
Diffusion Models Beat GANs on Image Synthesis

Prafulla Dhariwal∗
OpenAI

prafulla@openai.com

Alex Nichol∗
OpenAI

alex@openai.com

Abstract

We show that diffusion models can achieve image sample quality superior to
the current state-of-the-art generative models. We achieve this on unconditional
image synthesis by finding a better architecture through a series of ablations. For
conditional image synthesis, we further improve sample quality with classifier
guidance: a simple, compute-efficient method for trading off diversity for sample
quality using gradients from a classifier. We achieve an FID of 2.97 on ImageNet
128× 128, 4.59 on ImageNet 256× 256, and 7.72 on ImageNet 512× 512, and
we match BigGAN-deep even with as few as 25 forward passes per sample, all
while maintaining better coverage of the distribution. Finally, we find that classifier
guidance combines well with upsampling diffusion models, further improving FID
to 3.85 on ImageNet 512× 512. We release our code at https://github.com/
openai/guided-diffusion.

1 Introduction

Figure 1: Selected samples from our best ImageNet 512× 512 model (FID 3.85)

Over the past few years, generative models have gained the ability to generate human-like natural
language [6], infinite high-quality synthetic images [5, 22, 44] and highly diverse human speech and
music [57, 12]. These models can be used in a variety of ways, such as generating images from text
prompts [63, 43] or learning useful feature representations [13, 7]. While these models are already

∗Equal contribution

ar
X

iv
:2

10
5.

05
23

3v
1 

 [
cs

.L
G

] 
 1

1 
M

ay
 2

02
1

https://github.com/openai/guided-diffusion
https://github.com/openai/guided-diffusion


capable of producing realistic images and sound, there is still much room for improvement beyond
the current state-of-the-art, and better generative models could have wide-ranging impacts on graphic
design, games, music production, and countless other fields.

GANs [16] currently hold the state-of-the-art on most image generation tasks [5, 60, 22] as measured
by sample quality metrics such as FID [18], Inception Score [47] and Precision [26]. However, some
of these metrics do not fully capture diversity, and it has been shown that GANs capture less diversity
than state-of-the-art likelihood-based models [44, 37, 36]. Furthermore, GANs are often difficult to
train, collapsing without carefully selected hyperparameters and regularizers [5, 35, 4].

While GANs hold the state-of-the-art, their drawbacks make them difficult to scale and apply to
new domains. As a result, much work has been done to achieve GAN-like sample quality with
likelihood-based models [44, 19, 36, 9]. While these models capture more diversity and are typically
easier to scale and train than GANs, they still fall short in terms of visual sample quality. Furthermore,
except for VAEs, sampling from these models is slower than GANs in terms of wall-clock time.

Diffusion models are a class of likelihood-based models which have recently been shown to produce
high-quality images [49, 52, 19] while offering desirable properties such as distribution coverage,
a stationary training objective, and easy scalability. These models generate samples by gradually
removing noise from a signal, and their training objective can be expressed as a reweighted variational
lower-bound [19]. Nichol and Dhariwal [37] found that these models improve reliably with increased
compute, and can produce high-quality samples even on the difficult ImageNet 256× 256 dataset
using an upsampling stack. However, the FID of this model is still not competitive with BigGAN-deep
[5], the current state-of-the-art on this dataset.

We hypothesize that the gap between diffusion models and GANs stems from at least two factors:
first, that the model architectures used by recent GAN literature have been heavily explored and
refined; second, that GANs are able to trade off diversity for quality, producing high quality samples
but not covering the whole distribution. We aim to bring these benefits to diffusion models, first by
improving model architecture and then by devising a scheme for trading off diversity for quality.
With these improvements, we achieve a new state-of-the-art, surpassing GANs on several different
metrics and datasets.

The rest of the paper is organized as follows. In Section 2, we give a brief background of diffusion
models based on Ho et al. [19] and the improvements from Nichol and Dhariwal [37] and Song
et al. [50], and we describe our evaluation setup. In Section 3, we introduce simple architecture
improvements that give a substantial boost to FID. In Section 4, we describe a method for using
gradients from a classifier to guide a diffusion model during sampling. We find that a single
hyperparameter, the scale of the classifier gradients, can be tuned to trade off diversity for fidelity,
and we can increase this gradient scale factor by an order of magnitude without obtaining adversarial
examples [54]. Finally, in Section 5 we show that models with our improved architecture achieve
state-of-the-art on unconditional image synthesis tasks, and with classifier guidance achieve state-of-
the-art on conditional image synthesis. When using classifier guidance, we find that we can sample
with as few as 25 forward passes while maintaining FIDs comparable to BigGAN. We also compare
our improved models to upsampling stacks, finding that the two approaches give complementary
improvements and that combining them gives the best results on ImageNet 512× 512.

2 Background

On a high level, diffusion models sample from a distribution by reversing a gradual noising process. In
particular, sampling starts with noise xT and produces gradually less-noisy samples xT−1, xT−2, ...
until reaching a final sample x0. Each timestep t corresponds to a certain noise level, and xt can be
thought of as a mixture of a signal x0 with some noise ε where the signal to noise ratio is determined
by the timestep t. For the remainder of this paper, we assume that the noise ε is drawn from a diagonal
Gaussian distribution, which works well for natural images and simplifies various derivations.

A diffusion model learns to produce a slightly more "denoised" xt−1 from xt. Ho et al. [19]
parameterize this model as a function εθ(xt, t) which predicts the noise component of a noisy sample
xt. To train these models, each sample in a minibatch is produced by randomly drawing a data sample
x0, a timestep t, and noise ε, which together give rise to a noised sample xt. The training objective is

2



then ||εθ(xt, t)− ε||2, i.e. a simple mean-squared error loss between the true noise and the predicted
noise.

It is not immediately obvious how to sample from a noise predictor εθ(xt, t). Recall that diffusion
sampling proceeds by repeatedly predicting xt−1 from xt, starting from xT . Ho et al. [19] show
that, under reasonable assumptions, we can model the distribution pθ(xt−1|xt) of xt−1 given xt as
a diagonal Gaussian N (xt−1;µθ(xt, t),Σθ(xt, t)), where the mean µθ(xt, t) can be calculated as a
function of εθ(xt, t). The variance Σθ(xt, t) of this Gaussian distribution can be fixed to a known
constant [19] or learned with a separate neural network head, and both approaches yield high-quality
samples when the total number of diffusion steps T is large enough [37].

Ho et al. [19] observe that the simple mean-sqaured error objective, Lsimple, works better in practice
than the actual variational lower bound Lvlb that can be derived from interpreting the denoising diffu-
sion model as a VAE. They also note that training with this objective and using their corresponding
sampling procedure is equivalent to the denoising score matching model from Song and Ermon [51],
who use Langevin dynamics to sample from a denoising model trained with multiple noise levels to
produce high quality image samples. We often use "diffusion models" as shorthand to refer to both
classes of models.

For a more detailed mathematical description of diffusion models, we refer the reader to Appendix A.

2.1 Improvements

Following the breakthrough work of Song and Ermon [51] and Ho et al. [19], several recent papers
have proposed improvements to diffusion models. Here we describe a few of these improvements,
which we employ for our models.

Nichol and Dhariwal [37] find that fixing the variance Σθ(xt, t) to a constant is sub-optimal for
sampling with fewer diffusion steps (smaller T ), and propose to parameterize Σθ(xt, t) as a neural
network whose output v is interpolated as:

Σθ(xt, t) = exp(v log βt + (1− v) log β̃t) (1)

Additionally, Nichol and Dhariwal [37] propose a hybrid objective for training both εθ(xt, t) and
Σθ(xt, t) using the weighted sum Lsimple + λLvlb. Learning the reverse process variances with their
hybrid objective allows sampling with fewer steps without much drop in sample quality. We adopt
this objective and parameterization, and use it throughout our experiments.

Song et al. [50] propose DDIM, which formulates an alternative non-Markovian noising process
that has the same forward marginals as DDPM, but allows producing different reverse samplers by
changing the variance of the reverse noise. By setting this noise to 0, they provide a way to turn any
model εθ(xt, t) into a deterministic mapping from latents to images, and find that this provides an
alternative way to sample with fewer steps. We adopt this sampling approach when using fewer than
50 sampling steps, since Nichol and Dhariwal [37] found it to be beneficial in this regime.

2.2 Sample Quality Metrics

For comparing sample quality across models, we perform quantitative evaluations using the following
metrics. While these metrics are often used in practice and correspond well with human judgement,
they are not a perfect proxy, and finding better metrics for sample quality evaluation is still an open
problem.

Inception Score (IS) was proposed by Salimans et al. [47], and it measures how well a model captures
the full ImageNet class distribution while still producing individual samples that are convincing
examples of a single class. One drawback of this metric is that it does not reward covering the
whole distribution or capturing diversity within a class, and models which memorize a small subset
of the full dataset will still have high IS [3]. To better capture diversity than IS, Fréchet Inception
Distance (FID) was proposed by Heusel et al. [18], who argued that it is more consistent with human
judgement than Inception Score. FID provides a symmetric measure of the distance between two
image distributions in the Inception-V3 [55] latent space. Recently, sFID was proposed by Nash
et al. [36] as a version of FID that uses spatial features rather than the standard pooled features.
They find that this metric better captures spatial relationships, rewarding image distributions with
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Channels Depth Heads Attention BigGAN Rescale FID FID
resolutions up/downsample resblock 700K 1200K

160 2 1 16 7 7 15.33 13.21

128 4 -0.21 -0.48
4 -0.54 -0.82

32,16,8 -0.72 -0.66
3 -1.20 -1.21

3 0.16 0.25
160 2 4 32,16,8 3 7 -3.14 -3.00

Table 1: Ablation of various architecture changes, evaluated at 700K and 1200K iterations

coherent high-level structure. Finally, Kynkäänniemi et al. [26] proposed Improved Precision and
Recall metrics to separately measure sample fidelity as the fraction of model samples which fall into
the data manifold (precision), and diversity as the fraction of data samples which fall into the sample
manifold (recall).

We use FID as our default metric for overall sample quality comparisons as it captures both diversity
and fidelity and has been the de facto standard metric for state-of-the-art generative modeling work
[21, 22, 5, 19]. We use Precision or IS to measure fidelity, and Recall to measure diversity or
distribution coverage. When comparing against other methods, we re-compute these metrics using
public samples or models whenever possible. This is for two reasons: first, some papers [21, 22,
19] compare against arbitrary subsets of the training set which are not readily available; and second,
subtle implementation differences can affect the resulting FID values [38]. To ensure consistent
comparisons, we use the entire training set as the reference batch [18, 5], and evaluate metrics for all
models using the same codebase.

3 Architecture Improvements

In this section we conduct several architecture ablations to find the model architecture that provides
the best sample quality for diffusion models.

Ho et al. [19] introduced the UNet architecture for diffusion models, which Jolicoeur-Martineau
et al. [20] found to substantially improve sample quality over the previous architectures [51, 27] used
for denoising score matching. The UNet model uses a stack of residual layers and downsampling
convolutions, followed by a stack of residual layers with upsampling colvolutions, with skip connec-
tions connecting the layers with the same spatial size. In addition, they use a global attention layer
at the 16 × 16 resolution with a single head, and add a projection of the timestep embedding into
each residual block. Song et al. [53] found that further changes to the UNet architecture improved
performance on the CIFAR-10 [25] and CelebA-64 [28] datasets. We show the same result on
ImageNet 128× 128, finding that architecture can indeed give a substantial boost to sample quality
on much larger and more diverse datasets at a higher resolution.

We explore the following architectural changes:

• Increasing depth versus width, holding model size relatively constant.

• Increasing the number of attention heads.

• Using attention at 32× 32, 16× 16, and 8× 8 resolutions rather than only at 16× 16.

• Using the BigGAN [5] residual block for upsampling and downsampling the activations,
following [53].

• Rescaling residual connections with 1√
2

, following [53, 21, 22].

For all comparisons in this section, we train models on ImageNet 128× 128 with batch size 256, and
sample using 250 sampling steps. We train models with the above architecture changes and compare
them on FID, evaluated at two different points of training, in Table 1. Aside from rescaling residual
connections, all of the other modifications improve performance and have a positive compounding
effect. We observe in Figure 2 that while increased depth helps performance, it increases training
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Number of heads Channels per head FID

1 14.08

2 -0.50
4 -0.97
8 -1.17

32 -1.36
64 -1.03
128 -1.08

Table 2: Ablation of various attention configurations. More heads or lower channels per heads both
lead to improved FID.
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Figure 2: Ablation of various architecture changes, showing FID as a function of wall-clock time.
FID evaluated over 10k samples instead of 50k for efficiency.

Operation FID

AdaGN 13.06
Addition + GroupNorm 15.08

Table 3: Ablating the element-wise operation used when projecting timestep and class embeddings
into each residual block. Replacing AdaGN with the Addition + GroupNorm layer from Ho et al.
[19] makes FID worse.

time and takes longer to reach the same performance as a wider model, so we opt not to use this
change in further experiments.

We also study other attention configurations that better match the Transformer architecture [59]. To
this end, we experimented with either fixing attention heads to a constant, or fixing the number of
channels per head. For the rest of the architecture, we use 128 base channels, 2 residual blocks
per resolution, multi-resolution attention, and BigGAN up/downsampling, and we train the models
for 700K iterations. Table 2 shows our results, indicating that more heads or fewer channels per
head improves FID. In Figure 2, we see 64 channels is best for wall-clock time, so we opt to use 64
channels per head as our default. We note that this choice also better matches modern transformer
architectures, and is on par with our other configurations in terms of final FID.

3.1 Adaptive Group Normalization

We also experiment with a layer [37] that we refer to as adaptive group normalization (AdaGN), which
incorporates the timestep and class embedding into each residual block after a group normalization
operation [61], similar to adaptive instance norm [21] and FiLM [41]. We define this layer as
AdaGN(h, y) = ys GroupNorm(h)+yb, where h is the intermediate activations of the residual block
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following the first convolution, and y = [ys, yb] is obtained from a linear projection of the timestep
and class embedding.

We had already seen AdaGN improve our earliest diffusion models, and so had it included by
default in all our runs. In Table 3, we explicitly ablate this choice, and find that the adaptive group
normalization layer indeed improved FID. Both models use 128 base channels and 2 residual blocks
per resolution, multi-resolution attention with 64 channels per head, and BigGAN up/downsampling,
and were trained for 700K iterations.

In the rest of the paper, we use this final improved model architecture as our default: variable width
with 2 residual blocks per resolution, multiple heads with 64 channels per head, attention at 32, 16 and
8 resolutions, BigGAN residual blocks for up and downsampling, and adaptive group normalization
for injecting timestep and class embeddings into residual blocks.

4 Classifier Guidance

In addition to employing well designed architectures, GANs for conditional image synthesis [33, 5]
make heavy use of class labels. This often takes the form of class-conditional normalization statistics
[14, 10] as well as discriminators with heads that are explicitly designed to behave like classifiers
p(y|x) [34]. As further evidence that class information is crucial to the success of these models,
Lucic et al. [30] find that it is helpful to generate synthetic labels when working in a label-limited
regime.

Given this observation for GANs, it makes sense to explore different ways to condition diffusion
models on class labels. We already incorporate class information into normalization layers (Section
3.1). Here, we explore a different approach: exploiting a classifier p(y|x) to improve a diffusion
generator. Sohl-Dickstein et al. [49] and Song et al. [53] show one way to achieve this, wherein a
pre-trained diffusion model can be conditioned using the gradients of a classifier. In particular, we
can train a classifier pφ(y|xt, t) on noisy images xt, and then use gradients ∇xt log pφ(y|xt, t) to
guide the diffusion sampling process towards an arbitrary class label y.

In this section, we first review two ways of deriving conditional sampling processes using classifiers.
We then describe how we use such classifiers in practice to improve sample quality. We choose the
notation pφ(y|xt, t) = pφ(y|xt) and εθ(xt, t) = εθ(xt) for brevity, noting that they refer to separate
functions for each timestep t and at training time the models must be conditioned on the input t.

4.1 Conditional Reverse Noising Process

We start with a diffusion model with an unconditional reverse noising process pθ(xt|xt+1). To
condition this on a label y, it suffices to sample each transition2 according to

pθ,φ(xt|xt+1, y) = Zpθ(xt|xt+1)pφ(y|xt) (2)

where Z is a normalizing constant (proof in Appendix G). It is typically intractable to sample from
this distribution exactly, but Sohl-Dickstein et al. [49] show that it can be approximated as a perturbed
Gaussian distribution. Here, we review this derivation.

Recall that our diffusion model predicts the previous timestep xt from timestep xt+1 using a Gaussian
distribution:

pθ(xt|xt+1) = N (µ,Σ) (3)

log pθ(xt|xt+1) = −1

2
(xt − µ)TΣ−1(xt − µ) + C (4)

We can assume that logφ p(y|xt) has low curvature compared to Σ−1. This assumption is reasonable
in the limit of infinite diffusion steps, where ||Σ|| → 0. In this case, we can approximate log pφ(y|xt)
using a Taylor expansion around xt = µ as

log pφ(y|xt) ≈ log pφ(y|xt)|xt=µ + (xt − µ)∇xt
log pφ(y|xt)|xt=µ (5)

= (xt − µ)g + C1 (6)

2We must also sample xT conditioned on y, but a noisy enough diffusion process causes xT to be nearly
Gaussian even in the conditional case.
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Algorithm 1 Classifier guided sampling, given a diffusion model (µθ(xt),Σθ(xt)), classifier
pφ(y|xt), and gradient scale s.

Input: class label y, gradient scale s
x0 ← sample from N (0, I)
for all t from T to 1 do
µ← µθ(xt)
Σ← Σθ(xt)
g ← s∇xt

log pφ(y|xt)
xt−1 ← sample from N (µ+ Σg,Σ)

end for
return x0

Here, g = ∇xt
log pφ(y|xt)|xt=µ, and C1 is a constant. This gives

log(pθ(xt|xt+1)pφ(y|xt)) ≈ −
1

2
(xt − µ)TΣ−1(xt − µ) + (xt − µ)g + C2 (7)

= −1

2
(xt − µ− Σg)TΣ−1(xt − µ− Σg) +

1

2
gTΣg + C2 (8)

= −1

2
(xt − µ− Σg)TΣ−1(xt − µ− Σg) + C3 (9)

= log p(z) + C4, z ∼ N (µ+ Σg,Σ) (10)

We can safely ignore the constant term C4, since it corresponds to the normalizing coefficient Z in
Equation 2. We have thus found that the conditional transition operator can be approximated by a
Gaussian similar to the unconditional transition operator, but with its mean shifted by Σg. Algorithm
1 summaries the corresponding sampling algorithm. We include an optional scale factor s for the
gradients, which we describe in more detail in Section 4.3.

4.2 Conditional Sampling for DDIM

The above derivation for conditional sampling is only valid for the stochastic diffusion sampling
process, and cannot be applied to deterministic sampling methods like DDIM [50]. To this end, we
use a score-based conditioning trick adapted from Song et al. [53], which leverages the connection
between diffusion models and score matching [52]. In particular, if we have a model εθ(xt) that
predicts the noise added to a sample, then this can be used to derive a score function:

∇xt
log pθ(xt) = − 1√

1− ᾱt
εθ(xt) (11)

We can now substitute this into the score function for p(xt)p(y|xt):

∇xt
log(pθ(xt)pφ(y|xt)) = ∇xt

log pθ(xt) +∇xt
log pφ(y|xt) (12)

= − 1√
1− ᾱt

εθ(xt) +∇xt
log pφ(y|xt) (13)

Finally, we can define a new epsilon prediction ε̂(xt) which corresponds to the score of the joint
distribution:

ε̂(xt) := εθ(xt)−
√

1− ᾱt∇xt
log pφ(y|xt) (14)

We can then use the exact same sampling procedure as used for regular DDIM, but with the modified
noise predictions ε̂θ(xt) instead of εθ(xt).

4.3 Scaling Classifier Gradients

To apply classifier guidance to a large scale generative task, we train classification models on
ImageNet. Our classifier architecture is simply the downsampling trunk of the UNet model with
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Figure 3: Samples from an unconditional diffusion model with classifier guidance to condition
on the class "Pembroke Welsh corgi". Using classifier scale 1.0 (left; FID: 33.0) does not produce
convincing samples in this class, whereas classifier scale 10.0 (right; FID: 12.0) produces much more
class-consistent images.

Conditional Guidance Scale FID sFID IS Precision Recall

7 7 26.21 6.35 39.70 0.61 0.63
7 3 1.0 33.03 6.99 32.92 0.56 0.65
7 3 10.0 12.00 10.40 95.41 0.76 0.44
3 7 10.94 6.02 100.98 0.69 0.63
3 3 1.0 4.59 5.25 186.70 0.82 0.52
3 3 10.0 9.11 10.93 283.92 0.88 0.32

Table 4: Effect of classifier guidance on sample quality. Both conditional and unconditional models
were trained for 2M iterations on ImageNet 256× 256 with batch size 256.

an attention pool [42] at the 8x8 layer to produce the final output. We train these classifiers on the
same noising distribution as the corresponding diffusion model, and also add random crops to reduce
overfitting. After training, we incorporate the classifier into the sampling process of the diffusion
model using Equation 10, as outlined by Algorithm 1.

In initial experiments with unconditional ImageNet models, we found it necessary to scale the
classifier gradients by a constant factor larger than 1. When using a scale of 1, we observed that the
classifier assigned reasonable probabilities (around 50%) to the desired classes for the final samples,
but these samples did not match the intended classes upon visual inspection. Scaling up the classifier
gradients remedied this problem, and the class probabilities from the classifier increased to nearly
100%. Figure 3 shows an example of this effect.

To understand the effect of scaling classifier gradients, note that s ·∇x log p(y|x) = ∇x log 1
Z p(y|x)s,

where Z is an arbitrary constant. As a result, the conditioning process is still theoretically grounded
in a re-normalized classifier distribution proportional to p(y|x)s. When s > 1, this distribution
becomes sharper than p(y|x), since larger values are amplified by the exponent. In other words, using
a larger gradient scale focuses more on the modes of the classifier, which is potentially desirable for
producing higher quality (but less diverse) samples.

In the above derivations, we assumed that the underlying diffusion model was unconditional, modeling
p(x). It is also possible to train conditional diffusion models, p(x|y), and use classifier guidance in
the exact same way. Table 4 shows that the sample quality of both unconditional and conditional
models can be greatly improved by classifier guidance. We see that, with a high enough scale, the
guided unconditional model can get quite close to the FID of an unguided conditional model, although
training directly with the class labels still helps. Guiding a conditional model further improves FID.

Table 4 also shows that classifier guidance improves precision at the cost of recall, thus introducing
a trade-off in sample fidelity versus diversity. We explicitly evaluate how this trade-off varies with
the gradient scale in Figure 4. We see that scaling the gradients beyond 1.0 smoothly trades off
recall (a measure of diversity) for higher precision and IS (measures of fidelity). Since FID and sFID
depend on both diversity and fidelity, their best values are obtained at an intermediate point. We also
compare our guidance with the truncation trick from BigGAN in Figure 5. We find that classifier
guidance is strictly better than BigGAN-deep when trading off FID for Inception Score. Less clear
cut is the precision/recall trade-off, which shows that classifier guidance is only a better choice up
until a certain precision threshold, after which point it cannot achieve better precision.
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Figure 4: Change in sample quality as we vary scale of the classifier gradients for a class-conditional
ImageNet 128× 128 model.
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Figure 5: Trade-offs when varying truncation for BigGAN-deep and gradient scale for classifier
guidance. Models are evaluated on ImageNet 128× 128. The BigGAN-deep results were produced
using the TFHub model [11] at truncation levels [0.1, 0.2, 0.3, ..., 1.0].

5 Results

To evaluate our improved model architecture on unconditional image generation, we train separate
diffusion models on three LSUN [62] classes: bedroom, horse, and cat. To evaluate classifier guidance,
we train conditional diffusion models on the ImageNet [45] dataset at 128 × 128, 256 × 256, and
512× 512 resolution.

5.1 State-of-the-art Image Synthesis

Table 5 summarizes our results. Our diffusion models can obtain the best FID on each task, and
the best sFID on all but one task. With the improved architecture, we already obtain state-of-the-art
image generation on LSUN and ImageNet 64 × 64. For higher resolution ImageNet, we observe
that classifier guidance allows our models to substantially outperform the best GANs. These models
obtain perceptual quality similar to GANs, while maintaining a higher coverage of the distribution as
measured by recall, and can even do so using only 25 diffusion steps.

Figure 6 compares random samples from the best BigGAN-deep model to our best diffusion model.
While the samples are of similar perceptual quality, the diffusion model contains more modes than
the GAN, such as zoomed ostrich heads, single flamingos, different orientations of cheeseburgers,
and a tinca fish with no human holding it.

5.2 Comparison to Upsampling

As a trick to improve sample quality at high resolutions, Nichol and Dhariwal [37] and Saharia et al.
[46] train a low-resolution diffusion model and a corresponding upsampling diffusion model. In
this approach, the upsampling diffusion model is trained to upsample images from the training set,
and conditions on low-resolution images by upsampling them with a simple technique (e.g. bilinear
interpolation) and concatenating the result channel-wise to the model input. During sampling, the
low-resolution diffusion model produces a sample, and then the upsampling model is conditioned

9



Model FID sFID Prec Rec

LSUN Bedrooms 256× 256

DDPM [19] 4.89 9.07 0.60 0.45
DCTransformer** [36] 6.40 6.66 0.44 0.56
StyleGAN [21] 2.35 6.62 0.59 0.48
IDDPM [37] 4.24 8.21 0.62 0.46
ADM (dropout) 1.90 5.59 0.66 0.51

LSUN Horses 256× 256

StyleGAN2 [22] 3.84 6.46 0.63 0.48
ADM 2.95 5.94 0.69 0.55
ADM (dropout) 2.57 6.81 0.71 0.55

LSUN Cats 256× 256

DDPM [19] 17.1 12.4 0.53 0.48
StyleGAN2 [22] 7.25 6.33 0.58 0.43
ADM (dropout) 5.57 6.69 0.63 0.52

ImageNet 64× 64

BigGAN-deep* [5] 4.06 3.96 0.79 0.48
IDDPM [37] 2.92 3.79 0.74 0.62
ADM 2.61 3.77 0.73 0.63
ADM (dropout) 2.07 4.29 0.74 0.63

Model FID sFID Prec Rec

ImageNet 128× 128

BigGAN-deep [5] 6.02 7.18 0.86 0.35
LOGAN** [60] 3.36
ADM 5.91 5.09 0.70 0.65
ADM-G (25 steps) 5.98 7.04 0.78 0.51
ADM-G 2.97 5.09 0.78 0.59

ImageNet 256× 256

DCTransformer** [36] 36.51 8.24 0.36 0.67
BigGAN-deep [5] 6.95 7.36 0.87 0.28
IDDPM [37] 31.50 20.27 0.65 0.60
ADM 10.94 6.02 0.69 0.63
ADM-G (25 steps) 5.44 5.32 0.81 0.49
ADM-G 4.59 5.25 0.82 0.52

ImageNet 512× 512

BigGAN-deep [5] 8.43 8.13 0.88 0.29
ADM 23.24 10.19 0.73 0.60
ADM-G (25 steps) 8.41 9.67 0.83 0.47
ADM-G 7.72 6.57 0.87 0.42

Table 5: Sample quality comparison with state-of-the-art generative models for each task. ADM refers
to our ablated diffusion model, and ADM-G additionally uses classifier guidance. LSUN diffusion
models are sampled using 1000 steps (see Appendix I). ImageNet diffusion models are sampled using
250 steps, except when we use the DDIM sampler with 25 steps. *No BigGAN-deep model was
available at this resolution, so we trained our own. **Values are taken from the corresponding paper,
due to lack of public models or samples.

Model Guidance Sbase Supsample FID sFID IS Precision Recall

ImageNet 256× 256

Single 7 250 10.94 6.02 100.98 0.69 0.63
Upsampling 7 250 250 7.49 5.13 127.49 0.72 0.63
Single 3 250 4.59 5.25 186.70 0.82 0.52

ImageNet 512× 512

Single 7 250 23.24 10.19 58.06 0.73 0.60
Upsampling 7 250 250 9.96 5.62 121.78 0.75 0.64
Single 3 250 7.72 6.57 172.71 0.87 0.42
Upsampling 3 25 25 5.96 12.10 187.87 0.81 0.54
Upsampling 3 250 25 4.11 9.57 219.29 0.83 0.55
Upsampling 3 250 250 3.85 5.86 221.72 0.84 0.53

Table 6: Comparing our single, upsampling and classifier guided models. The base resolution for
the two-stage upsampling models is 64 and 128 for the 256 and 512 models, respectively. When
combining classifier guidance with upsampling, we only guide the lower resolution model.

on this sample. This greatly improves FID on ImageNet 256 × 256, but does not reach the same
performance as state-of-the-art models like BigGAN.

Here, we compare this upsampling technique to classifier guidance, and show that the two methods
improve sample quality along different axes (Table 6). While upsampling improves precision while
keeping a high recall, guidance provides a knob to trade off diversity for much higher precision. We
achieve the best ImageNet 512× 512 FID by using guidance at a lower resolution before upsampling
to a higher resolution, indicating that these approaches complement one another.
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Figure 6: Samples from BigGAN-deep with truncation 1.0 (FID 6.95, left) vs samples from our
diffusion model with guidance (FID 4.59, middle) and samples from the training set (right).

6 Related Work

Score based generative models were introduced by Song and Ermon [52] as a way of modeling a
data distribution using its gradients. Ho et al. [19] found a connection between this method and
diffusion models [49], and achieved excellent sample quality by leveraging this connection. After
this breakthrough work, many works followed up with more promising results: Kong et al. [24]
and Chen et al. [8] demonstrated that diffusion models work well for audio; Jolicoeur-Martineau
et al. [20] found that a GAN-like setup could improve samples from these models; Song et al. [53]
explored ways to leverage techniques from stochastic differential equations to improve the sample
quality obtained by score-based models; Song et al. [50] and Nichol and Dhariwal [37] proposed
methods to improve sampling speed; Nichol and Dhariwal [37] and Saharia et al. [46] demonstrated
promising results on the difficult ImageNet generation task using upsampling diffusion models.

One missing element from previous work on diffusion models is a way to trade off diversity for quality.
Other generative techniques provide natural levers for this trade-off. Brock et al. [5] introduced the
truncation trick for GANs, wherein the latent vector is sampled from a truncated normal distribution.
They found that increasing truncation naturally led to a decrease in diversity but an increase in quality.
More recently, Razavi et al. [44] proposed to use classifier rejection sampling to filter out bad samples
from an autoregressive likelihood-based model, and found that this technique improved FID. Most
likelihood-based models also allow for low-temperature sampling [1], which provides a natural way
to emphasize modes of the data distribution (see Appendix F).

Other likelihood-based models have been shown to produce high-fidelity image samples. VQ-VAE
[58] and VQ-VAE-2 [44] are autoregressive models trained on top of quantized latent codes, greatly
reducing the computational resources required to train these models on large images. DCTransformer
[36] is a related method which relies on a more intelligent compression scheme. VAEs are another
promising class of likelihood-based models, and recent methods such as NVAE [56] and VDVAE [9]
have successfully been applied to difficult image generation domains.

Other works have controlled generative models with a pre-trained classifier. For example, an emerging
body of work [15, 40, 2] aims to optimize GAN latent spaces for text prompts using pre-trained CLIP
[42] models. More similar to our work, Song et al. [53] uses a classifier to generate class-conditional
CIFAR-10 images with a diffusion model. In some cases, classifiers can act as stand-alone generative
models. For example, Santurkar et al. [48] demonstrate that a robust image classifier can be used as a
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stand-alone generative model, and Grathwohl et al. [17] train a model which is jointly a classifier and
an energy-based model.

7 Limitations and Future Work

While we believe diffusion models are an extremely promising direction for generative modeling,
they still have several limitations. Our models currently require more training compute than the
corresponding GAN models. We can reduce this gap considerably by using an upsampling stack,
though reducing the gap for the single stack models remains an open problem. Furthermore, diffusion
models are still slower than GANs at sampling time due to the use of multiple denoising steps (and
therefore forward passes). One promising work in this direction is from Luhman and Luhman [31],
who explore a way to distill the DDIM sampling process into a single step model. The samples
from the single step model are not yet competitive with GANs, but are much better than previous
single-step likelihood-based models. Future work in this direction might be able to completely close
the sampling speed gap between diffusion models and GANs without sacrificing image quality.

Our proposed classifier guidance technique is currently limited to labeled datasets, and we have
provided no effective strategy for trading off quality for diversity on unlabeled datasets. In the future,
our method could be extended to unlabeled data by clustering samples to produce synthetic labels
[30] or by training discriminative models to predict when samples are in the true data distribution or
from the sampling distribution.

The effectiveness of classifier guidance demonstrates that we can obtain powerful generative models
from the gradients of a classification function. This could be used to condition pre-trained models
in a plethora of ways, for example by conditioning an image generator with a text caption using a
noisy version of CLIP [42], similar to recent methods that guide GANs using text prompts [15, 40,
2]. It also suggests that large unlabeled datasets could be leveraged in the future to pre-train powerful
diffusion models that can later be improved by using a classifier with desirable properties.

8 Conclusion

We have shown that diffusion models, a class of likelihood-based models with a stationary training
objective, can obtain better sample quality than state-of-the-art GANs. Our improved architecture
is sufficient to achieve this on unconditional image generation tasks, and our classifier guidance
technique allows us to further improve sample quality on class-conditional tasks. In the latter case,
we find that the scale of the classifier gradients can be adjusted to trade off diversity for fidelity.
These guided diffusion models can reduce the sampling time gap between GANs and diffusion
models, although diffusion models still require multiple forward passes during sampling. Finally,
by combining guidance with upsampling, we can obtain state-of-the-art results on high-resolution
conditional image synthesis.
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A Detailed Formulation of DDPM

Here, we provide a detailed review of the formulation of Gaussian diffusion models from Ho et al.
[19]. We start by defining our data distribution x0 ∼ q(x0) and a Markovian noising process q which
gradually adds noise to the data to produce noised samples x1 through xT . In particular, each step of
the noising process adds Gaussian noise according to some variance schedule given by βt:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (15)

Ho et al. [19] note that we need not apply q repeatedly to sample from xt ∼ q(xt|x0). Instead,
q(xt|x0) can be expressed as a Gaussian distribution. With αt := 1− βt and ᾱt :=

∏t
s=0 αs

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (16)

=
√
ᾱtx0 + ε

√
1− ᾱt, ε ∼ N (0, I) (17)

Here, 1− ᾱt tells us the variance of the noise for an arbitrary timestep, and we could equivalently
use this to define the noise schedule instead of βt.

Using Bayes theorem, one finds that the posterior q(xt−1|xt, x0) is also a Gaussian with mean
µ̃t(xt, x0) and variance β̃t defined as follows:

µ̃t(xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (18)

β̃t :=
1− ᾱt−1
1− ᾱt

βt (19)

q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI) (20)

If we wish to sample from the data distribution q(x0), we can first sample from q(xT ) and then sample
reverse steps q(xt−1|xt) until we reach x0. Under reasonable settings for βt and T , the distribution
q(xT ) is nearly an isotropic Gaussian distribution, so sampling xT is trivial. All that is left is to
approximate q(xt−1|xt) using a neural network, since it cannot be computed exactly when the data
distribution is unknown. To this end, Sohl-Dickstein et al. [49] note that q(xt−1|xt) approaches a
diagonal Gaussian distribution as T →∞ and correspondingly βt → 0, so it is sufficient to train a
neural network to predict a mean µθ and a diagonal covariance matrix Σθ:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (21)

To train this model such that p(x0) learns the true data distribution q(x0), we can optimize the
following variational lower-bound Lvlb for pθ(x0):

Lvlb := L0 + L1 + ...+ LT−1 + LT (22)
L0 := − log pθ(x0|x1) (23)

Lt−1 := DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)) (24)
LT := DKL(q(xT |x0) || p(xT )) (25)

While the above objective is well-justified, Ho et al. [19] found that a different objective produces
better samples in practice. In particular, they do not directly parameterize µθ(xt, t) as a neural
network, but instead train a model εθ(xt, t) to predict ε from Equation 17. This simplified objective
is defined as follows:

Lsimple := Et∼[1,T ],x0∼q(x0),ε∼N (0,I)[||ε− εθ(xt, t)||2] (26)

During sampling, we can use substitution to derive µθ(xt, t) from εθ(xt, t):

µθ(xt, t) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t)

)
(27)

Note that Lsimple does not provide any learning signal for Σθ(xt, t). Ho et al. [19] find that instead of
learning Σθ(xt, t), they can fix it to a constant, choosing either βtI or β̃tI. These values correspond
to upper and lower bounds for the true reverse step variance.
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B Nearest Neighbors for Samples

Figure 7: Nearest neighbors for samples from a classifier guided model on ImageNet 256× 256. For
each image, the top row is a sample, and the remaining rows are the top 3 nearest neighbors from the
dataset. The top samples were generated with classifier scale 1 and 250 diffusion sampling steps (FID
4.59). The bottom samples were generated with classifier scale 2.5 and 25 DDIM steps (FID 5.44).

Our models achieve their best FID when using a classifier to reduce the diversity of the generations.
One might fear that such a process could cause the model to recall existing images from the training
dataset, especially as the classifier scale is increased. To test this, we looked at the nearest neighbors
(in InceptionV3 [55] feature space) for a handful of samples. Figure 7 shows our results, revealing
that the samples are indeed unique and not stored in the training set.

C Effect of Varying the Classifier Scale

Figure 8: Samples when increasing the classifier scale from 0.0 (left) to 5.5 (right). Each row
corresponds to a fixed noise seed. We observe that the classifier drastically changes some images,
while leaving others relatively unaffected.
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D LSUN Diversity Comparison

Figure 9: Samples from StyleGAN2 (or StyleGAN for bedrooms) with truncation 1.0 (left) vs
samples from our diffusion models (middle) and samples from the training set (right).
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E Exploring DDIM Latent Space

The DDIM [50] sampling process is deterministic given the initial noise xT , thus giving rise to an
implicit latent space. It corresponds to integrating an ODE in the forward direction, and we can run
the process in reverse to get the latents that produce a given real image. Here, we experiment with
encoding real images into this latent space and then interpolating between them.

Equation 13 for the generative pass in DDIM looks like

xt−1 − xt =
√
ᾱt−1

[(√
1/ᾱt −

√
1/ᾱt−1

)
xt +

(√
1/ᾱt−1 − 1−

√
1/ᾱt − 1

)
εθ(xt)

]
Thus, in the limit of small steps, we can expect the reversal of this ODE in the forward direction
looks like

xt+1 − xt =
√
ᾱt+1

[(√
1/ᾱt −

√
1/ᾱt+1

)
xt +

(√
1/ᾱt+1 − 1−

√
1/ᾱt − 1

)
εθ(xt)

]
We found that this reverse ODE approximation gives latents with reasonable reconstructions, even
with as few as 250 reverse steps. However, we noticed some noise artifacts when reversing all 250
steps, and find that reversing the first 249 steps gives much better reconstructions. To interpolate
the latents, class embeddings, and classifier log probabilities, we use cos(θ)x0 + sin(θ)x1 where θ
sweeps linearly from 0 to π

2 .

Figures 10a through 10c show DDIM latent space interpolations on a class-conditional 256x256
model, while varying the classifier scale. The left and rightmost images are ground truth dataset
examples, and between them are reconstructed interpolations in DDIM latent space (including both
endpoints). We see that the model with no guidance has almost perfect reconstructions due to its high
recall, whereas raising the guidance scale to 2.5 only finds approximately similar reconstructions.

Figure 10a: DDIM latent reconstructions and interpolations with no classifier guidance.
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Figure 10b: DDIM latent reconstructions and interpolations with classifier scale 1.0.

Figure 10c: DDIM latent reconstructions and interpolations with classifier scale 2.5.
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F Reduced Temperature Sampling

We achieved our best ImageNet samples by reducing the diversity of our models using classifier
guidance. For many classes of generative models, there is a much simpler way to reduce diversity:
reducing the temperature [1]. The temperature parameter τ is typically setup so that τ = 1.0 corre-
sponds to standard sampling, and τ < 1.0 focuses more on high-density samples. We experimented
with two ways of implementing this for diffusion models: first, by scaling the Gaussian noise used
for each transition by τ , and second by dividing εθ(xt) by τ . The latter implementation makes
sense when thinking about ε as a re-scaled score function (see Section 4.2), and scaling up the score
function is similar to scaling up classifier gradients.

To measure how temperature scaling affects samples, we experimented with our ImageNet 128× 128
model, evaluating FID, Precision, and Recall across different temperatures (Figure 11). We find
that two techniques behave similarly, and neither technique provides any substantial improvement in
our evaluation metrics. We also find that low temperatures have both low precision and low recall,
indicating that the model is not focusing on modes of the real data distribution. Figure 12 highlights
this effect, indicating that reducing temperature produces blurry, smooth images.
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Figure 11: The effect of changing temperature for an ImageNet 128× 128 model.

Figure 12: Samples at temperature 0.98 with epsilon scaling (left) and noise scaling (right).
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G Conditional Diffusion Process

In this section, we show that conditional sampling can be achieved with a transition operator
proportional to pθ(xt|xt+1)pφ(y|xt), where pθ(xt|xt+1) approximates q(xt|xt+1) and pφ(y|xt)
approximates the label distribution for a noised sample xt.

We start by defining a conditional noising process q̂ similar to q, and assume that q̂(y|x0) is a known
and readily available label distribution for each sample.

q̂(x0) := q(x0) (28)
q̂(y|x0) := Known labels per sample (29)

q̂(xt+1|xt, y) := q(xt+1|xt) (30)

Note that we define the conditional noising operator q̂(xt+1|xt, y) to be the same as the unconditional
noising operator q (Equation 30). We can easily show that this noising operator does not actually
depend on y:

q̂(xt+1|xt) =

∫
y

q̂(xt+1, y|xt) dy (31)

=

∫
y

q̂(xt+1|xt, y)q̂(y|xt) dy (32)

=

∫
y

q(xt+1|xt)q̂(y|xt) dy (33)

= q(xt+1|xt)
∫
y

q̂(y|xt) dy (34)

= q(xt+1|xt) (35)
= q̂(xt+1|xt, y) (36)

Using this, we can now show that q̂(y|xt, xt+1) = q̂(y|xt), a fact we will use later:

q̂(y|xt, xt+1) = q̂(xt+1|xt, y)
q̂(y|xt)

q̂(xt+1|xt)
(37)

= q̂(xt+1|xt)
q̂(y|xt)

q̂(xt+1|xt)
(38)

= q̂(y|xt) (39)
(40)

For sampling, it will be useful to know the reverse operator q̂(xt|xt+1). We can start by deriving
q̂(xt|y) for an arbitrary xt as

q̂(xt|y) = q̂(x0|y)

t∏
i=1

q̂(xt|xt−1) (41)

= q̂(x0|y)

t∏
i=1

q(xt|xt−1) (42)

= q(x0)
q̂(y|x0)

q̂(y)

t∏
i=1

q(xt|xt−1) (43)

=
q̂(y|x0)

q̂(y)
q(xt) (44)
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Further, we can show that q̂(xt) = q(xt):

q̂(xt) =

∫
y

q̂(xt|y)q̂(y) dy (45)

=

∫
y

q(xt)
q̂(y|xt)
q̂(y)

q̂(y) dy (46)

=

∫
y

q(xt)q̂(y|xt) dy (47)

= q(xt)

∫
y

q̂(y|xt) dy (48)

= q(xt) (49)

Using the identities q̂(xt) = q(xt) and q̂(xt+1|xt) = q(xt+1|xt), it is trivial to show via Bayes rule
that the unconditional reverse process q̂(xt|xt+1) = q(xt|xt+1). We can now derive the conditional
reverse process:

q̂(xt|xt+1, y) =
q̂(xt, xt+1, y)

q̂(xt+1, y)
(50)

=
q̂(xt, xt+1, y)

q̂(y|xt+1)q̂(xt+1)
(51)

=
q̂(xt|xt+1)q̂(y|xt, xt+1)q̂(xt+1)

q̂(y|xt+1)q̂(xt+1)
(52)

=
q̂(xt|xt+1)q̂(y|xt, xt+1)

q̂(y|xt+1)
(53)

=
q̂(xt|xt+1)q̂(y|xt)

q̂(y|xt+1)
(54)

=
q(xt|xt+1)q̂(y|xt)

q̂(y|xt+1)
(55)

(56)

The q̂(y|xt+1) term can be treated as a constant since it does not depend on xt. We thus want to
sample from the distribution Zq(xt|xt+1)q̂(y|xt) where Z is a normalizing constant. We already
have a neural network approximation of q(xt|xt+1), called pθ(xt|xt+1), so all that is left is an
approximation of q̂(y|xt). This can be obtained by training a classifier pφ(y|xt) on noised images xt
derived by sampling from q(xt).
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H Hyperparameters

We compute precision and recall with K=3, using 50K model samples and 10K reference samples
from the training set. We compute all FIDs against the entire training set, using 50K samples from
the model. For StyleGAN and StyleGAN2, we use the first 50K samples from the official release
repositories. For BigGAN-deep, we sample from the officially released models [11] at truncation
level 1.0 (or lower truncations when applicable). We report DCTransformer evaluations for LSUN
Bedrooms and ImageNet 256× 256 from Nash et al. [36].

When computing FID, we follow the original FID implementation [18] and do not resize images prior
to feeding them into the Inception graph. This may differ from unofficial FID implementations, and
can cause a slight difference in FID values [38]. This should not affect relative comparisons against
GANs, since we use our FID implementation to evaluate samples from all GAN models.

When choosing optimal classifier scales for our sampler, we swept over [0.5, 1, 2] for ImageNet
128× 128 and ImageNet 256× 256, and [1, 2, 3, 3.5, 4, 4.5, 5] for ImageNet 512× 512. For DDIM,
we swept over values [0.5, 0.75, 1.0, 1.25, 2] for ImageNet 128× 128, [0.5, 1, 1.5, 2, 2.5, 3, 3.5] for
ImageNet 256× 256, and [3, 4, 5, 6, 7, 9, 11] for ImageNet 512× 512.

Hyperparameters for training the diffusion and classification models are in Table 7 and Table 8
respectively. Hyperparameters for guided sampling are in Table 10. Hyperparameters used to train
upsampling models are in Table 9. We train all of our models using Adam [23] or AdamW [29] with
β1 = 0.9 and β2 = 0.999. We train in 16-bit precision using loss-scaling [32], but maintain 32-bit
weights, EMA, and optimizer state. We use an EMA rate of 0.9999 for all experiments. We use
PyTorch [39], and train on V100s.

When sampling with 1000 timesteps, we use the same noise schedule as for training. On ImageNet,
we use the uniform stride from Nichol and Dhariwal [37] for 250 step samples and the slightly
different uniform stride from Song et al. [50] for 25 step DDIM.

LSUN ImageNet 64 ImageNet 128 ImageNet 256 ImageNet 512

Diffusion steps 1000 1000 1000 1000 1000
Noise Schedule linear cosine linear linear linear
Model size 552M 296M 422M 554M 559M
Channels 256 192 256 256 256
Depth 2 3 2 2 2
Channels multiple 1,1,2,2,4,4 1,2,3,4 1,1,2,3,4 1,1,2,2,4,4 0.5,1,1,2,2,4,4
Heads 4
Heads Channels 64 64 64 64
Attention resolution 32,16,8 32,16,8 32,16,8 32,16,8 32,16,8
BigGAN up/downsample 3 3 3 3 3
Dropout 0.1 0.1 0.0 0.0 0.0
Batch size 256 2048 256 256 256
Iterations varies* 540K 4360K 1980K 1940K
Learning Rate 1e-4 3e-4 1e-4 1e-4 1e-4

Table 7: Hyperparameters for diffusion models. *We used 200K iterations for LSUN cat, 250K for
LSUN horse, and 500K for LSUN bedroom.
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ImageNet 128 ImageNet 256 ImageNet 512

Diffusion steps 1000 1000 1000
Noise Schedule linear linear linear
Model size 43M 54M 54M
Channels 128 128 128
Depth 2 2 2
Channels multiple 1,1,2,3,4 1,1,2,2,4,4 0.5,1,1,2,2,4,4
Heads Channels 64 64 64
Attention resolution 32,16,8 32,16,8 32,16,8
BigGAN up/downsample 3 3 3
Attention pooling 3 3 3
Weight decay 0.05 0.05 0.05
Batch size 256 256 256
Iterations 300K 500K 500K
Learning rate 3e-4 3e-4 3e-4

Table 8: Hyperparameters for classification models

ImageNet 64→ 256 ImageNet 128→ 512

Diffusion steps 1000 1000
Noise Schedule linear linear
Model size 312M 309M
Channels 192 192
Depth 2 2
Channels multiple 1,1,2,2,4,4 1,1,2,2,4,4*
Heads 4
Heads Channels 64
Attention resolution 32,16,8 32,16,8
BigGAN up/downsample 3 3
Dropout 0.0 0.0
Batch size 256 256
Iterations 500K 1050K
Learning Rate 1e-4 1e-4

Table 9: Hyperparameters for upsampling diffusion models. *We chose this as an optimization, with
the intuition that a lower-resolution path should be unnecessary for upsampling 128x128 images.

ImageNet 128 ImageNet 256 ImageNet 512

Gradient Scale (250 steps) 0.5 1.0 4.0
Gradient Scale (DDIM, 25 steps) 1.25 2.5 9.0

Table 10: Hyperparameters for classifier-guided sampling.
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I Using Fewer Sampling Steps on LSUN

We initially found that our LSUN models achieved much better results when sampling with 1000
steps rather than 250 steps, contrary to previous results from Nichol and Dhariwal [37]. To address
this, we conducted a sweep over sampling-time noise schedules, finding that an improved schedule
can largely close the gap. We swept over schedules on LSUN bedrooms, and selected the schedule
with the best FID for use on the other two datasets. Table 11 details the findings of this sweep, and
Table 12 applies this schedule to three LSUN datasets.

While sweeping over sampling schedules is not as expensive as re-training models from scratch, it
does require a significant amount of sampling compute. As a result, we did not conduct an exhaustive
sweep, and superior schedules are likely to exist.

Schedule FID

50, 50, 50, 50, 50 2.31
70, 60, 50, 40, 30 2.17
90, 50, 40, 40, 30 2.10
90, 60, 50, 30, 20 2.09
80, 60, 50, 30, 30 2.09
90, 50, 50, 30, 30 2.07
100, 50, 40, 30, 30 2.03
90, 60, 60, 20, 20 2.02

Table 11: Results of sweeping over 250 step sampling schedules on LSUN bedrooms. The schedule
is expressed as a sequence of five integers, where each integer is the number of steps allocated to
one fifth of the diffusion process. The first integer corresponding to t ∈ [0, 199] and the last to
t ∈ [T − 200, T − 1]. Thus, 50, 50, 50, 50, 50 is a uniform schedule, and 250, 0, 0, 0, 0 is a schedule
where all timesteps are spent near t = 0.

Schedule FID sFID Prec Rec

LSUN Bedrooms 256× 256

1000 steps 1.90 5.59 0.66 0.51
250 steps (uniform) 2.31 6.12 0.65 0.50
250 steps (sweep) 2.02 6.12 0.67 0.50

LSUN Horses 256× 256
1000 steps 2.57 6.81 0.71 0.55
250 steps (uniform) 3.45 7.55 0.68 0.56
250 steps (sweep) 2.83 7.08 0.69 0.56

LSUN Cat 256× 256
1000 steps 5.57 6.69 0.63 0.52
250 steps (uniform) 7.03 8.24 0.60 0.53
250 steps (sweep) 5.94 7.43 0.62 0.52

Table 12: Evaluations on LSUN bedrooms, horses, and cats using different sampling schedules. We
find that the sweep schedule produces better results than the uniform 250 step schedule on all three
datasets, and mostly bridges the gap to the 1000 step schedule.
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J Samples from ImageNet 512× 512

Figure 13: Samples from our best 512× 512 model (FID: 3.85). Classes are 1: goldfish, 279: arctic
fox, 323: monarch butterfly, 386: african elephant, 130: flamingo, 852: tennis ball.
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Figure 14: Samples from our best 512× 512 model (FID: 3.85). Classes are 933: cheeseburger, 562:
fountain, 417: balloon, 281: tabby cat, 90: lorikeet, 992: agaric.
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Figure 15: Difficult class samples from our best 512 × 512 model (FID: 3.85). Classes are 432:
bassoon, 468: cab, 424: barbershop, 444: bicycle-built-for-two, 981: ballplayer, 550: espresso maker.
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Figure 16: Samples using 250 steps with classifier scale 4.0 (FID 7.72). Classes are 1: goldfish, 279:
arctic fox, 323: monarch butterfly, 386: african elephant, 130: flamingo, 852: tennis ball.
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Figure 17: Samples using 250 steps with classifier scale 4.0 (FID 7.72). Classes are 933: cheeseburger,
562: fountain, 417: balloon, 281: tabby cat, 90: lorikeet, 992: agaric.
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Figure 18: Random samples from our best ImageNet 512× 512 model (FID 3.85).
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K Samples from ImageNet 256× 256

Figure 19: Samples using 250 steps with classifier scale 1.0 (FID 4.59). Classes are 1: goldfish,
279: arctic fox, 323: monarch butterfly, 386: african elephant, 130: flamingo, 852: tennis ball, 933:
cheeseburger, 562: fountain, 417: balloon, 281: tabby cat, 90: lorikeet, 992: agaric
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Figure 20: Samples using 25 DDIM steps with classifier scale 2.5 (FID 5.44). Classes are 1: goldfish,
279: arctic fox, 323: monarch butterfly, 386: african elephant, 130: flamingo, 852: tennis ball, 933:
cheeseburger, 562: fountain, 417: balloon, 281: tabby cat, 90: lorikeet, 992: agaric
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Figure 21: Random samples using 250 steps with classifier scale 1.0 (FID 4.59).
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L Samples from LSUN

Figure 22: Random samples from LSUN bedroom using 1000 sampling steps.
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Figure 23: Random samples from LSUN cat using 1000 sampling steps.
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Figure 24: Random samples from LSUN horse using 1000 sampling steps.
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