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Abstract
Offline reinforcement learning (RL) has increas-
ingly become the focus of the artificial intelligent
research due to its wide real-world applications
where the collection of data may be difficult, time-
consuming, or costly. In this paper, we first pro-
pose a two-fold taxonomy for existing offline RL
algorithms from the perspective of exploration
and exploitation tendency. Secondly, we derive
the explicit expression of the upper bound of ex-
trapolation error and explore the correlation be-
tween the performance of different types of algo-
rithms and the distribution of actions under states.
Specifically, we relax the strict assumption on the
sufficiently large amount of state-action tuples.
Accordingly, we provably explain why batch con-
strained Q-learning (BCQ) performs better than
other existing techniques. Thirdly, after identify-
ing the weakness of BCQ on dataset of low mean
episode returns, we propose a modified variant
based on top return selection mechanism, which
is proved to be able to gain the state-of-the-art per-
formance on various datasets. Lastly, we create a
benchmark platform on the Atari domain, entitled
RL easy go (RLEG), at an estimated cost of more
than 0.3 million dollars. We make it open-source
for fair and comprehensive competitions between
offline RL algorithms with complete datasets and
checkpoints being provided.

1. Introduction
1.1. Background and motivations

Reinforcement learning (RL) tries to figure out how intelli-
gent agent ought to take actions under the interaction with
environment such that the accumulative reward could be
maximized, and becomes increasingly popular due to its
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wide real-world applications where data collection may be
difficult, time-consuming, and costly.

In most studies concerned with reinforcement learning (RL)
algorithms (Sutton & Barto, 2018), authors assume that an
agent interacts with an online environment or simulator and
learns from the ”dynamic” date set generated by updated
policy of its own. However, when facing complex real world
problems, it is a totally different case due to the extremely
large data (including states and actions), which limits the
applicability of online methodologies. As a consequence,
offline RL (also known as batch RL in some researches)
algorithms are well and rapidly developed especially in
many practical scenarios where the explorations (actions
of trial and errors) are extremely costly, e.g., robotics, E-
commercials, manufactures. Especially, in E-commercial
case, RL has been widely applied in different and challeng-
ing business scenarios, e.g., coupons delivery (Xiao et al.,
2019), search engine (Hu et al., 2018), recommendations
(Zhao et al., 2018), impression allocation (Cai et al., 2018),
etc. Nonetheless, each update and iteration of algorithm
already deployed online would introduce uncertainties to
production system, which possibly contributes to an asset
loss accident. In addition, performance improvement cannot
be guaranteed since the training process of online algorithms
(e.g. Nature DQN) is time-consuming.

However, we notice that there are no conclusive investiga-
tions and reviews for the effectiveness and applicability of
existing offline RL algorithms, which no doubtedly would
make readers confused when choosing algorithms given
an offline dataset. For example, both batch-constrained Q-
learning (BCQ) and random ensemble mixture (REM) are
claimed to preform better than each other. However, the
offline dataset of their experiments are basically different.
In BCQ experiments, the offline dataset is generated by a
partially trained DDPG (i.e. a medium oracle), while that
of REM is generated by Nature DQN (i.e. a combination of
starter, medium and complete oracle). Consequently, it is of
great necessity to figure out the underlying principles such
that fair comparisons could be made.

To address the above problems, we first propose a taxonomy,
which divides the existed offline RL algorithms into two
categories, exploitation-tentative algorithms (e.g. BCQ, (Fu-
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jimoto et al., 2019b), (Fujimoto et al., 2019a), best action
imitation learning (BAIL) (Chen et al., 2020), bootstrap-
ping error accumulation reduction (BEAR) (Kumar et al.,
2019), safe Policy improvement with baseline bootstrapping
(SPIBB) (Laroche et al., 2019)), and exploration-tentative
algorithms (e.g. ensemble DQN, (Faußer & Schwenker,
2015), (Anschel et al., 2017), Bootstrapped-DQN, (Os-
band et al., 2016), C51, (Bellemare et al., 2017), Quantile
Regression(QR)-DQN (Dabney et al., 2017), REM (Agar-
wal et al., 2020)).

1.2. Literature Review

1.2.1. EXPLOITATION-TENTATIVE ALGORITHMS

In (Fujimoto et al., 2019b), authors claim that most off-
policy algorithms would fail in offline setting due to extrap-
olation errors caused by erroneously estimating the unseen
state-action pairs, and therefore proposed BCQ. In BCQ,
when selecting actions that maximize Q value, they further
eliminate actions which are unlikely to be selected by be-
havioral policy using a generative model. Experiments are
made on offline dataset generated by deep deterministic
policy gradient (DDPG).

The counterpart of (Fujimoto et al., 2019b) on discrete ac-
tion space is (Fujimoto et al., 2019a) where discrete BCQ is
claimed to be the optimal offline RL algorithm. However,
its performance can only achieve to be equivalent to or a
little bit higher than the one of noiseless policy, which is
obtained based on the data set generated by partially trained
DQN, i.e., a quite lower level of performance. Under the
circumstance of limited data in offline setting, BCQ acts
more likely to robust imitation learning algorithm ((Wang
et al., 2017)). In contrast to the investigation in (Agarwal
et al., 2020) where the scale of offline dataset is assumed
to be large enough, the authors conclude that common off-
policy Deep RL algorithms are not well suitable for offline
learning tasks.

Similar to BCQ of continuous version, (Kumar et al., 2019)
also imposes the constraints on the distribution of contin-
uous action space in off-policy Q-learning cases. Authors
identify bootstrapping error as key source of instability in ex-
isting off-policy RL algorithms, the performance of which
could not be elevated merely through scaling up the the
batch.

Different from imposing strict constraints on distributional
similarities in BCQ, the basic mindset of BEAR is to make
trade-off between concentrability coefficient (i.e., the pa-
rameter quantifying the degree to which current states and
actions are out of distribution generated by behavioral pol-
icy) and suboptimality constant (i.e., the parameter quantify-
ing the distance between the current policy and the optimal
one). Compared with BCQ, the visitation distribution gener-

ated by current policies would not be too much similar to
the batch data distribution in BEAR. Thus, BEAR can be
treated as a robust variant of BCQ. However, it is not readily
extended to the cases of discrete action space.

Instead focusing on generating similar state-action visita-
tions, (Chen et al., 2020) tries to crack the problem from a
imitation-learning perspective by selecting ”valuable” state-
action pairs and episodes that contain enough information
for learning a relatively optimal strategy with regards to
higher returns. Supervised learning methodology has been
applied for the derivation of an upper envelope where high
return data lie nearby. Accordingly, the optimal strategy is
obtained directly through imitation.

In (Laroche et al., 2019), authors judge the value of state-
action pairs based on the number of occurrences. For a spec-
ified state-action pair (s, a), it will be accepted for further
imitation learning process (in a greedy way) only if the num-
ber of occurrences N(s, a) is more than a fixed threshold
N∧(s, a) (calculated based on (Ghavamzadeh et al., 2016)
and (Weissman et al., 2003)), otherwise behavioral policy
would serves as a baseline.

Our discussion and review on exploitation-tentative offline
RL algorithms can be concluded in Table. 1.

1.2.2. EXPLORATION-TENTATIVE ALGORITHM

C51 (Bellemare et al., 2017), as a comb form methodology,
extends the Q-value to Q-distribution where value function
is defined as the expectation of value distribution with multi-
ple peaks. Ensemble-DQN (Anschel et al., 2017) is a simple
extension of DQN that approximates the Q-values via an
ensemble of parameterized Q-functions, i.e., multiple heads.
It should be noted that each head independently estimates
the Q-value with huber loss. The final loss is derived by
simply taking average of all heads.

Bootstrapped-DQN (Osband et al., 2016) uses one of the
Q-value estimates in each episode to improve the depth of
exploration. The authors claim that bootstrapped neural
networks are able to produce reasonable posterior estimates
for regression. The basic mindset of REM (Agarwal et al.,
2020) borrows from dropout mechanism. For five different
outputs (Q-networks generated by a shared neural network),
authors randomly assign the weights with sampling perfor-
mance of the algorithm being lifted. In order to underscore
the importance of randomness, the authors also make com-
parisons between their random mechanism and the average
one, which is proved to be less optimal.

Among most of off-policy algorithms, QR-DQN is prov-
ably to be the best rather still underperform the policy with
noise (Dabney et al., 2017). Again, it should be noted that
although QR-DQN is not exclusively developed for offline
setting, it is still able to achieve high performance given
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Table 1. Comparison of exploitation-tentative offline RL algorithms
C-BCQ BAIL D-BCQ BEAR SPIBB

Scenario Continuous action
space

Continuous action
space

Discrete action
space

Continuous
action space

Countable
(s, a) pairs

Constraints on
(s,a) quantity

N/A YES YES N/A YES

Main idea Maximizing the
similarities be-
tween behavioral
and trained policy

Imitate (s,a) pairs
with high return

Extension of C-
BCQ to discrete
action space

Relax the
constraints on
distributional
similarities

Safely im-
proved based
on behavioral
policy

Pros SOTA among
exploitation-
tentative algo-
rithms

Same as C-BCQ Better per-
formance on
random/less
Oracle dataset

Readily imple-
ment

Safely
bounded
performance

Cons Rely on Oracle
dataset

Same as C-BCQ Suboptimal
performance

Hard to count
N(s,a)

sufficiently large and complete data set.

Our discussion and review on exploration-tentative offline
RL algorithms can be concluded in Table. 2.

Noticed that in all imitation-based offline RL algorithms,
a strong assumption of the amount of (s, a) pairs, i.e.,
N(s, a) > N∧(s, a), ∀(s, a) ∈ S × A, is a necessity. In
fact the assumption is unreal in certain practical scenarios
especially video games due to the high cost as we have
discussed before.

1.3. Main contribution

From the above literature reviews, we notice that existing
offline RL techniques have not been well concluded, and the
applicability of them under various datasets has not been
clearly stated either. Thus, readers might be confused about
how to select the most appropriate algorithm when facing a
brand new dataset generated by different behavioral polices
or even unknown ones. In practical scenarios, trial and
error is often costly and time consuming. Besides, the argue
between self-claimed SOTA algorithms has not been well
resolved due to the totally different behavior policies. To
address all the mentioned concerns, we list our four-fold
contributions as:

(1) We propose a taxonomy for existing offline RL algo-
rithms from the perspective of exploration and exploitation
tendency.

(2) Based on the derivation of upper bounded extrapolation
error, we provably investigate the applicability of both types
of algorithms on different datasets (in terms of different
action distributions under states) and explain why BCQ
performs better than existing techniques.

(3) We identify the limitation of BCQ, as its weak perfor-
mance on datasets with low mean episode return. To bridge
the gap, we propose a modified version by introducing a

return-based data selection mechanism, which reaches better
performance on various datasets.

(4) A benchmark of Atari domain is open sourced and most
existing offline RL algorithms are included. We spend more
than 0.3 million dollars on the experiments and collect all
intermediate results incuding various datasets and the inter-
mediate model checkpoints. The benchmark could be used
for fair and comprehensive competitions between existing
and future offline RL algorithms.

2. Extrapolation error-based applicability
analysis and comparisons

In this section, we would analyze the applicability of both
exploration and exploitation-tentative algorithms on differ-
ent datasets from a perspective of extrapolation error.

Due to the inability of interacting with the environment,
both types of offline RL algorithms we conclude before
have to be suffered from the failure of learning as well as
online ones. More specifically, when testing the offline
trained model in real world, the mismatch between offline
dataset and practical state-action visitations of the current
policy would give rise to the extrapolation error, which
introduces the performance gap between offline and online
RL algorithms.

Besides, intuitively, due to he vital role that behavioral
policy plays in offline RL training, the discrepancies of
various offline datasets would contribute to the different
extrapolation errors and therefore distinct performance of
offline RL algorithms. The corresponding argue with respect
to the state-of-the-art performance comes up referring to
the one between above-mentioned REM and BCQ. How to
provably explain and make a fair comparison is undoubtedly
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Table 2. Comparison of exploration-tentative off-policy RL algorithms
Ensemble
DQN

Bootstrapped DQN C51 QR-DQN REM

Main idea Taking aver-
age of single
heads

Randomly select opti-
mal strategy of higher
possibility

Extend Q-value to Q-
distribution

Same as C51 Convex combination
of single heads

Pros Easy to com-
pute

Efficient training time Innovated idea Theoretical
proof based

SOTA Offline RL
methodology under
Atari environment

Cons Training pro-
cess is not sta-
ble

N/A No theoretical sup-
port

N/A No theoretical sup-
port

a challenging task, which would be resolved in this section.

2.1. Can extrapolation error be completely eliminated?

In existing exploitation-tentative algorithms, researchers try
to eliminate the extrapolation error by placing strict con-
straints on the distribution of (state-action) tuples with the
help of generative model (e.g. (Fujimoto et al., 2019b),
(Fujimoto et al., 2019a), (Kumar et al., 2019)), simply dis-
carding the tuples of insufficient amount of occurrences (e.g.
(Chen et al., 2020)) or replacing these tuples with behav-
ioral policy as a safe baseline (e.g. (Laroche et al., 2019)).
However, as we conclude in Table 1, a strong assumption
on the sufficient visitations of selected tuples is necessary.

For exploration-tentative algorithms, extrapolation error ex-
ists as well but claims to completely vanish by assuming a
big enough offline dataset with adequate diversity (e.g. 50
million tuples per game from Nature DQN (Agarwal et al.,
2020)).

However, we notice that the assumptions concerned with
the size of tuples in the offline dataset are too strong to be
satisfied in practical scenarios (especially for some costly
application such as E-commercial, robotics, etc). In addition,
for large continuous state or action space, it is impossible to
accurately count the amount of occurrences for each tuple.

Thus, in the following context, we start with deriving an ex-
plicit upper bound on the extrapolation error, and investigate
how it is affected by behavioral policy and corresponding
offline dataset.

2.2. Preliminaries

We first introduce following useful lemmas and necessary
assumptions for the ensuing proofs.

Lemma 2.1. (Weissman et al., 2003) For ∀(s, a) ∈ S ×A,
Q(s, a) ≤ Rmax

1−γ

Lemma 2.2. (Ghavamzadeh et al., 2016) For ∀(s, a) ∈
S×A, ||p1(.|s, a)−p2(.|s, a)||1 ≤ e(s, a) where, e(s, a) =√

2
N(s,a) log

|S||A|2|S|
δ

Assumption 2.1. In offline dataset to be fed to training

process, the number of all state-action pair occurrences
satisfyN(s) =

∑
a∈AN(s, a) = N , ∀s ∈ S , i.e., although

for each state s ∈ S, the distribution of action a ∈ A may
vary, the total amount of occurrence of each state would be
the same.

Compared with the strong assumption that N(s, a) <
N∧(s, a), ∀(s, a) ∈ S ×A made in most previous research,
the assumption 2.1 is much relaxed and therefore more
realistic to be satisfied in practical scenarios, which also
indicates that our work is not a trivial extension of previous
work.

Assumption 2.2. The agent is rational (i.e., aiming for a
relatively better result or higher total rewards following the
rules of environment) such that pure random policy (i.e., un-
der each state, choosing each action with same probability)
is always the worst one (i.e., the mean episode return is
the lowest) among all candidate policies, while the policies
of biased action distribution under each state would result
in a better achievement. In addition, the more biased the
distribution is, the higher reward is achieved.

It is noted that we use randomness for capturing the degree
of distributional bias in the following context, which would
be further discussed in the ensuing sections. Assumption
2.2 reveals our insights about some practical scenarios (e.g.,
video games, E-commercial, robotics, etc) for applying RL-
based methodologies, which reflects an underlying mindset
that Oracle policy are mostly deterministic. We admit that
there might be cases against this mind as shown in the
following four-quadrant figure, through which we try to
explain Assumption 2.2 from a perspective of the correlation
between randomness and returns.

In Fig. 1, we take all possible cases into consideration.
The 2nd and 4th quadrants conform the Assumption 2.2.
Nonetheless, some cases might fall in 3rd quadrant due to
some inaccurate description of fundamental elements, e.g.,
dynamics, rewards. Game players may misunderstand the
goal and take completely opposite actions to optimal ones
such that worst return is achieved. These special cases are
not included in this paper and would be discussed separately.
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Figure 1. Correlation between randomness and returns

Assumption 2.3. If a dataset is generated by a given policy
πb, then for ∀s ∈ S, N(s, a) = N(s)πb(a|s)

In the following context, for notational convenience, we
omit the arguments of N(s), and simply denote it as N .

2.3. How does dataset affect the extrapolation error of
exploration-tentative algorithms?

Proposition 1. The extrapolation error εs,a is upper
bounded by

εs,a = (2log(
|S||A|2|S|

δ
))1/2

Rmax
(1− γ)

N−1/2

[(πb(a|s))−1/2

+ γ
∑
s′

p1(s
′|s, a)

∑
a′

π(a′|s′)(πb(a′|s′))−1/2

+ ...+ γ(n)
∑
s′

p1(s
′|s, a)

∑
a′

π(a′|s′)
∑
s′′

...∑
s(n)

p1(s
(n)|s(n−1), a(n−1))

∑
a(n)

π(a(n)|s(n))(πb(a
n|sn))−1/2 + ...]

(1)

Inspired by the results of Proposition 1, we define the ran-
domness of dataset as follow.

Definition 1. The randomness of dataset is defined as

q =
1

|S|
∑
s∈S

∑
i∈A

1√
πb(ai|s)

(2)

According to Definition 1, a pure random behavior policy
having a highest value of q indicates the highest randomness
of the corresponding datasets, i.e., uniform distribution of
actions under each state.

Assumption 2.4. The distribution of π is uniform, i.e., the
possibilities of any type of trainer or player are same. Intu-
itively, it is also noted that the distribution of π is indepen-
dent of the distribution of πb.

Now, we are ready to propose the following theorem.

Theorem 1. Given the distribution of π(a|s) follows as-
sumption 2.4, the general term of extrapolation error, equa-
tion (3), reaches its minimum when πb(a|s) is pure random.
Also, the more even the behavior policy πb(a|s) under each
state is, the less value it would be.

∑
a

π(a|s) Rmax
(1− γ)

N−1/2(πb(a|s))−1/2,∀s ∈ S (3)

Equivalently, the optimal behavioral policy is

π∗(a|s) = 1
|A| = argmin

πb∈Π
Eπ[

∑
a π(a|s)(πb(a|s))−

1
2 ],

∀(a, s) ∈ A× S

According to Theorem 1, the performance of exploration-
tentative algorithms would best when offline dataset is of the
highest randomness. Besides, the returns would decrease
along with the randomness descent of dataset.

2.4. How does dataset affect the extrapolation error of
exploitation-tentative algorithms?

In this section, we continue to investigate influence of
dataset on exploitation-tentative algorithms. As we have dis-
cussed in Section 1, most exploitation-tentative algorithms
fall into two underlying mindsets represented by BCQ and
BAIL respectively, i.e., generating similar state-action dis-
tribution, and selecting targeted state-action tuples. Thus,
the following investigation is two-fold.

2.4.1. BCQ-LIKE ALGORITHMS

For BCQ-like algorithms, actions chosen for offline opti-
mization must satisfy the constraintG(a|s) > τ , whereG is
the generative model for selecting batch-constrained actions
and quantitatively depends on the number of occurrences of
tuple (s, a) in dataset. Given Assumption 2.1 being satisfied,
we have N(s, a) > Nτ , where (s, a) are batch-constrained
tuples.

Thus, we derive the upper bounded extrapolation error for
BCQ-like algorithms, based on which we further give the
sufficient condition for ensuring a lower upper boundary
compared with exploration-tentative methods through Theo-
rem 2.

Proposition 2. The extrapolation error for BCQ, εs,a, is
upper bounded by

εs,a = (2log(
|S||A|2|S|

δ
))1/2

Rmax
(1− γ)

(Nτ)
−1/2

[1 + γ + ...+ γ(n) + ...]

(4)
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Theorem 2. When τ > 1
|A| , The upper bound of extrap-

olation error for BCQ-like algorithms is strictly less than
exploration-tentative methods.

2.4.2. BAIL-LIKE ALGORITHMS

Instead of choosing (S,A) pairs with N(S,A) > Nτ , the
underlying mechanism of BAIL is to select tuples with top
returns given under each state for offline training. The
data selection scheme can be either percentile-based or
difference-based. As claimed by the author, the first one
performs better, and thus is considered in this paper. For
notational convenience and easier understanding, the per-
centile is still notated by τ for BAIL-like algorithms. The
dataset after percentile-based selection is denoted as D̂, with
the corresponding MDP M̂ . The number of occurrence of
tuple (s, a) is denoted as N̂(S,A).

Intuitively, the distribution of N̂(s, a), ∀(s, a) ∈ S × A
would be of greater variance and can barely be lower
bounded by a specified value, such as Nτ in BCQ-like case,
due to the selection merely based on episode return. Thus,
it seems quite challenged to derive an explicit expression as
same as equation (15).

Assumption 2.5. The expectation of each N̂(s, a) is
N(s, a)τ .

However, given assumption 2.5, we are able to derive the
upper bounded extrapolation error and its corresponding
minimum for BAIL-like algorithms.

Proposition 3. The expectation of extrapolation error for
BAIL-like algorithms, εs,a, is upper bounded by

E(εs,a) = (2log(
|S||A|2|S|

δ
))1/2

Rmax
(1− γ)

(Nτ)−1/2

[(πb(a|s)−1/2
+ γ

∑
s′

p1(s
′|s, a)

∑
a′

πb(a
′|s′)1/2

+ ...+ γ(n)
∑
s′

p1(s
′|s, a)

∑
a′

πb(a
′|s′)

∑
s′′

...∑
s(n)

p1(s
(n)|s(n−1), a(n−1))

∑
a(n)

πb(a
n|sn)1/2 + ...]

(5)

Proposition 4. The general term of extrapolation error,
equation (5), reaches its minimum when πb(a|s) is uniform,
i.e., a pure random policy. Also, the more even the action
distribution under each state, πb(a|s), is, the less value it
would be.

Specifically, the corresponding optimal value of extrapola-

tion error would be

E∗(εs,a) = (2log(
|S||A|2|S|

δ
))1/2

Rmax
(1− γ)

(Nτ)
−1/2

[|A|−1/2 + γ|A|1/2 + ...+ γ(n)|A|1/2 + ...]

(6)

On the other hand, when πb is deterministic, the optimal
value of extrapolation error is

E∗(εs,a) = (2log(
|S||A|2|S|

δ
))1/2

Rmax
(1− γ)

(Nτ)
−1/2

[1 + γ + ...+ γ(n) + ...]

(7)

2.5. Comparisons among algorithms

Compared with exploration-tentative algorithms,
exploitation-tentative algorithms are most likely to
have less extrapolation error. As for exploitation-tentative
algorithms, from Proposition 4, we notice that the best case
of BAIL-like algorithm is the same as the general case of
BCQ-like algorithms. From the perspective of extrapolation
error, BCQ-like algorithms provably performs better than
the others.

3. Top Return Batch Constrained Q-learning
(TR-BCQ)

According to the results of Section 2, exploitation-tentative
algorithms would achieves less extrapolation error. How-
ever, less extrapolation error does not equivalent to be better
overall performance (i.e., estimate Q-value ± extrapola-
tion error). The redestimated Q-value is critical as well.
Compared with BAIL-like algorithms, BCQ-like algorithms
adopt extra off-policy optimization techniques for a higher
estimated Q-value, and thus is expected to have a better
overall performance. Besides, for the exploitation-tentative
algorithms, a good “teacher” is of great importance due to
their imitation-based essentials. Thus, we explore the weak-
ness of BCQ as it would suffer from the dataset generated
by the behavioral policy of low mean episode returns. To
fix this shortcoming, we propose a variant of BCQ, named
top return batch constrained Q-learning (TR-BCQ). For
easy understanding and avoiding confusions, we will use
“low-quality dataset” or directly “low dataset” for the same
meaning of “dataset generated by the behavioral policy of
low mean episode returns” in the following context.

The proposed TR-BCQ is basically consisted of two phases:

Phase 1 – Top return data selection: In this phase, we
select tuples with high episode return based on a percentile
parameter, ζ;
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Phase 2 – Tuple visitation constrained optimization: In
this phase, we proceed off-policy optimization on a visita-
tion constrained batch of tuples.

Please refer to the pseudocode in the appendix.

We further explain advantages of our algorithm over original
BCQ not merely on low-quality dataset, starting with the
investigation of extrapolation errors as follow

|QπBCQ

M −QπBCQ

M∗ | ≤ ε1, |Q
πTRCQ

M̂
−QπTRCQ

M∗ | ≤ ε2 (8)

where M indicates the underlying MDP of original offline
dataset, M∗ is the MDP in the realistic world, M̂ represents
the MDP of top-return selected offline dataset.
Proposition 5. Using same off-policy optimization tech-
niques, the relationship between the upper bound of extrap-
olation error generated on M̂ and M is as follows:

E(ε̂2) = E(ε1)ζ−1/2 (9)

Additionally, since imitating the selected tuples with higher
episode returns, the policy derived by TR-BCQ would
achieve higher estimated Q-value compared with the origi-
nal BCQ, i.e., QπBCQ

M <Q
πTRCQ

M̂
.

Nevertheless, due to the uncertainty introduced by ε2, TR-
BCQ might not gain a better performance. Meanwhile, we
notice that the extrapolation error rather changes slightly
along with ζ, e.g., E(ε̂2) = 1.29E(ε1) when ζ = 60%, i.e.,
tuples of top 40% episode returns are selected. It indicates
that we are able to achieve higher overall performance (i.e.,
estimate Q-value ± extrapolation error) by increasing ex-
trapolation error a little bit in return for higher estimate
Q-value.

It should be noted that although the name of proposed algo-
rithm contains “BCQ”, BCQ is not the only option for Phase
2. More advanced extrapolation error-insensitive techniques
are applicable for further improvement, yet which is out of
the scope of this paper.

Figure 2. Datasets of Tri-level Quality
4. Experiments on Atari 2600 Games
4.1. Experiment setup
We generate the dataset through an online DQN agent from
scratch in the Atari 2600 Games. Considering better un-
derstanding of readers and space limitation, we list experi-
mental results towards ten randomly selected games in this
section. More results can refer to Appendix.

4.2. The benchmark platform: RL easy go

Fig. 2 indicates the iterations of different episode returns
during the whole training process, and how we divide the
dataset into three subsets, named “low”, “medium”, and
“high” according to their mean episode returns. We named
our benchmark platform RL easy go (RLEG), which enables
a lighter and faster evaluation of off line RL experiments.
Given Assumption 2.2 being satisfied, we are able to derive
an equivalence between “low return” with “high random-
ness”

The reasons why we do not directly quantify randomness
is that since considering continuous state space, we are
exposed with uncountable states. Thus, the results of perfor-
mance would strongly rely on the granularity of discretized
states. Although the more fine granularity is, the more accu-
rate the result would be, and corresponding computational
overhead would be undesirable.

4.3. Performance of existing offline RL algorithms on
various datasets

In this section, we will show the experimental results of
exploration and exploitation-tentative algorithms on “low”,
“medium” and “high” quality datasets.

In Fig. 3, we can clearly distinguish the monotonically trend
of performance, which are deceasing and increasing for
exploration-tentative and exploitation-tentative algorithms
respectively, along with dataset randomness (represented
in the form of return). Refer to the statistical compari-
son results in table 3 for a more clear insight. We no-
tice that exploration-tentative algorithms perform better
on “low” dataset, i.e., high randomness and low-quality
dataset, which conforms to the analysis in section 2.3. Be-
sides, exploitation-tentative algorithms outperform on “high”
dataset than exploration-tentative candidates. On “medium”
datasets, exploitation-tentative algorithms behaves best on
half games. Based on the above results, we would recom-
mend giving top priority to exploitation-tentative algorithms
on high-quality dataset, while trying both types of algo-
rithms on low-quality dataset. Admittedly, defining the
quality of an offline dataset is empirical, our suggestion is to
take both the mean episode return and the action distribution
into accounts.

4.4. Comparison between TR-BCQ with the best of
existing algorithms

Fig. 4 shows the performance of TR-BCQ under different
percentages of data selection in Phase 1, which is one of the
most critical hyperparameters and can be set in some heuris-
tic ways. As shown in Fig. 4, it is not always better to train
with as much data as possible. By choosing an appropriate
ζ, the proposed algorithm is able to achieve higher online
performance. From Fig. 4, TR-BCQ outperforms original
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Table 3. Comparison on dataset quality
Algorithms

BCQ BAIL DQN MultiHeadDQN Quantile REM
Trend of Performance Increase 41.667% 43.333% 15.000% 6.667% 5.000% 6.667%
with Dataset Quality Decrease 21.667% 21.667% 56.667% 66.667% 48.333% 53.333%

Num of Best Scores
Low 11.667% 16.667% 0.000% 10.000% 55.000% 6.667%
Medium 25.000% 25.000% 0.000% 5.000% 41.667% 3.333%
High 33.667% 20.000% 1.667% 8.333% 30.000% 3.333%

(a) Alien (b) Amidar (c) Atlantis (d) Boxing (e) Kangaroo

(f) Krull (g) Phoenix (h) Pong (i) Qbert (j) StarGunner

Figure 3. Comparison for Different Dataset Qualities. The mean score of top 20 iterations are used for fair comparison. The boxplot
indicates scenarios of 5 different random seeds.

(a) Alien (b) Amidar (c) Atlantis (d) Boxing (e) Kangaroo

(f) Krull (g) Phoenix (h) Pong (i) Qbert (j) StarGunner

Figure 4. Performance of TR-BCQ and SOTA algorithms on datasets of different qualities In low, meidum, and high dataset, TR-
BCQ performs best on 70%, 50%, and 30% of the games respectively.

BCQ a lot in “low” dataset, while less in “high” dataset.
This implies that for dataset with lower quality, TR-BCQ
is an indeed method with controllable extrapolation error,
even if the number of data sets is greatly reduced. On the
other hand, with the mean episode return increasing along
with the dataset quality, the extrapolation error is of greater
importance in dataset with higher quality.

Overall, we recommend TR-BCQ for “low” and “medium”
dataset and any exploitation-tentative or simply imitation-
based algorithms for “high” dataset.

5. Conclusion and Future Work

In this paper, we start with proposing a two-fold taxonomy
for existing offline RL methodologies, i.e., exploration and
exploitation-tentative algorithms. Then, with the help of
derived upper bound of extrapolation error, we explore and
prove the dependence of algorithm performance on dataset,
especially for the action distribution for each state. From
such a dataset perspective, although BCQ is provably better
than the other, we identify its weak performance on dataset
of low mean episode returns. Accordingly, we propose a
modified BCQ based on a top return-based data selection
mechanism. Our experimental results indicates that our algo-
rithm could reach the best performance on various datasets.
At last, a benchmark platform is created on the Atari domain,
where we further open-source all datasets and checkpoints
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as a fair and comprehensive environment for competition
between offline RL techniques.

Along with our top return-based data selection, some tuples
are discarded and therefore is not used for constructing
the underlying MDP. How to make full use of these data
would be worth to investigated. Besides, for generalizing
the proposed algorithms, we will extend it to the case of
continuous state space and action space.
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A. Introduction of open-source benchmark: RL easy go (RLEG)
A.1. Workflow

The open sourced RLEG is a benchmark platform for offline reinforcement learning reproduction and evaluation, which
consists of the following parts:

• Codes: We integrate all the source code of existing SOTA algorithms including BCQ, REM, Quantile, DQN, MultiHead-
DQN, and BAIL into two frameworks based on our two-fold taxonomy (i.e., exploration- and exploitation-tentative).
Besides, we open-source the source code of TR-BCQ under exploitation-tentative framework. We appreciate the
open-source code of REM, BCQ, and BAIL. We build our code based on their work.

• Datasets: (i) All the checkpoints generated during the experiments; (ii) The tuples of the form (s, a, r, s′, a′, r′, t) for low,
medium, high-quality dataset. (iii) The mean episode return logs for data generation process and offline reinforcement
learning process on the aforementioned algorithms. Researchers can check their own off line reinforcement learning
algorithms on various dataset directly without running the costly data generation process.

B. Missing proofs
B.1. Proof of Proposition 1

First, we express the extrapolation error as:

εs,a = QMDP1
π (s, a)−QMDP2

π (s, a)

=
∑
s′

[(p1(s
′|s, a)− p2(s

′|s, a)]r(s, a, s′) +
∑
s′

p1(s
′|s, a)γ

∑
a′

π(a′|s′)(Q1(s
′, a′)−Q2(s

′, a′))+∑
s′

(p1(s
′|s, a)− p2(s

′|s, a))γ
∑
a′

π(a′|s′)Q2(s
′, a′)

≤ Rmax
∑
s′

[(p1(s
′|s, a)− p2(s

′|s, a)] +
∑
s′

p1(s
′|s, a)γ

∑
a′

π(a′|s′)(Q1(s
′, a′)−Q2(s

′, a′))+

∑
s′

(p1(s
′|s, a)− p2(s

′|s, a))γ
∑
a′

π(a′|s′) Rmax
(1− γ)

=
Rmax
(1− γ)

e(s, a) + γ
∑
s′

p1(s
′|s, a)

∑
a′

π(a′|s′) Rmax
(1− γ)

e(s′, a′) + ...+

γ(n)
∑
s′

p1(s
′|s, a)

∑
a′

π(a′|s′)
∑
s′′

...
∑
s(n)

p1(s
(n)|s(n−1), a(n−1))

∑
a(n)

π(a(n)|s(n))
Rmax
(1− γ)

e(s(n), a(n))+

...

(10)

Given Lemma 2.2 and Assumption 2.1 to be satisfied, equation (1) could be readily derived.

B.2. Proof of Theorem 1

The main problem we focus now turns to be the following expression:

∑
a

π(a|s) Rmax
(1− γ)

N−1/2(πb(a|s))−1/2,∀s ∈ S

We need to prove that no matter what distribution π(a|s) is, the expression reaches its minimum when πb(a|s) is uniform.
Also, the more even the distribution πb(a|s) is, the less expression value would be.

The result for πb when |A| = 2 will be given firstly. Then the generalized proof will be presented.
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Case: n = 2
min E[

∑
a∈A

pi√
qi
]

s.t. q1 + q2 = 1

(11)

To solve this problem,

q = argmin
1

(n− 1)!
|n=2

∫ 1

0

p1√
q1

+
1− p1√

q2
dp1

= argmin
1

2
√
q1

+
1

2
√
q2

s.t. q1 + q2 = 1

(12)

The solution is q1 = q2 = 1
2 for Equation 12.

Consider the most general case as follow:

E(π|πb) =
1

(n− 1)!

∫ 1

0

dp1

∫ 1−p1

0

dp2...

∫ 1−p1−p2−...−pn−2

0

n−1∑
i=1

pi√
qi

+
pn√
qn
dpn−1

=
1

(n− 1)!

∫ 1

0

dp1

∫ 1−p1

0

dp2...

∫ 1−p1−p2−...−pn−2

0

n−1∑
i=1

pi√
qi

+
1− p1 − p2 − ...− pn−1√

qn
dpn−1

(13)

We rewrite the above equation as

E(π|πb) =
n∑
i=1

φ(pi)
1
√
qi

(14)

where φ(pi) = 1
(n−1)!

∫ 1

0
dp1

∫ 1−p1
0

dp2 · · ·
∫ 1−p1−p2−...−pn−2

0
pidpn−1.

We notice that φ(pi) =
∫ 1

0
dp1

∫ 1−p1
0

· · ·
∫ 1−p1−p2−···−pi−1

0
(n−i)!

(1−p1−p2−···−pi−1)n−i dpi, and for each i ∈ [1, n], φ(pi) are
same. This fact is also intuitively understandable, since all pi, i = 1, 2, · · · , n are independent and identically distributed
(i.i.d), we have φ(p1) = φ(p2) = · · · = φ(pn) = E(pi).

B.3. Proof of Proposition 2

In order to derive the upper bound of extrapolation error for BCQ, εs,a, we adopt zoom method using the result of Proposition
1 and N(s, a)>Nτ as

εs,a = (
Rmax
(1− γ)

e(s, a) + γ
∑
s′

p1(s
′|s, a)

∑
a′

π(a′|s′) Rmax
(1− γ)

e(s′, a′) + ...+

γ(n)
∑
s′

p1(s
′|s, a)

∑
a′

π(a′|s′)
∑
s′′

...
∑
s(n)

p1(s
(n)|s(n−1), a(n−1))

∑
a(n)

π(a(n)|s(n))
Rmax
(1− γ)

e(s(n), a(n))+

...)|N(s,a)>Nτ

≤ (2log(
|S||A|2|S|

δ
))1/2[

Rmax
(1− γ)

(Nτ)
−1/2

+ γ
∑
s′

p1(s
′|s, a)

∑
a′

π(a′|s′) Rmax
(1− γ)

(Nτ)
−1/2

+ ...+

γ(n)
∑
s′

p1(s
′|s, a)

∑
a′

π(a′|s′)
∑
s′′

...
∑
s(n)

p1(s
(n)|s(n−1), a(n−1))

∑
a(n)

π(a(n)|s(n))
Rmax
(1− γ)

(Nτ)
−1/2

+ ...]

= (2log(
|S||A|2|S|

δ
))1/2

Rmax
(1− γ)

[(Nτ)
−1/2

+ γ(Nτ)
−1/2

+ ...+ γ(n)(Nτ)
−1/2

+ ...]

= (2log(
|S||A|2|S|

δ
))1/2

Rmax
(1− γ)

(Nτ)
−1/2

[1 + γ + ...+ γ(n) + ...]

(15)
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B.4. Proof of Theorem 2

Given τ > 1
|A| , the extrapolation bound for BCQ satisfies that

εs,a ≤ (2log(
|S||A|2|S|

δ
))1/2

Rmax
(1− γ)

(
N

|A|
)
−1/2

[1 + γ + ...+ γ(n) + ...] (16)

From Theorem 1, the minimum bound of exploration-tentative algorithm is achieved when πb is uniform, i.e., π(·|s) = 1
|A| .

Thus, the minimal extrapolation bound for exploration-tentative algorithm is

εs,a = (2log(
|S||A|2|S|

δ
))1/2

Rmax
(1− γ)

N−1/2

[(
1

|A|
)−1/2 + γ

∑
s′

p1(s
′|s, a)

∑
a′

π(a′|s′)( 1

|A|
)−1/2 + ...+ γ(n)

∑
s′

p1(s
′|s, a)

∑
a′

π(a′|s′)
∑
s′′

...

∑
s(n)

p1(s
(n)|s(n−1), a(n−1))

∑
a(n)

π(a(n)|s(n))(
1

|A|
)−1/2 + ...]

(17)

Note that not all terms of equation 17 exists in equation 16, because only (s, a) pairs that satisfy N(s, a) > 1
|A| are selected

in BCQ. Therefore, Theorem 2 holds.

B.5. Proof of Proposition 5

In the first phase, because we process the data selection, for any (s, a) pair under the batch constraint, N̂(s, a) ≤ N(s, a).
Probabilistically, E(N̂(s, a)) = E(N(s, a))ζ

Thus, for every term in equation (15), the extrapolation error would increase after data selection, the expectation of which
turns out to be

E(ε̂s,a) = E(εs,a)ζ−1/2 (18)

C. Pseudocode of TR-BCQ
Please refer Algorithm 1.

D. Additional Experiments
D.1. Data Generation

Please refer Fig. 5.

D.2. Learning curves of all 60 Atari 2600 games on poor dataset

Please refer Fig. 6 and Fig. 7.

D.3. Learning curves of all 60 Atari 2600 games on medium dataset

Please refer Fig. 8 and Fig. 9.

D.4. Learning curves of all 60 Atari 2600 games on high dataset

Please refer Fig. 10 and Fig. 11.

D.5. Comparison on different datasets

Please refer Fig. 12 - Fig. 19
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Algorithm 1 TR-BCQ Algorithm
Input: Offline dataset tuples (S,A,S ′,R, T ,G) , data selection percentile ζ, and number of iterations T ;
Output: Policy π;
Initialization: Q-network Qθ, generative model Gω and target network Qθ′ .

Phase 1: Top Return-based Data selection

a) Sort the tuples by G.
b) Select top (1− ζ) percentage of tuples.

Phase 2: tuple visitation constrained Q-learning

For t = 1 to T {
a) Selecting the max valued action with Qθ

a
′
= argmax
a′ |Gω(a′ |s′ )/maxâGω(â|s′ )>τ

Qθ(s
′
, a
′
)

b) Evaluating with Qθ′

θ ← argmin
θ

∑
{s,a,r,s′}∈{S,A,R,S′}

L(θ)

where L(θ) = lK(r + γQθ′ (s
′
, a
′
)−Qθ(s, a))

c) Behavioral cloning with Gω

ω ← argmin
ω

−
∑

(s,a)∈τ−constrained dataset

logGω(s|a)

}
d) Update target network Qθ′ with θ

′ ← θ
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Figure 5. Data Generation (by DQN)



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

Figure 6. Learning curves of all 60 Atari 2600 games on poor dataset
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Figure 7. Learning curves of all 60 Atari 2600 games on poor dataset
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Figure 8. Learning curves of all 60 Atari 2600 games on medium dataset
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Figure 9. Learning curves of all 60 Atari 2600 games on medium dataset
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Figure 10. Learning curves of all 60 Atari 2600 games on high dataset
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Figure 11. Learning curves of all 60 Atari 2600 games on high dataset
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Figure 12. Comparison between baselines on different datasets from Game Alien to Game CrazyClimber



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

Figure 13. Comparison between baselines on different datasets from Game DemonAttack to Game MsPacman
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Figure 14. Comparison between baselines on different datasets from Game NameThisGame to Game Tutankham
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Figure 15. Comparison between baselines on different datasets from Game UpNDown to Game Zaxxon
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Figure 16. Comparison between TR-BCQ and the best baselines on different datasets from Game Alien to Game CrazyClimber
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Figure 17. Comparison between TR-BCQ and the best baselines on different datasets from Game DemonAttack to Game MsPac-
man
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Figure 18. Comparison between TR-BCQ and best baselines on different datasets from Game NameThisGame to Game Tu-
tankham
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Figure 19. Comparison between TR-BCQ and best baselines on different datasets from Game UpNDown to Game Zaxxon


