reported figures, we show
every single run as a low opacity curve, and highlight the one with the best final validation accuracy.
We provide corresponding test accuracies in Appendix A.

3.1.1 Importance of “consistent” teaching

First, we demonstrate that the consistency criterion, i.e. student and teacher seeing the same views, is
the only way of performing distillation which reaches peak student performance across all datasets
consistently. For this study, we define multiple distillation configurations which correspond to
instantiations of all four options sketched in Figure 1, with the same color coding:

* Fixed teacher. We explore several options where the teacher’s predictions are constant for
a given image (precomputed target). The simplest (and worst) method is £ix/rs, where
the image is just resized to 2242px for both student and teacher. fix/cc follows a more
common approach of using a fixed central crop for the teacher and a mild random crop
for the student. fix/ic_ens is a heavy data augmentation approach where the teacher’s
prediction is the average of 1024 inception crops, which we verified to improve the teacher’s
performance. The student also uses random inception crops. The two latter settings are
similar to the input noise strategy used in the “noisy student” paper [48].

* Independent noise. We instantiate this common strategy in two ways: ind/rc computes
two independent mild random crops for the teacher and student respectively, while ind/ic
uses the heavier inception crop instead. A similar setup was used in [40].

. In this approach, we randomly crop the image only once, either with
mild random cropping (same/rc) or heavy inception crop (same/ic), and use this same
crop for the input to both the student and the teacher.
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Figure 3: One needs patience along with consistency when doing distillation. Eventually, the teacher
will be matched; this is true across various datasets of different scale.

. This approach extends consistent teaching, by expanding an input
manifold of images through mixup (mix), and, again, providing consistent inputs to the
student and the teacher. For brevity, we sometimes refer to this approach as “FunMatch”.

Figure 2 shows 10 000 epoch training curves on Flowersl02 dataset in all of these configurations.
These results clearly show that “consistency” is the key: all “inconsistent” distillation settings plateau
at a lower score, while consistent settings increase student performance significantly, with the function
matching approach working the best. Furthermore, the training losses show that, for such small
datasets, using a fixed teacher leads to strong overfitting. In contrast, function matching never reaches
such loss on the training set while generalizing much better to the validation set. Due to space
constraints, we show analogous results for other datasets and training durations in Appendix C.

3.1.2 Importance of “patient” teaching

One can interpret distillation as a variant of supervised learning, where labels (potentially soft)
are provided by a strong teacher model. This is especially true when the feacher predictions are
(pre)computed for a single image view. This approach inherits all problems of the standard supervised
learning, e.g. aggressive data augmentations may distort actual image label, while less aggressive
augmentations may cause overfitting.

However, things change if we interpret distillation as function matching, and, crucially, make sure
to provide consistent inputs to the student and teacher. In this case we can be very aggressive with
image augmentations: even if an image view is too distorted, we still will make a progress towards
matching the relevant functions on this input. Thus, we can be more opportunistic with augmentations
and avoid overfitting by doing aggressive image augmentations and, if true, optimize for very long
time until the student’s function comes close to the teacher’s.

We empirically confirm our intuition in Figure 3, where for each dataset we show the evolution of test
accuracy during training of the best function matching student (according to validation), for different
amounts of training epochs. The teacher is shown as a red line and is always reached eventually, after
a much larger number of epochs than one would ever use in a standard supervised training setup.
Crucially, there is no signs of overfitting even when we optimize for a million epochs.

We also trained and tuned two more baselines for reference: training a ResNet-50 from scratch using
the dataset original hard labels, as well as transferring a ResNet-50 that was pre-trained on ImageNet-
21k. For both of these baselines, we heavily tune learning rate and weight decay as described in
Section 3.1. The model trained from scratch using the original labels is substantially outperformed
by our student. The transfer model fares much better, but is eventually also outperformed.

Notably, training for a relatively short but common duration of 100 epochs leads to much worse
performance than the transfer baseline. Overall, the ResNet-50 student patiently and consistently
matches (sometimes outperforms) the very strong but much more expensive ResNet-152x2 teacher
across the board.
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Figure 4: Left: Top-1 accuracy on ImageNet of three distillation setups: (1) fixed teacher; (2)

;(3) (“FunMatch”). Light color curves show accuracy throughout
training, while the solid scatter plots are the final results. The student with a fixed teacher eventually
saturates and overfits to it. Both consistent teaching and function matching do not exhibit overfitting
or saturation. Middle: Reducing the optimization cost, via Shampoo * | preconditioning; with 1200
epochs, it is able to match the baseline trained for 4800 epochs. Right: Initializing student with
pre-trained weights improves short training runs, but eventually harms for the longest schedules.

3.2 Scaling up to ImageNet

Based on our insights from the previous sections, we now investigate how the proposed distillation
recipe scales to the widely used and more challenging ImageNet dataset [35]. Following the same
protocol as before, in Figure 4 (left), we report student accuracy curves throughout training for
three distillation settings: (1) fixed teacher, (2) consistent teaching and (3) function matching. For
reference, our base teacher model reaches a top-1 accuracy of 83.0%. Fixed teacher again suffers
from long training schedules, and starts overfitting after 600 epochs. In contrast, the consistent
teaching approaches continuously improves performance as the training duration increases. From
this we can conclude that consistency is a key to make distillation work on ImageNet, similar to the
behaviors on the previously discussed small and mid-sized datasets.

Compared to simple consistent teaching, function matching performs slightly worse with short
schedules, which likely happens due to underfitting. But when we increase the length of training
schedule, the improvement of function matching becomes apparent: for instance with only 1200
epochs, it is able to match the performance of consistent teaching at 4800 epochs, thus saving 75%
compute resource. Finally, for the longest run of function matching we experimented on, the vanilla
ResNet-50 student architecture achieves 82.31% top-1 accuracy on ImageNet.

3.3 Distilling across different input resolutions

So far, we have assumed that both the student and feacher receive the same standard input resolution
of 224px. However, it is possible to pass images of different resolution to the student and the teacher,
while still being consistent: one simply has to perform the crop on the original high-resolution
image, and subsequently resize it differently for the student and the teacher: their views will be
consistent, albeit at different resolutions. This insight can be leveraged for learning from a better,
higher resolution, teacher [22, 42], but also for training a smaller, faster student [2]. We investigate
both directions: first, following [2], we train a ResNet-50 student with an input resolution of 160px
while leaving the teacher resolution unchanged (224px). This results in a twice faster model, which
still achieves remarkable 80.49% top-1 accuracy (see Table 1), compared to the best published 78.8%
at this resolution using an array of modifications [2].

Second, following [22], we distill a teacher that was fine-tuned at a resolution of 384px (and attains
83.7% top-1 accuracy), this time leaving the student resolution unchanged, i.e. consuming a 224px
input image. Compared to the baseline teacher, this provides a modest but consistent improvement
across the board, as shown in Table 1, as compared to using the 224px teacher.



Table 1: Top-1 test accuracy for different Table 2: Comparison of our best and literature
teacher/student input resolutions (rows) and num-  ResNet-50 models. The metric is accuracy on

ber of training epochs (columns). ImageNet test split (officially val split).
Experiment 300 1200 4800 9600 Model Res. Accuracy
T224 — S224  80.30 81.54 82.18 8231  VanillaR50 [11] 224 T1.2%
BiT-M-R50 [22] 224 78.4%
T224 — S160  78.17 79.61 N/A 8049  \realv2 [37] 24 80.7%
T384 — S224  80.46 81.82 82.33 82.64  FunMatch (T384+224) 224  82.8%
“Revisiting” R50 [2] 160 78.8%
FunMatch (T224) 160  80.5%

3.4 Optimization: A second order preconditioner (:¥ * ) improves training efficiency

We observe that optimization efficacy creates a computational bottleneck for our distillation recipe
with “function matching” perspective due to long training schedules. Intuitively, we believe that
optimization difficulties stem from the fact that it is much harder to fit a general function with
multivariate outputs, rather than fixed image-level labels. Thus, we conduct an initial exploration,
whether more powerful optimizers can do a much better job at our task.

To this end, we change the underlying optimizer from Adam to Shampoo [1], with the second order
preconditioner. In Figure 4 (middle) we observe that Shampoo achieves the same test accuracy
reached by Adam at 4800 epochs in just 1200 epochs, and with minimal step time overhead. And, in
general, we observe consistent improvement over Adam in all our experimental settings. Experimental
details on the Shampoo optimizer are provided in the Appendix D.

3.5 Optimization: A good initialization improves short runs but eventually falls behind

Motivated by transfer learning literature [10, 22] and [37], where a good initialization is able to
significantly shorten the training cost and achieve a better solution, we try to initialize the student
model with a pre-trained BiT-M-ResNet50 weights and show the results in Figure 4 (right).

The BiT-M initialization improves more than 2% when the distillation duration is short (30 epochs).
However, the gap closes when the training schedule is long enough. Our observation is similar to the
conclusion of [10]. Starting from 1200 epochs, distilling from scratch for 1200 epochs matches the
BiT-M initializated student, and slightly overtakes it for 4800 epochs.

3.6 Distilling across different model families

Going beyond using different input resolutions for student and teacher, nothing in principle prevents
us from using architectures of different families entirely, as our consistent patient teacher approach
still applies in this setting. This allows us to efficiently transfer knowledge from stronger and more
complex teachers, e.g. ensembles, while keeping the simple architecture of a ResNet50 student, but
also transfer the state-of-the-art performance of large ResNet models to more efficient architectures
e.g. MobileNet. We demonstrate this via two experiments. First, we use an ensemble of two models
as teacher and show that this further improves performance. Second, we train a MobileNet v3 [13]
student and obtain the best reported MobileNet v3 model to date.

MobileNet student. We use MobileNet v3 (Large) as a student, for most experiments we opt for
the variant which uses GroupNorm (with the default of 8 groups) instead of BatchNorm. We do
not use any of the training tricks used in the original paper,' we simply perform function matching.
Our student reaches 74.60% after 300 epochs, and 76.31% after 1200 epochs, resulting in the best
published MobileNet v3 model. More results are in the Appendix A.

"Most notably we did not try Polyak averaging, which is known to improve accuracy by 1-2%. We really
should try it, we simply did not yet implement it as it is not important for this paper’s message.
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Ensemble teacher. We now try a better teacher: we create a model which consists of averaging the
logits from our default teacher at 224px resolution, and our teacher at 384px resolution from the
previous section. This is a different, though closely related, type of teacher which is significantly
more powerful but also slower. This teacher’s student is better than our default teacher’s student
at every duration we tried (see Appendix A) and, after 9600 epochs of distillation, reaches a new
state-of-the-art top-1 ImageNet accuracy of 82.82%.

3.7 Comparison to the results from literature.

Now, when we introduced our key experiments, we compare our best ResNet-50 models to the
best ResNet-50 models available in the literature, see Table 2. In particular, for 224 x 224 input
resolution we compare against the original ResNet-50 model from [ 1], BiT-M-ResNet-50 pretrained
on ImageNet-21k dataset [36] and previous state-of-the-art model from [37]. For 160 x 160 input
resolution we compare against very recent and competitive model from [2]. We observe that our
distillation recipe leads the state-of-the-art performance in both cases and by a significant margin.

3.8 Distilling on the "out-of-domain'' data

By looking at knowledge distillation as “function matching”, one can draw a reasonable hypothesis
that distillation can be done on arbitrary image inputs. So far in the paper we use only “in-domain”
data with respect to the task of interest. In this section we investigate the importance of this choice.

We conduct experiments on pets and sun397 datasets. We use our distillation recipe to distill pets and
sun397 models using out-of-domain images from the food101 and ImageNet datasets and, for the
reference results, also run distillation with “in-domain” images from pets and sun397 datasets.

Figure 5 summarizes our results. First we observe that distilling using in-domain data works the
best. Somewhat surprisingly, even if the images are completely unrelated, distillation still works to
some extent, though results get worse. This, for example, means that the student model can learn to
classify pets with roughly 30% accuracy by only seeing food images (softly) labeled as breeds of
pets. Finally, if distillation images are somewhat related or overlapping with the actual “in-domain”
images (e.g. Pets and ImageNet, or sun397 and ImageNet), then results can be as good (or almost as
good) as using “in-domain” data, but extra long optimization schedule may be required.

3.9 Finetuning ResNet-50 with mixup and augmentations

To make sure that our observed state-of-the-art distillation results are not an artifact of our well-
tuned training setup, namely very long schedule and aggressive mixup augmentations, we train
corresponding baseline ResNet-50 models. More specifically, we reuse the distillation training setup
for supervised training on ImageNet dataset without distillation loss. To further strengthen our
baseline, we additionally try SGD optimizer with momentum, which is known to often work better
for ImageNet than Adam optimizer.



Results are shown in Figure 6. We observe that training with labels and without distillation loss leads
to significantly worse results and starts to overfit for long training schedules. Thus, we conclude that
distillation is necessary to make our training recipe work well.

4 Related work

There are many paradigms for compressing neural networks. One of them is pruning, where the
general idea is to discard parts of the trained model while making it much more efficient and incurring
little or no sacrifise in performance. Model pruning comes in many different flavours: it can be
unstructured (i.e. focus on pruning individual connections) or structured (i.e. focus on pruning larger
building blocks, e.g. whole channels). It can also come with or without an additional finetuning step,
or be iterative or not. Balanced and fair discussion of this topic goes beyond the scope of this paper,
so we refer interested reader to recent overviews as a starting point [3, 44].

Knowledge distillation [12] is a technique for transferring knowledge from one model (tfeacher) to
another (student), by optimizing a student model to match certain outputs (or intermediate activations)
of a teacher model. This technique is used in numerous distinct contexts, such as semi-supervised
learning [40, 48] or even self-supervised learning [8]. In this paper we only consider knowledge
distillation as a tool for model compression. The efficiency of distillation has been showcased
in numerous works, e.g. [4, 34], under different depth/width patterns of the student and teacher
architectures, and even combined with other compression techniques [29]. Most notably, MEAL [37]
proposes to distill an ensemble of large ResNet teachers to a smaller ResNet student with an
adversarial loss and achieves strong results. The main difference of our work to similar works on
knowledge distillation for compression, is that our method is simultaneously the simplest and best
performing: we do not introduce any new components, but rather discover that correct training setup
is sufficient to attain state-of-the art results.

Weights quantization [25, 17, 31, 45] and decomposition [5, 23, 43, 9] aim to accelerate and
reduce the memory footprint of CNNs by replacing large matrices operations with their lightweight
approximations. This line of research is largely orthogonal to this work and can generally be combined
with the method from this paper, especially during for the final model deployment stage. To keep the
scope of this paper manageable, we leave exploration of this topic for future research.

Finally, there is a line of work, which approaches our ultimate goal (compact and high performing
models) from a different angle, by focusing on altering the architecture and getting good compact
models trained from scratch, so there is no need to compress large models. Some notable examples
include ResNeXt [49], Squeeze-and-Excitation Networks [15] and Selective Kernel [24], which
propose modifications that improve model accuracy for a fixed compute budget. These improvements
are complementary to the research question tackled in this paper and can be compounded.

5 Conclusion

Instead of proposing a new method for model compression, we closely look at the existing common
knowledge distillation process and identify how to make it work really well in the context of model
compression. Our key findings stem from a specific interpretation of knowledge distillation: we
propose to see it as a pure function matching task. This is not the typical view of knowledge
distillation, as normally it is rather seen as “a strong feacher generates better (soft) labels that are
useful for training a better and smaller student model”.

Based on our interpretation we simultaneously incorporate three ingredients: (i) make sure that
teacher and student always get identical inputs, including noise, (ii) introduce aggressive data
augmentations to enrich the input image manifold (through mixup) and (iii) use very long training
schedules. Even though each component of our recipe may seem trivial, our experiments show that
one has to apply all of them jointly to get top results.

We attain very strong empirical results for compressing very large models to the more practical
ResNet-50 architecture. We believe that they are very useful from a practical point of view and are a
very strong baseline for future research on compressing large-scale models.
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Table 3: Summary of all ImageNet distillation runs. Numbers represent top-1 accuracy on the
validation set. By default, the student is always a ResNet50 and the teacher is BiT-M-R152x2.

Experiment 30ep 90ep 300ep 600ep 1200ep 4800ep 9600ep
Best from labels - 76.59 78.08 - 78.15 76.59 -
Fixed teacher 73.75 7645 77.76 7799 78.11 77.56 7695
consistent teacher 7495 78.05 80.08 80.63 81.15 81.58 81.76
function matching (FunMatch) 73.89 78.00 80.30 81.17 81.54 82.18 82.31
consistent teacher 7545 78.79 80.54 81.11 81.44 - -
function matching ¥ 75.12  78.70  80.63 - 81.67 - -

T224 — S160 (consistent teacher) 71.38 75.57 78.01 - - - -
T224 — S160 (function matching) 70.22 7534 78.17 79.07 79.61 0.10 80.49

FunMatch: T384 — S224 - - 80.46 - 81.82 8233 82.64
FunMatch: T384+224 — S224 - - - - 82.12 8271 82.82
FunMatch: MobileNet v3 (GN) - - 74.60 - 76.31 76.84 76.97
FunMatch: MobileNet v3 (GN, 2T) - - 74.85 - 76.51 - -
FunMatch: MobileNet v3 (GN, Small) - - 65.61 - 67.57 - -
FunMatch: MobileNet v3 (BN) - - 72.32 - 73.51 - -
FunMatch: MobileNet v3 (BN, 2T) - - 73.28 - - - -
Figure 4 (right): BiT-M-R50 init 77.52 7943 80.47 80.83 81.11 81.45 -
Figure 6: SGDM - 76.59 76.38 - 7493 7348 -
Figure 6: Adam - 7492 74.55 - 7347 70.66 -
Figure 6: SGDM + Mixup - 76.18 78.06 - 75.01 7140 -
Figure 6: Adam + Mixup - 76.17 78.08 - 78.15 76.59 -

A Full results tables

We provide a full summary of our experiments on ImageNet in Table 3, with a dash “-” marking
settings we did not deem necessary to run, as the cost outweights the potential insights.

Furthermore, Table 4 gives numerical results for the models shown in Figure 3, our best models
(according to validation) on the four smaller datasets at 128px resolution, together with baselines and
the teacher.

B BiT models download statistics

BiT-S BiT-S (ilk head) BiT-M BiT-M (ilk head) BiT-M (i21k head) Overall
75004 75004 75004 75004 75004 12500
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5000 5000 5000 5000 50001
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25004 25004 25004 2500 1 I 2500 1

I 25004

0- o 0- 0- o—.—-v—-v————-ll 0-

Figure 7: BiT models download statistics according to https://tfhub.dev/google/

collections/bit. “BiT-S”/“BiT-M” denotes the BiT model for feature extraction, while the

figures with a mention of “head” correspond to the classifiers. The rightmost overall plot shows the
total download counts for each size. It is clear that ResNet-50 is by far the most widely used model.
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Table 4: Tabular representation of the results from Figure 3.

Model Epochs Final Test Acc T LR WD
Flowers102

ResNet-50x1 student 1000 77.51% 10 0.003 0.001

ResNet-50x1 student 10000 92.83% 10 0.003  0.0003

ResNet-50x1 student 100 000 95.54% 1 0.001 0.0001

ResNet-50x1 student 1 000 000 96.93% 1 0.0003 1e-05

ResNet-152x2 teacher - 97.82% - - -

Best transfer ResNet50 10000 97.50% LR=0.01, Mixup=0.0
Best from-scratch ResNet50 10000 66.38% LR=0.01, Mixup=1.0
Pet37

ResNet-50x1 student 300 82.75% 2 0.01 le-05
ResNet-50x1 student 1000 88.01% 5 0.01 0.001
ResNet-50x1 student 3000 90.08% 10 0.003  0.0003
ResNet-50x1 student 10000 90.98% 2 0.001 0.0001
ResNet-50x1 student 30000 91.06% 2 0.003 1e-05
ResNet-152x2 teacher - 91.03% - - -

Best transfer ResNet50 10000 88.20% LR=0.001, Mixup=1.0
Best from-scratch ResNet50 10000 74.24% LR=0.01, Mixup=1.0
Foodl01

ResNet-50x1 student 100 83.29% 10 0.01 0.001
ResNet-50x1 student 1000 86.64% 10 0.001  0.0003
ResNet-50x1 student 3000 87.20% 5 0.01 0.0001
ResNet-152x2 teacher - 86.24% - - -

Best transfer ResNet50 1000 85.05% LR=0.001, Mixup=1.0
Best from-scratch ResNet50 1000 74.56% LR=0.01, Mixup=1.0
Sun397

ResNet-50x1 student 100 68.28% 10 0.01 0.001
ResNet-50x1 student 1000 73.46% 10 0.003  0.0001
ResNet-50x1 student 3000 74.26% 10 0.01 3e-05
ResNet-152x2 teacher - 74.22% - - -

Best transfer ResNet50 1000 71.61% LR=0.001, Mixup=1.0
Best from-scratch ResNet50 1000 60.63% LR=0.01, Mixup=1.0

In Figure 7, we show the download statistics for models with different sizes: ResNet50, ResNet50x3,
ResNet101, ResNet101x3 and ResNet152x4. It’s clear that the smallest ResNet50 model is the most
used, with a significant gap compared to the other models. The practitioners’ behavior motivates our
work of getting the best possible ResNet50 model.

C More consistency plots

In Figures 8 to 11, we show the “consistency” plots (cf Figure 2 in the main paper) for all datasets
and across all training durations. It is noteworthy that (relatively) short runs may provide deceptive
signal on the best method, and only with the addition of “patience”, e.g. when distilling for a long
time, does it become clear that the full function-matching approach is the best choice.
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Table 5: Train, validation and test splits. Split definitions follow notation from the tensorflow datasets
library and can be directly used to access relevant data splits using the library.

Dataset train split validation split test split
Flowers102 train validation test
Pets37 train[:90%] train[90%:] test
Food101 train[:90%] train[90%:] test
Sun397 train validation test
ImageNet train[:98%] train[98%:] validation

D Shampoo optimization details

For all experiments the learning rate schedule was a linear warm-up up to 1800 steps followed by
a quadratic decay towards zero. Overhead of Shampoo is quite minimal due blocking trick (each
preconditioner is atmost 128x128) and inverse is run in a distributed manner across the TPU cores
every step, with nesterov momentum. These settings are identical to the the training recipe in [!]
for training a ResNet-50 architecture on ImageNet from scratch efficiently at large batch sizes. All
experiments uses weight decay of 0.000375.

E Training, validation and test splits

Throughout our experiments we rely on the tensorflow datasets library” to access all datasets. A huge
advantage of this library is that it enables a unified and reproducible way to access diverse datasets.
To this end, we report our train, validation and test splits (following the library’s notation) in Table 5.

*https://www.tensorflow.org/datasets
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Figure 10: Consistency plots for the Food101 dataset, when training for 100 epochs, 1 000 epochs,
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