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Abstract

The classification of maximal plane curves of degree 3 over F4 will be given,
which complements Hirschfeld-Storme-Thas-Voloch’s theorem on a characteri-
zation of Hermitian curves in P

2. This complementary part should be under-
stood as the classification of Sziklai’s example of maximal plane curves of degree
q − 1 over Fq. Although two maximal plane curves of degree 3 over F4 up to
projective equivalence over F4 appear, they are birationally equivalent over F4

each other.
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1 Introduction

This paper is concerned with upper bounds for the number of Fq-points of plane
curves defined over Fq. Let C be a plane curve defined by a homogeneous equation
f ∈ Fq[x0, x1, x2]. The set of Fq-points C(Fq) of C is {(a0, a1, a2) ∈ P

2 | a0, a1, a2 ∈
Fq and f(a0, a1, a2) = 0}. The cardinality of C(Fq) is denoted by Nq(C), and the
degree of C by degC, or simply by d. We are interesting in upper bounds for Nq(C)
with respect to degC.

Aubry-Perret’s generalization [1] of the Hasse-Weil bound implies that for abso-
lutely irreducible plane curve of degree d over Fq,

Nq(C) ≤ q + 1 + (d− 1)(d − 2)
√
q. (1)

On the other hand, the Sziklai bound established by a series of papers of Kim and
the author [3, 4, 5] gives a one under a more mild condition, that is, for C without
Fq-linear components,

Nq(C) ≤ (d− 1)q + 1 (2)
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except for the curve over F4 defined by

(x0 + x1 + x2)
4 + (x0x1 + x1x2 + x2x0)

2 + x0x1x2(x0 + x1 + x2) = 0.

When d <
√
q + 1, the Aubry-Perret generalization of Hasse-Weil bound is better

than the Sziklai bound, however when d >
√
q + 1, the latter is better than the

former, and these two bounds meet at d =
√
q + 1, that is, both (1) and (2) imply

Nq(C) ≤ √
q3 + 1 if degC =

√
q + 1, (3)

where q is an even power of a prime number. From now on, when a statement
contains

√
q, we tacitly understand q to be an even power of a prime number.

Three decades ago, Hirschfeld, Storme, Thas and Voloch [2] gave a characteriza-
tion of Hermitian curves of degree

√
q + 1 over Fq, which is a maximal curve in the

sense of the bound (3).

Theorem 1.1 (Hirschfeld-Storme-Thas-Voloch) In P
2 over Fq with q 6= 4, a

curve over Fq of degree
√
q+1, without Fq-linear components, which contains

√
q3+1

Fq-points, is a Hermitian curve.

For q = 4, they gave an example of a nonsingular plane curve over F4 which had
9 (= 23 + 1) F4-points, but was not a Hermitian. Actually the plane curve defined
by

x30 + ωx31 + ω2x32 = 0 (4)

is such an example, where F4 = {0, 1, ω, ω2}.
Our primary concern is to complete the determination of plane curves over Fq

of degree
√
q + 1 with

√
q3 + 1 Fq-points.

Theorem 1.2 Let C be a plane curve over Fq without Fq-linear components. If

degC =
√
q + 1 and Nq(C) =

√
q3 + 1, then C is either

(i) a Hermitian curve, or

(ii) a nonsingular curve of degree 3 which is projectively equivalent to the curve (4)
over F4.

The second case (ii) in the above theorem should be understood the case of q = 4
among Sziklai’s curves [8] of degree q − 1 that achieve the Sziklai bound (2). Here
a Sziklai’s curve means one over Fq ,of degree q− 1 defined by the following type of
equation:

αxq−1
0 + βxq−1

1 + γxq−1
2 = 0 with αβγ 6= 0 and α+ β + γ = 0. (5)

The curve (5) will be denoted by C(α,β,γ). Since xq−1 = 1 for any x ∈ F
∗

q and
α+ β + γ = 1,

C(α,β,γ)(Fq) ⊃ P
2(Fq) \ (∪2

i=0{xi = 0}). (6)
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Here {xi = 0} denotes the line defined by xi = 0. Furthermore, since degC(α,β,γ) =
q − 1,

Nq(C(α,β,γ)) ≤ (q − 2)q + 1 = (q − 1)2

by the Szikali bound. Therefore equality must hold in (6), that is,

C(α,β,γ)(Fq) = P
2(Fq) \ ({x0 = 0} ∪ {x1 = 0} ∪ {x2 = 0}). (7)

Note that C(α,β,γ) makes sense under the condition q > 2.

Theorem 1.3 The number νq of projective equivalent classes over Fq in the family

of curves

{C(α,β,γ) | α, β, γ ∈ F
∗

q, α+ β + γ = 0}
is as follows:

(I) Suppose that the characteristic of Fq is neither 2 nor 3.

(I-i) If q ≡ 2 mod 3, then νq =
q+1
6 .

(I-ii) If q ≡ 1 mod 3, then νq =
q+5
6 .

(II) Suppose that q is a power of 3. Then νq =
q+3
6 .

(III) Suppose that q is a power of 2.

(III-i) If q = 22s+1, that is, q ≡ 2 mod 3, then νq =
q−2
6 .

(III-ii) If q = 22s, that is, q ≡ 1 mod 3, then νq =
q+2
6 .

In this theorem, we don’t assume q > 2 explicitly, however the assertion (III-i) says
the family of curves in question is empty if q = 2.

The construction of this article is as follows:
In Section 2, we will give the proof of Theorem 1.3 together with the character-

ization of Sziklai’s curve of degree q − 1.
In Section 3, we will give the proof of Theorem 1.2; actually we will handle the

case q = 4.
In Section 4, we will make explicitly an F4-isomorphism between the function

field of the Hermitian curve over F4 defined by x30 + x31 + x32 = 0 and that of the
curve (4).

2 Sziklai’s example of maximal curves of degree q − 1

The purpose of this section is to prove Theorem 1.3. Let Sq = {C(α,β,γ) | α, β, γ ∈
F
∗
q, α + β + γ = 0}. The first step of the proof is to give a characterization of the

member of Sq.
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Proposition 2.1 Let C be a possibly reducible plane curve over Fq of degree q − 1.
Then C ∈ Sq if and only if

C(Fq) = P
2(Fq) \

(

∪2
i=0{xi = 0}

)

. (8)

The “only if” part has already observed in Introduction. Now we prove the “if”
part.

Lemma 2.2 In A
2 with coordinates x, y over Fq, the ideal I in Fq[x, y] of the set

{(a, b) ∈ F
2
q | ab 6= 0} is (xq−1 − 1, yq−1 − 1).

Furthermore, if f(x, y) ∈ I is of degree at most q − 1, then f(x, y) = α(xq−1 −
1) + β(yq−1 − 1) for some α, β ∈ Fq.

Proof. Let J denote the ideal (xq−1 − 1, yq−1 − 1) of Fq[x, y]. Obviously J ⊆ I. For
f(x, y) ∈ I, there are polynomials gi(x) ∈ Fq[x] (0 ≤ i ≤ q − 2) of degree ≤ q − 2 so
that

f(x, y) ≡
q−2
∑

i=0

gi(x)y
i mod J.

For each a ∈ F
∗
q, the equation

∑q−2
i=0 gi(a)y

i = 0 has to have q − 1 (= |F∗
q|) solutions

because
∑q−2

i=0 gi(x)y
i ∈ I. Hence gi(a) = 0 for any i. Since deg gi ≤ q − 2, gi must

be the zero polynomial. Hence f(x, y) ≡ 0 mod J . This completes the proof of the
first part.

For the second part, let α and β be the coefficients of xq−1 and yq−1 in f(x, y)
respectively. Then

f(x, y)− α(xq−1 − 1)− β(yq−1 − 1) =

q−2
∑

i=1

uq−1−i(x)y
i + vq−2(x), (9)

where deg uq−1−i(x) ≤ q−1− i (≤ q−2) and deg vq−2(x) ≤ q−2. So the same argu-
ment as above works well, and we know the right side of (9) is the zero polynomial.
�

Proof of Proposition 2.1. Choose a homogeneous equation f(x0, x1, x2) = 0 of de-
gree q−1 over Fq for a given curve C with the property (8). From Lemma 2.2, there
are elements α, β ∈ Fq such that f(x0

x2
, x1

x2
, 1) = α((x0

x2
)q−1 − 1) + β((x1

x2
)q−1 − 1).

Therefore f(x0, x1, x2) = xq−1
2 f(x0

x2
, x1

x2
, 1) = α(xq−1

0 − xq−1
2 ) + β(xq−1

1 − xq−1
2 ). Since

C(Fq) ∩ {x2 = 0} is empty, f(a, b, 0) 6= 0 for any (a, b) ∈ F
2
q \ {(0, 0)}. In particular,

α = f(1, 0, 0) 6= 0, β = f(0, 1, 0) 6= 0 and α+ β = f(1, 1, 0) 6= 0. Hence C ∈ Sq. �

Now we want to classify Sq up to projective equivalence over Fq.

Definition 2.3 Let C be a possibly reducible curve in P
2 over Fq, and δ a nonneg-

ative integer. An Fq-line l is said to be a δ-line with respect to C if |l ∩C(Fq)| = δ.
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δ the number of δ-lines

0 3
q − 2 (q − 1)2

q − 1 3(q − 1)

Table 1: δ-lines w.r.t. C ∈ Sq

Lemma 2.4 Let C ∈ Sq, and δ a nonnegative integer such that a δ-line with respect

to C actually exists. Then δ is either 0 or q − 2 or q− 1, and the number of δ-lines
are as in Table 1.

Proof. Note that q > 2 because Sq is not empty. Since P2(Fq) = C(Fq)⊔(∪2
i=0{xi =

0}) (where the symbol ⊔ indicates disjoint union) and q > 2, the possible values of
δ are 0, q− 2 and q− 1. Obviously the number of 0-lines is 3. A (q− 1)-line is not a
0-line, and passes through one of intersection points of two 0-lines. Other lines are
(q − 2)-lines. �

We need an elementary fact on the finite group action, so called “Burnside’s
lemma” [7, Corollary 7.2.9].

Lemma 2.5 Let G be a finite group which acts on a finite set X. For g ∈ G, Fix g
denotes the set of fixed points of g on X. Then the number ν of orbits of G on X is

given by

ν =
1

|G|
∑

g∈G

|Fix g|.

Proof. Let us consider the set

C := {(g, x) ∈ G×X | g · x = x}

with projections p1(g, x) = g and p2(g, x) = x. Counting |C | by using p1, |C | =
∑

g∈G |Fix g|, and by p2, |C | =
∑

x∈X |Gx|, where Gx is the isotropy subgroup of
x ∈ X. Let x1, . . . , xν be the set of complete representatives of the orbits of G on
X. Then

∑

x∈X

|Gx| =
ν

∑

i=1

|Gxi| · |Gxi
| = ν|G|,

where Gxi is the orbit containing xi. So ν|G| = ∑

g∈G |Fix g|. �

Proof of Theorem 1.3. The first claim is that if two members C(α,β,γ), C(α′,β′,γ′) ∈
Sq are projectively equivalent over Fq, then the point (α′, β′, γ′) ∈ P

2(Fq) is a
permutation of the point (α, β, γ) ∈ P

2(Fq), that is, there is a nonzero element
λ ∈ F

∗

q such that the triple (λα′, λβ′, λγ′) is a permutation of the triple (α, β, γ).
Actually, let Σ be a projective transformation so that ΣC(α,β,γ) = C(α′,β′,γ′). Note

that Σ induces an automorphism of the homogeneous coordinate ring Fq[x0, x1, x2],
which is denoted by Σ∗. The set of 0-lines with respect to each of curves in Sq is
{{x0 = 0}, {x1 = 0}, {x2 = 0}} by Lemma 2.4. Hence Σ induces a permutation of
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those three lines. Hence Σ∗(xi) = uixσ(i) for some ui ∈ F
∗
q, and (σ(0), σ(1), σ(2)) is

a permitation of (0, 1, 2). Hence

Σ∗(αxq−1
0 + βxq−1

1 + γxq−1
2 ) = αxq−1

σ(0) + βxq−1
σ(1) + γxq−1

σ(2)

because uq−1
i = 1.

So we need to classfy Sq/F
∗
q by the action of S3 as permutations on coefficients.

Observe the map

ρ : Sq/F
∗

q ∋ C(α,β,γ) → (α : β) ∈ P
1,

which is well-defined and

Im ρ = P
1 \ {(0, 1), (1, 0), (1,−1)}.

Obviously, ρ gives a one to one correspondence, so S3 acts on Im ρ also. Table 2
shows the S3-action on Im ρ explicitly.

S3 Sq/F
∗

q Im ρ

(1) (α, β, γ) 7→ (α, β, γ) (α : β) 7→ (α : β)
(1, 2) (α, β, γ) 7→ (β, α, γ) (α : β) 7→ (β : α)
(2, 3) (α, β, γ) 7→ (α, γ, β) (α : β) 7→ (α : −(α+ β))
(1, 3) (α, β, γ) 7→ (γ, β, α) (α : β) 7→ (−(α+ β) : β)
(1, 2, 3) (α, β, γ) 7→ (γ, α, β) (α : β) 7→ (−(α+ β) : α)
(1, 3, 2) (α, β, γ) 7→ (β, γ, α) (α : β) 7→ (β : −(α+ β))

Table 2: S3-action on Im ρ

Now we compute the number of fixed points on Im ρ by each σ ∈ S3.

• Fixed points of the identity (1) are all the q − 2 points of Im ρ.

• (α : β) ∈ Fix(1, 2) ⇔ (α : β) = (β : α) ⇔ α2 − β2 = 0. If the characteristic of
Fq 6= 2, then Fix(1, 2) = {(1 : 1)} because (1 : −1) 6∈ Im ρ. If q is a power of 2,
then Fix(1, 2) is empty.

• (α : β) ∈ Fix(2, 3) ⇔ (α : β) = (α : −(α+ β)) ⇔ α = −2β because α 6= 0 . If
the characteristic of Fq 6= 2, then Fix(2, 3) = {(−2 : 1)}. If q is a power of 2,
then Fix(2, 3) is empty.

• (α : β) ∈ Fix(1, 3) ⇔ (α : β) = (−(α + β) : β) ⇔ β = −2α because β 6= 0 . If
the characteristic of Fq 6= 2, then Fix(1, 3) = {(1 : −2)}. If q is a power of 2,
then Fix(1, 3) is empty.

• (α : β) ∈ Fix(1, 2, 3) ⇔ (α : β) = (−(α + β) : α) ⇔ α2 + αβ + β2 = 0 ⇔ (α :
β) = (η : 1) with η2 + η + 1 = 0 and η ∈ Fq.

• (α : β) ∈ Fix(1, 3, 2) ⇔ (α : β) = (β : −(α + β)) ⇔ α2 + αβ + β2 = 0 ⇔ (α :
β) = (η : 1) with η2 + η + 1 = 0 and η ∈ Fq.
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For the last two cases, since a cubic root of 1 other than 1 exists in Fq if and only
if q ≡ 1 mod 3, and only the cubic root of 1 is 1 if q is a power of 3,

|Fix(1, 2, 3)| = |Fix(1, 3, 2)| =











2 if q ≡ 1 mod 3

1 if q is a power of 3

0 else.

The number of fixed points can be summarized as in Table 3.

Case |Fix(1)| |Fix(12)| |Fix(13)| |Fix(23)| |Fix(123)| |Fix(132)|
(I-i) q − 2 1 1 1 0 0
(I-ii) q − 2 1 1 1 2 2
(II) q − 2 1 1 1 1 1

(III-i) q − 2 0 0 0 0 0
(III-ii) q − 2 0 0 0 2 2

Table 3: Number of fixed points

Since νq =
1
6

∑

σ∈S3
|Fix σ| by Lemma 2.5, we are able to know νq explicitly. �

At the end of this section, we raise a question: are there maximal plane curves
over Fq of degree q − 1 other than Sziklai’s example?

3 Maximal curves of degree 3 over F4

Let C be a plane curve of degree 3 over F4 without F4-linear components, and
N4(C) = 9. Since the degree of C is 3, C is absolutely irreducible. If C had a
singular point, then C would be an image of P1, and hence N4(C) would be at most
6 (= N4(P

1) + 1). Therefore C is nonsingular.
Thanks to the Hirschfeld-Storme-Thas-Voloch theorem, only the missing case for

the classification of maximal curves of degree
√
q + 1 is the case of q = 4.

Theorem 3.1 Let C be a nonsingular plane curve of degree 3 over F4. If N4(C) =
9, then C is either

(i) Hermitian, or

(ii) projectively equivalent to the curve

x30 + ωx31 + ω2x32 = 0,

where F4 = {0, 1, ω, ω2}.

Notation 3.2 Let l be an F4-line in P
2. The symbol l.C denotes the divisor

∑

P∩C i(l.C;P )P on C, where i(l.C;P ) is the local intersection multiplicity of l
and C at P . Note that though l.C is defined over F4, a point P in the support of
l.C may not be F4-point.
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From now on, we consider a nonsingular plane curve C of degree 3 with N4(C) =
9, and lines over F4.

Lemma 3.3 Let l be a 2-line with respect to C, say l ∩ C(F4) = {P1, P2}. Then

l.C = 2P1 + P2 or P1 + 2P2.

Proof. Since degC = 3, there is a closed point Q of C such that l.C = P1 +P2 +Q.
Applying the Frobenius map F4 over F4 to both side of the above equality, we know
P1 + P2 + Q = P1 + P2 + F4(Q), which implies that the point Q is also F4-point.
Therefore Q must concide with either P1 or P2 because l is a 2-line. �

Lemma 3.4 Let l0 be a 1-line with respect to C, say l0 ∩ C(F4) = {P}. Then

l0.C = 3P0.

Proof. Consider all the F4-lines passing through the point P , say l0, l1, . . . , l4. Count-
ing N4(C) by using the disjoint union

C(Fq) = {P} ⊔
(

⊔4
i=1(li ∩C(F4) \ {P})

)

,

we know that |li ∩ C(F4) \ {P}| is 2, that is the remaining four lines l1, . . . l4 to
be 3-lines with respect to C. So each of them meets with C transversally because
degC = 3. Therefore l0 is the tangent line to C at P . Hence there is a closed point
Q ∈ C such that l0.C = 2P + Q. Apply F4 to this divisor, Q should be F4-points.
Since l0 is a 1-line, Q = P . �

Definition 3.5 Since C is nonsingular, for any closed point P ∈ C, the tangent
line to C at P exists, which is a unique line l such that i(l.C;P ) ≥ 2. This line is
denoted by TP (C). A point P with i(TP (C).C;P ) = 3 is called a flex or an inflection
point. It is obvious that if P is an F4-points, then TP (C) is an F4-line.

Corollary 3.6 Let P ∈ C(F4).

(i) If i(TP (C).C;P ) = 3, then TP (C) is a 1-line, and conversely, if an F4-line l
passing through P is a 1-line, then l = TP (C) and i(TP (C).C;P ) = 3.

(ii) If i(TP (C).C;P ) = 2, then TP (C) is a 2-line, and conversely, if an F4-line l
passing through P1, P2 ∈ C(F4) is a 2-line, then l coincides with either TP1

(C)
or TP2

(C).

Proof. (i) The first part is obvious because degC = 3, and the second part is a
consequence of Lemma 3.4.

(ii) This is also a consequence of Lemma 3.4: since TP (C) is not a 1-line, it
should be a 2-line, and the second part is just in Lemma 3.3 �

Notation 3.7 For each nonnegative integer δ ≤ 3, Lδ denotes the set of δ-lines
with respect to C, and µδ denotes the cardinality of the set Lδ .

The next lemma is essential for the proof of Theorem 3.1.
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Lemma 3.8 The possibilities of quadruple (µ0, µ1, µ2, µ3) are either

(i) µ0 = 0, µ1 = 9, µ2 = 0, µ3 = 12; or

(ii) µ0 = 3, µ1 = 0, µ2 = 9, µ3 = 9.

Proof. Step 1. Let us consider the correspondence

I := {(l, P ) ∈ P̆
2(F4)× C(F4) | l ∋ P}

with projections p1 : I → P̆
2(F4) and p2 : I → C(F4), where P̆

2(F4) is the
projective space of the F4-lines. Since |p−1

2 (P )| = 5 for all P ∈ C(F4) and |C(F4)| =
9, we know |I | = 45.

From Corollary 3.6, the tangent line at an Fq-point is a 1-line or 2-line, and vice
versa. Since degC = 3, there are no bi-tangents. Hence

µ1 + µ2 = 9. (10)

Since |p−1(l)| = δ if l is a δ-line,

µ1 + 2µ2 + 3µ3 = |I | = 45. (11)

Additionally, since the total number of Fq-lines is 21,

µ0 + µ1 + µ2 + µ3 = 21. (12)

Step 2. Suppose that µ1 = 0. From (10), (11), (12), we have µ0 = 3, µ2 = µ3 = 9,
which is the case (ii).

Step 3. Suppose that µ1 6= 0. Since (10) and (11), µ1 ≡ 0 mod 3. Hence there
are at least three 1-lines, and hence there are at least three inflection F4-points.
Choose two inflection F4-points Q1 and Q2, and consider the line l0 passing through
these two points, which is an F4-line. Hence l0 meets C at another point Q0, which
is also an F4-point.

Claim 1. Q0 is also a flex.
We need more notation. The linear equivalence relation of divisors on C will be

denoted by ∼, and a general line section on C by L. Here a general line section
means a representative of the divisor cut out by a line on C, which makes sense up
to the relation ∼.
Proof of claim 1. Since Q0 + Q1 + Q2 ∼ L and 3Qi ∼ L for i = 1 and 2, we have
3Q0 ∼ 3L− 3Q1 − 3Q2 ∼ L, which means that Q0 is a flex. �

Hence the following property holds.

(†) There are exactly three F4-lines passing through Q0 besides l0 and TQ0
(C),

say l1, l2, l3. Each li is a 3-line.

Actually, since

C(F4) = {Q0, Q1, Q2} ⊔
(

⊔3
i=1(li ∩ C(F4) \ {Q0})

)

9



and |li ∩ C(F4) \ {Q0}| ≤ 2, each li is a 3-line.

The six points of C(F4) \ {Q0, Q1, Q2} are named {P (j)
i | i = 1, 2, 3; j = 1, 2} so

that li ∩ C(F4) = {Q0, P
(1)
i , P

(2)
i }.

Claim 2.
∑3

i=1(P
(1)
i + P

(2)
i ) ∼ 2L.

Proof of claim 2. Since Q0 +P
(1)
i +P

(2)
i ∼ L and 3Q0 ∼ L, we get L+

∑3
i=1(P

(1)
i +

P
(2)
i ) ∼ 3L. �

Since a nonsingular plane curve is projectively normal, the divisor
∑3

i=1(P
(1)
i +

P
(2)
i ) on C is cut out by a quadratic curve. Let D be the quadratic curve passing

through those six points. Suppose that D is absolutely irreducible. Then D has
exactly five F4-points if it is defined over F4, or at most four F4-points if it is not
defined over F4 because an F4-point of D is a point of D ∩ F4(D); both are absurd.
Therefore D is a union of two lines m,m′. If a line is not defined over F4, then
F4(m) = m′ and D has only one F4-point: also absured. Hence this split occurs over
F4. Since degC = 3, those six points split into two groups; three of them lie on m

and the remaining three lie on m′, and P
(1)
i and P

(2)
i do not belong the same group.

Hence we may assume that P
(1)
1 , P

(1)
2 , P

(1)
3 ∈ m and P

(2)
1 , P

(2)
2 , P

(2)
3 ∈ m′. Note that

m and m′ do not contain Q0 nor Q1 nor Q2.
Apply the same arguments to Q1 instead of Q0 after (†). Since Q1 does not lie on

m norm′, there is a permutation (σ(1), σ(2), σ(3)) of (1, 2, 3) such that Q1, P
(1)
i , P

(2)
σ(i)

are collinear for i = 1, 2, 3. Similarly, there is another permutation τ such that

Q2, P
(1)
i , P

(2)
τ(i) are collinear for i = 1, 2, 3. Therefore

Q0 + P
(1)
1 + P

(2)
1 ∼ L

Q1 + P
(1)
1 + P

(2)
σ(1) ∼ L

Q2 + P
(1)
1 + P

(2)
τ(1) ∼ L















(13)

Claim 3. {σ(1), τ(1)} = {2, 3}.
Proof of claim 3. If not, two of {P (2)

1 , P
(2)
σ(1), P

(2)
τ(1)} coincide. For example, if P

(2)
1 =

P
(2)
σ(1), then Q0, P

(1)
1 , P

(2)
1 = P

(2)
σ(1), Q1 are collinear, which is impossible because the

line joining Q0 and Q1 is l0. Other cases can be handled by similar way. �

By this claim,

P
(2)
1 + P

(2)
σ(1) + P

(2)
τ(1) ∼ L. (14)

Hence adding all equivalence relations in (13), together with (14) we have 3P
(1)
1 +

2L ∼ 3L, which implies 3P
(1)
1 ∼ L. Hence P

(1)
1 is a flex. Similarly we have that any

P
(j)
i is a flex. Hence µ1 = 9. Hence, from (10), (11) and (12) in Step 1, µ0 = 0,

µ2 = 0 and µ3 = 12. �

Remark 3.9 In Step 3 of the proof of Lemma 3.8, what we have shown is essentially
that if a point of C(F4) is flex, then so are all points of C(F4). If C(F4) contains
a flex, then C is defined over F4 as an elliptic curve. A sophisticated proof for the
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above fact may be possible by using the Jacobian variety, which coincides with the
elliptic curve C. For details, see the first part of [6].

Proof of Theorem 3.1. When the case (ii) in Lemma 3.8 occurs, three 0-lines are not
concurrent; Actually if three 0-lines are concurrent, there is an F4-point Q outside
C, which these F4-lines pass through. The remaining two F4-lines pass through Q
can’t cover all the points of C(F4).

Hence we may choose coordinates x0, x1, x2 so that those 0-lines are {x0 = 0},
{x1 = 0} and {x2 = 0}. Since |P2(F4) \ ∪2

i=0{xi = 0}| = 9 = |C(F4)|, C ∈ S4 by
Proposition 2.1. Furthermore since |S4| = 1 by Theorem 1.3 (III-ii), and C(1,ω,ω2) ∈
S4, C is projectively equivalent to to the curve

x30 + ωx31 + ω2x32 = 0.

Next we consider the case (i) in Lemma 3.8. In this case C has the following
properties:

(1) C is nonsingular of degree 3 defined over F4 with nine F4-points;

(2) for any P ∈ C(F4), i(TP (C).C;P ) = 3;

(3) each point of P2(F4) \ C(F4) lies on three tangent lines.

Here we will confirm the property (3). Among the five F4-lines passing through
Q ∈ P

2(F4) \ C(F4), µδ(Q) denotes the number of δ-lines. Since δ is either 1 or 3,
µ1(Q) + 3µ3(Q) = 9 and µ1(Q) + µ3(Q) = 5. Hence µ1(Q) = 3.

The proof of [2, Lemma 7] works well under those three assumptions (1), (2),
(3) for C. To adapt their proof to our case, beware of a difference of notation; their
q is our

√
q. �

4 Comparison of two maximal curves of degree 3 over

F4

Lastly we compare two maximal curves of degree 3

C : x30 + x31 + x32 = 0

and
D : x30 + ωx31 + ω2x32 = 0

over F4 = F2[ω].
Apparently, C and D are projectively equivalent over F26 , but not over F22 as

we have seen. We will show the function fields F4(C) and F4(D) are isomorphic over
F4. This is already guaranteed theoretically by Rück and Stichtenoth [6]. Here we
will give an explicit isomorphism between those two fields.

Let x = x0

x2
|C and y = x1

x2
|C. Obviously F4(C) = F4(x, y) with x3 + y3 + 1 = 0.

11



Theorem 4.1 Three functions

u = 1 +
x

y + 1
+

1

x+ y + 1

v = ω2 x

y + 1
+

1

x+ y + 1
(15)

w = ω
x

y + 1
+

1

x+ y + 1

satisfy

u3 + ωv3 + ω2w3 = 0.

Proof. By straightforward computation, we have

((y + 1)(x+ y + 1)w)3

=(ωx(x+ y + 1) + (y + 1))3

=x3(x+ y + 1)3 + ω2x2(x+ y + 1)2(y + 1) + ωx(x+ y + 1)(y + 1)2 + (y + 1)3,

((y + 1)(x+ y + 1)v)3

=(ω2x(x+ y + 1) + (y + 1))3

=x3(x+ y + 1)3 + ωx2(x+ y + 1)2(y + 1) + ω2x(x+ y + 1)(y + 1)2 + (y + 1)3,

and

((y + 1)(x + y + 1)u)3

=((y + 1)(x+ y + 1) + x(x+ y + 1) + (y + 1))3 = g + h,

where

g =(y + 1)3(x+ y + 1)3 + (y + 1)2(x+ y + 1)2(x(x+ y + 1) + (y + 1))

+ (y + 1)(x+ y + 1)(x(x + y + 1) + (y + 1))2,

h =(x(x+ y + 1) + (y + 1))3

=x3(x+ y + 1)3 + x2(x+ y + 1)2(y + 1) + x(x+ y + 1)(y + 1)2 + (y + 1)3.

Hence

ω2((y + 1)(x+ y + 1)w)3 + ω((y + 1)(x+ y + 1)v)3 + h

=(ω2 + ω + 1)x3(x+ y + 1)3

+ (ω4 + ω2 + 1)x2(x+ y + 1)2(y + 1)

+ (ω3 + ω3 + 1)x(x+ y + 1)(y + 1)2

+ (ω2 + ω + 1)(y + 1)3

=x(x+ y + 1)(y + 1)2.

12



Therefore

ω2((y + 1)(x + y + 1)w)3 + ω((y + 1)(x + y + 1)v)3 + ((y + 1)(x+ y + 1)u)3 (16)

=g + x(x+ y + 1)(y + 1)2

=(y + 1)(x+ y + 1)
{

(y + 1)2(x+ y + 1)2 + x(y + 1)(x+ y + 1)2

+ (y + 1)2(x+ y + 1) + x2(x+ y + 1)2 + (y + 1)2 + x(y + 1)
}

.

Since the sum of last two terms in the braces is (x+ y+1)(y+1), (x+ y+1) divides
the polynomial in the braces. Hence (16) is equal to

(y + 1)3(x+ y + 1)3(ω2w3 + ωv3 + u3) = (y + 1)(x + y + 1)2f,

where

f = (y + 1)2(x+ y + 1) + x(y + 1)(x + y + 1) + (y + 1)2 + x2(x+ y + 1) + (y + 1)

Continue the computation a little more:

f = x(y + 1)2 + (y + 1)3 + x2(y + 1) + x(y + 1)2 + (y + 1)2 + x3 + x2(y + 1) + (y + 1)

= (y + 1)3 + (y + 1)2 + (y + 1) + x3

= y3 + x3 + 1 = 0.

As a conclusion, we have u3 + ωv3 + ω2w3 = 0. �

Corollary 4.2 F4(C) ∼= F4(D).

Proof. Trivially F4(C) = F4(x, y) = F4(
x

y+1 ,
1

x+y+1). On the other hand, by defini-
tion of u, v, w (15)

ω2 v

u
+ ω

w

u
= 1− 1

u
.

Hence F4(D) ∼= F4(
v
u
, w
u
) = F4(u, v, w). Since





u
v
w



 =





1 1 1
0 ω2 1
0 ω 1









1
x

y+1
1

x+y+1



 ,

we know F4(u, v, w) = F4(
x

y+1 ,
1

x+y+1). Summing up, we get F4(D) ∼= F4(C). �
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