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Abstract: 

Genome-wide transcriptome profiling identifies genes that are prone to differential expression 
across contexts (“common DEGs”), as well as specific changes relevant to the experimental 
manipulation. Distinguishing common DEGs from those that are specifically changed in a 
context of interest will allow more efficient inference of relevant mechanisms and a more 
systematic understanding of the biological process under scrutiny. Currently, common changes 
can only be identified through the laborious manual curation of highly controlled experiments, an 
inordinately time-consuming and impractical endeavor. Here we pioneer a method for identifying 
common patterns using generative neural networks. This method produces a background set of 
transcriptomic experiments from which a gene and pathway-specific null distribution can be 
generated. By comparing the set of differentially expressed genes found in a target experiment 
against the background set, common results can easily be separated from specific ones. This 
“Specific cOntext Pattern Highlighting In Expression data” (SOPHIE) method is broadly 
applicable to new platforms or any species with a large collection of unannotated gene 
expression data. We apply SOPHIE to diverse datasets including human, including human 
cancer, and bacterial datasets. SOPHIE recapitulates previously described common DEGs, and 
our molecular validation indicates it detects highly specific, but low magnitude, biologically 
relevant, transcriptional changes. SOPHIE’s measure of specificity can complement log fold 
change activity generated from traditional differential expression analyses by, for example, 
filtering the set of changed genes to identify those that are specifically relevant to the 
experimental condition of interest. Consequently, these results can inform future research 
directions. 

Introduction: 
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Genome-wide gene expression analysis allows investigators to examine how gene expression 
changes under the tested experimental stimulus or varies across different states. This is useful 
for comparison, for example, of patient samples from different individuals with the same 
disease. When interpreting the results of these analyses, attention tends to focus on controlling 
false discoveries 3–6 – i.e. differential gene expression patterns that arise due to noise or 
variation during measurement. In addition to false discoveries, however, certain genes were 
found to be commonly differentially expressed across a diverse panel of environmental 
stresses.7 The response of this collection of genes was termed the environmental stress 
response (ESR). Despite the ESR being described more than two decades ago7, compared to 
false discoveries, less attention has been paid to controlling for these commonly changed 
genes. These findings include differential expression changes that are observed across 
experiments regardless of the experimental manipulation. While these common findings are 
actual changes, not false discoveries, they provide little contextual information or insight into the 
biological process being queried as they are observed in many unrelated experiments. Not 
knowing which discoveries are common versus specific can lead to misinterpretations or lack of 
specificity in interpreting the results, so it is important to account for these different types of 
findings in addition to correcting for false discoveries. Both gene-based1,7 and pathway-based2 
analyses can return common results. 

However, controlling for common findings is inordinately time-consuming, limiting the use of 
protocols that would identify them. Current methods rely on manual curation to generate a 
background set of experiments. These experiments are analyzed to identify genes and 
pathways that are common based on the frequency at which they are differentially expressed in 
the background experiments.1,2 Switching to a new measurement platform, experimental design, 
analytical approach, incorporating new data, or examining a different organism requires re-
curation in the new context to derive an appropriate background distribution. Even when data 
are readily available, curating and analyzing hundreds of experiments requires a significant time 
investment.  

We introduce a method based on latent space transformation in multi-layer neural networks that 
makes it possible to automate the analysis of commonly differentially expressed genes 
(“common DEGs”), termed Specific cOntext Pattern Highlighting In Expression data (SOPHIE). 
This approach requires enough gene expression data to generate synthetic measurements; 
however, the data do not need to be curated by experimental design, removing a usually time-
consuming step. Such data are readily available through NCBI Gene Expression Omnibus 
(GEO), Short Read Archive (SRA), and other repositories. Many are already processed for 
reuse through projects such as recount28 or ARCHS49. Because SOPHIE relies on generating 
synthetic data that match a user-selected template experiment, it can be applied to arbitrary 
downstream analytical workflows, which could be differential expression (DE) analysis, pathway 
analysis, or other methods, to provide a background distribution of common findings. Without 
the need for manual curation, SOPHIE can expand the list of genes for follow-up by identifying 
genes that are context-specific, but have subtle signals and are thus understudied. SOPHIE can 
also filter the list of genes for functional validation if we limit our list of genes to those that are 
both differentially expressed and highly specific. Overall, SOPHIE’s specificity score can be a 
complementary indicator of activity compared to the traditional log fold change measure and can 
help drive future analyses. 

We applied SOPHIE to identify common DEGs in human cancer cell line microarray data and 
the results are consistent with prior microarray-based methods. Furthermore, we find consistent 
common DEGs using human RNA-seq data, demonstrating that SOPHIE is robust across 
platforms. SOPHIE is also generalizable as shown by application to a different organism, 
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Pseudomonas aeruginosa (P. aeruginosa). SOPHIE analysis of alternative carbon utilization in 
P. aeruginosa10 revealed gene expression changes that were specific to different levels in the 
hierarchy of the carbon catabolite repression cascade. This analysis revealed a context-specific 
response to arginine metabolism, which would be undetected in a traditional differential 
expression analysis due to its low magnitude. Based on our SOPHIE results, we hypothesize 
that these selected genes are specific to arginine catabolism. Experimental data support the 
prediction that arginine catabolism is specifically perturbed by some, but not all mutants, in the 
pathway. This demonstrates that SOPHIE can successfully identify candidate genes that are 
specifically relevant to the context in question, and difficult to uncover through previously 
developed analyses. 

 

Results: 

Latent space transformation supports template-based differential expression analysis 

In order to generate a background set of transcriptome experiments, we trained a generative 
neural network, in this case a variational autoencoder (VAE), on all RNA-seq samples in SRA 
from recount28. This dataset, which included measurements for 17,555 genes across 49,651 
human samples, provided a wide and diverse representation of gene expression patterns to 
learn from (Figure 1A). Using a previously reported11 model architecture, we found that training 
and validation set losses for this model stabilized after 40 epochs, which is the number of times 
the VAE was trained over the input dataset (Figure 1B). Using this VAE, we sought to create 
synthetic gene expression experiments that follow the general patterns observed in real 
experiments with specific differences introduced. 

Intuitively, we can think of the latent space as capturing key gene expression patterns across 
the entire compendium. Imagine an experiment of interest that tests a binary response to an 
experimental manipulation: this represents a pre-defined ‘template set’. We used the above 
VAE to generate new samples from a pre-selected template set of samples from recount2 
(Figure 1C). Using the trained VAE, we encoded the template samples into the latent space and 
shifted these samples to create new simulated samples. Further details can be found in the 
Methods. When we encoded this template experiment into the latent space, the relative 
positioning of samples captures the change between the two conditions, and the absolute 
position represents the biological context of this specific experiment. When we shifted the 
template experiment in the latent space, we created a new experiment with the same magnitude 
of change within the latent space but within different contexts. Then, we applied the decoder 
network to the shifted representation to generate new genome-wide measurements. Using a 
small molecule treated human adult erythroid cell experiment (SRP061689)12 as a template, we 
simulated three experiments (Figure 1D). Compared to the original template experiment, the 
simulated experiments had a reduced number of differentially expressed genes, which was due 
to the VAE shrinking the variance of the simulated data. This variance shrinkage property was 
previously observed in Akrami et al.13 In general, the latent space shifting preserves differences 
between groups, but this signal can be distorted depending on where the experiment was 
shifted to (i.e. the new location can cause the experiment to have a more compressed 
difference between groups). Overall, the three simulated experiments in figure 1D demonstrate 
that our simulation can generate experiments with similar structures but with different sets of 
differentially expressed genes. This observation is consistent with a previous report by Lee et 
al., which used this same VAE approach to simulate an experiment and found that the new 
experiment contained related groups of differentially expressed genes that were distinct from 
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the original template experiment.11 SOPHIE uses this VAE approach to simulate realistic-looking 
transcriptome experiments that serve as a background set for analyzing common versus 
specific transcriptional signals.  

Simulation-based common DEGs recapitulate curation-derived ones 

Studying common differential expression has been challenging because it requires extensive 
manual curation. We sought to compare the common DEGs by SOPHIE with those identified in 
a prior report. This prior study curated 2,456 human microarray datasets from the GPL570 
(Affymetrix Human Genome U133 Plus 2.0 Array) platform1 to identify common DEGs.1 This 
study provided a list of genes ranked based on how frequently they were identified as 
differentially expressed across approximately 600 experiments, which we refer to as the Crow et 
al. results. We trained a VAE on a different collection of microarray data that accompanied 
another prior report of commonly differentially expressed pathways.2 This second dataset we 
refer to as the Powers et al. results, which included 442 differential comparisons (2,812 human 
microarray datasets) testing the response of small-molecule treatments in cancer cell lines. For 
this analysis, we selected an arbitrary template experiment (GSE11352 examined estradiol 
exposure in breast cancer cells14), generated 25 simulated experiments through latent space 
transformation, and calculated differential expression association statistics (DE association 
statistics) for each experiment comparing treated versus untreated cells (Figure 2A). We 
calculated the percentile of genes by their median log2 fold change across the 25 simulated 
experiments. Finally, we intersected the set of genes in this dataset with those in Crow et al. 
and examined their concordance using Spearman correlation (Figure 2B). Results between 
Crow et al. and our VAE trained on Powers et al. were concordant, particularly for the genes in 
the highest and lowest percentiles, the most and least commonly differentially expressed genes 
respectively. In particular, there was a significant (p-value=1e-49) over-representation of 
SOPHIE identified common DEGs within the common changes that Crow et al. identified. 

In general, transcriptome analysis approaches do not effectively translate between different 
platforms (RNA-seq, microarray) and datasets. To demonstrate that SOPHIE easily extends to 
new platforms, we trained a VAE on human RNA-seq data from recount2 to identify common 
DEGs. We selected an arbitrary template experiment from recount2 (SRP012656 examined 
non-small cell lung adenocarcinoma tumors15), simulated 25 new experiments, and calculated 
differentially expressed genes using DESeq2. For this template experiment, primary non-small 
cell lung adenocarcinoma tumors were compared to adjacent normal tissues for 6 never-smoker 
Korean female patients. We again calculated the percentile for genes by their median log2 fold 
change in the simulated data, intersected with the Crow et al. set, and examined concordance 
(Figure 2C). We found, again, a significant (p-value= 2e-15) over-representation of SOPHIE-
identified common DEGs shared with the Crow et al. analysis. Since the common findings from 
Crow et al. were based on a manually curated set of experiments, extending their analysis to 
use a new platform would require re-curation, which would be time-consuming. Thus, it is 
advantageous that SOPHIE need only retrain on a new dataset to extend its capabilities to new 
datasets and platforms. 

We also noticed a set of genes in the bottom right corner of Figure 2C with a high percentile 
score were common DEGs in RNA-seq but not in Crow et al. We did not observe a 
corresponding set in the upper left corner, suggesting that RNA-seq captured the microarray-
based common DEGs, but prior microarray-based reports lacked certain RNA-seq specific 
ones. This subset of genes was specifically differentially expressed in RNA-seq and not in array 
data, suggesting that platform differences underlie this effect. Some preliminary experiments 
showed that these RNA-seq common DEGs tended to have a lower expression compared to 
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those common genes identified using both the array and RNA-seq platform (Figure S1). The 
VAE appeared to artificially boost the expression of these RNA-seq common DEGs so that they 
were found to be differentially expressed. Unlike the array data, the RNA-seq data has a larger 
variance and so the effects of the VAE are more pronounced, affecting genes in the outliers of 
the compendium distribution, which are these RNA-seq commonly changed genes.  

Finally, when we extended this analysis to a different organism, P. aeruginosa, we observed the 
same concordance (R2 = 0.449) between SOPHIE-generated percentiles compared to those 
generated using a manually validated dataset, GAPE (Figure 2D).16 GAPE contained a 
collection of 73 array experiments from the GPL84 platform. We found a significant over-
representation (p=1e-139) of SOPHIE identified common DEGs within the GAPE set of common 
DEGs.  

Having shown that SOPHIE’s commonly changed gene percentiles can recapitulate percentiles 
of genes using a manually curated dataset (Crow et al. or GAPE), we next examined the 
robustness of these common patterns. We compared SOPHIE percentiles from different 
simulations using the same template experiment and showed that we get a very strong 
correlation (R2 = 0.907), especially for high and low percentile genes (Figure 2E). The genes in 
the middle percentiles are more sensitive to changes so the signal is less clear. This noise is 
more pronounced when we compare the percentiles generated using two different template 
experiments (Figure 2F). Overall, we observe consistent common DEG percentiles across 
different template experiments (R2=0.572). From this set of analyses, we have validated that 
SOPHIE was able to identify commonly changed genes previously reported by Crow et al and 
GAPE. While Crow et al. and GAPE rely on having a manually curated dataset, SOPHIE 
identified these genes in a more scalable and automated way, leveraging existing gene 
expression data to simulate a background set of experiments to use as a reference. 

Simulation-based commonly differentially expressed pathways recapitulate common-derived 
ones 

In addition to common DEGs, we also examined common differentially expressed pathways. 
While there is some variation between the ranking of common DEGs, grouping genes into 
pathways may find more robust common signals. For this analysis we used a set of common 
differentially expressed pathways reported by Powers et al. We used the VAE trained on the 
data from that same report, to simulate 25 new experiments from the same template experiment 
used previously (GSE11352), and used GSEA17 to identify pathways enriched in differentially 
expressed genes (Figure 3A). We compared the percentile of pathways determined using data 
simulated from the VAE with those reported by Powers et al. and found strong concordance 
(R2= 0.65, Figure 3B).  

SOPHIE can also be applied using other pathway analysis methods. We easily extended 
SOPHIE to use multiple different enrichment methods (Figure 3C) and examined the common 
findings. We selected 4 enrichment methods (GSEA, GSVA, CAMERA, ORA) from Geistlinger 
et al.18 We selected methods if 1) they could be applied to both RNA-seq and array data and 2) 
they covered a wide range of statistical performance measures including runtime, the number of 
gene sets found to be statistically significant and the type of method – self-contained versus 
competitive. Overall, the percentile of common pathways enriched varied between enrichment 
methods, likely due to the different assumptions and modeling procedures (Figure 3D, S2). 
Therefore, scientists will need to use a method-specific common correction approach. Similar to 
our analysis of common DEGs, compared to Powers et al., SOPHIE can automatically identify 
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commonly changed pathways. Additionally, SOPHIE can be easily customized to use different 
enrichment methods depending on the analysis. 

Common DEGs may correspond to hyperresponsive pathways 

We next examined how the genes that are commonly differentially expressed are related to 
previously reported transcriptional patterns in order to gain insight into the role of these 
commonly changed genes. We identified common DEGs using recount2, which is a 
heterogeneous compendium of human gene expression data containing a range of different 
types of experiments and tissue types. The recount2 data was decomposed into latent variables 
(LV), representing gene expression modules, some of which were aligned with known curated 
pathways, in prior work.19 In these latent variables, genes had some weighted contribution, and 
we found that the median number of genes with non-zero weight was 2,824. We divided genes 
into a set of common DEGs, which were genes that were in the 60th percentile and above in our 
recount2 analysis (Figure 2C), and all other genes. We found that the commonly changed 
genes had non-zero weight to roughly the same number of latent variables as other genes 
(Figure 4A, p-value = 0.239 comparing the median between gene groups). However, common 
DEGs were found among the highest weights (the 98th percentile and above for each latent 
variable) for fewer latent variables than other genes (Figure 4B). Taken together, these results 
suggest that common DEGs contribute to as many latent variables as other genes (i.e. have a 
non-zero weight), but common genes occur less frequently among the highest weight genes. 
Overall, the wide coverage across latent variables but lack of high weight contributions indicate 
that common DEGs mainly contribute to a few pathways. Given the small number of pathways, 
one possibility for why these genes are commonly changed might be related to a few hyper-
responsive pathways. 

Since these latent variables tend to be associated with particular biological processes, we 
wanted to test if there were any latent variables, and thereby processes, that contained a large 
fraction of common DEGs. If there exist latent variables that were primarily composed of 
common DEGs, this might lend insight into the role of commonly changed genes. For this 
analysis, we ranked latent variables by the proportion of commonly shifted genes at the 98th 
percentile and above. Overall, many of these latent variables were associated with immune 
responses, signaling, and metabolism. This finding is consistent with the hypothesis that these 
commonly changed genes are related to hyper-responsive pathways. One example latent 
variable, that contained a high proportion of commonly changed genes compared to other 
genes (proportion of commonly changed genes > 0.5), was LV61 (Figure 4C, Table S1). This 
latent variable included pathways related to immune response (Neutrophils), signaling (DMAP 
ERY2), and wound healing (megakaryocyte platelet production).  

We performed a similar analysis to examine common patterns in P. aeruginosa data. Again, we 
leveraged an existing model. Tan et al. previously created a low dimensional representation of 
the P. aeruginosa compendium using a denoising autoencoder, called eADAGE, where some of 
the latent variables were found to be associated with KEGG pathways and other biological 
sources of variation.20,21 Using this existing eADAGE model, we created a gene-gene similarity 
network where the correlation between the eADAGE representation was used to connect genes. 
After performing a community detection analysis, we discovered that commonly changed genes 
tended to cluster in fewer communities compared to other genes (Figure 4D). Furthermore, 
commonly changed genes had a slightly higher median degree in the eADAGE similarity 
network compared to other genes (Figure 4E). These observations were consistent with an 
analysis that found a set of virulence-related transcriptional regulators that target multiple 
pathways.22 Together, these data suggest that, like the patterns we observed in the human 
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dataset, there are relatively few communities that commonly changed genes contribute. These 
few communities containing commonly changed genes were highly connected to other 
communities. Therefore, we conclude that these common-driven communities might correspond 
to hyper-responsive pathways. 

SOPHIE-identified genes specific to arginine catabolism  

In general, differential expression analyses often aim to understand the genetic causes and 
downstream consequences of gene expression. However using traditional p-values and log fold 
change criteria, such datasets often contain hundreds of genes, many of which are not specific 
to the phenotype of interest. Using SOPHIE, we can filter these differentially expressed gene 
sets to identify those that are specific to the context of the experiment. Likewise, for 
experimental conditions that uncover fewer novel genes of interest, SOPHIE can highlight those 
that show modest, but specific changes that would be missed by traditional DE analysis. To 
illustrate these points, we chose the experiment E-GEOD-33245 as a template because it 
investigated metabolic decision making, a process known as carbon catabolite repression, that 
is important for P. aeruginosa pathogenicity23. This decision depends on a complex mechanism 
involving both transcriptional and translational regulation that results in both direct and indirect 
effects on the transcriptome. A previous analysis by Sonnleitner et al.10, suggested that the 
production of catabolic enzymes and transporters is controlled by the translational co-repressor 
Crc (Figure 5A). Crc activity can be inhibited by crcZ, a small RNA, which sequesters the Crc 
protein24. CbrB meanwhile controls levels of the crcZ small RNA.  

!"#$%&'(")#%*#+,"#&%-./01(%*(#2"+3""*#!4#/*)#1(%5"*1&#6cbrB and#6&0&#mutants. In the 
absence of the transcription factor CbrB or the translational co-repressor Crc, 156 and 149 
genes were differentially expressed (|log2FC| > 1, FDR-adj p-value < 0.05), respectively, relative 
to wild type. Of these DE genes, we focused first on those that had a low z-score, indicating a 
high likelihood of it being part of a common response. ArcB (z-score: 789:;#3/(#1)"*+1$1")#/(#+,"#
"15,+,<-%(+#$0"='"*+>?#)1$$"0"*+1/>>?#"@.0"((")#5"*"#1*#+,"#ABCAD</**%+/+")#6crc ED#)/+/("+F#
31+,#ED#1*#G9#%'+#%$#HI#(+')1"(8#J%0"#20%/)>?F#5"*"(#&%*(1)"0")#&%--%*>?#)1$$"0"*+1/>>?#
"@.0"((")#2?#KLMNOD#/*)#ABMD#/&&%'*+")#$%0#H:#/*)#I9#%$#+,"#)1$$"0"*+1/>>?#"@.0"((")#5"*"(#
1*#6cbrB and#6&0&#comparisons respectively. Both comparisons included the genes pqsA, nosZ, 
pqsE, and ccoP2. Though CbrB and Crc are part of the same metabolic regulatory pathway, 
SOPHIE found genes involved in arginine catabolism (argA) and arginine transport (aotJQMP) 
&,/*5")#2?#>"((#+,/*#P<$%>)#1*#2%+,#(/-.>"(8#N%3"Q"0F#+,"#(."&1$1&1+?#R,15,#0/*S")#T<(&%0"F#
4/2>"#7;#3/(#,15,#1*#6cbrB#2'+#*%+#6crc (Figure 5B). We constructed P. aeruginosa#(+0/1*#MB7G#
-'+/*+(#6cbrB#/*)#6crc#/*)#$%'*)#+,/+#%*>?#6cbrB was defective for arginine catabolism (Figure 
5D). This result supports the model that arginine metabolism is specifically regulated by CbrB, 
consistent with published data by other studies25,26, and highlights the utility of SOPHIE to drive 
the prioritization of genes for follow-up analysis of candidate differentially expressed genes. This 
method is particularly powerful for those genes that do not change very much but do so more 
than in the background simulated experiments (i.e. specific genes). It is appreciated that small 
expression changes can have biological significance, but we often choose not to pursue these 
genes because it is easier to start with those that show the largest difference in expression. 
However, SOPHIE provides strong confidence scores that highlight biologically important, but 
less studied genes for further analysis. By leveraging publicly available data, SOPHIE identified 
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candidate specific genes. Independently, we experimentally validated that these genes played a 
specific role in the context of the target experiment. SOPHIE can therefore successfully predict 
biologically relevant gene targets that further our mechanistic understanding and drive future 
analyses. 

Discussion 

We introduce a method, SOPHIE, named after one of the main characters from Hayao 
Miyazaki's animated film Howl’s moving castle. Sophie’s outward appearance as an old woman, 
despite being a young woman that has been cursed, demonstrates that initial observation can 
be misleading. This is the idea behind our approach, which allows users to identify specific gene 
expression signatures that can be masked by common background patterns.    

SOPHIE automatically identified commonly differentially expressed genes and pathways using 
public gene expression compendia. SOPHIE returned consistent genes and pathways, by 
percentile, compared to previous results using both human2,8 and bacterial21 datasets. 
Furthermore, experimental validation confirmed a group of genes that SOPHIE predicted to 
show context-specific differential expression. In contrast to using a manually curated dataset, 
SOPHIE can be easily extended to new contexts and can generate a background distribution of 
experiments for any organism with public data available. These background experiments define 
a set of genes and pathways that are commonly changed across many different experimental 
conditions. These background sets of changes, provide context to individual experiments, 
highlighting specific gene expression changes and thus giving insight into mechanisms relevant 
to specific contexts including disease conditions. 

Compared to prior work using manually curated datasets1,2, SOPHIE demonstrates consistent 
results but using an automated process. In short, SOPHIE identifies the same common patterns 
but in a fast and scalable way. However, there was a subset of genes that were specifically 
differentially expressed using SOPHIE but not found using the manually curated background. In 
one case, SOPHIE is using RNA-seq while the manually curated data is based on hybridization 
technology (microarray). Some initial experiments showed that this inconsistency is likely due to 
platform differences and how the VAE handled these two different data types. In addition to 
platform differences, the context of the background dataset was shown to influence the 
commonly changed pathways detected. We found that commonly altered pathways were more 
sensitive to different contexts compared to commonly changed genes. One speculation for this 
observation comes from recent work from Sazali et al.27 Given that information flows from a 
stimulation that activates proteins within pathways, and these proteins regulate gene 
expression, a context-specific signal will eventually lead to changes in gene expression. 
Thinking about the flow of information, measuring pathway activity (pathway enrichment) will be 
more sensitive to context compared to measuring differential expression in individual genes. 
Since the genes are regulated as a group, we would expect to see coordinated changes in 
expression that are correlated with the specific context. Examining the expression of individual 
genes wouldn’t necessarily reveal this correlation with context. Using SOPHIE, we identified 
commonly changed cancer pathways, that are not necessarily commonly altered pathways in 
general datasets. Overall, SOPHIE results are consistent with previous findings, but we also 
identified differences that might indicate there exists a hierarchy of common changes depending 
on the platform and context.  

Building on the discovery of these common signals, we also examined the potential role of these 
commonly changed genes. These common DEGs appear to contribute to a small number of 
hyperresponsive pathways (Figure 4). This supports the observation that genes found to be 
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differentially expressed across different contexts may not be informative about the experimental 
manipulation of interest. Therefore, considering specificity can be complementary to using log 
fold change activity to study biological processes.  

One limitation is that our template experiments test two conditions, but there are many different 
types of experiments (e.g. time course). Do commonly changed genes vary based on 
experimental design? To answer this question, we would need to curate more experiments 
testing different experimental designs. We would also need to determine how to group samples 
to perform a differential expression analysis or develop a new metric to define how many genes 
change. Another limitation to our study is that we are using a random linear shift to simulate 
experiments. While this linear shift is using a location drawn from the known distribution of gene 
expression data, this shift currently doesn’t allow us to vary or shift along certain axes, such as 
tissue type or drug. If SOPHIE could be extended to simulate background experiments along a 
specific axis, like tissue type, then we could ask if there are different sets of commonly changed 
genes that come up as we vary along the tissue axis versus the drug axis. To answer this 
question we would need to have a deeper understanding of the structure of the latent space and 
what is being captured. These questions can help lead to an improved understanding of 
common signals and the type of correction that might be needed. Additionally, while SOPHIE is 
mostly portable, more work needs to be done to define the optimal neural network architecture 
for different data types – i.e. different platforms. Depending on the data type, there likely exists 
some optimal neural network architecture that preserves the underlying structure in the data. 
Therefore, some additional training of the VAE is required before applying SOPHIE to datasets 
of interest. 

SOPHIE is a powerful tool that can be used to drive how we study mechanisms underlying 
different cellular states and diseases. With SOPHIE, we can identify commonly changed genes 
that might be useful for diagnostic28 and detection29 purposes. We can also identify specific 
signals that point to possible treatment options30. In general, studies trying to uncover these 
genetic mechanisms tend to focus on prominent biological signals – those genes that are 
strongly differentially expressed. However, with SOPHIE we can start to glean information about 
those genes that are subtle but specifically relevant to the biology in question. Overall, SOPHIE 
is a powerful tool that can complement existing traditional analyses to separate specific versus 
common differentially expressed genes and pathways. These context-specific genes and 
pathways include both subtle changes that are largely unexplored and prominent changes that 
might point to areas of treatment and biomarker development. In general, SOPHIE can easily be 
applied across a range of different datasets to help drive discovery and further understanding of 
mechanisms. 

The best way to deploy SOPHIE in practice will depend on the scientific question and the ease 
with which leads can be validated. The software associated with this paper is available on 
github (https://github.com/greenelab/generic-expression-patterns) and users can modify the 
notebooks for their own analysis following the instructions in the README file. 

 

Methods 

Gene expression datasets 
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We used three complementary gene expression compendia in this work. Two were sets of 
assays of human samples, one via microarray and the other via RNA-seq profiling. The third 
was a collection from the microbe Pseudomonas aeruginosa. 

The first human compendium that we used contains gene expression data from Powers et al.2 
We downloaded the dataset from synapse on (October 7, 2020). This dataset contains samples 
from the Gene Expression Omnibus (GEO) measured on Affymetrix Human Genome U133 Plus 
2.0 Array. Samples were selected based on the following criteria: having at least 2 replicates 
per condition and containing a vehicle control.  The dataset included 442 experiments testing 
the response of small-molecule treatments in cancer cell lines. Samples were processed using 
the rma library to convert probe intensity values from the .cel files to log2 base gene expression 
measurements, and these gene expression values were then normalized to 0-1 range per gene. 
This resulted in an expression matrix that contains 6,763 genes and 2,410 samples. 

The second human compendium that we used includes human RNA-seq data from recount28. 
We downloaded all SRA data in recount2 as RangedSummarizedExperiment (RSE) objects for 
each project id using the recount library in Bioconductor (version 1.12.0). Raw reads were 
mapped to genes using Rail-RNA31, which includes exon-exon splice junctions. Each RSE 
contained counts summarized at the gene level using the Gencode v25 (GRCh38.p7, CHR) 
annotation provided by Gencode.32 These RSE objects include coverage counts as opposed to 
read counts, so we applied the scale_counts function to scale by sample coverage (average 
number of reads mapped per nucleotide). The compendium contained 49,651 samples with 
measurements for 58,129 genes. Our goal was to compare percentiles with ones provided by 
Crow et al.1, which required us to map the ensembl gene ids in recount2 to HGNC symbols. We 
used the intersection of genes between the recount2 and Crow et al. sets. This resulted in a 
gene expression matrix of 49,651 samples and 17,755 genes. We then normalized gene 
expression values to a 0-1 range per gene. This recount2 compendium contained a 
heterogeneous set of gene expression experiments – 31 tissue types (i.e. blood, lung), 57 cell 
types (i.e. stem, HeLa), multiple experimental designs (i.e. case-control, time-series). 

The last compendium contained P. aeruginosa gene expression data that was collected and 
processed as described in Lee et al.11 The dataset was originally downloaded from the 
ADAGE21 GitHub repository 
(https://github.com/greenelab/adage/tree/master/Data_collection_processing). Raw microarray 
data (measured on the release of the GeneChip P. aeruginosa genome array and the time of 
data freeze in 2014) were downloaded as .cel files. Then rma was used to convert probe 
intensity values from the .cel files to log2 base gene expression measurements. These gene 
expression values were then normalized to 0-1 range per gene. The resulting matrix contained 
989 samples and 5,549 genes that represent a wide range of gene expression patterns 
including characterization of clinical isolates from cystic fibrosis infections, differences between 
mutant versus WT, response to antibiotic treatment, microbial interactions, and the adaptation 
from water to GI tract infection. 

SOPHIE: Specific cOntext Pattern Highlighting In Expression 

Train VAE: We built a multi-layer variational autoencoder (VAE) that extended from the 
previously published Tybalt model.33 The model was built using Keras (version 2.3.1) with a 
TensorFlow backend (version 1.15.4). The structure of the VAE is composed of an encoder 
neural network, which compresses the input gene expression data into 30 latent space features, 
and a decoder neural network, which decompresses the data back into raw gene expression 
space. The architecture of the encoder and decoder neural networks includes an intermediate 
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layer with 2,500 features and a hidden layer of 30 latent space features with a rectified linear 
unit (ReLU) activation function to combine weighted nodes from the previous layer. The VAE 
was optimized using binary cross-entropy loss, which included the reconstruction loss as well as 
a Kullbach-Leibler (KL) divergence term to constrain the latent space to follow a normal 
distribution. We used the same neural network architecture used in Lee et al. due to the 
success. We used the same strategy outlined in Lee et al.11 to train the VAE. We performed a 
90:10 split of the data for training and validation. The hyperparameters were manually adjusted 
based on a visual inspection of the validation loss outputs. Our optimal hyperparameter settings 
were: learning rate of 0.001, a batch size of 10, warmups set to 0.01. We trained 3 VAE models 
using recount2 (40 epochs), Powers et al. (40 epochs), and the P. aeruginosa (100 epochs) 
compendia. 

Simulate gene expression experiments: Our simulation approach was an extension of the 
experiment-level simulation approach from Lee et al.11 We selected a template experiment from 
our compendium (SRP012656 from recount2, GSE11352 from Powers et al., and E-GEOD-
33245 from P. aeruginosa). We simulated a new experiment by linearly shifting the selected 
template experiment to a new location in the latent space. This new location was randomly 
sampled from the distribution of the low dimensional representation of the trained gene 
expression compendium. The vector that connects the template experiment and the new 
location was added to the template experiment to create a new simulated experiment. This 
process was repeated 25 times to create 25 simulated experiments based on the single 
template experiment. 

Differential expression analysis: For the recount2 compendium we used the DESeq module in 
the DESeq2 library34 to calculate differential expression values for each gene comparing the two 
different conditions in the selected template experiment (SRP012656). The template experiment 
contained primary non-small cell lung adenocarcinoma tumors and adjacent normal tissues of 6 
never-smoker Korean female patients.  The differential expression analysis compared tumor vs 
normal. Following a similar procedure for the array-based datasets (P. aeruginosa compendium 
and the Powers et al. compendium) we used the eBayes module in the limma library35 to 
calculate differential gene expression values for each gene. The output statistics include log2 
fold change between the two conditions tested and p-values adjusted by Benjamini-Hochberg’s 
method to control for false discovery rate (FDR). The template experiment we used for the 
Powers et al. compendium is GSE11352, which examined the transcriptional response of MCF7 
breast cancer cells to estradiol treatment. So the differential expression analysis compared 
samples untreated versus treated. The template experiment we used to the P. aeruginosa 
compendium is E-GEOD-33245, contained multiple comparisons examining the CbrAB system. 
The two we focused on for our analysis compared WT vs cbrB and crc mutants in LB media.  

For the P. aeruginosa experiment, differentially expressed genes were those with FDR adjusted 
cutoff (using Benjamini-Hochberg correction) < 0.05 and log2 absolute value fold-change >1, 
which are thresholds frequently used in practice.  

Calculate specificity of each gene (z-score): Using the association statistics from the differential 
expression analysis, we calculated a score to indicate if a gene was specifically differentially 
expressed in the template experiment. We calculated a z-score for each gene using the 
following formula: 
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𝑧 − 𝑠𝑐𝑜𝑟𝑒	𝑜𝑓	𝑔𝑒𝑛𝑒	𝐴	

= 	
𝑙𝑜𝑔!𝐹𝐶	𝑔𝑒𝑛𝑒	𝐴	𝑖𝑛	𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒	𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 		𝑚𝑒𝑎𝑛(𝑙𝑜𝑔!𝐹𝐶	𝑔𝑒𝑛𝑒	𝐴	𝑖𝑛	𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠)

𝑣𝑎𝑟(𝑙𝑜𝑔!𝐹𝐶	𝑔𝑒𝑛𝑒	𝐴	𝑖𝑛	𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠)
	

Higher z-scores indicate a gene is specifically differentially expressed in the template 
experiment in reference to the null set of experiments (i.e. 25 simulated experiments). 

Enrichment analysis (EA) 

The goal of EA is to detect coordinated changes in prespecified sets of related genes (i.e. those 
genes in the same pathway or share the same GO term).  

Our primary method was GSEA, for which we used the fgsea module from the fgsea library.17,36 
The method first ranks all genes based on the DE association statistics. In this case, we used 
the log2 fold change. An enrichment score (ES) is defined as the maximum distance from the 
middle of the ranked list. Thus, the enrichment score indicates whether the genes contained in a 
gene set are clustered towards the beginning or the end of the ranked list (indicating a 
correlation with the change in expression). The statistical significance of the ES is estimated by 
a phenotypic-based permutation test to produce a null distribution for the ES (i.e. scores based 
on permuted phenotype). Each pathway was output with statistics including a Benjamini-
Hochberg adjusted p-value. The pathways used in this analysis were the Hallmark pathways for 
the recount2 compendium and the Powers et al. compendium. For P. aeruginosa compendium, 
we used the KEGG pathways used in Tan et al.21 These pathways can be found in the 
associated repository: 
https://github.com/greenelab/adage/blob/master/Node_interpretation/pseudomonas_KEGG_ter
ms.txt 

Other methods we used included: Gene Set Variation Analysis (GSVA)37, Correlation Adjusted 
Mean Rank gene set test (CAMERA)38, and Over-Representation Analysis (ORA). GSVA is a 
self-contained gene set test that estimates the variation of gene set enrichment over the 
samples independent of any class label. We used the gsva function from the gsva library. 
CAMERA is a competitive gene set test that performs the same rank-based test procedure as 
GSEA but also estimates the correlation between genes instead of treating genes 
independently. For CAMERA, we used the camera function that is part of the limma library.39 
Last, ORA is a method that uses the hypergeometric test to determine if there a significant over-
representation of a pathway in the selected set of DEGs. Here we used the clusterProfiler40 
library but there are multiple options for this analysis. 

Comparison of gene percentiles  

We wanted to compare the percentile of human genes identified using SOPHIE (trained on 
recount2 and Powers et al. datasets) with the percentile found from Crow et al., which 
identified a set of genes as common DEGs based on how frequently they were found to be 
DE across 635 manually curated experiments. In their paper, they ranked genes as 0 if 
they were not commonly DE and 1 if there were commonly DE. Our genes were ranked 
from 1 to 17,754 based on their median absolute log2 fold change value across the 25 
simulated experiments. We linearly scaled the gene ranks to be a percentile from 0 to 100. 
Finally, we applied Spearman correlation to compare the ranks for each gene (Figure 2B, 
C). 
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We performed this same correlation analysis comparing SOPHIE trained on the P. 
aeruginosa compendium with percentiles generated from the GAPE project from the 
Stanton lab (https://github.com/DartmouthStantonLab/GAPE).16 The GAPE dataset 
contained ANOVA statistics generated for 73 P. aeruginosa microarray experiments using 
the Affymetrix platform GPL84. We downloaded the differential expression statistics for 73 
array experiments from the associated repository 
(https://github.com/DartmouthStantonLab/GAPE/blob/main/Pa_GPL84_refine_ANOVA_List
_unzip.rds). For each experiment, we identified differentially expressed genes using log2 
fold change > 1 and FDR < 0.05. We then calculated the percentile per gene based on the 
proportion that they were found to be differentially expressed. We compared these GAPE 
percentiles against those found by SOPHIE (Figure 2D).  

We also compared percentiles of genes amongst two SOPHIE-generated results. This 
included comparing percentiles generated from two SOPHIE runs using the same template 
experiment (Figure 2E) and SOPHIE generated for two different template experiments 
(Figure 2F). 

Comparison of pathway percentiles 

We wanted to compare the percentile of pathways identified using SOPHIE (trained on recount2 
and Powers et al. datasets) with the percentile based on the Powers et al. data. There was no 
pathway ranking provided in the publication, so we defined a reference ranking by calculating 
the fraction of the 442 experiments that a given pathway was found to be significant (FDR 
corrected p-value using Benjamini-Hochberg method <0.05) and used these rank pathways and 
then converted the ranking to a percentile as described above. We used 
the Hallmarks_qvalues_GSEAPreranked.csv file 
from https://www.synapse.org/#!Synapse:syn11806255. The file contains the q-values for the 
test: given the enrichment score (ES) of the experiment is significant compared to the null 
distribution of enrichment scores, where the null set is generated from permuted gene sets. Our 
percentile is based on the median Benjamini-Hochberg adjusted p-value across the simulated 
experiments. We compared our percentile versus the reference percentile using the Spearman 
correlation. 

Latent variable analysis 

The goal of this analysis was to examine why genes were found to be commonly differentially 
expressed – we sought to answer the question: are commonly changed genes found in more 
PLIER latent variables (LV)41 compared to specific genes? The PLIER model performed a 
matrix factorization of the same recount2 gene expression data to get two matrices: loadings (Z) 
and latent matrix (B). The loadings (Z) were constrained to aligned with curated pathways and 
gene sets specified by prior knowledge to ensure that some but not all latent variables capture 
known biology. For this analysis, we focused on the Z matrix, which is a weight matrix that has 
dimensions gene by LV. For this analysis, common DEGs were above the 60th percentile 
(approximately the top 40% of genes were selected based on the distribution seen in Figure 4B) 
using the SOPHIE Trained on recount2. We calculated the coverage of common DEGs versus 
other genes across these PLIER latent variables. For each gene we calculated two values: 1) 
how many LVs the gene was present in (i.e. has a nonzero weight value according to the Z 
matrix), 2) how many LVs the gene was high weight in, using the 98th quantile for the LV 
distribution as the threshold. 

Network analysis 
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In order to examine associations between commonly changed genes and pathways or 
functional modules in P. aeruginosa, we constructed a network of gene-gene interactions. 
Nodes in this network represent P. aeruginosa genes, and edges represent correlations 
between the eADAGE weight vectors of the two genes they connect. We constructed the 
network using the ADAGEpath R package, described in more detail in the associated 
manuscript.21 To form the final network, we removed all edges (correlations) with a value 
between -0.5 and 0.5, and took the absolute value of the remaining edges (so negative edge 
weights became positive). 

There are many existing methods to partition a network into well-connected, non-overlapping 
subnetworks, often referred to as communities. Using our gene similarity network, we sought to 
answer the question: Do commonly changed genes tend to occupy fewer network communities 
than a similar set of random genes, or do they tend to spread out across comparatively many 
communities? We chose two representative methods to divide the network into communities: (1) 
the Louvain method42, as implemented in the python-igraph package43, and (2) the "planted 
partition" model44 (data not shown), as implemented in the graph-tool Python package45. In 
order to make a meaningful comparison between common and non-common DEGs, we 
sampled an equal number of both gene categories. This meant that the non-common DEGs 
were approximately degree-matched with the common DEGs (i.e., for each commonly changed 
gene we sampled a specific differentially expressed gene with approximately the same network 
degree). We performed this sampling procedure 1000 times. We then counted the number of 
communities containing at least one commonly changed gene, and compared this count to the 
distribution across the 1000 samples of the number of communities containing at least one 
sampled non-commonly changed gene. 

In addition, we used the same eADAGE gene similarity network to compute several metrics 
describing individual network nodes, which we then compared between common and non-
common DEGs. For both sets of genes, we calculated: (1) node degree, (2) edge weight, (3) 
betweenness centrality46 (4) PageRank centrality47. For each of these metrics, we used the 
implementations in the graph-tool Python package. In contrast to the other metrics, 
betweenness centrality treats edge weights as "costs" (lower = better, as opposed to correlation 
or similarity measures where higher = better), so for the betweenness centrality calculation we 
transformed all edge weights by setting edge cost = 1 - correlation. 

Strain Construction 

Plasmids for making in-frame deletions of cbrB and crc were made using a Saccharomyces 
cerevisiae recombination technique previously described.48 The arabinose-inducible cbrB 
expression vector was made using Gibson cloning. All plasmids were sequenced at the 
Molecular Biology Core at the Geisel School of Medicine at Dartmouth and maintained in E. coli. 
In frame-deletions constructs were introduced into P. aeruginosa by conjugation via S17/lambda 
pir E. coli. Merodiploids were selected by drug resistance and double recombinants were 
obtained using sucrose counter-selection and genotype screening by PCR. The cbrB and empty 
expression vectors were introduced into P. aeruginosa by electroporation and selected by drug 
resistance. 

P. aeruginosa experiment  

Bacteria were maintained on LB (lysogeny broth) with 1.5% agar. For strains harboring 
expression plasmids, 300 ug/mL Carbenicillin or 60 ug/mL Gentamycin was added. Yeast 
strains for cloning were maintained on YPD (yeast peptone dextrose) with 2% agar. Planktonic 
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cultures (5 mL) were grown on roller drums at 37° from single colonies for 16 h in LB (under 
antibiotic selection for the appropriate strains).  The 16 h LB cultures were normalized to OD600 

nm = 1 in 2 mL, and a 250 µL aliquot of the normalized culture was used to inoculate three 5 mL 
cultures of M63 medium containing 10 mM arginine as a sole carbon source under inducing 
conditions (0.2% arabinose) for a starting OD600 nm = 0.05. Inoculated cultures were grown at 37° 
C on the roller drum and cellular density (OD600 nm) was monitored using a Spec20 every hour 
for 8 hours. Each data point is representative of the average of the 3 replicates per day for 3 
independent days. 

Software 

All scripts used in these analyses are available in the GitHub repository 
(https://github.com/greenelab/generic-expression-patterns) under an open-source license to 
facilitate reproducibility of these findings (BSD 3-Clause). The repository’s structure is described 
in the Readme file. The notebooks that perform the validation experiment for common DEGs 
and pathways can be found in “human_general_analysis” (SOPHIE trained on recount2), 
“human_cancer_analysis” (SOPHIE trained on Powers et al.), and “pseudomonas_analysis” 
(SOPHIE trained on the P. aeruginosa compendium) directories. The notebooks that explore 
why genes are commonly differentially expressed can be found in “LV_analysis” directory. The 
notebooks for the network analysis can be found in the “network_analysis” directory. All 
supporting functions to run these notebooks can be found in 
“generic_expression_patterns_modules” directory. The virtual environment was managed using 
conda (version 4.6.12), and the required libraries and packages are defined in the 
environment.yml file. Additionally, scripts to simulate gene expression experiments using the 
latent space shifting approach are available as a separate module, called ponyo, and can be 
installed from PyPi (https://github.com/greenelab/ponyo). The Readme file describes how users 
can re-run the analyses associated with this manuscript or analyze their own data using this 
method. An example of how to apply SOPHIE to a new dataset can be found in 
“new_experiment” directory. All simulations were run on a CPU. 
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Figure 1: Using a VAE, we can simulate gene expression data. A) Architecture of the VAE. The 
input data is compressed into an intermediate layer of 2,500 features and then into a hidden 
layer of 30 latent features.  Each latent feature follows a normal distribution with mean µ and 
variance σ. The input dimensions of the recount2 compendium have 49,651 samples and 
17,755 genes. B) Training loss (purple) and validation loss (blue) plotted per epoch during 
training. C) Workflow to simulate gene expression experiments starting with a template 
experiment (green) and shifting the experiment in the latent space to generate a new simulated 
experiment (blue). D) Volcano plot of the original experiment SRP061689 (left) and 3 example 
simulated experiments using SRP061689 as a template (right) with differentially expressed 
genes highlighted in green. Differentially expressed genes (DEG) were selected as those that 
satisfied adjusted p-value < 0.05 and absolute log2 fold change > 1.   
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Figure 2: SOPHIE finds the same commonly shifted genes as previously identified using a 
manually derived dataset. A) Workflow describing how genes were ranked by how common they 
are differentially changed using SOPHIE versus using a manually curated set of experiments. B) 
Spearman correlation between gene percentiles using our simulated method trained on Powers 
et al. (array) using GSE11352 as a template (x-axis) versus percentiles using manually curated 
experiments from Crow et al. (y-axis) with significant over-representation of SOPHIE common 
DEGs in Crow et al. commonly changed genes (p-value=1e-49). C) Spearman correlation 
between gene percentiles using our simulated method trained on recount2 (RNA-seq) using 
SRP012656 as a template (x-axis) versus percentile using manually curated experiments from 
Crow et al. (y-axis) with significant over-representation of SOPHIE common DEGs in Crow et al. 
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commonly changed genes (p-value=2e-15). D) Spearman correlation between gene percentile 
using our simulated method trained on the P. aeruginosa compendium (array) using E-GEOD-
33245 as a template (x-axis) versus percentile using manually curated experiments from GAPE. 
(y-axis) with significant over-representation of SOPHIE common DEGs in GAPE commonly 
changed genes (p-value=1e-139). E) Spearman correlation (R2 = 0.907) between gene 
percentiles generated by SOPHIE using two runs of the same experiment (SRP012656) and F) 
Spearman correlation (R2=0.572) between gene percentiles generated by SOPHIE using two 
different template experiments (SRP012656 and SRP061689).  

 

Figure 3: SOPHIE identifies the same commonly changed pathways previously found using 
manual curation. A) Workflow describing how pathways were ranked by how commonly shifted 
they are using SOPHIE versus using a manually curated set of experiments. B) Correlation 
between pathway percentiles using our simulated method trained on Powers et al. compendium 
(x-axis) versus percentiles obtained from Powers et al. (y-axis). C) Workflow describing how the 
pipeline can be easily extended to plug in different enrichment methods. D) Correlation of 
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pathway percentiles between different enrichment methods (GSEA, GSVA, CAMERA, ORA) 
using RNA-seq data. 

 

 

Figure 4: Common DEGs may contribute to a few hyperresponsive pathways. A) Number of 
human PLIER latent variables (LVs) commonly changed genes and other genes are present in 
(t-test p-value=0.239). B) Number of human PLIER latent variables commonly changed genes 
and other genes have a high weight score in (t-test p-value=6.31e-119). C) Distribution of top-
weighted human genes in example LV61, which was found to contain a high proportion of high 
weight commonly changed genes. D) The number of communities with at least one commonly 
changed P. aeruginosa gene (purple) compared to the distribution of the number of 
communities with at least one non-commonly changed gene across 1000 samplings (grey) with 
the total number of communities marked by the black dashed line. E) Distribution of the degree 
of commonly changed P. aeruginosa genes (purple) compared to other genes (grey).  
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Figure 5: SOPHIE can identify genes with specific expression shifts in experiments. A) Model of 
CbrAB system. Volcano plot with log2 fold change versus B) z-score or C) adjusted p-values 
where genes regulated by ArgR are highlighted in red. D) Growth curves for P. aeruginosa in 10 
mM arginine using WT (black), cbrB mutant (filled red), cbrB mutant with an empty expression 
vector (empty red), cbrB mutant with extrachromosomal complementation (pink), and crc mutant 
(yellow). 
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Figure S1: Commonly changed genes found in RNA-seq but not array data indicate platform-
specific shifts. A) Average gene expression for all genes in Crow et al. array dataset (grey), 
genes commonly found to be changed in both RNA-seq using SOPHIE and array dataset using 
Crow et al. (dark blue), genes commonly found to be differentially expressed only in RNA-seq 
dataset (light blue). B) Average gene expression for all genes in recount2 RNA-seq dataset 
(grey), genes commonly found to be differentially expressed in both RNA-seq using SOPHIE 
and array dataset using Crow et al. (dark blue), genes commonly found to be differentially 
expressed only in RNA-seq dataset (light blue). C) Average gene expression of genes 
commonly found to be differentially expressed only in RNA-seq dataset in template experiment 
(grey) compared to simulated experiment (light blue). D) Average gene expression of genes 
commonly found to be shifted in both RNA-seq and array datasets in template experiment (grey) 
compared to simulated experiment (dark blue). 
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Figure S2: Different pathway enrichment methods will find different commonly enriched 
pathways. Scatterplot showing the correlation of pathway percentiles between different 
enrichment methods (GSEA, GSVA, CAMERA, ORA) using RNA-seq data. 

 

Figure S3: Commonly changed pathways are sensitive to experimental context. A) Correlation 
between gene percentiles using manually curated experiments from Crow et al. (y-axis) versus 
using our simulated method (x-axis) trained on recount2 (left) or Powers et al. compendium 
(right). B) Correlation between pathway percentiles using manually curated experiments 
obtained from Powers et al. (y-axis) versus our simulated method (x-axis) trained on recount2 
(left) or Powers et al. compendium (right). 

 
Gene 
Name 

Gene 
Number log (Δcrc/WT) 

adjusted p-
value Z score log(ΔcbrB/WT) 

adjusted p-
value Z score 

argA PA5204 -0.181731828 0.908351211 1.237275138 0.756581996 0.077254116 8.449776846 
aotJ PA0888 -0.238474744 0.84970096 0.728557016 -0.71352001 0.060655286 4.919430215 
aotP PA0892 0.264663612 0.811504229 0.86782479 -0.595324546 0.147157567 3.917027549 
aotQ PA0889 0.10590825 0.948478128 -1.443774538 -0.442326784 0.222073814 2.37561046 
aotM PA0890 0.247726508 0.80833403 -1.078908312 -0.523785083 0.164420943 2.095615369 
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Table 1: Differential association statistics for genes regulated by the transcription factor ArgR 
that were found to be specific by SOPHIE. 

Table S1: Human pathways associated with latent variables that contain a high (> 50%) 
proportion of high-weight commonly changed genes. 
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