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Abstract—The quantification of positively buoyant marine
plastic debris is critical to understanding how concentrations
of trash form across the world’s ocean and identifying high
concentration garbage hotspots in dire need of trash removal.
Currently, the most common monitoring method to quantify
floating plastic requires the use of a manta trawl. Techniques
requiring manta trawls (or similar surface collection devices)
utilize physical removal of marine plastic debris as the first step
and then analyze collected samples as a second step. The need for
physical removal before analysis incurs high costs and requires
intensive labor-preventing scalable deployment of a real-time
marine plastic monitoring service across the entirety of Earth’s
ocean bodies. Without better monitoring and sampling methods,
the total impact of plastic pollution on the environment as a
whole, and details of impact within specific oceanic regions,
will remain unknown. This study presents a highly scalable
workflow that utilizes images captured within the epipelagic layer
of the ocean as an input. It produces real-time quantification
of marine plastic debris captured in the video for accurate
quantification and physical removal. The workflow includes
creating and preprocessing a domain-specific dataset, building
an object detection model utilizing a deep neural network, and
evaluating the model’s performance. YOLOvV5-S was the best
performing model, which operates at a Mean Average Precision
(mAP) of 0.851 and an F1-Score of 0.89 while maintaining near-

real-time speed.
1

[. INTRODUCTION

Plastic pollution poses an imminent threat to the marine
environment, food safety, human health, eco-tourism and con-
tributes to climate change [1]. Global plastic production as
exceeded 500 million tonnes of plastic and current waste esti-
mations indicate that 30% of all produced plastic will end up in
the oceans[2] [3]. Researchers have documented a 5x increase
in plastic debris within the Central Pacific Gyre and have
shown that plastic pieces now outnumber the native plankton
6:1[4]. Marine plastic debris is capable of killing marine life
and affects at least 267 species worldwide—including 87% of
all sea turtles and 44% of all seabird species. Wildlife impacts
include ingestion, entanglement, starvation, suffocation, infec-
tion, and drowning [5]. Marine plastic debris also restrains
access to the entire food web for wildlife such as marine
mammals, pelagic fish species, sea turtles, and seabirds.

While short-term effects on humans warrant immediate con-
cern, long-term consequences such as environmental remain a
mostly unknown problem [6].

A significant amount of marine plastic (about 80%) origi-
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nates from land-based sources: Most commonly food contain-
ers, such as plastic bags and bottles, and packaging materials.
The other 20% stems from shipping vessel discharges and
discarded commercial fishing gear. Illegal dumping and ac-
cidental chemical leakage create notable plastic waste capable
of eradicating marine ecosystems in extremely short periods
of time.

Fig. 1. Concept of real-time plastic detection via AUV’s equipped with
cameras and DeepTrash vision

To understand the spatiotemporal distribution of plastic, we
require better mitigation strategies. Various in situ approaches
to ocean plastic monitoring have been proposed. These in
situ methods include using SONAR/LIDAR to map plastic
debris[7], human counting via visual methods [8], and debris
sampling using fishing nets [9]. However, these methods incur
high financial and labor costs.

Buoyant surface plastic becomes denser due to biofouling
and then sinks beneath the ocean surface [10]-drastically
increasing quantification difficulty. While traditional methods
can help provide site-specific data, they can not be used
at different locations without incurring relocation costs and
necessitate further sampling requirements. These limitations
create an opportunity for an alternative method to map marine
debris plastic distribution across the world’s oceans.

By applying computer vision and modern deep learning
methods—quantification of marine plastic debris can be per-
formed without physical removal. Studies have shown that
removing plastic from the oceans will exponentially benefit
the ecosystems. Examples include: preventing the movement
of invasive species between regions [11], preventing the
degradation of plastic into micro-plastics [12], and lessening
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greenhouse gases (thereby decelerating climate change) [13].

In this study, we developed an analytical pipeline that
uses images/videos from the epipelagic layer of the ocean
and identifies the plastic debris from the ocean’s natural
background. Unlike other recently proposed algorithms that
specialize in monitoring either floating marine plastic [14] or
deep-sea marine plastic [15] debris: Our method focuses on
marine plastic within the epipelagic layer and uses state-of-
the-art deep learning models to produce significantly more
promising results capable of quantification in a variety of
marine environments.

Our model has been field-tested, and the results indicate
that it could be deployed worldwide, in a wide range of water
conditions. The dataset was built from images taken across
three sites throughout California (South Lake Tahoe, Bodega
Bay, San Francisco Bay) along with a compendium of images
hosted by research institutions on the internet to increase the
representation of marine debris plastics in different locations.
The primary source of internet images were underwater photos
taken by the Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) [16]. The training dataset consists
of 3200 total images.

In this study, we tested two state-of-the-art deep-learning
models YOLOv4-Tiny and YOLOVS-S and reported their
performances to infer marine plastic debris in real-time. The
main results will be described as follows: 1) the model’s
precision and accuracy to feasibly identify plastic debris at
a mean average precision (mAP) of 85%, 2) insurability
that this method can successfully distinguish marine plastic
debris from similar-looking non-plastic objects, and 3) A
generalized model capable of detecting marine plastic in any
oceanic environment. The results show that deep learning
models can identify plastic with significant accuracy while
operating at a rate that supports real-time applications such as
autonomous underwater vehicles (AUVs) for at-scale marine-
plastic quantification and monitoring.

To the best of our knowledge, this study is the first
to propose and evaluate the use of deep learning and
computer vision methods to quantify marine debris plastic
located within the epipelagic layer at the time of this
writing.

II. RELATED WORK

Increasing demand for identifying and removing plastic
from the world’s waterways has led to a surge of research in
computer vision and AUV solutions. A team of researchers at
the University of Minnesota robotics lab recently experimented
with AUV deployments for identifying deep ocean marine
plastic debris [15]. Another growing trend has been to utilize
deep learning and computer vision to automatically identify
floating marine plastic on river and ocean surfaces [17].

Additionally, AUV’s have been used as a means for envi-
ronmental surveillance [18], mapping [19], and localization of
marine plastic debris [20]. Underwater vision technology has
been pushed forward thanks to work done by Ge et al.[21]
with LIDAR technology to localize and map marine-plastic

debris on coastal beaches. Further research into implementing
LIDAR in conjunction with forward-facing SONAR image
models trained by deep convolutional neural networks was
conducted by Howell et al. [22], and Valdenegro-Toro et al.
[7] which resulted in a model capable of detecting underwater
debris with 80% accuracy. Unfortunately, these methods incur
high expenses due to retrofitting sonar and an in-house water
tank for evaluation.

The University of Minnesota robotics lab [15] annotated and
published a dataset of images collected by the Japan Agency
for Marine-Earth Science and Technology (JAMSTEC) [16].
JAMSTEC released the J-EDI (JAMSTEC E-Library of Deep-
Sea Images), which contains marine plastic debris dating back
to 1982 and provides data in the form of images and videos.
The work presented in this research paper has benefited from
the University of Minnesota team, which released close to
3000 annotated images from the JAMSTEC J-EDI dataset.
These datasets were used to train our convolutional neural
networks (CNNs) to identify features of plastic debris.

Photography, especially video-cameras, have found com-
mon application as environmental monitoring systems [23]
[24] [25]. Underwater cameras provide a globally accessible
and low-cost quantification aid. Combining object detection
models with underwater cameras equipped on automobiles
such as AUV’s makes it possible to observe and monitor
sub-surface plastics in known hotspots worldwide [15]. By
mounting video cameras to AUV’s, buoys, and other sub-
mersibles, institutions could feasibly quantify macro-plastics,
which constitute 90% of the total plastic mass in the oceans.

(b) Lake

(a) Ocean

Fig. 2. Example images of marine plastic debris from the DeepTrash dataset
in different marine environments

III. NETWORK ARCHITECTURE

Two of the top performing deep learning architectures
commonly used for object detection were selected for this
project. Each architecture has different benefits and drawbacks,
with the main trade off being speed for accuracy.

e YOLOv5-S Unlike the official release of YOLOvV4,
YOLOVS currently exists in active development. There-
fore, all YOLOVS related code and models may be subject
to modification or deletion without notice. YOLOVS-S
has 7.5 million parameters, 140 layers, and operates at
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Fig. 3. Methadology for Marine Plastic Detection

a lightweight 7MB (14MB for weights pre-trained on
COCO). This architecture uses the Cross Stage Partial
Network (CSP) [30] as the processing backbone and was
trained on MSCOCO to extract rich/informative features
from an input image. YOLOVS5 also uses a PANet [31] for
the model-neck to generate feature pyramids and the com-
putational friendly LeakyReLU and Sigmoid activation
function. The model uses SGD as a default learning rate
but these tests were performed with the ADAM adaptive
learning rate enabled [32].

o YOLOv4-Tiny Inference speeds on YOLOv4-Tiny can
reach upwards of 400 frames/second when using a 1080Ti
GPU with accuracy, precision, and recall that meet the de-
mands of a production-ready robotics platform. YOLOv4-
Tiny uses a CSPDarknet53-Tiny neural network as op-
posed to the regular SPDarknet53 network. To simplify
the computation process, the YOLOv4-Tiny model uses
the LeakyReLU as an activation function.

IV. METHODOLOGY

A. Dataset Construction

The dataset was curated by collecting videos of marine
plastic from the field in California and sourcing images from
the J-EDI dataset. The videos vary significantly in quality,
depth, and visibility to better represent the harshness of marine
environments. Each video was recorded in 5 frames per second
to produce still images.

After recording, manual identification of marine plastic cap-
tured in the still images was performed—with an emphasis on
choosing images containing difficult object detection scenarios
such as overgrowth and occlusion. Each image would then get
annotated to prepare them for the deep learning models. This
curatation approach ensured that the dataset of images would
closely conform to real-world conditions.

Ultimately, over 50,000 base images from which to pull
good examples of marine plastic for further annotation was
produced in this manner. Annotations were performed using
the free tool supervise.ly [26] to create the final dataset
containing 3200 total images.

B. Enhancements of Custom Dataset

The following procedures were implemented for the deep
learning models to detect marine plastic:

a) Dataset Formatting The input data, constituted of images
and annotation labels for bounding boxes, were converted
into either a PyTorch (YOLOVS-S) or a Darknet format
(YOLOV4) so that each respective models could process
them. The bounding boxes delimited each image’s re-
gions of interest based on 2D coordinates located in the
respective annotation file [40].

Image Pre-processing To ensure that learning occurs on
the same image properties, auto orient was applied to strip
images of their exchangeable Image file format (EXIF)
data [27] so that the models interpret images regardless
of image format. Finally, the input images get resized and
bounding boxes adjusted to 416x416 pixels.

Data Augmentation To mitigate the effects of the model
generalizing towards undesired features and to replicate
underwater conditions such as variable illumination, oc-
clusion, and color-the dataset was further enhanced by
randomly changing the brightness and saturation of the
images via PyTorch’s built-in Transforms augmentation.
These modified images were then added back into the
dataset, effectively tripling the size of our dataset.

b)

)

C. Object Detection

We used two state-of-the-art neural network architectures
YOLOV5-S and YOLOv4, downloaded from their re-
spective repositories [28] [29]. The following software
versions were used: PyTorch v1.8.1, Darknet, OpenCV
version 3.2.0, and CUDA 11.2.

1) Fine Tuning Hyperparameters: This object detection
model uses ADAM [36] as the adaptive learning rate,
which utilizes a decaying learning rate for a set number
of epochs. The final layer of the network uses Softmax
and reflects the usage of a single class.

2) GPU Hardware: An NVIDIA Tesla V100®GPU (ver-
sion 460.32.03) was chosen for due to its proven parallel
computing capability. This GPU also has wide accessibil-
ity as a pre-enabled GPU available through services such
as Google Colab®.



Algorithm 1 Process for training neural network to detect
marine plastic

Input: A dataset containing images of required classes, a

label map, the pre-trained weights of the transfer learning
model, and a configuration file for the pre-trained model.

Output: A fully trained object detection algorithm with a file

1:

containing the optimized weights of the final model.
Repeat the process below until model exceeds desired
threshold mAP

Prepare an annotated dataset and split it into training,
validation and testing dataset

Convert the dataset annotations into the appropriate input
format (i.e a .yaml file for YOLOVS)

4: Fine tune the hyperparameters of the neural network.

Use SGD or ADAM as adaptive learning rates to fine-tune
the weights of the model.

Monitor the training loss and mean average precision on
validation dataset

If mAP graph converges, stop training to observe and
record final validation mAP

If final model mAP does not exceed threshold mAP, return
to step 1

Obtain the weights of the optimized network

Deploy the model into production

3) Training: After every 1000 epochs (iterations) of
training, the model would be evaluated on the validation
dataset to calculate precision, recall, and mean average
precision (mAP). This means stopping training to check
for the following:

o When accuracy stops increasing, the model no longer
needs additional training to prevent overfitting.

o Depending on performance, hyperparameters should
receive adjustments to optimize for evaluation metrics.

4) Evaluation Metrics: After the model has finished
training, use the testing and validation datasets containing
images mutually exclusive from the training dataset as an
input to evaluate the performance of the network.

The model draws a bounding box around successfully
detected objects with a confidence score of .50 or higher.
The number of true positive bounding boxes drawn
around marine plastic debris and true negatives provides
the basis of evaluation. The following performance met-
rics were utilized to produce results:

o True positive and True negative values: True positive
values represent an outcome in which the models
correctly predict a positive class, and conversely, a true
negative represents when the model correctly predicts
the negative class.

o Precision and Recall — represents if the model suc-
cessfully detected plastic in an image.

TP

Recall = m

TP

Precision = ————
recision TP+ FP

o Mean Average Precision — Evaluates how often the
network can recognize plastic in a group of images.
After collecting the values for true and false positives,
generate a precision-recall curve using the Intersection
over Union (IoU) formula:

BBOxpredicted N BBomgroundTruth

fou BBoxpredicted U BBoxgroundTruth

Where BBoXpredicted and BBOZ groundTruth are the
areas under the curve for predicted and ground truth
bounding boxes, respectively. To ensure accuracy, a
high threshold for confidence and IoU must be set—
with a correct detection represented by the threshold
being exceeded.

The mAP can then be obtained by integrating the
precision-recall curve [33]:

1
mAP:/ p(x)dx
0

o F1-Score — Evaluates the balance between precision
and recall values.

o GPU Speed (ms/IMG) — Represents how fast the net-
work can infer marine plastic debris contained within
an input image.

5) Visualizing results: For each processed image, the

network populates arrays containing the following data:

o Scores — Confidence scores for the predicted boxes.

o Classes — Labels for each prediction.

o Number of detections — The total number of detections
made per image.

A final array containing all bounding boxes which have

a confidence score of higher than 50% gets filtered out

and used for the output.

The following equation converts the normalized coor-

dinates into image coordinates for rendering bounding

boxes on top of images:

1mgCoordy, = BoxScoreg - Wadth Q)

where k € (left,right,top,bottom), ¢ is an index of boxes,
j €(0,1,2,3), and Width is a width of the image. These
image coordinates were used to visualize the results of
predicted bounding boxes in Figure 6.

V. RESULTS

All results expressed in Table I were produced from the
validation dataset presented in the methodology section. Since
the images used in the training dataset were not isolated
laboratory creations, but instead real-world images directly
from the field, the general object detection has a more accurate
representation of marine plastic debris. This approach comes
with a set of trade-offs:



EVALUATING THE ACCURACY (TP, TN, MAP, AP, AND PRECISION) AND INFERENCE SPEED (GPU SPEED) OF THE MODEL

TABLE 1

Model H Dataset ‘ TP ‘ FP H mAP ‘ Recall H Precision ‘ F1 H Inference (ms/img)
YOLOV4-Tiny Deep-Trashcusiom) 584 | 23 0.84 0.69 0.96 0.80 1.5
YOLOVS5-S Deep-Trashcusiom) 734 | 48 0.85 0.85 0.93 0.89 2.1
YOLOv4-Tiny JAMSTEC JEDIjagic | 219 14 0.93 0.80 0.94 0.86 1.8
YOLOVS5-S JAMSTEC JEDLyjic | 273 | 12 0.98 0.98 0.95 0.96 14
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(b) Detection for partially buried de-
bris.

(a) Detection near water surface

Fig. 4. Results generated by the model with bounding boxes and confidence
scores rendered over marine plastic debris.

o The model performs stronger in real-world deployments,
and therefore, the evaluation results in Table II do not sig-
nificantly differ from near-real-time measurements taken
from the field.

o Peak performance of the object detection model in a
perfectly controlled environment could not be measured,
and the highest possible benchmark of a single detection
remains unknown.

o These trade-offs indicate the results of this paper better
approximate long-term performance across a wider vari-
ety of marine environments—leading to a more substantial
evaluation of the object detection model’s performance in
the field.

A. Quantitative Results

The results captured in Table I demonstrate that near-
real-time object detection of marine plastic debris in the
epipelagic layer of the ocean is both feasible and close to real-
world execution. The tested models demonstrate high average
precision, mAP, and F1 scores relative to their inference speed.
Repeated testing of the model produced a results variance of
2%.

Usually, evaluation results between models showcase a clear
relationship between models, such as trading off significant in-
ference speed for increased accuracy, but the results presented
in this paper showcase that both YOLOv4-Tiny and YOLOVS5-
S produce high debris localization metrics when it comes to
identifying epipelagic plastic in near-real time.

YOLOV5-S provides a significantly higher F1 score in

exchange for a slight dip in inference performance.

Reducing the number of classes to 1, i.e., "trash_plastic,”
ensures even distribution of class examples within the training
dataset. The singular nature of this object detection model may
reduce the total number of use cases the model can be utilized
for—but guarantees strong performance on use cases within the
domain of the model. A single classification also builds upon
the performance of the pre-trained weights utilized during
transfer learning, as it meant less skewing towards unrelated
classifications.

B. Evaluation Results

1) Object Detection: The mAP values obtained from the
object detection models on the validation dataset have been
expressed in Table I. Both models demonstrate high accuracy
in plastic localization. It also reveals that the YOLOvVS-S
model has a higher mAP than the YOLOv4-Tiny model.

2) Inference Speed: These speeds were dictated by the GPU
(NVIDIA V100 using a batch size of 32) and includes image
pre-processing. The YOLOv4-S model provided the highest
inference speed-to-maP performance ratio for the provided
dataset.

C. Qualitative Results

This study focused on determining the feasibility of de-
tecting marine plastic debris for near-real-time monitor-
ing/quantification purposes. To that end, the results in Table I
demonstrate that general object detection models can fill this
much-needed role. Since a relatively high level of performance
can be maintained with such fast inference speeds—we believe
that models such as the one presented in this paper can be
applied to AUV’s and other tools for real-world solutions.
Equally important is that these solutions now have a near-
future timeline of implementation and have been proven to be
low cost.

VI. DISCUSSION

In this study, we built a computer vision model that detects
marine plastic debris with high precision, visualizes the de-
tections with bounding boxes, and operates at near real-time
speeds. These conditions match the requirements for robotic
platforms such as AUVs or buoys.

As one of the first object detection models specialized for
the epipelagic layer, direct comparison of results can not be
easily performed. However, relative performance comparisons



Fig. 5. Inference run on images with the final weights obtained from the Deep Learning model
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between DeepPlastic and object detection models geared to-
wards plastic detection in deep-sea and river plastic environ-
ments reveal DeepPlastics’ state-of-the-art performances.

A research team at the University of Minnesota developed a
computer vision model specialized for marine plastic detection
in deep-sea environments that achieved a mAP of 67.4%][?].
DeepPlastic achieves a mAP of 85% on plastic in similar
conditions.

An article in Earth and Space Science[14] describes a model
capable of detecting plastic floating on rivers with a precision
rate of 68%. DeepPlastic achieves a precision rate of 93%
when detecting marine plastic debris submerged in the ocean.

The datasets used by the two models above are either not
public or utilize datasets outside of the domain of DeepPlastic
(i.e. the dataset images are not underwater), therefore compar-
ing performances via dataset is not an option for this study.

A. Points of Improvement

This model can efficiently monitor and quantify marine
plastic. Improvements can be made in the following areas:
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1) Data Augmentation Improvements: While grayscale, sat-
uration, and vertical/horizontal flipping have been proven data
augmentation techniques—emerging techniques such as Au-
toAugment [?] could be explored to improve the model’s vari-
ability in the future once ready for adaptation. Other methods
such as shear and the cutout regularization technique would
be great to utilize after integration technologies improve.

2) Object Detection Algorithm Improvements: This im-
provement concerns the Convolutional Neural Networks
(CNNs) of the algorithm. Efforts were focused on high in-
ference speeds, therefore the YOLOv4-Tiny and YOLOVS-S
were selected as they were built for real-time object detec-
tion. Models with slower inference speed, such as YOLOVS5-
X, EfficientDet-D7, and YOLOv4, have much better accu-
racy/precision but do not reach the near real-time speeds
required by real-time monitoring systems. With new devel-
opments in deep learning, future models could combine the
higher performance of the large models while maintaining the
speed of the faster models.

Objects that have a similar structure to plastic sometimes



result in mis-classifications. Our model occasionally classifies
jellyfish in certain lighting conditions as plastic due to the
similar transparency and structural properties found in both
plastic and jellyfish. An improved object detection algorithm
would be able to more accurately identify the unique latent
features of plastic and prevent mis-classifications of this type.

3) Dataset Improvements: The data set used in this study
is unique and one of the first of its kind. For the data set, we
see three main improvements that can be made to enhance the
deep learning model:

« Adding more images from different locations

« Using more images from other types of water conditions

o Finally, acquiring a more extensive set of underwater
plastic images

As more plastic images from different locations and oceanic
conditions become available, they will increase marine plastic
debris representation—providing a more comprehensive dataset
for model training. We believe this will improve the mAP and
overall robustness of the object detection model.

4) Camera Improvements: Readily available off-the-shelf
cameras have come a long way but still suffer from certain
limitations. The first and most substantial limitation revolves
around the fact that most underwater cameras will only work
during the daytime. If we want to continue the monitoring
process during the night-time, better night-vision underwater
sensors need to be developed. The second limitation stems
from the common H.265 video compression techniques [34]
underwater cameras utilize to induce encoding artifacts. This
impedes real-time detection by deteriorating the image quality.
Developments in end-to-end deep learning video compression
techniques [34] could lead to solutions for this limitation once
ready for implementation.

(a) Jellyfish (b) Compostable Bag

Fig. 6. Misclassficiation of objects with similar structure to marine plastic.

VII. CODE AND DATASET AVAILABILITY

All code and instructions to build and utilize the DeepPlastic
object detection model can be found online via GitHub.

The DeepTrash dataset can be found in this publicly avail-
able Google Drive folder.

VIII. CONCLUSION

This work’s objective was to develop a deep learning vision
model capable of consistently identifying and quantifying
marine plastic in near real-time. To attain this objective, a pair
of general object detection models were constructed using two
state-of-the-art deep learning models built for inference speed
to measure which performed best.

This study concludes that a marine plastic debris detection
system based on the YOLOV5-S model would be fast, accurate,
and robust enough to enable real-time marine plastic debris
detection. Furthermore, this study shows that effective object
detection models can be constructed using readily available,
pre-enabled GPUs for reasonable costs.

Furthermore, the dataset created for and utilized by this
general detection model demonstrates that massive, highly
curated datasets can be used in conjunction with samples
relative to the domain of object detection and web scraping to
produce promising results.

This computer vision system enables multiple deployment
methods to detect/monitor marine plastic and allows re-
searchers to quantify marine plastic debris without physical
removal.

IX. FUTURE WORK

Improvement of the dataset would have the highest impact
on performance, but collecting additional images would re-
quire human labor in fieldwork or preprocessing. A technology
capable of producing synthetic images containing marine plas-
tic debris in an ocean environment could provide an automated
solution to dataset creation. This could be accomplished with a
two-stage autoencoder[35]. Object detection models trained on
identifying jellyfish (or other objects similar to marine plastic
debris) paired with a DeepTrash object detection model could
lead to a decrease in false positives.

Inference speed could be improved through specialized GPU
technology or tailoring models towards specific higher power
GPUs than used in this study.

An end-to-end video compression technique explicitly de-
veloped for near real-time object detection could lead to a
better ratio of true positives to true negatives and improved
range on object detection.

Tailoring this object detection model for vision-equipped
AUVs could result in automated identification and plastic
removal devices capable of scalable deployment across large
bodies of water, as shown in figure 1. Further optimizations
could build in support for stationary monitoring devices such
as buoys as well. We hope that such a system will facilitate
scalable adoption by researchers and civilians to detect and
clean up marine plastic.
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