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Abstract

Offline reinforcement learning (RL) has increas-
ingly become the focus of the artificial intelligent
research due to its wide real-world applications
where the collection of data may be difficult, time-
consuming, or costly. In this paper, we first pro-
pose a two-fold taxonomy for existing offline RL
algorithms from the perspective of exploration
and exploitation tendency. Secondly, we derive
the explicit expression of the upper bound of ex-
trapolation error and explore the correlation be-
tween the performance of different types of algo-
rithms and the distribution of actions under states.
Specifically, we relax the strict assumption on the
sufficiently large amount of state-action tuples.
Accordingly, we provably explain why batch con-
strained Q-learning (BCQ) performs better than
other existing techniques. Thirdly, after identify-
ing the weakness of BCQ on dataset of low mean
episode returns, we propose a modified variant
based on top return selection mechanism, which
is proved to be able to gain the state-of-the-art per-
formance on various datasets. Lastly, we create a
benchmark platform on the Atari domain, entitled
RL easy go (RLEG), at an estimated cost of more
than 0.3 million dollars. We make it open-source
for fair and comprehensive competitions between
offline RL algorithms with complete datasets and
checkpoints being provided.

1. Introduction
1.1. Background and motivations

Reinforcement learning (RL) tries to figure out how intelli-
gent agent ought to take actions under the interaction with
environment such that the accumulative reward could be
maximized, and becomes increasingly popular due to its
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wide real-world applications where data collection may be
difficult, time-consuming, and costly.

In most studies concerned with reinforcement learning (RL)
algorithms (Sutton & Barto, 2018), authors assume that an
agent interacts with an online environment or simulator and
learns from the “dynamic” date set generated by updated
policy of its own. However, when facing complex real world
problems, it is a totally different case due to the extremely
large data (including states and actions), which limits the
applicability of online methodologies. As a consequence,
offline RL (also known as batch RL in some researches)
algorithms are well and rapidly developed especially in
many practical scenarios where the explorations (actions
of trial and errors) are extremely costly, e.g., robotics, E-
commercials, manufactures. Especially, in E-commercial
case, RL has been widely applied in different and challeng-
ing business scenarios, e.g., coupons delivery (Xiao et al.,
2019), search engine (Hu et al., 2018), recommendations
(Zhao et al., 2018), impression allocation (Cai et al., 2018),
etc. Nonetheless, each update and iteration of algorithm
already deployed online would introduce uncertainties to
production system, which possibly contributes to an asset
loss accident. In addition, performance improvement cannot
be guaranteed since the training process of online algorithms
(e.g. Nature DQN) is time-consuming.

However, we notice that there are no conclusive investiga-
tions and reviews for the effectiveness and applicability of
existing offline RL algorithms, which no doubtedly would
make readers confused when choosing algorithms given
an offline dataset. For example, both batch-constrained Q-
learning (BCQ) and random ensemble mixture (REM) are
claimed to preform better than each other. However, the
offline dataset of their experiments are basically different.
In BCQ experiments, the offline dataset is generated by a
partially trained DDPG (i.e. a medium oracle), while that
of REM is generated by Nature DQN (i.e. a combination of
starter, medium and complete oracle). Consequently, it is of
great necessity to figure out the underlying principles such
that fair comparisons could be made.

To address the above problems, we first propose a taxonomy,
which divides the existed offline RL algorithms into two
categories, exploitation-tentative algorithms (e.g. BCQ, (Fu-



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

jimoto et al., 2019b), (Fujimoto et al., 2019a), best action
imitation learning (BAIL) (Chen et al., 2020), bootstrap-
ping error accumulation reduction (BEAR) (Kumar et al.,
2019), safe Policy improvement with baseline bootstrapping
(SPIBB) (Laroche et al., 2019)), and exploration-tentative
algorithms (e.g. ensemble DQN, (Faufler & Schwenker,
2015), (Anschel et al., 2017), Bootstrapped-DQN, (Os-
band et al., 2016), C51, (Bellemare et al., 2017), Quantile
Regression(QR)-DQN (Dabney et al., 2017), REM (Agar-
wal et al., 2020)).

1.2. Literature Review
1.2.1. EXPLOITATION-TENTATIVE ALGORITHMS

In (Fujimoto et al., 2019b), authors claim that most off-
policy algorithms would fail in offline setting due to extrap-
olation errors caused by erroneously estimating the unseen
state-action pairs, and therefore proposed BCQ. In BCQ,
when selecting actions that maximize Q value, they further
eliminate actions which are unlikely to be selected by be-
havioral policy using a generative model. Experiments are
made on offline dataset generated by deep deterministic
policy gradient (DDPG).

The counterpart of (Fujimoto et al., 2019b) on discrete ac-
tion space is (Fujimoto et al., 2019a) where discrete BCQ is
claimed to be the optimal offline RL algorithm. However,
its performance can only achieve to be equivalent to or a
little bit higher than the one of noiseless policy, which is
obtained based on the data set generated by partially trained
DQN, i.e., a quite lower level of performance. Under the
circumstance of limited data in offline setting, BCQ acts
more likely to robust imitation learning algorithm ((Wang
et al., 2017)). In contrast to the investigation in (Agarwal
et al., 2020) where the scale of offline dataset is assumed
to be large enough, the authors conclude that common off-
policy Deep RL algorithms are not well suitable for offline
learning tasks.

Similar to BCQ of continuous version, (Kumar et al., 2019)
also imposes the constraints on the distribution of contin-
uous action space in off-policy Q-learning cases. Authors
identify bootstrapping error as key source of instability in ex-
isting off-policy RL algorithms, the performance of which
could not be elevated merely through scaling up the the
batch.

Different from imposing strict constraints on distributional
similarities in BCQ, the basic mindset of BEAR is to make
trade-off between concentrability coefficient (i.e., the pa-
rameter quantifying the degree to which current states and
actions are out of distribution generated by behavioral pol-
icy) and suboptimality constant (i.e., the parameter quantify-
ing the distance between the current policy and the optimal
one). Compared with BCQ, the visitation distribution gener-

ated by current policies would not be too much similar to
the batch data distribution in BEAR. Thus, BEAR can be
treated as a robust variant of BCQ. However, it is not readily
extended to the cases of discrete action space.

Instead focusing on generating similar state-action visita-
tions, (Chen et al., 2020) tries to crack the problem from a
imitation-learning perspective by selecting “valuable” state-
action pairs and episodes that contain enough information
for learning a relatively optimal strategy with regards to
higher returns. Supervised learning methodology has been
applied for the derivation of an upper envelope where high
return data lie nearby. Accordingly, the optimal strategy is
obtained directly through imitation.

In (Laroche et al., 2019), authors judge the value of state-
action pairs based on the number of occurrences. For a spec-
ified state-action pair (s, a), it will be accepted for further
imitation learning process (in a greedy way) only if the num-
ber of occurrences N (s, a) is more than a fixed threshold
Nx(s,a) (calculated based on (Ghavamzadeh et al., 2016)
and (Weissman et al., 2003)), otherwise behavioral policy
would serves as a baseline.

Our discussion and review on exploitation-tentative offline
RL algorithms can be concluded in Table. 1.

1.2.2. EXPLORATION-TENTATIVE ALGORITHM

C51 (Bellemare et al., 2017), as a comb form methodology,
extends the Q-value to Q-distribution where value function
is defined as the expectation of value distribution with multi-
ple peaks. Ensemble-DQN (Anschel et al., 2017) is a simple
extension of DQN that approximates the Q-values via an
ensemble of parameterized Q-functions, i.e., multiple heads.
It should be noted that each head independently estimates
the Q-value with huber loss. The final loss is derived by
simply taking average of all heads.

Bootstrapped-DQN (Osband et al., 2016) uses one of the
Q-value estimates in each episode to improve the depth of
exploration. The authors claim that bootstrapped neural
networks are able to produce reasonable posterior estimates
for regression. The basic mindset of REM (Agarwal et al.,
2020) borrows from dropout mechanism. For five different
outputs (Q-networks generated by a shared neural network),
authors randomly assign the weights with sampling perfor-
mance of the algorithm being lifted. In order to underscore
the importance of randomness, the authors also make com-
parisons between their random mechanism and the average
one, which is proved to be less optimal.

Among most of off-policy algorithms, QR-DQN is prov-
ably to be the best rather still underperform the policy with
noise (Dabney et al., 2017). Again, it should be noted that
although QR-DQN is not exclusively developed for offline
setting, it is still able to achieve high performance given
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Table 1. Comparison of exploitation-tentative offline RL algorithms

C-BCQ BAIL D-BCQ BEAR SPIBB

Scenario Continuous action  Continuous action Discrete action Continuous Countable
space space space action space (s, a) pairs

Constraints on N/A YES YES N/A YES

(s,a) quantity

Main idea Maximizing the Imitate (s,a) pairs Extension of C- Relax the Safely im-
similarities  be- with high return BCQ to discrete constraints on proved based
tween behavioral action space distributional ~ on behavioral
and trained policy similarities policy

Pros SOTA among Same as C-BCQ  Better per- Readily imple- Safely
exploitation- formance on ment bounded
tentative  algo- random/less performance
rithms Oracle dataset

Cons Rely on Oracle Sameas C-BCQ  Suboptimal Hard to count
dataset performance N(s,a)

sufficiently large and complete data set.

Our discussion and review on exploration-tentative offline
RL algorithms can be concluded in Table. 2.

Noticed that in all imitation-based offline RL algorithms,
a strong assumption of the amount of (s,a) pairs, i.e.,
N(s,a) > Na(s,a), V(s,a) € S x A, is a necessity. In
fact the assumption is unreal in certain practical scenarios
especially video games due to the high cost as we have
discussed before.

1.3. Main contribution

From the above literature reviews, we notice that existing
offline RL techniques have not been well concluded, and the
applicability of them under various datasets has not been
clearly stated either. Thus, readers might be confused about
how to select the most appropriate algorithm when facing a
brand new dataset generated by different behavioral polices
or even unknown ones. In practical scenarios, trial and
error is often costly and time consuming. Besides, the argue
between self-claimed SOTA algorithms has not been well
resolved due to the totally different behavior policies. To
address all the mentioned concerns, we list our four-fold
contributions as:

(1) We propose a taxonomy for existing offline RL algo-
rithms from the perspective of exploration and exploitation
tendency.

(2) Based on the derivation of upper bounded extrapolation
error, we provably investigate the applicability of both types
of algorithms on different datasets (in terms of different
action distributions under states) and explain why BCQ
performs better than existing techniques.

(3) We identify the limitation of BCQ, as its weak perfor-
mance on datasets with low mean episode return. To bridge
the gap, we propose a modified version by introducing a

return-based data selection mechanism, which reaches better
performance on various datasets.

(4) A benchmark of Atari domain is open sourced and most
existing offline RL algorithms are included. We spend more
than 0.3 million dollars on the experiments and collect all
intermediate results incuding various datasets and the inter-
mediate model checkpoints. The benchmark could be used
for fair and comprehensive competitions between existing
and future offline RL algorithms.

2. Extrapolation error-based applicability
analysis and comparisons

In this section, we would analyze the applicability of both
exploration and exploitation-tentative algorithms on differ-
ent datasets from a perspective of extrapolation error.

Due to the inability of interacting with the environment,
both types of offline RL algorithms we conclude before
have to be suffered from the failure of learning as well as
online ones. More specifically, when testing the offline
trained model in real world, the mismatch between offline
dataset and practical state-action visitations of the current
policy would give rise to the extrapolation error, which
introduces the performance gap between offline and online
RL algorithms.

Besides, intuitively, due to he vital role that behavioral
policy plays in offline RL training, the discrepancies of
various offline datasets would contribute to the different
extrapolation errors and therefore distinct performance of
offline RL algorithms. The corresponding argue with respect
to the state-of-the-art performance comes up referring to
the one between above-mentioned REM and BCQ. How to
provably explain and make a fair comparison is undoubtedly
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Table 2. Comparison of exploration-tentative off-policy RL algorithms

Ensemble Bootstrapped DQN C51 QR-DQN REM
DQN
Mainidea Taking aver- Randomly select opti- Extend Q-value to Q- Sameas C51  Convex combination
age of single mal strategy of higher distribution of single heads
heads possibility
Pros Easy to com- Efficient training time Innovated idea Theoretical SOTA Offline RL
pute proof based methodology under
Atari environment
Cons Training pro- N/A No theoretical sup- N/A No theoretical sup-

cess is not sta-
ble

port

port

a challenging task, which would be resolved in this section.
2.1. Can extrapolation error be completely eliminated?

In existing exploitation-tentative algorithms, researchers try
to eliminate the extrapolation error by placing strict con-
straints on the distribution of (state-action) tuples with the
help of generative model (e.g. (Fujimoto et al., 2019b),
(Fujimoto et al., 2019a), (Kumar et al., 2019)), simply dis-
carding the tuples of insufficient amount of occurrences (e.g.
(Chen et al., 2020)) or replacing these tuples with behav-
ioral policy as a safe baseline (e.g. (Laroche et al., 2019)).
However, as we conclude in Table 1, a strong assumption
on the sufficient visitations of selected tuples is necessary.

For exploration-tentative algorithms, extrapolation error ex-
ists as well but claims to completely vanish by assuming a
big enough offline dataset with adequate diversity (e.g. 50
million tuples per game from Nature DQN (Agarwal et al.,
2020)).

However, we notice that the assumptions concerned with
the size of tuples in the offline dataset are too strong to be
satisfied in practical scenarios (especially for some costly
application such as E-commercial, robotics, etc). In addition,
for large continuous state or action space, it is impossible to
accurately count the amount of occurrences for each tuple.

Thus, in the following context, we start with deriving an ex-
plicit upper bound on the extrapolation error, and investigate
how it is affected by behavioral policy and corresponding
offline dataset.

2.2. Preliminaries

We first introduce following useful lemmas and necessary
assumptions for the ensuing proofs.

Lemma 2.1. (Weissman et al., 2003) ForV(s,a) € S x A,

Q(s,a) < flmas
Lemma 2.2. (Ghavamzadeh et al., 2016) For ¥(s,a) €
Sx A ||p1(.]s,a)—pa(.]s,a)l]1 < e(s,a) where, e(s,a) =

2 [SI[A[2!5!
N(s,a) lOg 4

Assumption 2.1. In offline dataset to be fed to training

process, the number of all state-action pair occurrences
satisfy N(s) = > ,c 4 N(s,a) = N, Vs € S, i.e., although
for each state s € S, the distribution of action a € A may
vary, the total amount of occurrence of each state would be
the same.

Compared with the strong assumption that N(s,a) <
Na(s,a),¥(s,a) € S x A made in most previous research,
the assumption 2.1 is much relaxed and therefore more
realistic to be satisfied in practical scenarios, which also
indicates that our work is not a trivial extension of previous
work.

Assumption 2.2. The agent is rational (i.e., aiming for a
relatively better result or higher total rewards following the
rules of environment) such that pure random policy (i.e., un-
der each state, choosing each action with same probability)
is always the worst one (i.e., the mean episode return is
the lowest) among all candidate policies, while the policies
of biased action distribution under each state would result
in a better achievement. In addition, the more biased the
distribution is, the higher reward is achieved.

It is noted that we use randomness for capturing the degree
of distributional bias in the following context, which would
be further discussed in the ensuing sections. Assumption
2.2 reveals our insights about some practical scenarios (e.g.,
video games, E-commercial, robotics, etc) for applying RL-
based methodologies, which reflects an underlying mindset
that Oracle policy are mostly deterministic. We admit that
there might be cases against this mind as shown in the
following four-quadrant figure, through which we try to
explain Assumption 2.2 from a perspective of the correlation
between randomness and returns.

In Fig. 1, we take all possible cases into consideration.
The 2nd and 4th quadrants conform the Assumption 2.2.
Nonetheless, some cases might fall in 3rd quadrant due to
some inaccurate description of fundamental elements, e.g.,
dynamics, rewards. Game players may misunderstand the
goal and take completely opposite actions to optimal ones
such that worst return is achieved. These special cases are
not included in this paper and would be discussed separately.
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Randomness
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Figure 1. Correlation between randomness and returns

Assumption 2.3. [fa dataset is generated by a given policy
Ty, then for Vs € S, N(s,a) = N(s)mp(als)

In the following context, for notational convenience, we
omit the arguments of N (s), and simply denote it as N.

2.3. How does dataset affect the extrapolation error of
exploration-tentative algorithms?

Proposition 1. The extrapolation error €z, is upper
bounded by

_ S||-A2!5! Rinas
o = (21 (| H 5‘ ))1/2(1 - )N 1/2

[(ms(als)) =2
+y Y pi(s]s,a) Y w(a|s)(m(d]s") 7

+ .4y Zpl(s’\s, a) Zw(a'|s') Z o @

Zpl (S(H) |S(n—1)7 a(n—l))

s(n)

> " w(al™ M) (my(a]s™) T2+

a(n)

Inspired by the results of Proposition 1, we define the ran-
domness of dataset as follow.

Definition 1. The randomness of dataset is defined as

2)

According to Definition 1, a pure random behavior policy
having a highest value of g indicates the highest randomness
of the corresponding datasets, i.e., uniform distribution of
actions under each state.

Assumption 2.4. The distribution of  is uniform, i.e., the
possibilities of any type of trainer or player are same. Intu-
itively, it is also noted that the distribution of m is indepen-
dent of the distribution of my.

Now, we are ready to propose the following theorem.

Theorem 1. Given the distribution of ©(a|s) follows as-
sumption 2.4, the general term of extrapolation error, equa-
tion (3), reaches its minimum when 7y (als) is pure random.
Also, the more even the behavior policy my(als) under each
state is, the less value it would be.

> w(als) (ff“;)N—1/2(wb(a|s))—1/2,vs )

Equivalently, the optimal behavioral policy is

w(als) = g = argminEL[Z, n(als)(m(als)) ]

Y(a,s) € AxS

According to Theorem 1, the performance of exploration-
tentative algorithms would best when offline dataset is of the
highest randomness. Besides, the returns would decrease
along with the randomness descent of dataset.

2.4. How does dataset affect the extrapolation error of
exploitation-tentative algorithms?

In this section, we continue to investigate influence of
dataset on exploitation-tentative algorithms. As we have dis-
cussed in Section 1, most exploitation-tentative algorithms
fall into two underlying mindsets represented by BCQ and
BAIL respectively, i.e., generating similar state-action dis-
tribution, and selecting targeted state-action tuples. Thus,
the following investigation is two-fold.

2.4.1. BCQ-LIKE ALGORITHMS

For BCQ-like algorithms, actions chosen for offline opti-
mization must satisfy the constraint G(a|s) > 7, where G is
the generative model for selecting batch-constrained actions
and quantitatively depends on the number of occurrences of
tuple (s, a) in dataset. Given Assumption 2.1 being satisfied,
we have N(s,a) > N7, where (s, a) are batch-constrained
tuples.

Thus, we derive the upper bounded extrapolation error for
BCQ-like algorithms, based on which we further give the
sufficient condition for ensuring a lower upper boundary
compared with exploration-tentative methods through Theo-
rem 2.

Proposition 2. The extrapolation error for BCQ, € q, is
upper bounded by

|S||";l|2‘$‘ ))1/2 Riax (NT)fl/Q

o = (2hog( -9 )

[T+ 4.+ 4.
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Theorem 2. When 7 > ﬁ, The upper bound of extrap-
olation error for BCQ-like algorithms is strictly less than
exploration-tentative methods.

2.4.2. BAIL-LIKE ALGORITHMS

Instead of choosing (S, A) pairs with N (S, A) > N, the
underlying mechanism of BAIL is to select tuples with top
returns given under each state for offline training. The
data selection scheme can be either percentile-based or
difference-based. As claimed by the author, the first one
performs better, and thus is considered in this paper. For
notational convenience and easier understanding, the per-
centile is still notated by 7 for BAIL-like algorithms. The
dataset after percentile-based selection is denoted as D, with
the corresponding MDP M. The number of occurrence of
tuple (s, a) is denoted as N (S, A).

Intuitively, the distribution of N (s,a), ¥(s,a) € S x A
would be of greater variance and can barely be lower
bounded by a specified value, such as N7 in BCQ-like case,
due to the selection merely based on episode return. Thus,
it seems quite challenged to derive an explicit expression as
same as equation (15).

Assumption 2.5. The expectation of each N (s,a) is
N(s,a)T.

However, given assumption 2.5, we are able to derive the
upper bounded extrapolation error and its corresponding
minimum for BAIL-like algorithms.

Proposition 3. The expectation of extrapolation error for
BAIL-like algorithms, €, 4, is upper bounded by

= . o |SHA|2‘SI 1/2 Rmam r —1/2
B(en) = (2log (1)) 2 2 (V)

12 —|—’yZp1 "Is,a Zm, (a's)!
+ 4y Zpl s'|s,a) Zﬂ'b (d'|s") Z
Zpl (n b a S

s(n)

> mlan]sm) 4 ]

a(m)

[(ms(als)

(nfl))

(&)

Proposition 4. The general term of extrapolation error,
equation (5), reaches its minimum when my(als) is uniform,
i.e., a pure random policy. Also, the more even the action
distribution under each state, my(als), is, the less value it
would be.

Specifically, the corresponding optimal value of extrapola-

tion error would be

‘S||A‘2|S‘ 1/2 Riaz —-1/2
Nt
5 ) = )( ) ©
A2+ 4 A2 4 ™ A2 4 ]

E*(€s.q) = (2log(

On the other hand, when T, is deterministic, the optimal
value of extrapolation error is

|S].AJ215]
5

T+y4 .+ 4]

))1/2 Rm(m (NT)—1/2

E*(Es,a) = (2log( (1—+) 7

2.5. Comparisons among algorithms

Compared  with  exploration-tentative  algorithms,
exploitation-tentative algorithms are most likely to
have less extrapolation error. As for exploitation-tentative
algorithms, from Proposition 4, we notice that the best case
of BAIL-like algorithm is the same as the general case of
BCQ-like algorithms. From the perspective of extrapolation
error, BCQ-like algorithms provably performs better than
the others.

3. Top Return Batch Constrained Q-learning
(TR-BCQ)

According to the results of Section 2, exploitation-tentative
algorithms would achieves less extrapolation error. How-
ever, less extrapolation error does not equivalent to be better
overall performance (i.e., estimate Q-value 4 extrapola-
tion error). The redestimated Q-value is critical as well.
Compared with BAIL-like algorithms, BCQ-like algorithms
adopt extra off-policy optimization techniques for a higher
estimated Q-value, and thus is expected to have a better
overall performance. Besides, for the exploitation-tentative
algorithms, a good “teacher” is of great importance due to
their imitation-based essentials. Thus, we explore the weak-
ness of BCQ as it would suffer from the dataset generated
by the behavioral policy of low mean episode returns. To
fix this shortcoming, we propose a variant of BCQ, named
top return batch constrained Q-learning (TR-BCQ). For
easy understanding and avoiding confusions, we will use
“low-quality dataset” or directly “low dataset” for the same
meaning of “dataset generated by the behavioral policy of
low mean episode returns” in the following context.

The proposed TR-BCQ is basically consisted of two phases:

Phase 1 — Top return data selection: In this phase, we
select tuples with high episode return based on a percentile
parameter, (;
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Phase 2 — Tuple visitation constrained optimization: In
this phase, we proceed off-policy optimization on a visita-
tion constrained batch of tuples.

Please refer to the pseudocode in the appendix.

We further explain advantages of our algorithm over original
BCQ not merely on low-quality dataset, starting with the
investigation of extrapolation errors as follow

Q470 — QA <&, QY = QY <& (8)
where M indicates the underlying MDP of original offline
dataset, M * is the MDP in the realistic world, M represents
the MDP of top-return selected offline dataset.
Proposition 5. Using same off-policy optimization tech-
niques, the relationship between the upper bound of extrap-
olation error generated on M and M is as follows:

E(&) = E(e)¢ /2 9)

Additionally, since imitating the selected tuples with higher
episode returns, the policy derived by TR-BCQ would
achieve higher estimated Q-value compared with the origi-
nal BCQ, i.e., Q37 <Q7;VITRCQ.

Nevertheless, due to the uncertainty introduced by €, TR-
BCQ might not gain a better performance. Meanwhile, we
notice that the extrapolation error rather changes slightly
along with ¢, e.g., E(€2) = 1.29E(¢;) when ¢ = 60%, i.e.,
tuples of top 40% episode returns are selected. It indicates
that we are able to achieve higher overall performance (i.e.,
estimate Q-value + extrapolation error) by increasing ex-
trapolation error a little bit in return for higher estimate
Q-value.

It should be noted that although the name of proposed algo-
rithm contains “BCQ”, BCQ is not the only option for Phase
2. More advanced extrapolation error-insensitive techniques
are applicable for further improvement, yet which is out of
the scope of this paper.

ETHTEETTE S E e [T

Figure 2. Datasets of Tri-level Quality
4. Experiments on Atari 2600 Games

4.1. Experiment setup

We generate the dataset through an online DQN agent from
scratch in the Atari 2600 Games. Considering better un-
derstanding of readers and space limitation, we list experi-
mental results towards ten randomly selected games in this
section. More results can refer to Appendix.

4.2. The benchmark platform: RL easy go

Fig. 2 indicates the iterations of different episode returns
during the whole training process, and how we divide the
dataset into three subsets, named “low”, “medium”, and
“high” according to their mean episode returns. We named
our benchmark platform RL easy go (RLEG), which enables
a lighter and faster evaluation of off line RL experiments.
Given Assumption 2.2 being satisfied, we are able to derive
an equivalence between “low return” with “high random-

ness”

The reasons why we do not directly quantify randomness
is that since considering continuous state space, we are
exposed with uncountable states. Thus, the results of perfor-
mance would strongly rely on the granularity of discretized
states. Although the more fine granularity is, the more accu-
rate the result would be, and corresponding computational
overhead would be undesirable.

4.3. Performance of existing offline RL algorithms on
various datasets

In this section, we will show the experimental results of

exploration and exploitation-tentative algorithms on “low”,

“medium” and “high” quality datasets.

In Fig. 3, we can clearly distinguish the monotonically trend
of performance, which are deceasing and increasing for
exploration-tentative and exploitation-tentative algorithms
respectively, along with dataset randomness (represented
in the form of return). Refer to the statistical compari-
son results in table 3 for a more clear insight. We no-
tice that exploration-tentative algorithms perform better
on “low” dataset, i.e., high randomness and low-quality
dataset, which conforms to the analysis in section 2.3. Be-
sides, exploitation-tentative algorithms outperform on “high”
dataset than exploration-tentative candidates. On “medium”
datasets, exploitation-tentative algorithms behaves best on
half games. Based on the above results, we would recom-
mend giving top priority to exploitation-tentative algorithms
on high-quality dataset, while trying both types of algo-
rithms on low-quality dataset. Admittedly, defining the
quality of an offline dataset is empirical, our suggestion is to
take both the mean episode return and the action distribution
into accounts.

4.4. Comparison between TR-BCQ with the best of
existing algorithms

Fig. 4 shows the performance of TR-BCQ under different
percentages of data selection in Phase 1, which is one of the
most critical hyperparameters and can be set in some heuris-
tic ways. As shown in Fig. 4, it is not always better to train
with as much data as possible. By choosing an appropriate
(, the proposed algorithm is able to achieve higher online
performance. From Fig. 4, TR-BCQ outperforms original
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Table 3. Comparison on dataset quality

Algorithms
BCQ BAIL DQN MultiHeadDQN  Quantile ~ REM
Trend of Performance Increase  41.667% 43.333%  15.000% 6.667% 5.000% 6.667%
with Dataset Quality =~ Decrease 21.667% 21.667% 56.667% 66.667% 48.333%  53.333%
Low 11.667% 16.667% 0.000% 10.000% 55.000%  6.667%
Num of Best Scores Medium  25.000% 25.000%  0.000% 5.000% 41.667% 3.333%
High 33.667%  20.000% 1.667% 8.333% 30.000% 3.333%
—f - - I ‘
(a) Alien (b) Amidar (c) Atlantis (d) Boxing (e) Kangaroo
i = o [ 2. 3 - =
(f) Krull (g) Phoenix (h) Pong (i) Qbert (j) StarGunner

Figure 3. Comparison for Different Dataset Qualities. The mean score of top 20 iterations are used for fair comparison. The boxplot

indicates scenarios of 5 different random seeds.
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Figure 4. Performance of TR-BCQ and SOTA algorithms on datasets of different qualities In low, meidum, and high dataset, TR-
BCQ performs best on 70%, 50%, and 30% of the games respectively.

BCQ a lot in “low” dataset, while less in “high” dataset.
This implies that for dataset with lower quality, TR-BCQ
is an indeed method with controllable extrapolation error,
even if the number of data sets is greatly reduced. On the
other hand, with the mean episode return increasing along
with the dataset quality, the extrapolation error is of greater
importance in dataset with higher quality.

bl

Overall, we recommend TR-BCQ for “low” and “medium’
dataset and any exploitation-tentative or simply imitation-
based algorithms for “high” dataset.

5. Conclusion and Future Work

In this paper, we start with proposing a two-fold taxonomy
for existing offline RL methodologies, i.e., exploration and
exploitation-tentative algorithms. Then, with the help of
derived upper bound of extrapolation error, we explore and
prove the dependence of algorithm performance on dataset,
especially for the action distribution for each state. From
such a dataset perspective, although BCQ is provably better
than the other, we identify its weak performance on dataset
of low mean episode returns. Accordingly, we propose a
modified BCQ based on a top return-based data selection
mechanism. Our experimental results indicates that our algo-
rithm could reach the best performance on various datasets.
At last, a benchmark platform is created on the Atari domain,
where we further open-source all datasets and checkpoints
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as a fair and comprehensive environment for competition
between offline RL techniques.

Along with our top return-based data selection, some tuples
are discarded and therefore is not used for constructing
the underlying MDP. How to make full use of these data
would be worth to investigated. Besides, for generalizing
the proposed algorithms, we will extend it to the case of
continuous state space and action space.
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A. Introduction of open-source benchmark: RL easy go (RLEG)
A.1. Workflow

The open sourced RLEG is a benchmark platform for offline reinforcement learning reproduction and evaluation, which
consists of the following parts:

» Codes: We integrate all the source code of existing SOTA algorithms including BCQ, REM, Quantile, DQN, MultiHead-
DQN, and BAIL into two frameworks based on our two-fold taxonomy (i.e., exploration- and exploitation-tentative).
Besides, we open-source the source code of TR-BCQ under exploitation-tentative framework. We appreciate the
open-source code of REM, BCQ, and BAIL. We build our code based on their work.

* Datasets: (i) All the checkpoints generated during the experiments; (ii) The tuples of the form (s, a,r, s’, a’, ', t) for low,
medium, high-quality dataset. (iii) The mean episode return logs for data generation process and offline reinforcement
learning process on the aforementioned algorithms. Researchers can check their own off line reinforcement learning
algorithms on various dataset directly without running the costly data generation process.

B. Missing proofs
B.1. Proof of Proposition 1

First, we express the extrapolation error as:
€s.0 = Q7 71 (s,0) — QP (s,a)
— Z[(p1(5'|s,a) —p2(s'|s,a)|r(s,a, s +Zp1 "Is,a 72 NQ1(s',a") — Qa(s',a'))+
s/
> (p1(s']s,a) — pa(s']s, a vZ a'|s)Qa(s',a)

s’/

< Rpaz Y _[(p1(5']s,a) — pa(s']s, @) +Zp1 'Is, avz NQi(s',d') — Qa(s',d))+
TYL(IJ (10)
> (i(s']s,a) = pa(s']s,a WZ 'IS -
Rmam / !/ Rma$ !/ !
= S, a + p s a S e(s,a )+ ..+
n n n— n— n n Rmaﬂ? n n
v<>2pl<s’|s,a>2 (o'ls") Z Zm s, a7 3 m(as™) e, 0+
s’ a’ s’ s(n) a(n)

Given Lemma 2.2 and Assumption 2.1 to be satisfied, equation (1) could be readily derived.

B.2. Proof of Theorem 1

The main problem we focus now turns to be the following expression:

R/"La.'lf — —
Zﬂ(a|s)ml\f V2(my(als) "2 Vs e S

a

We need to prove that no matter what distribution 7(a|s) is, the expression reaches its minimum when 7, (a/|s) is uniform.
Also, the more even the distribution 7 (als) is, the less expression value would be.

The result for 7, when |.A| = 2 will be given firstly. Then the generalized proof will be presented.
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Case: n =2

min E[Z pi]

aea Vi (1)
s.t. q1 + qo = 1

To solve this problem,

q = arg min 71 ‘nzg 1 7]71 1- P dp1
(n—1)! 0o V@ Va2
24/q1  24/q2

s.t. q1 + qo = 1

The solution is qg1 = g2 = % for Equation 12.
Consider the most general case as follow:

1 1 1-p1 1—p1—p2—...—pn—2 2—1 P P
E(7r|m = 7/ dpl/ dpg.../ L+ dp,
(i) (n =1 Jo 0 0 =Vl Van

1 1-p 1-p1—p pn—2 "1 (13)
1 n Thimbzme e i 1—p1—po— ... — Dp_
_ 7'/ dpl/ dpg.../ Z b + P1—Dp2 b ldpn,l
(n—1)!Jo 0 0 = Vi Van
We rewrite the above equation as
- 1
E(rlm) = ) o(pi)— (14)
(mlms) ; (pi) NG
1 1—py l—-p1—po—...—Pn—
where ¢(p;) = ﬁfo dpy fy rdpa-- [T pidpn .
We notice that ¢(p;) = fol dp1 017171 . f;fplipf'"fpi*l (1—p1—p2(’r—7lj~i8pv71)"*i dp;, and for each i € [1,n], ¢(p;) are
same. This fact is also intuitively understandable, since all p;, ¢ = 1,2, --- , n are independent and identically distributed
(i.i.d), we have ¢(p1) = @(p2) = - - = d(pn) = E(py).

B.3. Proof of Proposition 2

In order to derive the upper bound of extrapolation error for BCQ, €; 4, we adopt zoom method using the result of Proposition
1and N(s,a)>NT as

R’I’TLCL(E

€s.0 = (We(s, a) + W%:pl(S/L% a) ;W(a’s')({{njtl’;)e(s/, a)+ ..+
AN lssa) om(@ls) Y ;p1<s<n>|s<"*1>, aln=V) Z w<a<“>|s<">>§i—’“;5e<s<">, a)+
"')|N(s,a)>NT S '
< 2lop (ISR oy fimae vy 112 T nE 0 Dl g
1Y pi(sls,0) Y mlalls) D ;p1(8(")ls("_l)»a("_”) ;w(a("’ls("))mwﬂ“z + ]
s’ a’ s s(n aln
= (2log( 51142 pyv/2 Bmae gy =12 L nn Y2 L e (N2 )

5 (1=7)
|SHA|2|S‘ ))1/2 Rmaw

N2 4y 4+ o+ 4™
5 (177)( ) ]

= (2log(
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B.4. Proof of Theorem 2

Given 7 > ﬁ, the extrapolation bound for BCQ satisfies that

1SIJAI2S1 Ly Rinas (ﬁ)—m
§ (1—7) [4]

From Theorem 1, the minimum bound of exploration-tentative algorithm is achieved when 7, is uniform, i.e., 7(+|s) = T
Thus, the minimal extrapolation bound for exploration-tentative algorithm is

Es,a < (2109( [1+’7++’7(n) +] (16)

|S||A|2\S|))1/2 Rmaz 172
o (1=7)

(O REE) SICNO) DELICIEOIC DR C) STCINDD DECIRI) DI

a’ a’ s

1
(n)] o(n=1) _(n-1) (n)]o(n)y(_—_\y—1/2
E(n) p1(s'™]s ,a ) E(n)w(a |s )(|A|) +..]

€s.a = (2log(

Note that not all terms of equation 17 exists in equation 16, because only (s, a) pairs that satisfy N(s,a) > %I are selected

in BCQ. Therefore, Theorem 2 holds.

B.5. Proof of Proposition 5§

In the first phase, because we process the data selection, for any (s, a) pair under the batch constraint, N (s, a) < N(s, a).

Probabilistically, E(N(s,a)) = E(N(s,a))¢
Thus, for every term in equation (15), the extrapolation error would increase after data selection, the expectation of which
turns out to be

E(&s.0) = E(€s,0)¢ 2 (18)
C. Pseudocode of TR-BCQ

Please refer Algorithm 1.

D. Additional Experiments
D.1. Data Generation

Please refer Fig. 5.

D.2. Learning curves of all 60 Atari 2600 games on poor dataset

Please refer Fig. 6 and Fig. 7.

D.3. Learning curves of all 60 Atari 2600 games on medium dataset

Please refer Fig. 8 and Fig. 9.

D.4. Learning curves of all 60 Atari 2600 games on high dataset
Please refer Fig. 10 and Fig. 11.

D.5. Comparison on different datasets

Please refer Fig. 12 - Fig. 19
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Algorithm 1 TR-BCQ Algorithm

Input: Offline dataset tuples (S,.A,S’,R,T,G) , data selection percentile ¢, and number of iterations 7';
Output: Policy 7;
Initialization: Q-network )y, generative model G, and target network Q).

Phase 1: Top Return-based Data selection

a) Sort the tuples by G.
b) Select top (1 — {) percentage of tuples.

Phase 2: tuple visitation constrained Q-learning

Fort=1t0T {
a) Selecting the max valued action with Qg
a = argmazx Qg(sl,a’)
a' |Gy, (a'|s") /maxaG., (als')>T
b) Evaluating with Q)
0 + argmin L(0
min Y 0

{s,a,r,s'}€{S,AR,S"}

where £(6) = lic(r +vQy (s/7 a') = Qqls,a))
¢) Behavioral cloning with G,

w < argmin — g logG,,(sl|a)
w .
(s,a) €T —constrained dataset

}

d) Update target network @, with 0 « 0
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Figure 5. Data Generation (by DQN)
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Figure 6. Learning curves of all 60 Atari 2600 games on poor dataset
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Figure 7. Learning curves of all 60 Atari 2600 games on poor dataset
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Figure 8. Learning curves of all 60 Atari 2600 games on medium dataset



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

BCQ
10000 AirRaid Alien
'g 3000
Z 8000 \ 2500
I
3 6000 2000
2 1500
‘& 4000
H% 1000
=
g 2000 500 -
= 0
00100200300400500600 0 100 200 300 400 500 600

1e6  Atlantis BankHeist

Mean Episode Rew:
o SO
2z RS
£ 58 ¢¢8

0
0100 200 300 400 500 600

Breakout

Mean Episode Reward
o 3 5 38 =
2 2 2z 8

0
0100 200 300 400 500 600 0 100 200 300 400 500 600
DemonAttack DoubleDunk
T 10000 50
£ 5000 -15 {
& ~100
-‘.; 6000 -125
2 -150
llﬂl 4000 -17.5
§ 2000 -200
s 225

n 100 200 300 400 500 600 50

Frostbite

100 200 300 400 500 600
Gopher

8000

2000

Mean Episode Rewar
BN

0 0
0100 200 300 400 500 600 0100 200 300 400 500 600

JourneyEscape

Kangaroo

Mean Episode Reward
I
R T

0100 200 300 400 500 600 0 100 200 300 400 500 600
NameThisGame Phoenix
© 8000 5000
g 7000
Z om0 4000
-ig 5000 3000
2
“£.4000 2000
= 3000
sﬁzoﬂo 1000
1000 0
0100 200 300 400 500 600 0 100 200 300 400 500 600
QBert RiverRaid
- 14000 12000

H 10000
&2 10000

Mean Episode Rewa
JEEEEEE
EEEE

0100 200 300 400 500 600 oﬂ 100 200 300 400 500 600
Solaris o Spacelnvaders
‘Em 1400
3 1200
2 1500 1000
.EIOOO 800 v
& 600
g 50 400
s ) 200
0100 200 300 400 500 600 0 100 200 300 400 500 600
UpNDown Venture
20000
£ 17500
& 15000
312500
3 10000
'_E- 7500
= 5000
g 2500 ;
0100 200 300 400 500 600 0100 200 300 400 500 600
Iteration Iteration

Figure 9. Learning cur

TRBCQ( £ =06 )

TRBCQ(L =07 )

TRBCQ(£ =08 )

TRBCQ (£ =09 )

Amidar 2000 Assault 3000 Asterix oo Asteroids
1750 " 2500 1100 |
1500 - 1000
2000 |
1250 x
1000 1500 00
750 1000 600
500 500 500
0 250 w0
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
BattleZone BeamRider Berzerk Bowling
800 40
700
0 30
500
400 | 2
300 10
200
0 100 0
0100 200 300 400 500 600 0 100 200 300 400 500 600 0100 200 300 400 500 600 0100 200 300 400 500 600
Carnival Centipede ChopperCommand CrazyClimber
5000 900 120000
0 800 100000
| ™ | Ui 80000
3000 600
2000 500
400 40000
1000 300 20000
0 200 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
ElevatorAction 0 Enduro 4w  FishingDerby Freeway
1200 20
800
1000 0
600
800 20
400 600
100 -40
200 200 60
0 o -80
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0100 200 300 400 500 600 0 100 200 300 400 500 600

Gravitar Hero IceHockey Jamesbond

s

-14
-16
0 _18 0
0100 200 300 400 500 600 0 100 200 300 400 500 600 0100 200 300 400 500 600 0 100 200 300 400 500 600
000 Krull o0 KungFuMaster MontezumaRevenge MsPacman
4000
0.04
20000 3500 f
0.02 3000
15000 2500
0.00 2000
10000
~0.02 1500
5000 f 1000
~0.04 500
0 0
0100 200 300 400 500 600 0 100 200 300 400 500 600 0100 200 300 400 500 600 0 0 100 200 300 400 500 600
Pitfall Pong Pooyan PrivateEye
0 20
15 5000 300
200 3000
w 10 4000 2500
= | 5
. 3000 2000
600 : 1500 i |
800 10 2000 lm l
~1000 -15 1000 o b
-20 0 ~500
0100 200 300 400 500 600 0100 200 300 400 500 600 0100 200 300 400 500 600 0100 200 300 400 500 600
RoadRunner Robotank Seaquest Skiing
35000 -12500
30000 ~15000
25000 ~17500
20000 ~20000
15000 22500
10000 25000
5000 27500
0 0 0 ~30000
0100 200 300 400 500 600 0100 200 300 400 500 600 0100 200 300 400 500 600 0100 200 300 400 500 600
StarGunner Tennis TimePilot Tutankham
0
40000 g
-5
30000
-10
20000
15 i
10000 20
0 =
0100 200 300 400 500 600 = 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
woe VideoPinball WizardOfWor YarsRevenge Zaxxon
350000 2500
300000 | 2000
250000
200000
150000 1
100000 L
50000 |
0

0 2500
0100 200 300 400 500 600 0 100 200 300 400 500 600 0100 200 300 400 500 600 0 100 200 300 400 500 600
Iteration Tteration Iteration Tteration

of all 60 Atari 2600 games on medium dataset



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

Mean Episode Reward

Mean Episode Reward

0
0

Mean Episode Reward

0

Mean Episode Reward

1200
1000

Mean Fpisode Reward
2
g

AirRaid

1001200 300 400 500 600

Boxing

100 200 300 400 500 600

DemonAttack

0100 200 300 400 500 600

Frostbite

Ao i SO

0100 200 300 400 00 60O

Mean Episode Reward Mean Episode Reward

Mean Episode Reward

2000

1500

Mean Episode Reward
=
8

20000

15000

10000

5000

Mean Episode Reward

0

1750 ’

JourneyEscape

1!1"
il

H‘ V\ i Nﬁ\w«ﬁ;

0100 200 300 400 500 600

NameThisGame

0100 200 300 400 500 600

Solaris

i

le

0100 200 300 400 500 600
Iteration

BCQ

Alien

bt

0100 200 300 400 500 600

BankHeist
|

0100 200 300 400 500 600

Breakout
250 j

0100 200 300 400 500 600

DoubleDunk

0100 200 300 400 500 60O

Kangaroo

14000
12000

J e ]
0100 200 300 400 500 60O

Phoenix

0100 200 300 400 500 60O

RiverRaid

0100 200 300 400 500 600

Spacelnvaders

0100 200 300 400 500 600

Venture

DQN MultiHeadDQN Quantile

Amidar Assault

1000

0100 200 300 400 S00 600

Berzerk

0
0100 200 300 400 500 600 0100 200 300 400 500 600 0100 200 300 400 500 600
Carnival Centipede ChopperCommand
5000 AW
4000 r
3000 |
2000 }
1000 m
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
ElevatorAction 100 Enduro © FlshlngDerby
400

100
0100 200 300 400 500 600 0100 200 300 400 500 60O 0100 200 300 400 500 600

Gravitar Hero IceHockey

0 100 200 300 400 500 600 0 100 200 300 400 500 60O 0100 200 300 400 500 60O

Krull oo KungFuMaster MontezumaRevenge
17500 0.04
15000
12500 002
10000 0.00
7500
5000 —0.02
2500 ~0.04
o PETTTTINT
0100 200 300 400 500 60O 0100 200 300 400 500 60O 0 100 200 300 400 500 60O

Pitfall Pooyan

0100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
RoadRunner N Robotank Seaquest
P . 3500 ‘
50 3000 H
2500
40
2000
o 1500
20 1000
10 500
Wy N ) R
0100 200 300 400 500 600 0100 200 300 400 500 600 0100 200 300 400 500 600

StarGunner TimePilot

40000

o !
-25
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0100 200 300 400 500 600
VideoPinball WizardOfWor YarsRevenge
400000 4000
350000 3500 il 1 10000 |
300000 3000
250000 2500 8000
200000 2000
150000 1500 000
100000 1000 4000
50000 500
2000
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Iteration Tteration Iteration

Figure 10. Learning curves of all 60 Atari 2600 games on high dataset
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Figure 11. Learning curves of all 60 Atari 2600 games on high dataset

100
0 100 200 300 400 500 600

1300 Asteroids

1200
1100

0 100 200 300 400 500 600

Bowling

40

30

20

10

0 0100 200 300 400 500 600
CrazyClimber

e
g
H
g
H
g
H

0
0 100 200 300 400 500 600
Jamesbond

600
550
500
450
400
350
300

0100 200 300 400 500 600

3

MsPacman

g

g

g

g
H
H
H
H
g

PrivateEye

gggs

-

-500

=
H
H
H
H
H
g

0100 200 300 400 500 600

Tutankham

g
E
H
H
H
g

Zaxxon

g
g
g
H
g
g

Tteration



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

Score

——é -
B
o® =
— .
-8
% o
_é :‘- -
=

AIRRAID

.
-
=%
=
=E.
=5
= =
L _J — . i
-
.
LS =
=5
=
=2,
=5
=
BEAMRIDER
.
BCQ
=%
-3
=,
=5

— —
e —
weDIUM o
Dataset
BOXING
= -

MEDIUM HoH
Dataset

CENTIPEDE

MEDIUM
Dataset

score.

Score

i ;ﬁﬁ rj; F

ALEN

T =
=

MEDIUM HGH
Dataset
ASTERIX
- AL
— 8co
oo
= ultiHeadDON
= Quanie
REM

g -

MEDIUM HGH
Dataset
BANKHEIST
=
MEDIUM HGH
Dataset
BERZERK

T

- BAL
8cQ

== oan

- MultiHeaddQN

= Quantile

= REM

MEDIUM HGH
Dataset

BREAKOUT

éé = -

B, B

CERL

L -

CHOPPERCOMMAND

MEDIUM HGH
Dataset

1o
83

MultiHeadDQN
Quantile
REM

ow

- Al
80

= DN
= MtHeadDON
= Quantile

B . &

Low

AMIDAR

—
weoum o
s

ASTEROIDS

MEDIUM HoH
Dataset

BATTLEZONE

MEDIUM HoH
Dataset

BOWLING

T ijf

=

HeH
Dataset

CARNIVAL

=
i BCQ

= = =0
= S
S
=%

.

=
= -

MEDIUM HoH
Dataset

CRAZYCLIMBER

— - &

- ;1- _@

MEDIUM HoH
Dataset

Figure 12. Comparison between baselines on different datasets from Game Alien to Game CrazyClimber



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

Score

Score

score

Score

ow

=
&

Figure 13.

DEMONATTACK

LI |
88

MutiHeadDQN
= Quantle
= ReM

ié
-

EDIUM HoH
Dataset

ENDURO

=
—_—
_ -
EDIUM HoH
Dataset
FROSTBITE
- BAL
— sco
== poN
—MuitiHeadDQN
= Quantle
= REM

MEDIUM
Dataset

- BaL

8co
== ooN
—uitiHeadDQN
= Quantile

k — REM

wepum r
s
JOURNEYESCAPE
- - = -
-_— -
-

MEDIUM HoH

KUNGFUMASTER

fn

88¢

ItiHeadDQN
Quantile

o
BEE

EDIUM HoH
Dataset

= sAL
—

-

- MUltHeadDON
= quantie

ow

- AL
~ aco

oon
- MultHeadDON
= Quantile

DOUBLEDUNK
= sAL
=
== oan
= MultiHeaddON
= Quanile
= Ren

eb, ﬁjr

MEDIUM HGH
Dataset

FISHINGDERBY

MEDIUM HGH
Dataset

GOPHER

- -
MEDIUM HGH

Dataset

o
[

-
= AL
=
= oon
- MultHeaddQN

= Quantile
= REM

MEDIUM HGH
Dataset

KANGAROO
"
[E= =y
= oon
. = Pieadbon

= Quanile
= REM

e

MEDIUM HGH
Dataset

MONTEZUMAREVENGE
J— = BAL

ow

MEDIUM HGH
Dataset

cmomcron
| BS

s

—

=

=5

=

— i :

£
JAMESBOND

T

Low MEDIUM
Dataset

KRULL
= Al
8cQ

= DoN
= MltHeadDON

= Quanti
= ==

-

Ll

ow MEDIUM
Dataset

MSPACMAN

¥, _

=] === =
i=§ .

ow MEDIUM
Dataset

$31]

ultHeadDON
e

g

HoH

HoH

HoH

- AL

BCQ
= oo
T
= e

—REM

HeH

HeH

$11]

ultHeaddON
e

A

Comparison between baselines on different datasets from Game DemonAttack to Game MsPacman



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

==
N
30 mm poN
™
=
=

=
»
&
. -

02
00
02
ow
12 o malL
aco
Lo == Do
- lieadooN
= Quantie
——
oo T REM
o6
¢ -
@ 04
02
=
00
-0z
ow
20
15
'xln
o5 i
00
ow

- SAL

075w Qua
= REM

Figure 14.

NAMETHISGAME

] =

EDIUM HoH
Dataset

« 0

EDIUM HoH
Dataset

QBERT

MEDIUM HoH
Dataset

ROBOTANK

= =

weowm won
Dataset
soLais
=
B0
= oo
= MtiHeadoon
—_— = Quantile
= = o e
-
-

= -

MEDIUM HoH
Dataset

TENNIS

F - =

MEDIUM HoH
Dataset

gl

- Bl

= DN
- MultHeaddON
= Quantile

==

s
‘ém

ow

= AL
=

== DN

= MultHeadDON
= quantie

= _ af .

%.III

ow

PHOENIX

MEDIUM HGH
Dataset
POOYAN
- AL
— 8co
DN
= MultiHeadDON
= Quanile
REM

= —
MEDIUM HGH
Dataset

RIVERRAID

MEDIUM HGH
Dataset

SEAQUEST

&=

=

=]
5t -

MEDIUM HGH
Dataset

SPACEINVADERS

MEDIUM HGH
Dataset

oL

MEDIUM HGH
Dataset

Score

05

Score

Score

12

10

08

05

PITFALL

MultiHeadDQN

ow MEDIUM
Dataset

PRIVATEEYE

= =l

Low weDuUM
Dataset
ROADRUNNER
—
- =
-
-

- B

ow MEDIUM
Dataset

=
.

%_

Low MEDIUM
Dataset

STARGUNNER

= 8
— -
wow veoum
Detmet
TUTANKHAM
=
=
= =
-
= o
== DON
= Monsesdoon B
= Quantie
-
wow veoum

Dataset

HoH

- saL
— 8co

== pon
[ MultiHeadDQN
= Quantie

HoH

- BaL
=

== pon

- MultiHeadDON
= Quantile

= REM

ﬁi

- BAL
BCQ

== oon
- MultiHeadDQN
= Quantie

= REM,

HoH

- BaL
B
== pon

= MultiHeadDQN

= Quantie
= REM,

L

HoH

Comparison between baselines on different datasets from Game NameThisGame to Game Tutankham



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

UPNDOWN VENTURE VIDEOPINBALL
- AL - AL 20 - AL
8co 8Q 80
== bon s == oav == oaN
- itiHeadDQN - ultHeadDQN = MultiHeaddON
—_— = Quantile = Quanile = Quanile

= REM = ReM 15 "
- % = ﬁ 4

= éH . E%E ;I_*é éﬂj. “E%*é?;é—éééﬁé

&

HIH

wow veoum o wow weoum s wow weom W
e i s
wizaRDOFWOR VARSREVENGE 2000
- ——
s . T sca
10 = = bov
= = = Funeadbon = voesdoOn
T = o = uantic
. =
B o D
i B TT1 = 2 T o
: gos H | .
& . &
T
1 >
0
I - . —
= ! 5 1 ,
: - " :
. =
ww veoum e wow weoum s wow weoum s
e e s

Figure 15. Comparison between baselines on different datasets from Game UpNDown to Game Zaxxon



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

AIRRAID
Best

)
TRBCQK=09)
- TRECQ({=08)
- TRECQ(¢=0.7)
== TR8CQ({=06)

=

§u éiéé.

o
o
oc D
o
rssuLr
2
.
S
2
&
"
10 =
. - == _
o
o
s
=
10— sco

= TRECQ (£=0)

Fﬂ_g__

06
3
04
02
00
ow MEDIUM HoH
Dataset
BEAMRIDER

12 = Best
L =

[ TRBCQ ((=09)

10 - TRECQ((=08)

- TRECQ({=0.7)

== TR8CQ({=06)

o
g8
&
o = -
o % * -
0 -
o o o
F=2
soxws
140 o
- | . ﬁ
-
&
™
. —e=
™ :

BcQ
= TR8CQ {=09)
= TRBCQ({=08)
115 - TR8CQ({=0.7)

= TR8CQ (= 0.6)

ow MEDIUM HoH

CENTIPEDE

= * _‘_i

10
—
s
00
o5 £
= Taca€-06)
wow wevm won

Dataset

Best

TRBCQ (¢ =09)
200 W TRECQ((=03)
- TRECQ (£=0.7)
= TRECQ (C=0.6)

ALEN

o N
% .

M H
os

g 150
&
125
100
015 .o 0
050
Low MEDIUM, HiGH
Dataset
ASTERIX
200 - pest
= — BQ
s = TRECQ ((=0.9)
TRECQ (=0.8)
Tacq
150 == TRaco
125 24
5100 -
&

08 Best

=)
TRBCQ (=09)
RECO (-
TRBCQ (¢ =0.

Score.

TRBCQ (¢ =0.6)

Score

Score

ow

. NI

MEDIUM HGH
Dataset

BANKHEIST

20
15
H
10
05
MEDIUM HoH
Dataset
BERZERK
st s
=
- TRECQ (¢0.9)
- TRECQ (¢=0.8)
- TRECQ (£=0.7) >
= TRECQ (¢=06)
25
v
§20
15
10
os
MEDIUM o
Dataset
BREAKOUT
E :
o)
TRECQ (= 0.8)
9(¢=0)
= TRECQ (€= 06) 10

z

. T

= pest 125
I TR-BCQ ({=0.9) 100
8)
TRECQ ({=0.7) ors
Taca-on
g o2
&
-
- R

MEDIUM HGH
Dataset

Figure 16. Comparison between TR-BCQ and the best baselines on different datasets from Game Al

AMIDAR

st
8cQ
BCQ (¢=0.9)
- TRECQ ((=0.8)
- TRECQ (:
== TRECQ

ow MEDIUM HoH
Dataset
ASTEROIDS
ow MEDIUM HoH
Dataset
BATTLEZONE
5 - est
=

5 TRECQ (=09
- TRACQ ({=0.8)

_ wm RBCQE=07)
= mECQE=06)

Low MEDIUM HoH
Dataset
BOWLING
- Best
8o

o TRBCQ ((=0.9)
- TRCQ ((=0.8)
- TRECQ ({=0.7)
= TRBCQ (¢=0.6)

=

o

Low MEDIUM HeH
Dataset

==

CARNIVAL

=

Low HEDIUM HGH
Dataset
CRAZYCLIMBER
— = T 7= — -

= TRBCQ(C=0.6)

ow MEDIUM HoH
Dataset

ien to Game CrazyClimber



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

15

score

06

=
- TRECQ ({=0.7)
= TRECQ({=0.6)

= TRBCQ=09)
= TRBCQ=08)
- TRBCQ (£=0.7)
= TRBCQ €= 06)
ow

B

DEMONATTACK
Best

)
TRBCQ=09)
- TRECQ ({=0.8)
- TRECQ(¢=0.7)
== TR8CQ({=06)

By T,

EDIUM HoH
Dataset

ENDURO

- TRBCQ({=06)

EDIUM HoH
Dataset
FROSTBITE
MEDIUM HoH
Dataset
HERO.

B0
[ TRBCQ ((=09)
- TRECQ ({=0.

=

MEDIUM HGH

Dataset

HoH

JOURNEYESCAPE

MEDIUM
Dataset

KUNGFUMASTER
= Best

BcQ
TRBCQ(=09)
TRECQ (0.

MEDIUM HoH
Dataset

DOUBLEDUNK
Best
15
TRBCQ (¢ =09)
- TRECQ ({=0.8)
- TRECQ (£=0.7)
Lo = TRECQE=06)
a *
00
05
ow MEDIUM HGH
Dataset

FISHINGDERBY

15

10
H

17

-
-
- .
T BCQ(€=06)
ow MEDIUM HGH
Dataset
GOPHER
16 W Best
) TRECQ (£=0.9)
- TRECQ (£=0.8)
M4 TRBCQ(=0.7)
= TRECQ (¢=0.6) _—
12 Eﬁ
H
S0
08
06 e
04
tow MEDIUM HGH
Dataset
ICEHOCKEY
—_—
14 e
12 -
=
§
10
= Best
08 1 BQ
= TRECQ (£=0.9)
= TRECQ ((=0.8)
i - TRECQ (¢=0.7)
0 TRECQ (=0.6)
Low MEDIUM HGH
Dataset
KANGAROO
10

)

TRBCQ (¢ =0.7)
= TRECQ =0.6)

= ==

08
Eos
4
04
02
ow MEDIUM o
Dataset
MONTEZUMAREVENGE
- et
" 5 TRECQ (€=09)
8€Q (¢=08)
) TR8CQ (€=07)
TRECQ (= 0.6)
5
2i0
]

ow MEDIUM HGH
Dataset

ELEVATORACTION
= Best
=y
TRBCQ ((=09)
- TRECQ ({=0.8)
- TRECQ({=0.7)
= TRCQ (C=0.6)

o —_— I
ow MEDIUM HoH
Dataset
FREEWAY

s =

= TRBCQ(C=0.6)

ow MEDIUM HoH
Dataset

GRAVITAR

- TRECQ(£=0.7)

=
. &
:
S22 .

_
s

10
wow weoum o
s
JAMESBOND
10 i S Sp———
o
L]
0
E 04
02
f—_—
a0 = o
= TRBCQ ({=0.9)
02 - TRBCQ ({=0.8)

- TRCQ((=0.7)

TRECQ (¢ =0.6)
Low MEDIUM HoH

Dataset

KRULL

09
08
07
ow MEDIUM HeH
Dataset
MSPACMAN

= et
14 8cQ
BCQ (¢=0.9)
800 (€
BCQ (¢=0.
12 = TRECQEC=06)
w10
&
08

-~

MEDIUM HoH
Dataset

Figure 17. Comparison between TR-BCQ and the best baselines on different datasets from Game DemonAttack to Game MsPac-

man



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

30

o085

- Best

= TRECQ (£=0)
12 mm TRBCO(=038)

- TRECQ (£=0.7)
11 == TRBCQ=06)

TRBCQ (=0.7)
= TRECQ ¢=0.6)
ow

NAMETHISGAME

z

EDIUM
Dataset

EDIUM
Dataset

MEDIUM
Dataset

ROBOTANK

MEDIUM
Dataset

SOLARIS

& -

Best

B
Tacag-as

BB = mocoieon
=T

= macaton

HoH

1)
- TRBCQ({=06)
HoH

S

HoH

—_—

= Best

=)
== TRBCQ£=09)
= TR8CQ((=0.8)
- TR8CQ({=0.7)
TRECQ (¢ =0,

HGH

- 'Il@i

- T
= et
8o
= TRaCQE=09)
= TR8CQ E=05)
- TR-BCQ ({=0.7)
. TR-BCQ ({=0.6)
weoum an
Dataset
Tennis
=
weoum oH
Dataset

16

PHOENIX

= TRECQ (£=0.7)
[ TRECQ (€=0.)

MEDIUM HGH

Dataset

POOYAN
= Best

— BQ
= TRECQ ((=0.9)
TRECQ (=0.8)

= E*ﬁi_ iﬁ’@

MEDIUM HGH
Dataset
RIVERRAID
- Best
=

[ TRBCQ (£=0.9)
- TRECQ ((=0.8)
- TRECQ ({=0.7)
= TRBCQ (€=0.6)

=
- @"

| .

MEDIUM HGH
Dataset
SEAQUEST
- Best
1 BeQ
[ TRBCQ (£=0.9)
* - TRBCQ ({=0.8)
- TRECQ (£=0.7)

= TRECQ (£=06)

i

MEDIUM HGH
Dataset

SPACEINVADERS

=0,

™ )
= TRECQ (= 0.6)

= L
=== %

ow

= et
=)

TRBCQ (=09)

TRBCQ (¢ =08)

TRBCQ (¢=0.7)

TRBCQ ((=06)

MEDIUM HGH
Dataset
TIMEPILOT
-
MEDIUM HGH

Dataset

PITFALL

1)
= TRECQ (=06

ow MEDIUM
Dataset

PRIVATEEYE

ow MEDIUM
Dataset
ROADRUNNER
14
-
12
10
08
-
¢
g o6
&
04
02
00
-0z
ow MEDIUM
Dataset
SKING
16

HoH

-
&

v @

.

HoH

- est
=

o TRECQ (=09
- TRACQ ({=0.8)
- TRCQ ({=0.7)
= TRCQ (C=0.6)

HoH

S1 LA A

10
=
08
Low MEDIUM
Dataset
STARGUNNER
10
08
206
&
04
02
00 S —
ow MEDIUM
Dataset
TUTANKHAM
L
20
19
18
&

@__ -I-i =

ow MEDIUM
Dataset

= Best
 8co

= TRBCQ ({=0.9)

- TRCQ ({=0.8)

- TRECQ(C=0.7)

TRECQ (¢ =0.6)

HoH

HeH

= Best

B
= TRECQ(=0.9)
)

HoH

Figure 18. Comparison between TR-BCQ and best baselines on different datasets from Game NameThisGame to Game Tu-

tankham



Interpretable performance analysis towards offline reinforcement learning: A dataset perspective

VIDEOPINBALL

UPNDOWN VENTURE
Best Best 200 Best
24 -
- TRECQ({=09) s TRECQ ((=09) . & TRBCQ ((=09)
. TRECQ (€=0.8) TRECQ(=0.8) 7 -_TRECQ ((=0.8)
TR8CQ (€=0.7) - TRECQ (¢=0.7) - TRECQ({=0.7)
- B =06 TRECQ (=06 150 TRBCQ (¢=0.6
TR8CQ (£=0.6) . Q¢=06) Q¢=06)
20
- 125

fl
i
[+
{

. . . B TR -
= - ‘}—‘:‘%é? oo —‘EE =

10
wow weDIUM o Low MEDIUM o Low MEDIM HoH
Dataset Dataset Dataset
WIZARDOFWOR YARSREVENGE 2AXXON
Best o Best sest
€ 8c aco N - 8o
20 T8CO (=09) o TRECQ €=09) TRECQ(€=09)
TR8CO({=08) TR8CO (= 08) - TR8CQ({=08)
TR8CO({=0) - TRECQ ({=0.) - TRECQ(€=0.7)
25 = TRECO({=06) TRECQ ({=06) g TRBCO (=06)
:l 08
p20 -t Y o2
3 Fos H

U

Low EDIUM HoH ow MEDIUM HGH ow MEDIUM
Dataset Dataset Dataset

- | - - ____

—— o I

HIGH

Figure 19. Comparison between TR-BCQ and best baselines on different datasets from Game UpNDown to Game Zaxxon



