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Abstract

The classification of maximal plane curves of degree 3 over [Fy will be given,
which complements Hirschfeld-Storme-Thas-Voloch’s theorem on a characteri-
zation of Hermitian curves in P2. This complementary part should be under-
stood as the classification of Sziklai’s example of maximal plane curves of degree
q — 1 over F,. Although two maximal plane curves of degree 3 over Fy up to
projective equivalence over F4 appear, they are birationally equivalent over Fy
each other.
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1 Introduction

This paper is concerned with upper bounds for the number of F,-points of plane
curves defined over [F,. Let C' be a plane curve defined by a homogeneous equation
[ € Fylzo, 21, 22]. The set of F-points C(F,) of C is {(ag,a1,a2) € P? | ap,a1,as €
F, and f(aog,a1,a2) = 0}. The cardinality of C(F,) is denoted by N,(C), and the
degree of C by deg C, or simply by d. We are interesting in upper bounds for N,(C')
with respect to deg C.

Aubry-Perret’s generalization [I] of the Hasse-Weil bound implies that for abso-
lutely irreducible plane curve of degree d over F,

No(C) <q+1+(d—1)(d-2)\/q. (1)

On the other hand, the Sziklai bound established by a series of papers of Kim and
the author [3, 4, [5] gives a one under a more mild condition, that is, for C' without
[F4-linear components,

N(C) < (d—1)g +1 (2)
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except for the curve over F, defined by
(xo + 21+ $2)4 + (xoml + 129 + xgwo)Q + xoxlxg(xo + 1+ xg) =0.

When d < ,/q + 1, the Aubry-Perret generalization of Hasse-Weil bound is better
than the Sziklai bound, however when d > ,/q + 1, the latter is better than the
former, and these two bounds meet at d = /g + 1, that is, both () and (&) imply

Ny (C) < /@ +1if degC = /g +1, (3)

where ¢ is an even power of a prime number. From now on, when a statement
contains ,/q, we tacitly understand ¢ to be an even power of a prime number.

Three decades ago, Hirschfeld, Storme, Thas and Voloch [2] gave a characteriza-
tion of Hermitian curves of degree ,/q + 1 over [y, which is a maximal curve in the
sense of the bound (3.

Theorem 1.1 (Hirschfeld-Storme-Thas-Voloch) In P? over F, with ¢ # 4, a
curve over Fy of degree \/q+1, without Fy-linear components, which contains \/Q?’—i—l
Fy-points, is a Hermitian curve.

For ¢ = 4, they gave an example of a nonsingular plane curve over F4 which had
9 (= 2% + 1) Fy-points, but was not a Hermitian. Actually the plane curve defined
by
xh 4+ wrd +w?ad =0 (4)
is such an example, where Fy = {0, 1,w, w?}.
Our primary concern is to complete the determination of plane curves over [,
of degree /g + 1 with \/63 + 1 F4-points.

Theorem 1.2 Let C be a plane curve over Iy without Fy-linear components. If
degC' = \/q+ 1 and Ny(C) = \/g* + 1, then C is either

(i) a Hermitian curve, or

(ii) a nonsingular curve of degree 3 which is projectively equivalent to the curve ()
over Fy.

The second case (ii) in the above theorem should be understood the case of ¢ = 4
among Sziklai’s curves [8] of degree ¢ — 1 that achieve the Sziklai bound (2]). Here
a Sziklai’s curve means one over [F, ,of degree ¢ — 1 defined by the following type of
equation:

azd™t + ﬂx({fl + yngl =0 with afy#0and a+ B +~v=0. (5)

The curve (Bl will be denoted by Cla,8,7)- Since 971 =1 for any z € [F; and
a+f+vy=1,
Clap) (Fq) D PHF) \ (Uio{zs = 0}). (6)
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Here {x; = 0} denotes the line defined by z; = 0. Furthermore, since deg Clapq) =
q— 15
Ny(Clapm) < (4=2)a+1=(g—1)°

by the Szikali bound. Therefore equality must hold in (6]), that is,
Cla,p.y) ([Fg) = PX(Fy) \ ({x0 = 0} U {x1 = 0} U {xg = 0}). (7)

Note that C(, g) makes sense under the condition g > 2.

Theorem 1.3 The number v, of projective equivalent classes over Fy in the family
of curves

{C(a,ﬁﬂ/) | a,ﬁa'Y c FZ, a+ +y = 0}
is as follows:

(I) Suppose that the characteristic of Fy is neither 2 nor 3.

. _ 1
(I4) If ¢ = 2 mod 3, then v, = L.

"6
(I-i) If ¢ =1 mod 3, then vy = %.
. +3
(IT) Suppose that q is a power of 3. Then v, = 5=,

(III) Suppose that q is a power of 2.
. o -2
(I1I-i) If ¢ = 22T, that is, ¢ = 2 mod 3, then v, = ==,

.. o +2
(II-ii) If ¢ = 2%, that is, ¢ = 1 mod 3, then vy = 4.

In this theorem, we don’t assume g > 2 explicitly, however the assertion (III-i) says
the family of curves in question is empty if ¢ = 2.

The construction of this article is as follows:

In Section 2, we will give the proof of Theorem [[3] together with the character-
ization of Sziklai’s curve of degree ¢ — 1.

In Section 3, we will give the proof of Theorem [[2} actually we will handle the
case q = 4.

In Section 4, we will make explicitly an F4-isomorphism between the function
field of the Hermitian curve over Fy defined by zj + 23 + 23 = 0 and that of the

curve ().

2 Sziklai’s example of maximal curves of degree ¢ — 1

The purpose of this section is to prove Theorem [L.3l Let ., = {C(a,ﬁﬂ) | o, B,y €
Fy, a+ B+~ = 0}. The first step of the proof is to give a characterization of the
member of ..



Proposition 2.1 Let C be a possibly reducible plane curve over F, of degree ¢ — 1.
Then C € 7 if and only if

C(Fq) = Pz(Fq) \ (U?:O{xi = 0}) . (8)

The “only if” part has already observed in Introduction. Now we prove the “if”
part.

Lemma 2.2 In A? with coordinates z,y over F,, the ideal I in Fylx,y] of the set
{(a,b) € FZ [ ab # 0} is (x771 — 1,571 —1).

Furthermore, if f(x,y) € I is of degree at most ¢ — 1, then f(z,y) = a(x?™! —
1)+ By?t — 1) for some a, 3 € F,,.

Proof. Let J denote the ideal (2971 — 1,597t — 1) of F [z, y]. Obviously J C I. For
f(z,y) € I, there are polynomials g;(z) € Fg[z] (0 <1i < ¢ —2) of degree < g —2 so

that
q—2

f(z,y) = Zgl(:ﬂ)yl mod J.
i=0

For each a € Fy, the equation 23;02 gi(a)y’ = 0 has to have ¢ — 1 (= |F}|) solutions

because Zg;g gi(x)y® € I. Hence g;(a) = 0 for any i. Since degg; < q — 2, g; must
be the zero polynomial. Hence f(z,y) = 0 mod J. This completes the proof of the
first part.

For the second part, let o and 3 be the coefficients of 297! and y?~! in f(z,v)
respectively. Then

q—2
flay) — (@™ =1) =BT = 1) =Y ug1-i(2)y’ + vg-2(2), (9)
=1

where degug—1-i(z) < ¢g—1—1i (< ¢—2) and degvy—2(z) < ¢—2. So the same argu-
ment as above works well, and we know the right side of () is the zero polynomial.
U

Proof of Proposition 21l Choose a homogeneous equation f(xg,z1,22) = 0 of de-
gree ¢ — 1 over I, for a given curve C' with the property (8). From Lemmal[2Z2] there
are elements «a, 5 € F, such that f(£2, 2 1) = a((i—g)q_l -1+ 85 =)

x2’ T2 b))

Therefore f(zg,x1,22) = xqflf(i—g, o) = ozl — 28 4+ 8297 — 2471, Since

C(Fy) N{xy = 0} is empty, f(a,b,0) # 0 for any (a,b) € F2 \ {(0,0)}. In particular,
a= f(1,0,0) #0, 8= f(0,1,0) #0 and o + f = f(1,1,0) # 0. Hence C € .7,. O

Now we want to classify ., up to projective equivalence over FFy.

Definition 2.3 Let C be a possibly reducible curve in P? over F,, and 0 a nonneg-
ative integer. An F-line [ is said to be a é-line with respect to C' if [l N C(F,)| = 4.



1) ‘ the number of §-lines
0 3

q-—2 (q—1)?
q—1 3(g—1)

Table 1: ¢-lines w.r.t. C € .7,

Lemma 2.4 Let C € %, and 0 a nonnegative integer such that a d-line with respect
to C' actually exists. Then § s either 0 or g — 2 or ¢ — 1, and the number of §-lines
are as in Table [l

Proof. Note that ¢ > 2 because .# is not empty. Since P%(F,) = C(F,)U(UZ_,{z; =
0}) (where the symbol LI indicates disjoint union) and g > 2, the possible values of
d are 0, ¢ — 2 and ¢ — 1. Obviously the number of O-lines is 3. A (¢ — 1)-line is not a
0-line, and passes through one of intersection points of two 0O-lines. Other lines are
(g — 2)-lines. O

We need an elementary fact on the finite group action, so called “Burnside’s

lemma” [7, Corollary 7.2.9].

Lemma 2.5 Let G be a finite group which acts on a finite set X. For g € G, Fixg
denotes the set of fized points of g on X. Then the number v of orbits of G on X s

given by
1 .
v= @ Z | Fix g|.
geG

Proof. Let us consider the set
¢ ={(g,x) eGXxX|g-z=uzx}

with projections pi(g,z) = ¢g and pa(g,2) = x. Counting |€| by using p;, |€| =
> _gec | Fixgl, and by p, [€] = >° cx |Gsl, where G is the isotropy subgroup of

x € X. Let x1,...,x, be the set of complete representatives of the orbits of G on
X. Then .

Y 1G =) |Gxi| - |G| = vIGl,

rzeX i=1
where Gz; is the orbit containing x;. So v|G|=}_ ., |Fixg|. O

Proof of Theorem [L3l The first claim is that if two members C(, 3.), C(or p/4) €
7, are projectively equivalent over F,, then the point (o/,8,7') € P*(F,) is a
permutation of the point (a,3,7) € P?(F,), that is, there is a nonzero element
A € Fy such that the triple (Ao, A3’, \y') is a permutation of the triple («a, 3,7).
Actually, let ¥ be a projective transformation so that ¥C(,, 3 ,) = C( g 4y Note
that ¥ induces an automorphism of the homogeneous coordinate ring F,[zo, 1, 22,
which is denoted by X*. The set of 0-lines with respect to each of curves in .7 is
{{zo = 0}, {z1 = 0},{z2 = 0}} by Lemma 241 Hence ¥ induces a permutation of



those three lines. Hence ¥*(z;) = u;z,(;) for some u; € Fy, and (¢(0),0(1),0(2)) is
a permitation of (0,1,2). Hence

S (aaf T 4 Bl + v ) = ‘WZZOI) + 51"3?11) + 7553(21)

because ul ' = 1.
So we need to classfy .7, /F, by the action of S3 as permutations on coefficients.
Observe the map

p - yq/FZ = C(a,ﬁ,ﬂ/) — (Oé : ﬂ) S ]P’l,
which is well-defined and
Imp = Pl \ {(Oa 1)5 (15 0)5 (15 _1)}

Obviously, p gives a one to one correspondence, so S3 acts on Im p also. Table
shows the S3-action on Im p explicitly.

Ss3 o F5 Imp
(1) (o, 8,7) = (v, B,7) (a:B) = (a: B)
(1,2) | (a,8,7) = (B, ,7) (a:8)—(B:a)
(2,3) | (@ B,7) = (a,7,8) | (a:B) = (a: —(a+B))
(1,3) | (a,8,7) = (7v,8,0) | (a:8) = (—(a+8):B)
(1,2,3) | (@, B,7) = (v,0,8) | (a:B) = (—(a+p): )
(1,3,2) | (a,8,7) = (B,7,0) | (a:B) = (B:—(a+B))

Table 2: Ss-action on Im p

Now we compute the number of fixed points on Im p by each o € S3.
e Fixed points of the identity (1) are all the ¢ — 2 points of Im p.

e (a:B) €Fix(1,2) & (a: B) = (B:a) e a®— B2 =0. If the characteristic of
F, # 2, then Fix(1,2) = {(1 : 1)} because (1 : —1) € Im p. If ¢ is a power of 2,
then Fix(1,2) is empty.

o (:p)eFix(2,3) @ (a:0) =(a: —(ae+ ) & a= —20 because a # 0 . If
the characteristic of Fy # 2, then Fix(2,3) = {(—2:1)}. If ¢ is a power of 2,
then Fix(2,3) is empty.

e (a:8)€eFix(1,3) & (a:8)=(—(a+p): B) & B =—2a because § #0 . If
the characteristic of Fy # 2, then Fix(1,3) = {(1 : —2)}. If ¢ is a power of 2,
then Fix(1,3) is empty.

(a:B) €Fix(1,2,3) & (a: )= (—(a+p):a) &’ +af+ 52 =0 (a:
5):(77:1)withn2+77+1:0and77€Fq.

e (a:B)€Fix(1,3,2) & (a:B)=(B:—(a+B) e’ +aB+p2=0% (a:
B)=(n:1) withn’+n+1=0and n € F,.



For the last two cases, since a cubic root of 1 other than 1 exists in F, if and only
if ¢ = 1 mod 3, and only the cubic root of 1 is 1 if g is a power of 3,

|Fix(1,2,3)] = | Fix(1,3,2)] =

2 if g=1mod3

1 if g is a power of 3

0 else.

The number of fixed points can be summarized as in Table 3l

Case || |Fix(1)] | |Fix(12)] | |Fix(13)] | |Fix(23)| | |Fix(123)| | |Fix(132)]
(I-1) q—2 1 1 1 0 0
(I-ii) || ¢—2 1 1 1 2 2
(I1) q—2 1 1 1 1 1
() || ¢—2 0 0 0 0 0
(i) | ¢ —2 0 0 0 2 2

Table 3: Number of fixed points

Since v, = %ZJE s, | Fixo| by Lemma 2.5 we are able to know v, explicitly. [

At the end of this section, we raise a question: are there maximal plane curves
over [F, of degree ¢ — 1 other than Sziklai’s example?

3 Maximal curves of degree 3 over [,

Let C' be a plane curve of degree 3 over Fy without Fy-linear components, and
N4(C) = 9. Since the degree of C is 3, C is absolutely irreducible. If C' had a
singular point, then C' would be an image of P!, and hence N,(C') would be at most
6 (= N4(P') + 1). Therefore C is nonsingular.

Thanks to the Hirschfeld-Storme-Thas-Voloch theorem, only the missing case for
the classification of maximal curves of degree \/q + 1 is the case of ¢ = 4.

Theorem 3.1 Let C' be a nonsingular plane curve of degree 3 over Fy. If Ny(C) =
9, then C is either

(i) Hermitian, or
(ii) projectively equivalent to the curve
x% + wxi{’ + w2x§’ =0,
where Fy = {0,1,w, w?}.

Notation 3.2 Let | be an Fy-line in P?. The symbol [.C' denotes the divisor
Y prc t(l.C; P)P on C, where i(1.C; P) is the local intersection multiplicity of [
and C' at P. Note that though [.C is defined over Fy, a point P in the support of
[.C' may not be Fy-point.



From now on, we consider a nonsingular plane curve C' of degree 3 with N4(C') =
9, and lines over Fy.

Lemma 3.3 Let [ be a 2-line with respect to C, say | N C(Fy) = {P1,P2}. Then
[.C=2P, + Py or P, +2P;.

Proof. Since deg C' = 3, there is a closed point @ of C such that [.C = P; + P> + Q.
Applying the Frobenius map Fy over F4 to both side of the above equality, we know
P+ P,+Q = P, + P, + F4(Q), which implies that the point @ is also Fy4-point.
Therefore ) must concide with either P, or P, because [ is a 2-line. O

Lemma 3.4 Let ly be a 1-line with respect to C, say lg N C(Fy) = {P}. Then
lo.C = 3P.

Proof. Consider all the F4-lines passing through the point P, say lg,l1,...,l4. Count-
ing N4(C) by using the disjoint union

C(Fg) = {Py U (Lisa (i N C(F) \ {P}))

we know that |l; N C'(F4) \ {P}| is 2, that is the remaining four lines ly,...l4 to
be 3-lines with respect to C. So each of them meets with C' transversally because
deg C' = 3. Therefore [y is the tangent line to C' at P. Hence there is a closed point
Q@ € C such that [y.C = 2P + Q). Apply F} to this divisor, @ should be Fy-points.
Since g is a 1-line, Q = P. O

Definition 3.5 Since C' is nonsingular, for any closed point P € C, the tangent
line to C' at P exists, which is a unique line [ such that i(l.C;; P) > 2. This line is
denoted by Tp(C). A point P with i(Tp(C).C; P) = 3 is called a flex or an inflection
point. It is obvious that if P is an F4-points, then Tp(C') is an Fy-line.

Corollary 3.6 Let P € C(Fy).

(i) If i(Tp(C).C; P) = 3, then Tp(C) is a 1-line, and conversely, if an Fy-line
passing through P is a 1-line, then | = Tp(C') and i(Tp(C).C; P) = 3.

(ii) If i(Tp(C).C; P) = 2, then Tp(C) is a 2-line, and conversely, if an Fy-line
passing through Py, Py € C(Fy) is a 2-line, then | coincides with either Tp, (C)
or Tp,(C).

Proof. (i) The first part is obvious because degC' = 3, and the second part is a
consequence of Lemma [3.41

(ii) This is also a consequence of Lemma 3.4 since Tp(C) is not a 1-line, it
should be a 2-line, and the second part is just in Lemma 3.3 O

Notation 3.7 For each nonnegative integer § < 3, %5 denotes the set of J-lines
with respect to C, and ugs denotes the cardinality of the set .%j.

The next lemma is essential for the proof of Theorem [3.11



Lemma 3.8 The possibilities of quadruple (uo, 1, p2, p3) are either
(1) po=0, 1 =9, pp =0, pz=12; or
(i) po=3, p1 =0, p2 =9, pz=9.

Proof. Step 1. Let us consider the correspondence
7 ={(l,P) e PX(Fy) x C(F,) |l > P}

with projections p; : & — P2%(Fy) and py : & — C(Fy), where P2(Fy) is the
projective space of the Fy-lines. Since |p, '(P)| = 5 for all P € C(Fy4) and |C(Fy)| =
9, we know |.Z| = 45.

From Corollary [3.6] the tangent line at an Fg-point is a 1-line or 2-line, and vice
versa. Since deg C' = 3, there are no bi-tangents. Hence

p A p2 = 9. (10)
Since [p~1(1)| = § if [ is a d-line,
p + 2p2 + 3ug = || = 45. (11)
Additionally, since the total number of [Fy-lines is 21,
po + p + p2 + pg = 21. (12)

Step 2. Suppose that g1 = 0. From ([0), (IT), (I2]), we have ug = 3, o = pg = 9,
which is the case (ii).

Step 3. Suppose that pu; # 0. Since (I0) and (), p; = 0 mod 3. Hence there
are at least three 1-lines, and hence there are at least three inflection FF4-points.
Choose two inflection F4-points Q1 and ()2, and consider the line [y passing through
these two points, which is an F4-line. Hence [y meets C at another point QQg, which
is also an F4-point.

Claim 1. Qg is also a flex.

We need more notation. The linear equivalence relation of divisors on C' will be
denoted by ~, and a general line section on C' by L. Here a general line section
means a representative of the divisor cut out by a line on C, which makes sense up
to the relation ~.

Proof of claim 1. Since Qo + Q1 + Q2 ~ L and 3Q; ~ L for ¢ = 1 and 2, we have
3Qp ~ 3L — 3Q1 — 3Qy ~ L, which means that Q) is a flex. O
Hence the following property holds.

(1) There are exactly three F4-lines passing through Qo besides lp and Tg,(C),
say l1,ls,l3. Each [; is a 3-line.

Actually, since

C(Fy) = {Qo, Q1, Q2} U (L1 (I, N C(F4) \ {Qo}))



and |l; NC(Fy) \ {Qo}| < 2, each [; is a 3-line.

The six points of C(Fy) \ {Qo, Q1, @2} are named {Pi(j) |i=1,2,3;5 =1,2} so
that I; N C(Fy) = {Qo, P, P}

Claim 2. Y3 (P + PPy ~ 2L,
Proof of claim 2. Since Qg + Pi(l) + PZ-(Q) ~ L and 3Qq ~ L, we get L+ Zle(Pi(l) +
P®y ~ 3L, 0

Since a nonsingular plane curve is projectively normal, the divisor Z?Zl(Pi(l) +
PZ-(Q)) on C is cut out by a quadratic curve. Let D be the quadratic curve passing
through those six points. Suppose that D is absolutely irreducible. Then D has
exactly five F4-points if it is defined over Fy, or at most four F4-points if it is not
defined over [F4 because an F4-point of D is a point of D N Fy(D); both are absurd.
Therefore D is a union of two lines m,m/. If a line is not defined over Fy, then
Fy(m) = m/ and D has only one Fy-point: also absured. Hence this split occurs over
F4. Since deg C' = 3, those six points split into two groups; three of them lie on m

1)

and the remaining three lie on m’, and P, !
Hence we may assume that Pl(l), P2(1)7 P?El) € m and P1(2)7 P2(2)7P?E2) € m/. Note that
m and m’ do not contain Qg nor @1 nor Q.

Apply the same arguments to Q) instead of Qg after (1). Since Q1 does not lie on
m nor m/, there is a permutation (o (1), 0(2),0(3)) of (1,2, 3) such that @1, Pi(l), Pa(?i))
are collinear for ¢+ = 1,2,3. Similarly, there is another permutation 7 such that

Q3, Pi(l)’PT(?i)) are collinear for ¢ = 1,2, 3. Therefore

and Pi(2) do not belong the same group.

Qo+ P + PP L
Q+PY+PY ~ L (13)
Q+PV+P0 ~ L

Claim 3. {o(1),7(1)} ={2,3}.
Proof of claim 3. If not, two of {P1(2), p?

o(1)?
Pé?i), then Qq, Pl(l), P1(2) = Pﬁi), ()1 are collinear, which is impossible because the

line joining Q¢ and @1 is lp. Other cases can be handled by similar way. U
By this claim,

PT(?E)} coincide. For example, if P1(2) =

(2) 2) 2)
T+ Py + Py ~ L (14)

Hence adding all equivalence relations in (I3)), together with (I4]) we have 3P1(1) +

2L ~ 3L, which implies 3P1(1) ~ L. Hence Pl(l) is a flex. Similarly we have that any
P9 is a flex. Hence w1 = 9. Hence, from ([I0), (II) and ([I2) in Step 1, po = 0,

(2

po =0 and ps = 12. U

Remark 3.9 In Step 3 of the proof of Lemmal[3.8], what we have shown is essentially
that if a point of C(Fy) is flex, then so are all points of C(IF4). If C(FF4) contains
a flex, then C is defined over F4 as an elliptic curve. A sophisticated proof for the
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above fact may be possible by using the Jacobian variety, which coincides with the
elliptic curve C. For details, see the first part of [6].

Proof of Theorem[BIl When the case (ii) in Lemma [B.§ occurs, three 0-lines are not
concurrent; Actually if three 0-lines are concurrent, there is an F4-point @) outside
C, which these F4-lines pass through. The remaining two Fy-lines pass through @
can’t cover all the points of C(Fy).

Hence we may choose coordinates zg,x1,z2 so that those O-lines are {zy = 0},
{1 = 0} and {z3 = 0}. Since |P?}(Fy) \ U2 {z; = 0}| = 9 = |C(Fy)|, C € #4 by
Proposition 21l Furthermore since |74 = 1 by Theorem [L.3| (I1l-ii), and Cy .2 €
4, C' is projectively equivalent to to the curve

:Ug + waz‘;’ + w2x§ =0.
Next we consider the case (i) in Lemma [B.8 In this case C' has the following
properties:
(1) C is nonsingular of degree 3 defined over Fy with nine F4-points;
(2) for any P € C(Fy), i(Tp(C).C; P) = 3;
(3) each point of P?(F4) \ C(F4) lies on three tangent lines.

Here we will confirm the property (3). Among the five Fy-lines passing through
Q € P2(Fy) \ C(Fy), us(Q) denotes the number of é-lines. Since § is either 1 or 3,
p1(Q) +3p3(Q) = 9 and 11 (Q) + p3(Q) = 5. Hence 11(Q) = 3.

The proof of [2, Lemma 7] works well under those three assumptions (1), (2),
(3) for C. To adapt their proof to our case, beware of a difference of notation; their

q is our /q. ]

4 Comparison of two maximal curves of degree 3 over
[Fy

Lastly we compare two maximal curves of degree 3
C:ap+at+a3=0

and
D: x%—{—wxi{’—l—oﬁx% =0

over Fy = Faylw].

Apparently, C and D are projectively equivalent over Fqs, but not over Fy2 as
we have seen. We will show the function fields Fy(C') and F4(D) are isomorphic over
Fy. This is already guaranteed theoretically by Riick and Stichtenoth [6]. Here we
will give an explicit isomorphism between those two fields.

Let z = £2|C and y = £$|C. Obviously F4(C) = F4(z,y) with By +1=0.

11



Theorem 4.1 Three functions

T 1
u=1+ +
y+1 z4+y+1
9 T 1
v =w + 15
y+1 z+y+1 (15)
T 1

w +
y+1 z+y+1
satisfy
ud 4w + W = 0.
Proof. By straightforward computation, we have

(y+ Dl +y+ Dw)?
=(wz(z+y+1)+@y+1))°
=z +y+ 1P+ (@ +y+ 1)y + D) +wzl@+y+ Dy + 1>+ (y+1)°,

(y+ 1)@ +y+1)v)°
=(w’z(z+y+1)+ (y+1))°
=}z +y+1)° +wrf@+y+ 1)+ 1) +wzl@+y+ Dy + 1>+ (y+1)°

and

(y+ D)z +y+Du)?
=((y+Dz+y+D)+a@z+y+1)+w+1))>=g+h,

where

g=w+13@+y+1P+ @+ @c+y+ 1D @@@+y+1)+ (y+1)
++DE+y+ D@ +y+1)+ (y+1)7%

h=(x(z+y+1)+(y+1))°
=z +y+ 1)’ +22@+y+ 1) y+ ) +a@+y+ D)y +1)7+ @y +1)°%

Hence

W+ D@ +y+Dw)P +w(y+D)(@+y+ 1) +h
=W+ w+ D2z +y+1)°
+ W+ D@ +y+ 1)y + 1)
+ (@ +wt+ D@ +y+ 1y +1)°
+ (W Hw+1)(y+1)°
=r(z+y+1)(y+1)>%
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Therefore

Cly+ D +y+Dw)P +w((y+ 1) (@ +y+ 1))+ ((y+ Dz +y+ Du)® (16)
—g+z(z+y+1)(y+1)>
~(y+ D@ +y+ D{+102@+y+ D2+ aly+ (@ +y+1)?

+(y+1)2(x+y—|—1)+m2(m+y+1)2+(y+1)2+x(y+1)}.

Since the sum of last two terms in the braces is (r+y+1)(y+1), (x+y+1) divides
the polynomial in the braces. Hence (I0]) is equal to

(y+ 1@ +y+1° (@’ + wo’ + ') = (y + D@ +y + 1)/,
where
f=W+D@+y+D+a@+D+y+ )+ @+ 1) +2°@+y+ 1)+ (y+1)
Continue the computation a little more:

f=zy+1)*+@y+12+22w+ D) +2zy+ 1)+ y+1D°+ 23 +22(y+ 1D+ (y+1)
=@W+1°?+@w+1)>*+y+1)+2°
=P+l +1=0.

As a conclusion, we have u? + wv? + w?w? = 0. O

Corollary 4.2 F,(C) =2 F4(D).

Proof. Trivially Fy(C) = Fy(z,y) = Fa(551 ﬁyﬂ) On the other hand, by defini-
tion of w, v, w (IH)

1
wzg—i—wgzl——.
U U U

Hence Fy(D) = Fy(3, %) = Fa(u,v,w). Since

U 1 1 1 1
v]=[0 w? 1 a1 |
1
we know Fy(u,v,w) = IF4(y%, ﬁyﬂ) Summing up, we get Fq(D) = Fy(C). O

References

[1] Y. Aubry and M. Perret, A Weil theorem for singular curves, in: R. Pellikaan,
M. Perret and S. Vladut (Eds.), Arithmetic geometry and coding theory (Lu-
miny, 1993), de Gruyter, Berlin, 1996, 1-7.

13



2]

[3]

J. W. P. Hirschfeld, L. Storme, J. A. Thas and J. F. A. Voloch, A characteri-
zation of Hermitian curves, J. Geom. 41 (1991) 72-78.

M. Homma and S. J. Kim, Around Sziklai’s conjecture on the number of points
of a plane curve over a finite field, Finite Fields Appl. 15 (2009), 468-474.

M. Homma and S. J. Kim, Sziklai’s conjecture on the number of points of a
plane curve over a finite field 11, in: G. McGuire, G.L. Mullen, D. Panario,
L.E. Shparlinski (Eds.), Finite Fields: Theory and Applications, 225-234, Con-
temp. Math., vol. 518, AMS, Providence, 2010. (An update is available at arXiv
0907.1325v2.)

M. Homma and S. J. Kim, Sziklai’s conjecture on the number of points of a
plane curve over a finite field 111, Finite Fields Appl. 16 (2010) 315-319.

H.-G. Riick and H. Stichtenoth, A characterization of Hermitian function fields
over finite fields, J. Reine Angew. Math. 457 (1994) 185-188.

B. Steinberg, Representation theory of finite groups. An introductory approach,
Universitext, Springer, New York, 2012.

P. Sziklai, A bound on the number of points of a plane curve, Finite Fields Appl.
14 (2008) 41-43.

14



	1 Introduction
	2 Sziklai's example of maximal curves of degree q-1
	3 Maximal curves of degree 3 over F4
	4 Comparison of two maximal curves of degree 3 over F4

