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Abstract

Optical Processing Units (OPUs) – low-power photonic chips dedicated to large
scale random projections – have been used in previous work to train deep neural
networks using Direct Feedback Alignment (DFA), an effective alternative to
backpropagation. Here, we demonstrate how to leverage the intrinsic noise of
optical random projections to build a differentially private DFA mechanism, making
OPUs a solution of choice to provide a private-by-design training. We provide a
theoretical analysis of our adaptive privacy mechanism, carefully measuring how
the noise of optical random projections propagates in the process and gives rise to
provable Differential Privacy. Finally, we conduct experiments demonstrating the
ability of our learning procedure to achieve solid end-task performance.

1 Introduction

The widespread use of machine learning models has created concern about their release in the
wild when trained on sensitive data such as health records or queries in data bases [7, 15]. Such
concern has motivated a abundant line of research around privacy-preserving training of models. A
popular technique to guarantee privacy is differential privacy (DP), that works by injecting noise in
an deterministic algorithm, making the contribution of a single data-point hardly distinguishable from
the added noise. Therefore it is impossible to infer information on individuals from the aggregate.

While there are alternative methods to ensure privacy, such as knowledge distillation (e.g. PATE
[24]), a simple and effective strategy is to use perturbed and quenched Stochastic Gradient Descent
(SGD) [1]: the gradients are clipped before being aggregated and then perturbed by some additive
noise, finally they are used to update the parameters. The DP property comes at a cost of decreased
utility. These biased and perturbed gradients provide a noisy estimate of the update direction and
decrease utility, i.e. end-task performance.

We revisit this strategy and develop a private-by-design learning algorithm, inspired by the implemen-
tation of an alternative training algorithm, Direct Feedback Alignment [22], on Optical Processing
Units [19], photonic co-processors dedicated to large scale random projections. The analog nature of
the photonic co-processor implies the presence of noise, and while this is usually minimized, in this
case we propose to leverage it, and tame it to fulfill our needs, i.e to control the level of privacy of the
learning process. The main sources of noise in Optical Processing Units can be modeled as additive
Poisson noise on the output signal, and approach a Gaussian distribution in the operating regime of
the device. In particular, these sources can be modulated through temperature control, in order to
attain a desired privacy level.

Finally, we test our algorithm using the photonic hardware demonstrating solid performance on the
goal metrics. To summarize, our setting consists in OPUs performing the multiplication by a fixed
random matrix, with a different realization of additive noise for every random projection.
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1.1 Related work

The amount of noise needed to guarantee differential privacy was first formalized in [9]. Later, a
training algorithm that satisfied Renyi Differential Privacy was proposed in [1]. This sparked a line
of research in differential privacy for deep learning, investigating different architecture and clipping
or noise injection mechanisms [2, 3]. The majority of these works though rely on backpropagation.
An original take was offered in [18], that evaluated the privacy performance of Direct Feedback
Alignment (DFA) [22], an alternative to backpropagation. While Lee et al. [18] basically extend the
gradient clipping/Gaussian mechanism approach to DFA, our work, while applied to the same DFA
setting, is motivated by a photonic implementation that naturally induces noise that we exploit for
differential privacy. As such, we provide a new DP framework together with its theoretical analysis.

1.2 Motivations and contributions

We propose a hardware-based approach to Differential Privacy (DP), centered around a photonic
co-processor, the OPU. We use it to perform optical random projections for a differentially private
DFA training algorithm, leveraging noise intrinsic to the hardware to achieve privacy-by-design.
This is a significant departure from the classical view that such analog noise should be minimized,
instead leveraging it as a key feature of our approach. Our mechanism can be formalized through the
following (simplified) learning rule at layer `:

δW` = −η[(B`+1e︸ ︷︷ ︸
scaled DFA learning signal

+

Gaussian hardware noise︷︸︸︷
g )� φ′`(z`)](hl−1︸︷︷︸

neuron-wise clipped activations

)> (1)

Photonic-inspired and tested. The OPU is used as both inspiration and an actual platform for our
experiments. We demonstrate theoretically that the noise induced by the analog co-processor makes
the algorithm private by design, and we perform experiments on a real photonic co-processor to show
we achieve end-task performance competitive with DFA on GPU.

Differential Privacy beyond backpropagation. We extend previous work [18] on DP with DFA
both theoretically and empirically. We provide new theoretical elements for noise injected on the
DFA learning signal, a setting closer to our hardware implementation.

Theoretical contribution. Previous works on DP and DFA [18] proposes a straightforward extension
of the DP-SGD paradigm to direct feedback alignment. In our work, by adding noise directly to the
random projection in DFA, we study a different Gaussian mechanism [21] with a covariance matrix
depending on the values of the activations of the network. Therefore the theoretical analysis is more
challenging than in [18]. We succeed to upper bound the Rényi Divergence of our mechanism and
deduce the (ε, δ)-DP parameters of our setup.

2 Background

Formally the problem we study the following: the analysis of the built-in Differential Privacy thanks
to the combination of DFA and OPUs to train deep architectures. Before proceeding, we recall a
minimal set of principles of DFA and Differential Privacy.

From here on {xi}Ni=1 are the training points belonging to Rd, {yi}Ni=1 the target labels belonging
to R. The aim of training a neural network is to find a function f : Rd → R that minimizes the
true L-risk EXY∼DL(f(X), Y ), where L : R × R → R is a loss function and D a fixed (and
unknown) distribution over data and labels (and the (xi, yi) are independent realizations of X,Y ),
and to achieve that, the empirical risk 1

N

∑N
i=1 L(f(xi), yi) is minimized.

2.1 Learning with Direct Feedback Alignment (DFA)

DFA is a biologically inspired alternative to backpropagation with an asymmetric backward pass.
For ease of notation, we introduce it for fully connected networks but it generalizes to convolutional
networks, transformers and other architectures [16]. It has been theoretically studied in [20, 26]. Note
that in the following, we incorporate the bias terms in the weight matrices.
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Figure 1: Schematic comparison of backpropagation and direct feedback alignment. The two
approaches differ in how the loss impacts each layer of the model. While in backpropagation, the loss
is propagated sequentially backwards, in DFA, it directly acts on each layer after random projection.

Forward pass. In a model with L layers of neurons, ` ∈ {1, . . . , L} is the index of the `-th layer,
W` ∈ Rn`×n`−1 the weight matrix between layers ` − 1 and `, φ` the activation function of the
neurons, and h` their activations. The forward pass for a pair (x, y) writes as:

∀` ∈ {1, . . . , L} : z` = W`h`−1,h` = φ`(z
`), (2)

where h0 .
= x and ŷ

.
= hL = φ(zL) is the predicted output.

Backpropagation update. With backpropagation [27], leaving aside the specifics of the optimizer
used (learning rate, etc.), the weight updates are computed using the chain-rule of derivatives :

δW` = − ∂L
∂W`

= −[((W`+1)>δz`+1)� φ′`(z`)](h`−1)>, δz` =
∂L
∂z`

, (3)

where φ′` is the derivative of φ`, � is the Hadamard product, and L(ŷ,y) is the prediction loss.

DFA update. DFA replaces the gradient signal (W`+1)>δz`+1 with a random projection of the
derivative of the loss with respect to the pre-activations δzL of the last layer. For losses L commonly
used in classification and regression, such as the squared loss or the cross-entropy loss, this will
amount to a random projection of the error e ∝ ŷ − y. With a fixed random matrix B`+1 of
appropriate shape drawn at initialization of the learning process, the parameter update of DFA is:

δW` = −[(B`+1e)� φ′`(z`)](h`−1)>, e =
∂L
∂zL

(4)

Backpropagation vs DFA training. Learning using backpropagation consists in iteratively apply-
ing the forward pass of Eq. 2 on batches of training examples and then applying backpropagation
updates of Eq. 3. Training with DFA consists in replacing the backpropagation updates by DFA ones
Eq. 4. An interesting feature of DFA is the parallelization of the training step, where all the random
projections of the error can be done at the same time.

2.2 Optical Processing Units

An Optical Processing Unit (OPU)2 is a co-processor that multiplies an input vector x ∈ Rd by a
fixed random matrix B ∈ RD×d, harnessing the physical phenomenon of light scattering through a
diffusive medium [19]. The operation performed is:

p = Bx (5)

If the coefficients of B are unknown, they are guaranteed to be (independently) distributed according
to a Gaussian distribution [19, 23]. An additional interesting characteristics of the OPU is its low
energy consumption compared to GPUs for high-dimensional matrix multiplication [23].

2Accessible through LightOn Cloud: https://cloud.lighton.ai.
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A central feature we will rely on is that the measurement of the random projection in Eq. 5 may be
corrupted by an additive zero-mean Gaussian random vector g, so as for an OPU to provide access to
p = Bx+ g. If g is usually negligible, its variance can be modulated by controlling the physical
environment around the OPU. We take advantage of this feature to enforce differential privacy. In the
current versions of the OPUs, however, modulating the analog noise at will is not easy, so we will
simulate the noise numerically in the experiments.

2.3 Differential Privacy (DP)

Differential Privacy [9, 10] sets a framework to analyze the privacy guarantees of algorithms. It rests
on the following core definitions.

Definition 2.1 (Neighboring datasets). Let X (e.g. X = Rd) be a domain and D .
= ∪+∞

n=1 Xn.
D,D′ ∈ D are neighboring datasets if they differ from one record. This is denoted by D ∼ D′.
Definition 2.2 ((ε, δ)-differential privacy [10]). Let ε, δ > 0. Let A : D → Im A be a randomized
algorithm, where Im A is the image of D through A. A is (ε, δ)-differentially private, or (ε, δ)-DP, if
for all neighboring datasets D,D′ ∈ D and for all sets O ∈ Im A, the following inequality holds:

P[A(D) ∈ O] ≤ eεP[A(D′) ∈ O] + δ

where the probability relates to the randomness of A.

Mironov [21] proposed an alternative notion of differential privacy based on Rényi α-divergences and
established a connection between their definition and the (ε, δ)-differential privacy of Definition 2.2.
Rényi-based Differential Privacy is captured by the following:

Definition 2.3 (Rényi α-divergence [28]). For two probability distributions P and Q defined over R,
the Rényi divergence of order α > 1 is given by:

Dα (P‖Q)
.
=

1

α− 1
logEx∼Q

(
P (x)

Q(x)

)α
(6)

Definition 2.4 ((α, ε)-Rényi differential privacy [21]). Let ε > 0 and α > 1. A randomized algorithm
A is (α, ε)-Rényi differential private or (α, ε)-RDP, if for any neighboring datasets D,D′ ∈ D,

Dα (A(D)‖A(D′)) ≤ ε.

Theorem 1 (Composition of RDP mechanisms [21]). Let {Mi}ki=1 be a set of mechanisms, each
satisfying (α, εi)-RDP. Then their combination is (α,

∑
i εi)-RDP.

Going from RDP to the Differential Privacy of Definition 2.2 is made possible by the following
theorem (see also [4, 6, 29]).

Theorem 2 (Converting RDP parameters to DP parameters [21]). An (α, ε)-RDP mechanism is(
ε+ log 1/δ

α−1 , δ
)

-DP for all δ ∈ (0, 1).

For the theoretical analysis, we will need the following proposition, specific to the case of multivariate
Gaussian distributions, to obtain bounds on the Rényi divergence.

Proposition 1 (Rényi divergence for two multivariate Gaussian distributions [25]). The Rényi diver-
gence for two multivariate Gaussian distributions with means µ1,µ2 and respective covariances
Σ1,Σ2 is given by:

Dα(N (µ1,Σ1)‖N (µ2,Σ2)) =
α

2
(µ1 − µ2)>(αΣ2 + (1− α)Σ1)−1(µ1 − µ2)

− 1

2(α− 1)
log

[
det(αΣ2 + (1− α)Σ1)

(det Σ1)1−α(det Σ2)α

] (7)

with det(Σ) the determinant of the matrix Σ. Note that (αΣ2 + (1 − α)Σ1)−1 must be definite-
positive3, otherwise the Rényi divergence is not defined and is equal to +∞.

3Note that here α > 1 and the combination αΣ2 + (1− α)Σ1 is not a convex combination; extra-case must
be given to ensure that the resulting matrix is positive
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Remark 2.1. A standard method to generate an (R)DP algorithm from a deterministic function
f : X → Rd is the Gaussian mechanismMσ acting asMσf(·) = f(·) + v where v ∼ N (0, σ2Id).
If f has ∆f - (or `2-) sensitivity

∆f
.
= max
D∼D′

‖f(D)− f(D′)‖2,

thenMσ is
(
α,

α∆2
f

2σ2

)
-RDP.

3 Photonic Differential Privacy

This section explains how to use photonic devices to perform DFA and an analysis showing how this
combination entails photonic differential privacy.

3.1 Clipping parameters

As usual in Differential Privacy, we will need to clip layers of the network during the backward pass.
Given a vector v ∈ Rd and positive constants c, s, ν, we define:

clipc(v)
.
= (sign(v1) ·min(c, |v1|), . . . , sign(vd) ·min(c, |vd|))>

scales(v)
.
= min(s, ‖v‖2) v

‖v‖2

offsetν(v)
.
= (v1 + ν, . . . , vd + ν)>

The weight update with clipping to be considered in place of Eq. 4 is given by

δW` = − 1

m

m∑
i=1

(scales`(B
`ei) + gi)� φ′(z`i))clipc`(offsetν`(h

`
i))
> (8)

For each layer `, we set the s`, c` and ν` parameters as follows:

c`
.
=
τmaxh√
n`

ν`
.
=
τminh√
n`

s`
.
= τB (9)

These choices ensure that

τminh ≤ ‖clipc`(offsetν`(h
`
i))‖ ≤ τmaxh

‖scales`(B
`ei)‖2 ≤ τB

Moreover,we require the derivatives of the each activation function φ` are lower and upper
bounded by constants i.e. γmin` ≤ |φ′`(t)| ≤ γmax` for all scalars t. This is a reasonable
assumption for activation functions such as sigmoid, tanh, ReLU. . .

In the following, the quantities should all be considered clipped/scaled/offset as above and, for sake
of clarity, we drop the explicit mentions of these operations.

3.2 Photonic Direct Feedback Alignment is a natural Gaussian mechanism

Noise modulation. Due to the measurement process, Gaussian noise is naturally added to the random
projection of Eq. 5. This noise is negligible for machine learning purposes, however it can be
modulated through temperature control yielding the following projection:

p = Bx+N (0, σ2ID) (10)

where ID is the identity matrix in dimension D.

Building on that feature, we perform the random projection of DFA of Eq. 4 using the OPU. Since
this equation is valid for any layer ` of the network, we allow ourselves, for sake of clarity, to drop
the layer indices and study the generic update (the quantities below are all clipped as in section 3.1):

5



Algorithm 1 Photonic DFA training
Require: training set S = {(xj , yj)}Nj=1, φ` with bounded derivatives, scale parameters s`, clipping

thresholds ν` and c`, stepsize η, noise scale σ, minibatch of size m, number of iterations T
Ensure: A performing DP model

1: for ` = 1 to L do
2: Sample B` . Note: with OPUs, there is no explicit sampling of B
3: end for
4: for T iterations do
5: Create a minibatch S ⊂ {1, . . . , N} of size |S| = m (sampling without replacement)
6: for i ∈ S do
7: for ` = 1 to L− 1 do
8: z`i = W`h`−1

i

9: h`i = φ`(z
`
i)

10: end for
11: ŷi ← φ`(W

`h`−1
i )

12: end for
13: for l = L to 1 do
14: Perform B`+1ei with the OPU
15: Independently sample g`1, . . . g

`
m ∼ N (0, σ2ID)

16: W` ←W` − η
m

∑m
i=1((scales`(B

`+1ei) + g`i)� φ′`(z`i) )clipc`(offsetν`(h
`
i))
>

17: end for
18: end for

δW = − 1

m

m∑
i=1

(Bei + gi)� φ′(zi))h
>
i (clipped quantities as in section 3.1) (11)

= − 1

m

m∑
i=1

(Bei � φ′(zi))h>i +
1

m

m∑
i=1

(gi � φ′(zi))h
>
i (12)

where gi ∼ N (0, σ2In`
) is the gaussian noise added during the OPU process. As stated previously,

its variance σ2 can be modulated to obtain the desired value. The overall training procedure with
Photonic DFA (PDFA) is described in Algorithm 3.1.

3.3 Theoretical Analysis of our method

In the following, the quantities in the DFA update of the weights are always clipped according to
Eq. 11 and as before clipping/scale/offset operators are in force but dropped from the text.

To demonstrate that our mechanism is Differentially Private, we will use the following reasoning:
the noise being added at the random projection level as in Eq. 10, we can decompose the update
of the weights as a Gaussian mechanism as in Eq. 12. We will compute the covariance matrix of
the Gaussian noise, which will depend on the data, which is in striking contrast with the standard
Gaussian mechanism [1]. We will then use Proposition 1 to compute the upper bound the Rényi
divergence. The Differential Privacy parameters will be obtained using Theorem 2.

In the following, we will consider the Gaussian mechanism applied to the columns of the weight
matrix. We consider this case for the following reasons: since our noise matrix has the same
realisation of the Gaussian noise (but multiplied by different scalars), it makes sense to consider the
Differential Privacy parameters of only columns of the weight matrix and then multiply the Rényi
divergence by the number of columns. If our noise was i.i.d. we could have used the theorems
from [8] to lower the Rényi divergence. Given the update equation of the weights at layer l in Eq. 12,
the update of column k of the weight of layer l is the following Gaussian mechanism:

1

m

m∑
i=1

((Bei)� φ′(zi))hik +
1

m

m∑
i=1

(gi � φ′(zi))hik = fk(D) +N (0,Σk) (13)

6



where Σk = σ2

m2 diag(ak)2 and (ak)j =
√∑m

i=1(φ′ijhik)2,∀j = 1, . . . , n`. Note that these
expressions are due to the inner product with hi. In the following, we will focus on column k and we
therefore drop the index k in the notation. Using the clipping of the quantities of interest detailed in
Eq. 8, we can compute some useful bounds bounds on aj :√

m

n`
γmin` τminh ≤ aj ≤

√
m

n`
γmax` τmaxh (14)

Proposition 2 (Sensitivity of Photonic DFA [18]). For neighboring datasets D and D′ (i.e. differing
from only one element), the sensitivity ∆`

f of the function fk described in Eq. 12 at layer l is:

∆`
f = sup

D∼D′
‖f(D)− f(D′)‖2 ≤

2

m
‖(B`ei)� φ′`(z`i))h`−1

ik ‖2 (15)

≤ 2

m
τBγ

max
`

τmaxh√
n`

(16)

The following proposition is our main theoretical result: we compute the ε parameter of Rényi
Differential Privacy.
Proposition 3 (Photonic Differential Privacy parameters). Given two probability distributions P ∼
N (f(D),Σ) andQ ∼ N (f(D′),Σ′) corresponding to the Gaussian mechanisms depicted in Eq. 13
on neighboring datasets D and D′, the Rényi divergence of order α between these mechanisms is:

Dα(P‖Q) ≤ 2α

m.σ2

(γmaxτmaxτB)2

(γmin` τminh )2
+

n`.α

2(α− 1)
log

[
m(γmin` τminh )2

(m+ 1)(γmin` τminh )2 − (γmax` τmaxh )2

]
= εPDFA (17)

Our mechanism is therefore (α, TεPDFA)-RDP with T the number of training iterations. We can
deduce that the mechanism on the weight matrix with n`−1 columns is (α, Tn`−1εPDFA)-RDP. Then
the mechanism of the whole network composed of L layers is (α,LTn`−1εPDFA)-RDP. We can then
convert our bound to DP parameters using Theorem 2 to obtain a (LTn`−1εPDFA + log 1/δ

α−1 , δ)-DP
mechanism for all δ ∈ (0, 1).

Proof. In the following, the variables with a prime correspond to the ones built upon dataset D′.
According to Eq. 13, the covariance matrices Σ and Σ′ are diagonal and any of their weighted sum is
diagonal, as well as their inverse. Moreover, the determinant of a diagonal matrix is the product of its
diagonal elements. Using these elements in Eq. 7 yield:

Dα(P‖Q) =

n∑̀
j=1

(
αm2

2σ2

(fj(D)− fj(D′))2

αa′2j + (1− α)a2
j

− 1

2(α− 1)
log

[
(1− α)a2

j + αa′2j

a
2(1−α)
j a′2αj

])
Using the fact that we are studying neighboring datasets, the sums composing aj and a′j differ by
only one element at element i = I . This implies that

αa′2j + (1− α)a2
j = a2

j + α[(φ̃′Ij h̃Ik)2 − (φ′IjhIk)2)]

where φ̃′Ij and h̃2
Ik are taken on the dataset D′. By choosing D and D′ such that [(φ̃′Ij h̃Ik)2 −

(φ′IjhIk)2)] ≥ 0 and some rearrangement, we can upper bound the Rényi divergence by:

Dα(P‖Q) ≤ α.n`m
2

2σ2

∆2
f

(
√

m
n`
γmin` τminh )2

+
α.n`

2(α− 1)
log

[
m(γmin` τminh )2

(m+ 1)(γmin` τminh )2 − (γmax` τmaxh )2

]
Using the bound on the sensitivity f computed in Eq. 15, we obtain the desired εPDFA, upper bound
of the Rényi divergence. A more detailed proof is presented in the Supplementary material.

Remark 3.1. This bound is not tight since it assumes that all the activations reach their worst cases
in all the layers for upper bounding. However, obtaining a tighter bound would be very challenging
since the values of the covariance matrices depend on the output of the neurons of the Neural network,
which are data and architecture dependent.

7



Figure 2: Photonic training on FashionMNIST. Left: BP, DFA, and photonic DFA (PDFA) training
runs for various degrees of privacy. Dashed runs (- -) are non-private. Increasingly transparent
runs have increased noise, see Table 1 for details. PDFA is always very close to DFA performance,
and both are robust to noise. Right: gradient alignment (cosine similarity between PDFA and BP
gradients) for the second layer of the network, at varying degrees of noise. Increasing noise degrades
alignment, but alignment values remain high enough to support learning.

We believe tighter bounds could be obtained in much simpler cases. First we can notice that having
equal covariance matrices Σ and Σ′ would cancel the logarithm term. If additionally we assume that
all the activations saturate to their clipping values, then we would retrieve the formula of ε in [18].

Owing to mini-batch training, we believe the privacy parameter could be further improve by consider-
ing subsampling mechanism [29] and its properties. However, this would require a novel theoretical
framework adapted to our case and we leave it for future work.

4 Experimental results

In this section, we demonstrate that photonic training is robust to Gaussian mechanism, i.e. adding
noise as in Eq. 8, delivering good end-task performance even under strong privacy constraints. As
detailed by our theoretical analysis, we focus on two specific mechanisms:

Clipping and offsetting the neurons with τmax
h√
n`

and τmin
h√
n`

to enforce τminh ≤ ‖hl‖2 ≤
τmaxh , as explained in section 3.1;

Adding noise g to Be, according to the clipping of Be with τf (||Be||2 ≤ τf ) and the
scaling of g with σ (g ∼ N (0, σ2I)).

To make our results easy to interpret, we fix τf = 1, such that σ = 0.1 implies ||g||2 ' ||Be||2. At
σ = 0.01, this means that the noise is roughly 10% of the norm of the DFA learning signal. This is in
line with differentially-private setup using backpropagation, and is in fact more demanding as our
experimental setup makes it such that this is a lower bound on the noise.

Photonic DFA. We perform the random projection Be at the core of the DFA training step using the
OPU, a photonic co-processor. As the inputs of the OPU are binary, we ternarize the error – although
binarized DFA, known as Direct Random Target Propagation [11], is possible, its performance is
inferior. Ternarization is performed using a tunable treshold t, such that values smaller than −t are
set to -1, values larger than t are set to 1, and all in between values are set to 0. We then project the
positive part e+ of this vector using the OPU, obtaining Be+, and then the negative part e−, obtaining
Be−. Finally, we substract the two to obtain the projection of the ternarized error, B(e+− e−). This
is in line with the setup proposed in [17]. We refer thereafter to DFA performed on a ternarized error
on a GPU as ternarized DFA (TDFA), and to DFA performed optically with a ternarized error as
photonic DFA (PDFA).

Setting. We run our simulations on cloud servers with a single NVIDIA V100 GPU and an OPU,
for a total estimate of 75 GPU-hours. We perform our experiments on FashionMNIST dataset [31],
reserving 10% of the data as validation, and reporting test accuracy on a held-out set. We use a
fully-connected network, with two hidden layers of size 512, with tanh activation. Optimization is

8



Table 1: Test accuracy on FashionMNIST with our DP mechanism. We find our approach to be
robust to increasing DP noise σ. In particular, photonic DFA results (PDFA) are always within 1% of
the corresponding DFA run.

σ non-private 0 0.01 0.03 0.05 0.1 0.2
τf 1
BP 88.33 75.22 70.71 71.47 71.27 70.28 66.78
DFA 86.80 84.20 84.04 84.15 83.70 83.06 81.66
TDFA 86.63 84.20 84.38 84.04 83.94 82.98 80.80
PDFA 85.85 84.00 83.79 83.69 83.36 82.63 80.94

done over 15 epochs with SGD, using a batch size of 256, learning rate of 0.01 and 0.9 momentum.
For TDFA, we use a threshold of 0.15. Despite the fundamentally different hardware platform, no
specific hyperparameter tuning is necessary for the photonic training: this demonstrates the reliability
and robustness of our approach.

BP baseline. We also apply our DP mechanism to a network trained with backpropagation. The
clipping and offsetting of the activations’ neurons is unchanged, but we adapt the noise element. We
apply the noise on the derivative of the loss once at the top of the network. We also lower the learning
rate to 10−4 to stabilize runs.

Results. We fix τmax
h = 1 for all experiments, and consider a range of σ corresponding to noise

between 0-200% of the DFA training signal Be. We also compare to a non-private, vanilla baseline.
Results are reported in Table 1.
We find our DFA-based approach to be remarkably robust to the addition of noise, providing
Differential Privacy, with a test accuracy hit contained within 3% of baseline for up to σ = 0.05 (i.e.
noise 50% as large as the training signal). Most of the performance hit can actually be attributed to
the aggressive activation clipping, with noise having a limited effect. In comparison, BP is far more
sensitive to activation clipping and to our noise mechanism. However, our method was devised for
DFA and not BP, explaining the under-performance of BP. Finally, photonic training achieves good
test accuracy, always within 1% of the corresponding DFA run. This demonstrates the validity of our
approach, on a real photonic co-processor. We note that, usually, demonstrations of neural networks
with beyond silicon hardware are mostly limited to simulations [14, 12], or that these demonstrations
come with a significant end-task performance penalty [33, 30].

5 Conclusion and Outlooks

We have investigated how the Gaussian measurement noise that goes with the use of the photonic
chips known as Optical Processor Units, can be taken advantage of to ensure a Differentially Private
Direct Feedback Alignment training algorithm for deep architectures. We theoretically establish the
features of the so-obtained Photonic Differential Privacy and we feature these theoretical findings
with compelling empirical results showing how adding noise does not decreases the performance
significantly.

At an age where both privacy-preserving training algorithms and energy-aware machine learning
procedures are a must, our contribution addresses both points through our photonic differential privacy
framework. As such we believe the holistic machine learning contribution we bring will mostly bring
positive impacts by reducing energy consumption when learning from large-scale datasets and by
keeping those datasets private. On the negative impact side, our DP approach is heavily based on
clipping, which is well-known to have negative effects on underrepresented classes and groups [5, 13]
in a machine learning model.

We plan to extend the present work in two ways. First, we would like to refine the theoretical analysis
and exhibit privacy properties that are more in line with the observed privacy; this would give us
theoretical grounds to help us set parameters such as the clipping thresholds or the noise modulation.
Second, we want to expand our training scenario and address wider ranges of applications such as
recommendation, federated learning, natural language processing. We also plan to spend efforts so as
to mitigate the effect of clipping on the fairness of our model [32].
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A Complete proof of the Differential Privacy parameters

A.1 Extended proof of Proposition 3

As a reminder, we would like to compute the Rényi divergence of the following Gaussian mechanism,
where all the quantities are clipped as in Eq. 8:

1

m

m∑
i=1

((Bei)� φ′(zi))hik +
1

m

m∑
i=1

(gi � φ′(zi))hik = fk(D) +N (0,Σk) (18)

where Σk = σ2

m2 diag(ak)2 and (ak)j =
√∑m

i=1(φ′ijhik)2,∀j = 1, . . . , n`−1. As explained in the
main text, we will focus on column k and will drop the k indices. Below is the extended proof of
Proposition 3:

Proof. In the following, the variables with a prime correspond to the ones built upon dataset D′.
According to Eq. 18, the covariance matrices Σ and Σ′ are diagonal and any of their weighted sum is
diagonal, as well as their inverse. Moreover, the determinant of a diagonal matrix is the product of its
diagonal elements. Using this in Eq. 7 yields:

Dα(P‖Q) =

n∑̀
j=1

(
αm2

2σ2

(fj(D)− fj(D′))2

αa′2j + (1− α)a2
j

− 1

2(α− 1)
log

[
(1− α)a2

j + αa′2j

a
2(1−α)
j a′2αj

])
Using the fact that we are studying neighboring datasets, the sums composing aj and a′j differ by
only one element at element i = I . This implies that

αa′2j + (1− α)a2
j = α.

m∑
i=1

(φ̃′ij h̃ik)2 + (1− α).

m∑
i=1

(φ′ijhik)2

=

m∑
i=1

(φ′ijhik)2 + α.(

m∑
i=1

(φ̃′ij h̃ik)2 −
m∑
i=1

(φ′ijhik)2)

= a2
j + α[(φ̃′Ij h̃Ik)2 − (φ′IjhIk)2)]

where φ̃′Ij and h̃2
Ik are taken on dataset D′. Inserting this in the Rényi divergence yields:

Dα(P‖Q) =

n∑̀
j=1

(
αm2

2σ2

(fj(D)− fj(D′))2

a2
j + α[(φ̃′Ij h̃Ik)2 − (φ′IjhIk)2)]

− 1

2(α− 1)
log

[
a2
j + α[(φ̃′Ij h̃Ik)2 − (φ′IjhIk)2)]

a
2(1−α)
j a′2αj

])
By choosing D and D′ such that [(φ̃′Ij h̃Ik)2 − (φ′IjhIk)2)] ≥ 0, the Rényi divergence is upper
bounded as follow:

Dα(P‖Q) ≤
n∑̀
j=1

(
αm2

2σ2

(fj(D)− fj(D′))2

a2
j

− 1

2(α− 1)
log

[
a2α
j

a′2αj

])
Noting that a2

j =
∑m
i=1(φ′ijhik)2 +(φ̃′Ij h̃Ik)2− (φ̃′Ij h̃Ik)2 = a′2j − [(φ̃′Ij h̃Ik)2− (φ′IjhIk)2] yields:

Dα(P‖Q) ≤
n∑̀
j=1

(
αm2

2σ2

(fj(D)− fj(D′))2

a2
j

− α

2(α− 1)
log

[
a2
j

a′2j

])

≤
n∑̀
j=1

(
αm2

2σ2

(fj(D)− fj(D′))2

a2
j

− α

2(α− 1)
log

[
a′2j − [(φ̃′Ij h̃Ik)2 − (φ′IjhIk)2]

a′2j

])

≤
n∑̀
j=1

(
αm2

2σ2

(fj(D)− fj(D′))2

a2
j

+
α

2(α− 1)
log

[
a′2j

a′2j − [(φ̃′Ij h̃Ik)2 − (φ′IjhIk)2]

])

≤ αm2

2σ2

n`.∆
2
f

m(γmin` τminh )2
+

n∑̀
j=1

α

2(α− 1)
log

[
a′2j

a′2j − [(φ̃′Ij h̃Ik)2 − (φ′IjhIk)2]

]

≤ 2.α

m.σ2

(γmaxτmaxτB)2

(γmin` τminh )2
+

n`.α

2(α− 1)
log

[
m(γmin` τminh )2

(m+ 1)(γmin` τminh )2 − (γmax` τmaxh )2

]
= εPDFA
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where we used the upper bounds on the sensitivity ∆2
f and a′2j . This is the result of Proposition 3.

Note that an alternative expression is:

Dα(P‖Q) ≤ αm

2σ2

n`.∆
2
f

(γmin` τminh )2
+

n∑̀
j=1

α

2(α− 1)
log

[
a′2j

a′2j − [(φ̃′Ij h̃Ik)2 − (φ′IjhIk)2]

]

=
αm

2σ2

n`.∆
2
f

(γmin` τminh )2
+

n∑̀
j=1

α

2(α− 1)
log

[ ∑m
i=1(φ̃′ij h̃ik)2∑m

i=1(φ̃′ij h̃ik)2 − [(φ̃′Ij h̃Ik)2 − (φ′IjhIk)2]

]

=
αm

2σ2

n`.∆
2
f

(γmin` τminh )2
+

n∑̀
j=1

α

2(α− 1)
log

[∑
i 6=I(φ̃

′
ij h̃ik)2 + (φ̃′Ij h̃Ik)2∑

i 6=I(φ̃
′
ij h̃ik)2 + (φ′IjhIk)2

]

≤ αm

2σ2

n`.∆
2
f

(γmin` τminh )2
+

n`.α

2(α− 1)
log

[∑
i6=I(φ̃

′
ij h̃ik)2 + (γmax` τmaxh )2∑

i 6=I(φ̃
′
ij h̃ik)2 + (γmin` τminh )2

]

≤ αm

2σ2

n`.∆
2
f

(γmin` τminh )2
+

n`.α

2(α− 1)
log

[
(m− 1).(γmin` τminh )2 + (γmax` τmaxh )2

(m− 1).(γmin` τminh )2 + (γmin` τminh )2

]
≤ αm

2σ2

n`.∆
2
f

(γmin` τminh )2
+

n`.α

2(α− 1)
log

[
(m− 1).(γmin` τminh )2 + (γmax` τmaxh )2

m.(γmin` τminh )2

]
≤ 2.α

m.σ2

(γmaxτmaxτB)2

(γmin` τminh )2
+

n`.α

2(α− 1)
log

[
m− 1

m
+

(γmax` τmaxh )2

m.(γmin` τminh )2

]

A.2 Equal covariance matrices

First, we can notice that when the covariance matrices are equal, i.e. Σ = Σ′ = σ2

m2 diag(ak)2, the
log-term in Eq. 7 is equal to 0. Then, we have:

Dα(P‖Q) =

n∑̀
j=1

αm2

2σ2

(fj(D)− fj(D′))2

a2
j

≤ n`.α.m

2σ2

n∑̀
j=1

(fj(D)− fj(D′))2

(γmin` τminh )2

≤ n`.α.m

2σ2

∆2
f

(γmin` τminh )2

≤ 2α

mσ2

(τBγ
max
` τmaxh )2

(γmin` τminh )2

.
= ε2

A.3 Equal saturating covariance matrices

In this subsection, we will suppose that the covariance matrices are equal and saturating, i.e. Σ =

Σ′ = σ2

n`.m
(γ`τh)2I with γ` = {γmin` , γmax` } and τh = {τminh , τmaxh }. Then we can start by

noticing that a2
j = a′2j = m

n`
τ2
hγ

2
` . In that case, the sensitivity of the function can be written as:

∆`
f = sup

D∼D′
‖f(D)− f(D′)‖2 ≤

2

m

∥∥(B`ei)� φ′`(z`i))h`−1
ik

∥∥
2

≤ 2

m
τBγ`

τh√
n`
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This implies that:

Dα(P‖Q) =

n∑̀
j=1

αm2

2σ2

(fj(D)− fj(D′))2

a2
j

≤ n`.α.m

2σ2

n∑̀
j=1

(fj(D)− fj(D′))2

(γ`τh)2

≤ n`.α.m

2σ2

∆2
f

(γ`τh)2

≤ 2α

mσ2

(τBγ`τh)2

(γ`τh)2
=

2α

mσ2
τ2
B

.
= ε3
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