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Abstract: In this article, we discuss the estimation of the parameters for Gompertz distribution and
prediction using general progressive Type-II censoring. Based on the Expectation–Maximization
algorithm, we calculate the maximum likelihood estimates. Bayesian estimates are considered under
different loss functions, which are symmetrical, asymmetrical and balanced, respectively. An approxi-
mate method—Tierney and Kadane—is used to derive the estimates. Besides, the Metropolis-Hasting
(MH) algorithm is applied to get the Bayesian estimates as well. According to Fisher information
matrix, we acquire asymptotic confidence intervals. Bootstrap intervals are also established. Fur-
thermore, we build the highest posterior density intervals through the sample generated by the
MH algorithm. Then, Bayesian predictive intervals and estimates for future samples are provided.
Finally, for evaluating the quality of the approaches, a numerical simulation study is implemented.
In addition, we analyze two real datasets.

Keywords: general progressive Type-II censoring; bootstrap; EM algorithm; Bayesian estimation;
Metropolis-Hasting algorithm; Bayesian prediction

1. Introduction

Gompertz distribution has wide applications in describing human mortality, establish-
ing actuarial tables and other fields. Historically, it was originally introduced by Gompertz
(see Reference [1]). The probability density function (PDF) and cumulative distribution
function (CDF) of the Gompertz distribution are defined as

f (x|α, β) = αβeβxe−α(eβx−1), 0 < x < +∞, (1)

and
F(x|α, β) = 1− e−α(eβx−1), 0 < x < +∞, (2)

where the unknown parameters α and β are positive.
The Gompertz distribution possesses a unimodal PDF; in addition to this, it also has

an increasing hazard function. Many researchers have contributed to the properties of
the Gompertz distribution. In recent years, Reference [2] studied the relations between
other distributions and Gompertz distribution, for instance, the Type I extreme value and
Weibull distributions. Reference [3] obtained the weighted and unweighted least squares
estimations under censored and complete samples. Reference [4] calculated the maximum
likelihood estimates (MLEs), and completed the establishment for exact confidence interval
and joint confidence region base on progressive Type-II censoring. Reference [5] studied
the statistical inferences for Gompertz distribution under generalized progressively hybrid
censoring. They derived the MLEs by Newton’s iteration method and used Markov chain
Monte Carlo method to obtain Bayes estimates under generalized entropy and other loss
functions. Bayesian predictions based on this censoring scheme were provided by one-
and two-sample predictive approaches. Finally, they compared the proposed methods by
simulation. Reference [6] obtained the MLEs and Bayesian estimates for the parameters
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using progressive first-failure censoring, also the estimates of hazard rate and reliability
functions of Gompertz distribution. Besides, approximate and exact confidence intervals
were constructed, and the conjugate and discrete prior distributions for the parameters were
proposed. Finally, a numerical example was reported. One may also refer to References [7,8]
for extensions about Gompertz distribution.

In life tests and reliability analyses, censoring has attracted more and more attention
due to time and cost savings. Several schemes of censoring are proposed in the literature,
among which Type-I and Type-II censoring are the most widely used. The former allows
an experiment to be ceased at a fixed time point and the number of observed failed units is
random, while the latter asks the life testing to be stopped when a prescriptive number of
units fail, and the duration of the experiment is random. Both the traditional Type-I and
Type-II censoring methods have a limitation that surviving experimental units are only
allowed to be withdrawn at the terminal point. In this regard, progressive type-II censoring
has better practicability and flexibility because it allows removal of the surviving units
after any failure occurs. However, sometimes there are also other cases in the test, such as
the existence of the unobserved failures at the starting point of the test. This would result
in more general censoring. In this article, following Reference [9], we concentrate on the
general progressive Type-II censoring. Assume that a life testing contains n experimental
units. The first r failures occur at the time points X1, . . . , Xr respectively which are
unobserved. When (r + 1)-th failure is observed at the time point Xr+1, the surviving
experimental units of size Rr+1 are withdrawn, and so forth. When (r + i)-th failure takes
place at the point of time Xr+i (i = 1, . . . , m− r), the surviving experimental units of size
Rr+i are removed at random. Eventually, when the m-th failed unit is observed at the
time point Xm, remaining experimental units of size Rm = n − Rr+1 − · · · − Rm−1 − m
are removed. Here R = (Rr+1, . . . , Rm) is prefixed and is cited as the censoring scheme,
besides, X = (Xr+1, . . . , Xm) is known as general progressive censored data which denotes
the observed failure time with size m− r.

Several scholars have discussed various lifetime distributions using the general pro-
gressive censored data. Among others, Reference [10] derived both classical and Bayesian
estimates using general progressive censored data obtained randomly from exponential dis-
tribution. Reference [11] applied general progressive censored sample to discuss Bayesian
estimates for the two parameters in inverse Weibull distribution and prediction problems
with the priors with gamma distribution on the scale parameter and a log-concave density
on the shape parameter. Reference [12] obtained Bayesian prediction estimates for the
future sample from Weibull distribution using asymmetric and symmetric loss functions
under general progressive censoring. Other studies can be found in References [13–15],
and so forth.

In this article, using general progressive censoring, we discuss the estimation and
prediction problems on Gompertz distribution .

This paper proceeds as follows: First, we calculate the MLEs in Section 2 by the
Expectation-Maximization (EM) method and acquire the Fisher information matrix. Be-
sides, in the same section we also derive the bootstrap intervals. In Section 3, we discuss
the Bayesian estimates with different loss functions. An approximate method, Tierney and
Kadane (TK), is proposed to calculate these estimates. Furthermore, we apply the MH
algorithm to obtain Bayesian estimations and establish highest posterior density (HPD)
intervals under the sample generated by the MH algorithm. In Section 4, Bayesian point
prediction and interval prediction estimates for future samples are provided. A numerical
simulation is executed in Section 5 to evaluate the quality of these approaches, in addition,
we also analyze two real datasets. Finally, conclusions are arranged in the last Section 6.

2. Maximum Likelihood Estimation

Let R = (Rr+1, . . . , Rm) be the censoring scheme, under which X = (Xr+1, Xr+2, . . . , Xm)
denotes the corresponding general progressive censored sample drawn from Gompertz
distribution. Then, the likelihood function is derived as the following expression:
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l(α, β|x˜) = Q[F(xr+1|α, β)]r
m

∏
i=r+1

[1− F(xr+1|α, β)]Ri f (xr+1|α, β), (3)

where Q = (n
r)(n − r)

m
∏

j=r+2
(n − ∑

j−1
i=r+1 Ri + 1− j), and x˜ = (xr+1, . . . , xm) denotes an

observed value of X = (Xr+1, . . . , Xm). In addition, (n
r) is the binomial coefficient, that

is n!
(n−r)!r! .

Substituting (1) and (2), (3) can be written in the following form:

l(α, β|x˜) = Qαm−rβm−r[1− e−α(eβxr+1−1)]r
m

∏
i=r+1

eβxi e−α(Ri+1)(eβxi−1). (4)

2.1. Point Estimation with EM Algrithm

A classical method for obtaining MLE is the Newton–Raphson method, which requires
the second-order partial derivatives of the log-likelihood function and the derivatives are
usually complicated in the case of censoring. Therefore, it is necessary to seek other
methods. Following Reference [16], we use the EM algorithm to derive the MLEs. This
algorithm is powerful for handling incomplete data problems because only the pseudo-log
likelihood function of complete data needs to be maximized. It is an iterative method by
using current estimation of the parameters to expect the log-likelihood function filled with
censored data which is called E-step and maximize it to get the next estimation which is
called M-step.

We use Z = (Zr, Zr+1, . . . , Zm) to represent the censored sample, where Zr is a 1× r
vector Zr = (Zr1, . . . , Zrr) of the first r unobserved failures, and Zi, i = r + 1, . . . , m denotes
a 1× Ri vector Zi = (Zi1, . . . , ZiRi ) of the censored data after Xi failed. The observed and
complete sample are denoted by X = (Xr+1, . . . , Xm) and K respectively, then K = (X, Z).
Let z0˜ = (zr1, . . . , zrr), zi˜ = (zi1, . . . , ziRi )(i = r + 1, . . . , m) and x˜ = (xr+1, . . . , xm) rep-

resent the corresponding observations. Under the complete data, we can express the
log-likelihood function by

Lc(α, β, K) = n ln(αβ) + β
m

∑
i=r+1

xi − α
m

∑
i=r+1

(eβxi − 1) (5)

+ β
m

∑
i=r+1

Ri

∑
k=1

zik − α
m

∑
i=r+1

Ri

∑
k=1

(eβzik − 1)− α
r

∑
k=1

(eβzrk − 1) + β
r

∑
k=1

zrk.

• E-step

To conduct the E-step smoothly, first we compute the expectation of (5), the pseudo-log
likelihood function is then expressed as

LE(α, β; x˜) = n ln(αβ) + β
m

∑
i=r+1

xi − α
m

∑
i=r+1

(eβxi − 1) (6)

+ β
r

∑
k=1

E(zrk|zrk < xr+1) + β
m

∑
i=r+1

Ri

∑
k=1

E(zik|zik > xi)

− α
r

∑
k=1

E((eβzrk − 1)|zrk < xr+1)− α
m

∑
i=r+1

Ri

∑
k=1

E((eβzik − 1)|zik > xi),
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where

E(zik|zik > xi) =
1

1− F(xi|α, β)

∫ +∞

xi

αβeβte−α(eβt−1)tdt

=
α

βe−α(eβxi−1)

∫ +∞

eβxi−1
ln(t + 1) e−αtdt

= E1(xi, α, β), (7)

E((eβzik − 1)|zik > xi) =
1

1− F(xi|α, β)

∫ +∞

xi

αβeβte−α(eβt−1)(eβt − 1)dt

= eβxi − 1 +
1
α

= E2(xi, α, β), (8)

E(zrk|zrk < xr+1) =
1

F(xr+1|α, β)

∫ xr+1

0
αβeβte−α(eβt−1)tdt

=
α

βF(xr+1|α, β)

∫ eβxr+1−1

0
e−αt ln(t + 1)dt

= E3(xr+1, α, β), (9)

and

E((eβzrk − 1)|zrk < xr+1) =
1

F(xr+1|α, β)

∫ xr+1

0
αβeβte−α(eβt−1)(eβt − 1)dt

=
1− eβxr+1 e−α(eβxr+1−1)

F(xr+1|α, β)
− 1 +

1
α

= E4(xr+1, α, β). (10)

• M-step

Suppose that the s-th estimate of (α, β) is represented by (α∗(s), β∗(s)) then the M-step
aims to maximize (6) by substituting α∗(s) and β∗(s) into E1, E2, E3 and E4, and derive the
(s + 1)-th estimate. Therefore, the next task is to maximize the function

LM(α, β; x˜) = n ln(αβ) + β
m

∑
i=r+1

xi − α
m

∑
i=r+1

(eβxi − 1) + β
m

∑
i=r+1

RiE∗1

− α
m

∑
i=r+1

RiE∗2 + rβE∗3 − rαE∗4 , (11)

where E∗1 , E∗2 , E∗3 , E∗4 are E1(xi, α∗(s), β∗(s)), E2(xi, α∗(s), β∗(s)), E3(xr+1, α∗(s), β∗(s)),
E4(xr+1, α∗(s), β∗(s)), respectively. The corresponding likelihood equations are

∂LM
∂α

=
n
α
−

m

∑
i=r+1

(eβxi − 1 + RiE∗2 )− rE∗4 = 0, (12)

and

∂LM
∂β

=
n
β
+

m

∑
i=r+1

(xi − αxieβxi + RiE∗1 ) + rE∗3 = 0. (13)
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For the reason that it is infeasible to compute (12) and (13) analytically, we use a
numerical technique to obtain α∗(s+1) and β∗(s+1). From (12), the estimate of α can be
described as the following function of β:

α̂ =
n

∑m
i=r+1(eβxi − 1 + RiE∗2 ) + rE∗4

. (14)

By replacing α with α̂, Equation (13) can be transformed into the equivalent form
β = FF(β), where

FF(β) =
n

∑m
i=r+1(α̂xieβxi − xi + RiE∗1 )− rE∗3

. (15)

Then, β∗(s+1) can be acquired using the fixed-point iterative procedure:

β j+1 = FF(β j). (16)

When |β j+1 − β j| is smaller than a given tolerance limit, the iteration stops. Once we
get β∗(s+1), α∗(s+1) can be computed as α∗(s+1) = α̂(β∗(s+1)) easily from (14). Repeat E-step
and M-step till this program converges. Then we get the MLEs for α and β.

2.2. Asymptotic Confidence Interval

Now, we acquire the Fisher information matrix and establish 100(1− γ)% asymptotic
confidence intervals (ACIs).

The observed information can be extracted by means of a program proposed by
Reference [17] when using EM method in handling incomplete sample problems to de-
rive MLEs. Let θ be the unknown parameter (α, β). IK(θ) and IX(θ) denote complete
information and observed information respectively. Furthermore, missing information is
represented as IK|X(θ). The main concept of this program can be described as the principle
of missing information

IX(θ) = IK(θ)− IK|X(θ), (17)

where IK(θ) can be derived by

IK(θ) = −E
[

∂2Lc(θ, K)
∂θ2

]
=

[
A11 A12
A21 A22

]
. (18)

IW|X is the expected information of the distribution of Z = (Zr, Zr+1, . . . , Zm) given
X = (Xr+1, . . . , Xm). According to Reference [18], given the observed sample of general
progressive Type-II censoring, we obtain the distribution of Z as

f (Z|X, θ) =
r

∏
k=1

f (zrk|θ)
F(xr+1|θ)

m

∏
i=r+1

Ri

∏
k=1

f (zik|θ)
1− F(xi|θ)

, (19)

then the IK|X is

IK|X(θ) = −E
[

∂2 ln f (Z|X, θ)

∂θ2

]
. (20)
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Let fZ0(z|xr+1, θ) = f (z|θ)/F(xr+1|θ), fZi (zi|xi, θ) = f (zi|θ)/[1− F(xi|θ)]. Following
Reference [18], we know that given the observed sample (Xr+1, . . . , Xm) = (xr+1, . . . , xm),
the components of Zr are independent of each other and have the PDF fZ0(zrk|xr+1, θ),
k = 1, . . . , r. Similarly, the components of Zi, i = r + 1, . . . , m are independent of each other
and have the PDF fZi (zik|xi, θ), k = 1, . . . , Ri. Therefore, the IK|X can be restated as

IK|X(θ) = rI∗K|X(θ) +
m

∑
i=r+1

Ri I
(i)
K|X(θ), (21)

where

I∗K|X(θ) = −E

[
∂2 ln fZ0(z|xr+1, θ)

∂θ2

]
=

[
B11 B12
B21 B22

]
, (22)

and

I(i)K|X(θ) = −E

[
∂2 ln fZi (zi|xi, θ)

∂θ2

]
=

[
C11 C12
C21 C22

]
. (23)

Now we can figure out the elements of the above matrices as follows:

A11 = n/α2, A21 = A12 =
nα

β

∫ +∞

0
e−αt(t + 1) ln(t + 1)dt,

A22 =
n
β2 +

nα

β2

∫ +∞

0
e−αt(t + 1)[ln(t + 1)]2dt,

B11 = − 1
α2 + h1, B12 = B21 = − α

βF(xr+1|θ)

∫ eβxr+1−1

0
e−αt(t + 1) ln(t + 1)dt + h2,

B22 = − 1
β2 −

α2

β2F(xr+1|θ)

∫ eβxr+1−1

0
e−αt(t + 1)[ln(t + 1)]2dt + h3,

C11 = − 1
α2 , C12 = C21 = − α

β(1− F(xi|θ))

∫ +∞

eβxi−1
e−αt(t + 1) ln(t + 1)dt + xieβxi ,

C22 = − α2

β2(1− F(xi|θ))

∫ +∞

eβxi−1
e−αt(t + 1)[ln(t + 1)]2dt− 1

β2 + αx2
i eβxi ,

where

h1 =
(eβxr+1 − 1)2e−α(eβxr+1−1)

[F(xr+1|θ)]2
,

h2 = − xr+1eβxr+1 e−α(eβxr+1−1)[1− α(eβxr+1 − 1)− e−α(eβxr+1−1)]

[F(xr+1|θ)]2
,

and

h3 = −
αx2

r+1eβxr+1 [1− αeβxr+1 − e−α(eβxr+1−1)]

[F(xr+1|θ)]2
.

Further, using asymptotic normality of MLE θ̂ = (α̂, β̂), θ̂ ∼ N(θ̂, I−1(θ̂)), the 100(1−
γ)% ACIs for the two unknown parameters are obtained as(

α̂− η γ
2

√
Var(α̂), α̂ + η γ

2

√
Var(α̂)

)
and

(
β̂− η γ

2

√
Var(β̂), β̂ + η γ

2

√
Var(β̂)

)
, (24)

where η γ
2

represents the upper γ
2 -th quantile for standard normal distribution, Var(α̂) and

Var(β̂) denote the principal diagonal elements of I−1(θ̂) respectively.
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2.3. Bootstrap Confidence Interval

As is widely known, asymptotic confidence interval on the basis of MLE requires a
large sample to support its accuracy but, in many practical cases, the sample size tends to
not be enough. Reference [19] proposed the bootstrap method to construct the confidence
interval (CI), which is more suitable for small sample. In this part, the parametric boot-
strap method is employed in the establishment of percentile bootstrap (bootstrap-p) and
bootstrap-t CIs for a parameter λ (here λ is α or β). Interested readers may refer to Refer-
ences [20,21] for more information about bootstrap and Reference [22] for the algorithm of
generating the general progressive type-II censored sample.

Parametric bootstrap-p

(1) Calculate the MLEs α̂0 and β̂0 based on the existing general progressive censored data
and censoring scheme R = (Rr+1, . . . , Rm).

(2) Generate Bm from Beta(n− r, r + 1).
(3) Generate independent Ur+k from Uniform(0, 1), k = 1, 2, . . . , m− r− 1.

(4) Set Br+k = U
1

ξr+k
r+k , where ξr+k = k + ∑m

i=m−k+1 Ri, k = 1, 2, . . . , m− r− 1.
(5) Set Zr+k = 1− Bm−k+1Bm−k+2 . . . Bm, k = 1, 2, . . . , m− r.
(6) Set Xk = F−1(Zk), k = r + 1, . . . , m, and F(·) represents the CDF of Gompertz dis-

tribution with parameters α̂0 and β̂0. Then the Xk, k = r + 1, . . . , m are the general
progressive censored sample (also bootstrap sample).

(7) Compute the MLEs α̂∗ and β̂∗ using the updated bootstrap sample.
(8) Repeat steps (2)–(7) D times. Acquire the estimates: (α̂∗1 , α̂∗2 , . . . , α̂∗D), (β̂∗1, β̂∗2, . . . , β̂∗D).
(9) Set F̂λ(x) = P(λ̂∗ ≤ x) as the CDF for λ̂∗. For a given value of x, define

λ̂p(x) = F̂−1
λ (x). The 100(1− γ)% bootstrap-p CI of the parameter λ is obtained as(

λ̂p(
γ

2
), λ̂p(1−

γ

2
)
)

.

Parametric bootstrap-t

(1)–(7) The same as the bootstrap-p above.
(8) Obtain the statistics T∗λ that

T∗λ =
λ̂∗ − λ̂√
V̂ar(λ̂∗)

.

(9) Repeat steps (2)–(8) D times.
(10) Set F̂Tλ

(x) = P(T∗λ ≤ x) as the CDF for T∗λ . For a given value of x, define

λ̂t(x) = λ̂ +
√

V̂ar(λ̂∗)F̂−1
Tλ

(x). The 100(1− γ)% bootstrap-t CI for the parame-
ter λ is given by (

λ̂t(
γ

2
), λ̂t(1−

γ

2
)
)

.

3. Bayesian Estimation

Bayesian statistics are different from traditional statistics in that they allow the incor-
poration of subjective prior knowledge about life parameters into the inferential procedure
in reliability analysis. Therefore, for the same quality of inferences, Bayesian methods
tend to require fewer sample data than traditional statistical methods do. This makes it
extremely important in expensive life tests.

We investigate the Bayesian estimates in this section. Suppose that α and β indepen-
dently have gamma prior distributions with the parameters (a, b) and (c, d). Afterwards,
we can obtain their joint prior distribution, that is
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π(α, β) =
badc

Γ(a)Γ(c)
αa−1e−bαβc−1e−dβ, 0 < α, β < +∞, (25)

where the positive constants a, b, c and d are hyperparameters. Let x˜ = (xr+1, . . . , xm) be an

observed value of X = (Xr+1, . . . , Xm). Based on the joint prior distribution and likelihood
function, the joint posterior function is

π(α, β|x˜) =
π(α, β)l(α, β|x˜)∫ +∞

0

∫ +∞
0 l(α, β|x˜)π(α, β)dαdβ

∝ αm+a−r−1βm+c−r−1e−(bα+dβ)[1− e−α(eβxr+1−1)]r
m

∏
i=r+1

eβxi e−α(Ri+1)(eβxi−1). (26)

It is clear that (26) is analytically tricky. Furthermore, the Bayesian estimation of a
function with α and β is also intractable because it is related to a ratio of two integrals. For
solving the corresponding ratio of two integrals, some approximate approaches have been
presented in the literature. Among them, the TK method was proposed by Reference [23] to
obtain the approximate posterior expectations. Besides, the MH algorithm is a simulation
method with wide applications in sampling from posterior density function. In this article,
we use the TK method and the MH algorithm to derive approximate explicit forms for the
Bayesian estimates.

3.1. Loss Functions

In Bayesian statistics, the selection of loss function is a fundamental step. There are
many symmetric loss functions, among which squared error loss (SEL) function is well-
known for its good mathematical properties. Let δ be a Bayesian estimate of θ. The form of
SEL function is

L1(δ, θ) = (δ− θ)2, (27)

then under SEL function the Bayesian estimate for θ can be computed by δS = E(θ|X)(θ|X).
However, in many practical situations, overestimation and underestimation result in

different losses, and the consequence is likely to be quite serious if one uses symmetric loss
function indiscriminately. In these cases, asymmetrical loss functions are considered to
be more suitable. In the literature, many different asymmetric loss functions were used.
Among them, LINEX is dominant, and this loss function can be expressed as

L2(δ, θ) = ζ(eh(δ−θ) − h(δ− θ)− 1), h 6= 0, ζ > 0. (28)

Without loss of generality, here, we take ζ = 1. Thus Bayesian estimate for θ is given by the
expression δL = − 1

h ln{E(θ|X)(e−hθ |X)}.
Later, Reference [24] proposed a balanced loss function that has a more generalized form

L3(δ, θ) = σρ(δ, δ0) + (1− σ)ρ(δ, θ), 0 ≤ σ ≤ 1, (29)

where δ0 is a known estimate of θ such as the MLE, and ρ is a loss function selected
arbitrarily. By choosing ρ as SEL function given by (27), the (29) is transformed into
balanced squared error loss (BSEL) function. According to BSEL we can give the Bayesian
estimate by δBS = (1− σ)E(θ|X)(θ|X) + σδ0.

It can be clearly seen that the balanced loss function is more general since it includes
special cases of the MLE, symmetric and asymmetric loss functions. For instance, by setting
δ0 to be the MLE of parameter, under BSEL function, the Bayesian estimate is exactly equal
to MLE if σ = 1, and it is simplified into the Bayesian estimate under SEL function when
σ = 0. Similarly, if ρ is chosen as LINEX loss function given by (28), L3(·) is called BLINEX
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function. When σ = 1 and σ = 0, the Bayesian estimates under the BLINEX loss function
correspondingly reduce to MLE and the case of LINEX loss function.

In this article, we derive Bayesian estimates under SEL, BSEL functions and LINEX
loss functions, respectively. Next, the TK method is suggested to deal with the ratio of the
integrals problem on posterior expectation estimation.

3.2. TK Method

We assume that u(α, β) denotes an arbitrary function of (α, β). Following Refer-
ence [23], the posterior expectation for u(α, β) is written as

E(u(α, β)) =

∫ +∞
0

∫ +∞
0 u(α, β)π(α, β)e

L(α,β|x˜)dαdβ∫ +∞
0

∫ +∞
0 e

L(α,β|x˜)π(α, β)dαdβ
, (30)

where π(α, β) denotes the prior density, and L(α, β|x˜) represents the logarithm of (4).

We set:

ϕ(α, β) =
ln π(α, β) + L(α, β|x˜)

n
and ϕ∗u(α, β) =

ln u(α, β)

n
+ ϕ(α, β). (31)

Maximizing ϕ(α, β) and ϕ∗u(α, β) individually, we derive (α̂1, β̂1) and (α̂u, β̂u). Then,
the approximate posterior expectation of u(α, β) by applying the TK method is obtained as

Ê(u(α, β)) =

√
|∑∗u |
|∑ |

exp{n[ϕ∗u(α̂u, β̂u)− ϕ(α̂1, β̂1)]}, (32)

where |∑ | and |∑∗u | represent the corresponding determinants of negative inverse Hessian
matrix of ϕ(α, β) and ϕ∗u(α, β). Next, ignoring the constant term, we note that

ϕ(α, β) =
1
n

[
(m− r) ln(αβ) + β

m

∑
i=r+1

xi + r ln[1− e−α(eβxr+1−1)] (33)

− α
m

∑
i=r+1

(Ri + 1)(eβxi − 1)− bα + (a− 1) ln α− dβ + (c− 1) ln β

]
.

Now, we compute the partial derivatives of ϕ:

∂ϕ

∂α
=

1
n

[
m− r

α
−

m

∑
i=r+1

(eβxi − 1)(Ri + 1)− b +
a− 1

α
+

re−α(eβxr+1−1)(eβxr+1 − 1)
F(xr+1|α, β)

]
, (34)

and

∂ϕ

∂β
=

1
n

[
m− r

β
+

m

∑
i=r+1

[xi − α(Ri + 1)eβxi xi] +
c− 1

β
− d +

αxr+1eβxr+1 e−α(eβxr+1−1)

F(xr+1|α, β)

]
. (35)

Similarly, the second derivatives can be derived as

∂2 ϕ

∂α2 =
1
n

[
−m + a− r− 1

α2 − r(eβxr+1 − 1)2e−α(eβxr+1−1)

F2(xr+1|α, β)

]
, (36)
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∂2 ϕ

∂β2 =
1
n

[
−m + c− r− 1

β2 − α
m

∑
i=r+1

(Ri + 1)eβxi x2
i (37)

+
rαx2

r+1eβxr+1 e−α(eβxr+1−1)[1− αeβxr+1 − e−α(eβxr+1−1)]

F2(xr+1|α, β)

,

and

∂2 ϕ

∂β∂α
=

∂2 ϕ

∂α∂β
=

1
n

[
−

m

∑
i=r+1

(Ri+1)eβxi xi

+
rxr+1eβxr+1 e−α(eβxr+1−1)[1− α(eβxr+1 −1)− e−α(eβxr+1−1)]

F2(xr+1|α, β)

]
. (38)

Through (36)–(38), |∑ | is obtained as

|∑ | =
[

∂2 ϕ

∂α2
∂2 ϕ

∂β2 −
∂2 ϕ

∂β∂α

∂2 ϕ

∂α∂β

]−1

α=α̂1,β=β̂1

. (39)

For |∑∗ |, we first compute that

∂ϕ∗

∂α
=

∂ϕ

∂α
+

uα

nu(α, β)
, (40)

∂ϕ∗

∂β
=

∂ϕ

∂β
+

uβ

nu(α, β)
, (41)

∂2 ϕ∗

∂α2 =
∂2 ϕ

∂α2 +
1
n

[
u(α, β)uαα − (uα)2

[u(α, β)]2

]
, (42)

∂2 ϕ∗

∂β2 =
∂2 ϕ

∂β2 +
1
n

[
u(α, β)uββ − (uβ)

2

[u(α, β)]2

]
, (43)

and

∂2 ϕ∗

∂β∂α
=

∂2 ϕ∗

∂α∂β
=

∂2 ϕ

∂α∂β
+

1
n

[u(α, β)uαβ − uαuβ

[u(α, β)]2

]
. (44)

As a result, |∑∗ | is

|∑∗ | =
[

∂2 ϕ∗

∂β2
∂2 ϕ∗

∂α2 −
∂2 ϕ∗

∂β∂α

∂2 ϕ∗

∂α∂β

]−1

α=α̂u ,β=β̂u

. (45)

Finally in the above calculation processes, setting u(α, β) as α and β respectively, the
estimates on the basis of SEL function are given by

α̂S =

√
|∑∗α |
|∑ |

exp{n[ϕ∗α(α̂α, β̂α)− ϕ(α̂1, β̂1)]} and (46)

β̂S =

√
|∑∗β |
|∑ |

exp{n[ϕ∗β(α̂β, β̂β)− ϕ(α̂1, β̂1)]}. (47)

Further, we are able to calculate the Bayesian estimates based on BSEL function using
the equation δBS = σδ0 + (1− σ)δS with different σ, 0 ≤ σ ≤ 1.
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Similarly, by treating u1(α, β) as e−hα and u2(α, β) as e−hβ, the estimates for unknown
parameters under LINEX loss function are given by

α̂L = −1
h

ln{

√
|∑∗u1

|
|∑ |

exp{n[ϕ∗u1
(α̂u1, β̂u1)− ϕ(α̂1, β̂1)]}} and (48)

β̂L = −1
h

ln{

√
|∑∗u2

|
|∑ |

exp{n[ϕ∗u2
(α̂u2, β̂u2)− ϕ(α̂1, β̂1)]}}. (49)

3.3. MH Algorithm

We derive Bayesian estimates for α and β by the MH algorithm (see Reference [20]).
First, we suppose that the bivariate normal distribution is the proposal distribution for
the parameter θ = (α, β), then the MH algorithm can generate samples from the bivariate
normal distribution and finally get convergent samples from the posterior distribution.
Using the samples, we first compute the Bayesian estimates under different loss functions,
thereafter, establish HPD intervals. The MH algorithm can be summarized as:

(1) Begin with an initial value θ0 = (α0, β0), set n = 1.
(2) Generate a proposal θ

′
= (α

′
, β
′
) from the bivariate normal distribution N2(θn−1, ∑1)

where θn−1 = (αn−1, βn−1), and ∑1 denotes the variance-covariance matrix which
tends to be considered as the inverse for Fisher information matrix.

(3) Calculate the acceptance probability q = min{ π(θ
′ |X)

π(θn−1|X)
, 1}, and π(·|X) is correspond-

ing joint posterior distribution.
(4) Generate µ from Uniform(0, 1).
(5) If µ ≤ q, let θn = θ

′
; else, let θn = θn−1.

(6) Set n = n + 1.
(7) Repeat steps (2–6) D times to get required size of sample.

Removing the first D0 number of iterative values, the Bayesian estimates under SEL
function are derived as

α̃S =
1

D− D0

D

∑
n=D0+1

αn and (50)

β̃S =
1

D− D0

D

∑
n=D0+1

βn. (51)

Proceeding similarly, the desired estimates under BSEL function can be obtained easily.
Further the Bayesian estimates under LINEX can be computed as

α̃L = −1
h

ln{ 1
D− D0

D

∑
n=D0+1

e−hαn} and (52)

β̃L = −1
h

ln{ 1
D− D0

D

∑
n=D0+1

e−hβn}. (53)

Now, we can establish the 100(1 − γ)% HPD interval (see Reference [25]) for the
unknown parameter α. Sort the remaining D − D0 values in ascending order to be
α(1), α(2), . . . , α(D−D0)

. The 100(1− γ)% HPD interval of α is given as

(α(w∗), α(w∗+[(1−γ)×(D−D0)])
), (54)
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where w∗ is selected when the following equation is satisfied:

α(w∗+[(1−γ)×(D−D0)])
− α(w∗) = min

1≤w≤(D−D0)−[(1−γ)×(D−D0)]
(α(w+[(1−γ)×(D−D0)])

− α(w)), (55)

and [(1− γ)× (D − D0)] denotes the integer part of (1− γ)× (D − D0). Likewise, the
HPD interval of β can be obtained .

4. Bayesian Prediction

Now we obtain the prediction estimates for the future sample on the basis of available
sample and obtain predictive intervals. Bayesian prediction for future sample is a funda-
mental subject in many fields such as medical, agricultural and engineering experiments.
Interested readers may refer to Reference [11].

Suppose that the existing X = (Xr+1, . . . , Xm) is a group of general progressive
censored data observed from a population with Gompertz distribution. Let Y1 ≤ Y2 ≤
· · · ≤ YW denote the ordered failures time for a future sample with size W, which is
also obtained from Gompertz distribution. We aim to obtain their predictive estimation
(two-sample prediction). Suppose that Yv (1 ≤ v ≤W) represents the v-th failure time of
the future sample. Then, for given α and β, we can obtain the density function of Yv as

g(yv|α, β) = v
(

W
v

)
[1− F(yv|α, β)]W−v[F(yv|α, β)]v−1 f (yv|α, β) (56)

= v
(

W
v

) v−1

∑
j=0

(
v− 1

j

)
(−1)j[1− F(yv|α, β)]W−v+j f (yv|α, β).

Consequently, the posterior predictive density function for Yv is derived as

g∗(yv|X) =
∫ +∞

0

∫ +∞

0
g(yv|α, β)π(α, β|X)dαdβ. (57)

It is infeasible to compute (57) analytically. By using the MH algorithm, we can obtain
its approximate solution as follows:

g∗(yv|X) =
1

D− D0

D

∑
i=D0+1

g(yv|αi, βi). (58)

Further, the survival function is computed as

S(yv|α, β) =
∫ +∞

yv
g(z|α, β)dz. (59)

The posterior predictive survival function for Yv can be derived by

S
′
1(yv|X) =

∫ +∞

0

∫ +∞

0
S(yv|α, β)π(α, β|X)dαdβ (60)

≈ 1
D− D0

D

∑
i=D0+1

∫ +∞

yv
g(z|αi , βi)dz

=
v

D− D0

(
W
v

) D

∑
i=D0+1

v−1

∑
j=0

(
v− 1

j

)
(−1)j [1− F(yv|αi , βi)]

W+j−v+1

W + j− v + 1
.

Then, we construct the 100(1− γ)% Bayesian predictive interval (L0, U0) of Yv by
finding the solution of the equations

S
′
1(L0|X) = 1− γ

2
and S

′
1(U0|X) =

γ

2
. (61)
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Further, it is convenient to derive the predictive estimate of the future v-th ordered
lifetime, which is given by

ŷv = E(yv|X) =
∫ +∞

0
yvg∗(yv|X)dyv (62)

=
∫ +∞

0

∫ +∞

0
H(α, β)π(α, β|X)dαdβ,

where H(α, β) =
∫ +∞

0 yvg(yv|α, β)dyv is obtained as

H(α, β) =
vα

β

(
W
v

) v−1

∑
j=0

(
v− 1

j

)
(−1)j

∫ +∞

0
e−α(W+1−v+j)t ln(1 + t)dt. (63)

By using the MH algorithm described in the previous section, the prediction estimate
of Yk is derived as

ŷv =
1

D− D0

D

∑
i=D0+1

H(αi, βi). (64)

5. Simulation and Data Analysis

For evaluating the quality of the approaches, a numeric simulation study is carried
out. In addition, we also analyze two real data sets for further illustration.

5.1. Simulation Study

For the sake of simulation, first we generate general progressive censored sample with
the algorithm discussed by Reference [22]. The procedures are as below:

(1) Generate Bm from Beta(n− r, r + 1).
(2) Generate independent Ur+k from Uniform(0, 1), k = 1, 2, . . . , m− r− 1.

(3) Set Br+k = U
1

ξr+k
r+k , where ξr+k = k + ∑m

i=m−k+1 Ri, k = 1, 2, . . . , m− r− 1.
(4) Set Zr+k = 1− Bm−k+1Bm−k+2 . . . Bm, k = 1, 2, . . . , m− r.
(5) Set Xk = F−1(Zk), k = r + 1, . . . , m, and F(x) represents the CDF of Gompertz

distribution.

Then we get the desired general progressive censored data Xi, i = r + 1, . . . , m drawn
from Gompertz distribution. In our experiment, the true values for (α, β) are selected to
be (0.3, 1.2). The MLEs for the two parameters are calculated by means of EM algorithm.
In the aspect of Bayesian estimation and prediction, (0.2, 7.8, 0.1, 3.7) are chosen to be
the values of hyperparameters (a, b, c, d) respectively. Moreover, Bayesian estimates are
obtained by TK and MH methods under different loss functions. Comparison between the
results is made according to mean-square error (MSE).

For convenience, we use simplified notations to represent different censoring
schemes (CS) with r, such as (2, 0∗3, 5) for the case where r = 2, m = 6, n = 10 and
the censoring scheme is (0, 0, 0, 5). Therefore, our schemes in simulation study can be
expressed by the following notations: H1 = (0∗2, 3, 0∗3, 4, 2, 0∗4), H2 = (2, 0∗3, 2, 0∗5, 5, 0),
H3 = (2, 2, 0∗5, 8, 0∗7, 3), H4 = (5, 0∗2, 1, 2, 0∗3, 7, 0∗7), H5 = (3, 5, 0∗4, 2, 0∗8, 10, 0∗5), H6 =
(5, 0∗4, 5, 0∗3, 4, 0∗4, 6, 0∗6), H7 = (0∗4, 6, 0∗3, 7, 0∗9, 2, 0∗7), H8 = (3, 0∗2, 2, 0∗4, 10, 0∗4, 5, 0∗12),
H9 = (2, 0∗5, 10, 0∗5, 6, 0∗7, 2, 0∗10), H10 = (5, 0, 3, 0∗8, 8, 0∗6, 4, 0∗12).
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Table 1 reports all the average estimates and corresponding MSEs for the parameters.
In this table, for a given censoring scheme, the average estimates are placed on the first
and third rows respectively, and the second and fourth rows refer to the corresponding
MSEs. From tabulated estimates, in general, the MH estimates are observed to have smaller
MSEs compared with the estimates using the TK method. Furthermore, we find that the
performance of Bayes estimates for the parameters under LINEX is better than those based
on the SEL and BSEL functions in MSEs. However, Bayesian estimates under the SEL
function are closer to the actual values. For MLEs, it can be seen that larger m− r and n
bring about more outstanding estimates, where m− r and n are the corresponding sizes of
observed and complete sample. On the whole, Bayesian estimates have an advantage over
the corresponding MLEs.

Furthermore, different intervals have also been constructed, including ACIs on the
basis of Fisher information matrix, parametric bootstrap intervals, and HPD intervals
based on the sample generated from the MH algorithm. Table 2 presents their average
length (AL) and coverage probabilities (CPs). The tabulated values indicate that the AL
of the HPD intervals is the shortest among those obtained from other interval estimates.
Besides, we also find that the ACIs have better performance according to CPs. In general,
bootstrap-t and bootstrap-p intervals behave similarly, and their CPs tend to be below
the 95% confidence level. Table 3 lists the results of point prediction and 95% interval
prediction. We give the prediction results of y3, y7 and y10 in a future sample with size 10.
Furthermore, we discover that the interval length becomes wider as v increases.

5.2. Data Analysis

Dataset 1: First we analyze a real dataset about the breaking stress of carbon fibers (in
Gba) (n = 66) (see Reference [26]). It is listed as follows:

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28,

3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 1.25,

4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88, 2.82, 2.05, 3.65, 3.75, 2.43,

2.95, 2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56, 1.80, 2.53.

In order to analyze these data, we calculate the MLEs for the two parameters, and
then for the Gompertz distribution we conduct a goodness-of-fit test with some practical
guidelines like the Kolmogorov-Smirnov (K-S) statistics, and other criteria, for example,
the Akaike Information Criterion (AIC), as well as the Bayesian Information Criterion (BIC).
For comparison, some other life distributions have also been tested for goodness-of-fit,
including Generalized Exponential (GE), Inverse Weibull and Exponential distributions.
Their PDFs have the following forms, respectively:

(1) The PDF of GE distribution:

fGE(x|α, β) = αβ(1− e−βx)α−1e−βx, 0 < x < +∞, 0 < α, β < +∞;

(2) The PDF of Inverse Weibull distribution:

f IW(x|α, β) = αβx−α−1e−βx−α
, 0 < x < +∞, 0 < α, β < +∞;

(3) The PDF of Exponential distribution:

fE(x|β) = βe−βx, 0 < x < +∞, 0 < β < +∞.
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Table 1. Estimates and MSEs under general progressive censoring schemes.

TK MH

BSEL LINEX BSEL LINEX

n(r, m − r) CS MLE SEL σ = 0.3 σ = 0.7 h = −2 h = 2 SEL σ = 0.3 σ = 0.7 h = −2 h = 2

20(0,11) H1 0.3658 0.3108 0.3273 0.3493 0.3589 0.2613 0.3130 0.3288 0.3500 0.3294 0.2894
(0.3800) (0.004819) (0.04809) (0.1982) (0.03838) (0.009074) (0.0078843) (0.003863) (0.0007096) (0.008166) (0.005391)

1.581 1.180 1.461 1.443 1.329 1.048 1.180 1.300 1.461 1.353 1.104
(0.5589) (0.03178) (0.1174) (0.3282) (0.07918) (0.02627) (0.03099) (0.01518) (0.002789) (0.002789) (0.002788)

20(2,11) H2 0.3642 0.3188 0.3324 0.3505 0.4262 0.2172 0.3236 0.3358 0.3520 0.3328 0.2864
(0.2977) (0.004574) (0.03937) (0.1566) (0.0388) (0.007151) (0.005837) (0.002860) (0.0005253) (0.006824) (0.005360)

1.602 1.170 1.300 1.472 1.412 0.9907 1.157 1.291 1.469 1.372 1.067
(0.6573) (0.02902) (0.1272) (0.3785) (0.07533) (0.02982) (0.03075) (0.01507) (0.002768) (0.002768) (0.002768)

30(2,15) H3 0.3541 0.3231 0.3324 0.3448 0.3455 0.2880 0.3212 0.3311 0.3442 0.3414 0.3013
(0.2357) (0.005198) (0.03374) (0.1259) (0.03671) (0.005695) (0.007422) (0.003637) (0.0006680) (0.007797) (0.004011)

1.479 1.193 1.279 1.393 1.330 1.080 1.186 1.274 1.391 1.311 1.104
(0.3951) (0.03355) (0.09828) (0.2429) (0.05929) (0.03756) (0.03513) (0.01721) (0.003161) (0.003161) (0.003161)

30(5,15) H4 0.3375 0.3189 0.3245 0.3319 0.3846 0.2314 0.3124 0.3199 0.3300 0.3315 0.2863
(0.1270) (0.006982) (0.02480) (0.07280) (0.04221) (0.005941) (0.007436) (0.003644) (0.0006692) (0.009107) (0.006218)

1.408 1.225 1.280 1.353 1.387 1.089 1.216 1.274 1.351 1.316 1.175
(0.2745) (0.04216) (0.08951) (0.1825) (0.05769) (0.06132) (0.03791) (0.01858) (0.003412) (0.003412) (0.003412)

40(3,20) H5 0.3260 0.3225 0.3236 0.3250 0.2999 0.3370 0.3210 0.3225 0.3245 0.3263 0.3030
(0.08369) (0.007040) (0.01979) (0.05045) (0.03917) (0.004908) (0.007466) (0.003658) (0.0006720) (0.01124) (0.008610)

1.382 1.208 1.260 1.330 1.265 1.161 1.206 1.259 1.329 1.319 1.147
(0.2233) (0.03806) (0.07655) (0.1507) (0.05024) (0.05376) (0.03845) (0.01884) (0.003460) (0.003460) (0.003460)

40(5,20) H6 0.3270 0.3239 0.3248 0.3261 0.3360 0.2854 0.3140 0.3180 0.3231 0.3268 0.2942
(0.07880) (0.007134) (0.01915) (0.04781) (0.04173) (0.004668) (0.009779) (0.004792) (0.0008801) (0.007355) (0.007396)

1.350 1.211 1.253 1.308 1.305 1.135 1.233 1.268 1.315 1.292 1.169
(0.1814) (0.03611) (0.06730) (0.1254) (0.04621) (0.06150) (0.04281) (0.02098) (0.003853) (0.004146) (0.004146)

40(0,25) H7 0.3153 0.3096 0.3113 0.3136 0.4376 0.1756 0.3026 0.3064 0.3115 0.3075 0.3023
(0.05276) (0.007417) (0.01595) (0.03409) (0.05085) (0.004505) (0.007637) (0.003742) (0.0006873) (0.007945) (0.006896)

1.341 1.238 1.269 1.310 1.415 1.045 1.240 1.271 1.311 1.326 1.153
(0.1537) (0.03891) (0.06481) (0.1107) (0.03442) (0.06736) (0.04114) (0.02016) (0.003702) (0.003702) (0.003702)

40(3,25) H8 0.3202 0.3189 0.3192 0.3198 0.2732 0.3418 0.3010 0.3067 0.3144 0.3339 0.3050
(0.03832) (0.007207) (0.01349) (0.02594) (0.04694) (0.003930) (0.008018) (0.003929) (0.0007216) (0.01114) (0.006569)

1.299 1.216 1.241 1.274 1.244 1.216 1.215 1.240 1.274 1.306 1.159
(0.1220) (0.03458) (0.05478) (0.08973) (0.03643) (0.06051) (0.03461) (0.01696) (0.003115) (0.003115) (0.003115)

50(2,30) H9 0.3130 0.3123 0.3125 0.3128 0.3868 0.2266 0.3166 0.3155 0.3141 0.3200 0.3026
(0.04112) (0.008172) (0.01486) (0.02804) (0.04575) (0.003879) (0.01427) (0.006994) (0.001285) (0.01180) (0.01074)

1.310 1.234 1.257 1.287 1.364 1.104 1.223 1.249 1.284 1.299 1.182
(0.1154) (0.03679) (0.05546) (0.08691) (0.02824) (0.07838) (0.05966) (0.02923) (0.005369) (0.005369) (0.005369)

50(5,30) H10 0.3079 0.3129 0.3114 0.3094 0.3298 0.3012 0.3120 0.3108 0.3091 0.3127 0.2990
(0.03577) (0.007717) (0.01351) (0.02473) (0.04378) (0.002980) (0.006585) (0.003226) (0.0005926) (0.008346) (0.007515)

1.313 1.238 1.261 1.291 1.280 1.173 1.219 1.247 1.285 1.311 1.194
(0.1103) (0.03658) (0.05427) (0.08375) (0.02626) (0.06414) (0.03330) (0.01631) (0.002997) (0.002997) (0.002997)

Table 2. Interval estimates with confidence level of 95% for α and β.

Asymptotic Bootstrap-p Bootstrap-t HPD

n(r, m − r) CS ALs CPs ALs CPs ALs CPs ALs CPs

20(0, 11) H1 2.060 0.77 1.570 0.85 1.551 0.84 0.4837 0.83
2.458 0.94 2.839 0.79 2.911 0.80 1.388 0.78

20(2, 11) H2 3.153 0.73 2.202 0.88 1.641 0.84 0.4582 0.87
2.907 0.95 3.189 0.82 2.903 0.85 1.186 0.81

30(2,15) H3 3.391 0.78 1.691 0.83 1.979 0.82 0.6035 0.87
2.346 0.94 2.552 0.87 2.664 0.84 1.139 0.84

30(5,15) H4 1.006 0.83 0.9996 0.84 0.9396 0.80 0.4921 0.84
1.753 0.95 1.944 0.81 1.885 0.86 0.8988 0.86

40(3,20) H5 1.001 0.83 0.9348 0.84 0.8464 0.85 0.6066 0.85
1.755 0.95 1.874 0.81 1.740 0.83 0.5879 0.84

40(5,20) H6 0.8690 0.83 0.8693 0.84 0.9051 0.88 0.4502 0.86
1.596 0.95 1.735 0.86 1.770 0.84 0.9282 0.83

40(0,25) H7 0.9111 0.85 0.8762 0.87 0.9412 0.83 0.2881 0.74
1.450 0.93 1.520 0.82 1.488 0.85 0.8589 0.91

40(3,25) H8 0.7631 0.84 0.7806 0.79 0.8429 0.85 0.3531 0.93
1.354 0.93 1.431 0.85 1.465 0.80 0.8237 0.92

50(2,30) H9 0.7248 0.86 0.7310 0.88 0.5984 0.82 0.4184 0.99
1.257 0.95 1.315 0.87 1.283 0.84 0.6921 0.96

50(5,30) H10 0.6995 0.85 0.7021 0.85 0.7254 0.84 0.4984 0.83
1.227 0.94 1.285 0.83 1.308 0.88 0.8684 0.87
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Table 3. Point prediction and 95% prediction interval with W = 10.

n(r, m − r) CS v Point Prediction Interval Prediction

20(0,11) H1 3 0.6797 (7.802 × 10−5, 1.991)
7 1.437 (0.6615, 3.181)
10 2.407 (1.954, 4.649)

20(2,11) H2 3 0.7784 (6.630 × 10−5, 2.222)
7 1.665 (1.007, 3.402)
10 2.717 (2.345, 4.952)

30(2,15) H3 3 0.6801 (4.705 × 10−5, 2.063)
7 1.474 (0.8233, 3.029)
10 2.349 (2.157, 4.415)

30(5,15) H4 3 0.6176 (6.116 × 10−5, 1.881)
7 1.325 (0.9165, 2.787)
10 2.155 (2.011, 3.876)

40(3,20) H5 3 0.6123 (4.757 × 10−5, 1.925)
7 1.369 (0.8673, 2.851)
10 2.094 (2.035, 3.937)

40(5,20) H6 3 0.7092 (4.432 × 10−5, 2.074)
7 1.445 (1.059, 2.968)
10 2.263 (2.221, 4.123)

40(0,25) H7 3 0.6147 (5.143 × 10−5, 1.905)
7 1.318 (0.8493, 2.812)
10 2.089 (2.032, 3.951)

40(3,25) H8 3 0.6341 (5.932 × 10−5, 1.986)
7 1.320 (1.021, 2.838)
10 2.096 (2.106, 3.902)

50(2,30) H9 3 0.6090 (7.831 × 10−5, 1.914)
7 1.325 (1.033, 2.783)
10 2.025 (2.092, 3.867)

50(5,30) H10 3 0.5322 (4.538 × 10−5, 1.859)
7 1.210 (1.021, 2.651)
10 1.918 (2.025, 3.665)

The results of the tests are presented in Table 4 together with the MLEs. Note that
the distribution is more suitable to fit the data when K-S, AIC and BIC values are smaller.
Comparing the values, we can conclude that the Gompertz distribution is more appropriate.

To illustrate the proposed methods, three groups of general progressive censored data
have been randomly drawn from the parent sample as follows:

Scheme 1: (–,–,–,1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.87, 2.03, 2.05, 2.35, 2.41, 2.43,
2.48, 2.50, 2.53, 2.55, 2.56, 2.67, 2.73, 2.97, 3.11, 3.15, 3.22, 4.42), r = 3, m− r = 25, R6 = 11,
R15 = 8, R19 = 14, R26 = 5, Ri = 0, others;

Scheme 2: (–,–,–,–,–,1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 2.03, 2.03, 2.05, 2.12, 2.43, 2.48,
2.55, 2.59, 2.67, 2.73, 2.82, 2.87, 2.88, 2.96, 3.09, 3.11, 3.11, 3.15, 3.19, 3.60, 3.75, 4.42, 4.70),
r = 5, m− r = 30, R6 = 4, R12 = 13, R16 = 10, R30 = 4, Ri = 0, others;

Scheme 3: (–,–,1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.89, 2.03, 2.03, 2.05, 2.12,
2.35, 2.41, 2.48, 2.50, 2.53, 2.55, 2.79, 2.82, 2.93, 2.95, 3.19, 3.22,3.27, 3.31, 3.33, 3.39, 3.60, 3.68,
3.75, 4.20, 4.90), r = 2, m− r = 35, R4 = 7, R17 = 9, R22 = 13, Ri = 0, others.

Table 4. The MLE and goodness-of-fit tests results in Dataset 1.

Distribution α̂ML β̂ML K-S AIC BIC

Gompertz 0.0348201 1.07068 0.11122 180.177 184.556
GE 9.19911 1.00755 0.15472 194.745 199.124

Inverse weibull 1.64805 3.22624 0.23042 246.390 250.769
Exponential 0.362379 0.28615 267.989 270.178
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With the EM algorithm, we calculate the MLEs, and the corresponding Bayesian
estimates are also derived by TK and MH methods. For the sake of no prior information,
all the hyperparameters are set close to zero values. We list the average MLEs and Bayesian
estimates in Tables 5 and 6. In Table 7, the 90% interval estimates are tabulated, which are
ACIs, parametric bootstrap and HPD intervals. Finally in Table 8, point prediction and 95%
interval prediction of y1 and y6 in a future sample with size 6 are presented.

Table 5. Estimates for α and β by EM and TK method in Dataset 1.

BSEL LINEX

CS MLE SEL σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 h = −5 h = −3 h = 5 h = 7

1 0.01946 0.02609 0.02476 0.02344 0.02211 0.02079 0.02346 0.02923 0.006137 0.008611
1.227 1.199 1.205 1.210 1.216 1.221 1.290 1.142 1.734 1.671

2 0.03102 0.03786 0.03649 0.03512 0.03376 0.03239 0.03635 0.04326 0.01559 0.01855
1.091 1.072 1.076 1.079 1.083 1.087 1.126 1.035 1.397 1.358

3 0.02936 0.03555 0.03431 0.03307 0.03183 0.03060 0.03419 0.04052 0.01519 0.01790
1.091 1.074 1.077 1.081 1.084 1.088 1.123 1.039 1.377 1.340

Table 6. Estimates for α and β by MH algorithm in Dataset 1.

BSEL LINEX

CS SEL σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 h = −5 h = −3 h = 5 h = 7

1 0.03833 0.03456 0.03078 0.02701 0.02323 0.02529 0.02813 0.02342 0.02547
1.061 1.095 1.128 1.161 1.194 1.264 1.228 1.145 1.090

2 0.04482 0.04206 0.03930 0.03654 0.03378 0.03903 0.03765 0.03707 0.03750
1.013 1.029 1.044 1.060 1.075 1.115 1.095 1.020 0.9947

3 0.05173 0.04725 0.04278 0.03831 0.03383 0.03625 0.03591 0.03631 0.03775
0.9878 1.008 1.029 1.050 1.071 1.114 1.101 1.022 0.9948

Table 7. Interval estimates with confidence level of 90% for α and β in Dataset 1.

CS Asymptotic Bootstrap-p Bootstrap-t HPD

1 (0.001019, 0.03790) (0.004187, 0.04863) (0.004368, 0.04738) (0.01946, 0.06289)
(0.9007, 1.554) (0.9560, 1.740) (0.9548, 1.743) (0.7067, 1.227)

2 (0.004108, 0.05794) (0.009230, 0.06913) (0.01021, 0.07103) (0.02092, 0.09859)
(0.8435, 1.338) (0.8692, 1.464) (0.8682, 1.439) (0.7160, 1.197)

3 (0.004407, 0.05431) (0.009369, 0.06255) (0.009445, 0.06360) (0.01217, 0.04114)
(0.8534, 1.329) (0.8871, 1.436) (0.8900, 1.434) (0.9851, 1.321)

Table 8. Point prediction and 95% interval prediction with W = 6 in Dataset 1.

CS v Point Prediction Interval Prediction

1 1 1.309 (7.982 × 10−5, 3.763)
6 3.985 (3.898, 5.566)

2 1 1.414 (4.707 × 10−5, 3.619)
6 4.078 (4.004, 5.696)

3 1 1.457 (4.672 × 10−5, 3.666)
6 3.833 (3.817, 6.542)

Dataset 2: Reference [27] presented a dataset on the tumor-free days of 30 rats which
were fed with unsaturated diet which is listed below as

112, 68, 84.109, 153, 143, 60, 70, 98, 164, 63, 63, 77, 91, 91, 66,

70, 77, 63, 66, 66, 94, 101, 105, 108, 112, 115, 126, 161, 178.
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In order to analyze these data, Reference [28] assumed that the number of tumor-free days
obeys the Gompertz distribution. To illustrate the methods discussed, here we also suppose that
the distribution for these data is Gompertz with (α, β). Let m− r = 20, we set up two censor-
ing schemes, respectively s′1 = (0∗4, 5, 0∗7, 2, 0∗7), r = 3 and s′2 = (0∗2, 4, 0∗6, 5, 0∗10), r = 1.
Then we have obtained the sample under s′1:

63, 66, 66, 66, 68, 70, 70, 77, 77, 84, 91, 91, 94, 98, 101, 105, 108, 112, 115, 178,

and the sample under s′2:

63, 63, 63, 66, 66, 66, 68, 70, 70, 77, 77, 84, 91, 91, 94, 101, 109, 112, 115, 178.

In Tables 9 and 10, we calculate the average MLEs, and average Bayesian estimates
are derived by the TK method and the MH algorithm, respectively. The interval estimates
are presented in Table 11, including ACIs, parametric bootstrap and HPD intervals. Finally
Table 12 presents the results of the point prediction and the 95% interval prediction of y1
and y5 with W = 5.

Table 9. Estimates for α and β by EM and TK methods in Dataset 2.

BSEL LINEX

CS MLE SEL σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 h = −3 h = −1 h = 5 h = 7

s′1 0.08360 0.1125 0.1067 0.1009 0.09516 0.08938 0.07764 0.1013 0.05868 0.06071
0.02461 .02383 0.02398 0.02414 0.02430 0.02446 0.02546 0.02360 0.02696 0.02680

s′2 0.07455 0.09943 0.09446 0.08948 0.08450 0.07953 0.06870 0.08973 0.05189 0.05369
0.02526 0.02449 0.02464 0.02480 0.02495 0.02510 0.02612 0.02426 0.02761 0.02745

Table 10. Estimates for α and β by MH algorithm in Dataset 2.

BSEL LINEX

CS SEL σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 h = −3 h = −1 h = 5 h = 7

s′1 0.1171 0.1104 0.1037 0.09701 0.09031 0.09774 0.1044 0.09331 0.09782
0.02331 0.02357 0.02383 0.02409 0.02435 0.02446 0.02401 0.02426 0.02381

s′2 0.1045 0.09850 0.09251 0.08653 0.08054 0.09351 0.09069 0.08440 0.08858
0.02405 0.02429 0.02453 0.02478 0.02502 0.02428 0.02447 0.02477 0.02445

Table 11. Interval estimates with confidence level of 90% for α and β in Dataset 2.

CS Asymptotic Bootstrap-p Bootstrap-t HPD

s′1 (0.001083, 0.1661) (0.02024, 0.2246) (0.01836, 0.2146) (0.007255, 0.1017)
(0.01715, 0.03207) (0.01784, 0.03746) (0.01766, 0.03789) (0.02008, 0.04409)

s′2 (0.0008985, 0.1482) (0.01639, 0.1995) (0.01641, 0.2031) (0.02321, 0.1732)
(0.01781, 0.03270) (0.01810, 0.03904) (0.01820, 0.03875) (0.01878, 0.03419)

Table 12. Point prediction and 95% interval prediction with W = 5 in Dataset 2.

CS v Point Prediction Interval Prediction

s′1 1 41.53805 (6.196145 × 10−5, 79.12604)
5 136.6431 (74.30713, 188.8303)

s′1 1 43.12672 (5.896611 × 10−5, 94.66528)
5 126.0958 (86.76296, 169.7341)

6. Conclusions

In summary, we discuss the classical and Bayes inferences for the Gompertz dis-
tribution using the general progressive censoring. First, the MLEs are acquired by the
Expectation–Maximization algorithm. Then, according to the asymptotic normality of
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MLEs and the principle of missing information, we provide the asymptotic confidence
intervals. Moreover, we derive parametric percentile bootstrap and bootstrap-t intervals.
In Bayesian statistics, three loss functions are considered, which are symmetrical, asym-
metrical and balanced, respectively. Since the posterior expectation is intractable to obtain
in explicit form, the TK method is employed to calculate approximate Bayesian estimates.
Besides, the Metropolis-Hasting algorithm is applied to get the Bayesian estimates and
establish HPD intervals. Furthermore, we derive the prediction estimates of future samples.
Finally, a numerical simulation is executed to appraise the quality of the approaches, and
two real data sets are also analyzed. The results indicate that these approaches have good
performance. In addition, the methods in this article can be extended to other distributions.
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