

On maximal plane curves of degree 3 over \mathbb{F}_4 , and Sziklai's example of degree $q - 1$ over \mathbb{F}_q

Masaaki Homma

Department of Mathematics and Physics, and
Research Institute for Integrated Science

Kanagawa University
Hiratsuka 259-1293, Japan
homma@kanagawa-u.ac.jp

Abstract

The classification of maximal plane curves of degree 3 over \mathbb{F}_4 will be given, which complements Hirschfeld-Storme-Thas-Voloch's theorem on a characterization of Hermitian curves in \mathbb{P}^2 . This complementary part should be understood as the classification of Sziklai's example of maximal plane curves of degree $q - 1$ over \mathbb{F}_q . Although two maximal plane curves of degree 3 over \mathbb{F}_4 up to projective equivalence over \mathbb{F}_4 appear, they are birationally equivalent over \mathbb{F}_4 each other.

Key Words: Plane curve, Finite field, Rational point, Maximal curve

MSC: 14G15, 14H50, 14G05, 11G20, 05B25

1 Introduction

This paper is concerned with upper bounds for the number of \mathbb{F}_q -points of plane curves defined over \mathbb{F}_q . Let C be a plane curve defined by a homogeneous equation $f \in \mathbb{F}_q[x_0, x_1, x_2]$. The set of \mathbb{F}_q -points $C(\mathbb{F}_q)$ of C is $\{(a_0, a_1, a_2) \in \mathbb{P}^2 \mid a_0, a_1, a_2 \in \mathbb{F}_q \text{ and } f(a_0, a_1, a_2) = 0\}$. The cardinality of $C(\mathbb{F}_q)$ is denoted by $N_q(C)$, and the degree of C by $\deg C$, or simply by d . We are interesting in upper bounds for $N_q(C)$ with respect to $\deg C$.

Aubry-Perret's generalization [1] of the Hasse-Weil bound implies that for absolutely irreducible plane curve of degree d over \mathbb{F}_q ,

$$N_q(C) \leq q + 1 + (d - 1)(d - 2)\sqrt{q}. \quad (1)$$

On the other hand, the Sziklai bound established by a series of papers of Kim and the author [3, 4, 5] gives a one under a more mild condition, that is, for C without \mathbb{F}_q -linear components,

$$N_q(C) \leq (d - 1)q + 1 \quad (2)$$

except for the curve over \mathbb{F}_4 defined by

$$(x_0 + x_1 + x_2)^4 + (x_0 x_1 + x_1 x_2 + x_2 x_0)^2 + x_0 x_1 x_2 (x_0 + x_1 + x_2) = 0.$$

When $d < \sqrt{q} + 1$, the Aubry-Perret generalization of Hasse-Weil bound is better than the Sziklai bound, however when $d > \sqrt{q} + 1$, the latter is better than the former, and these two bounds meet at $d = \sqrt{q} + 1$, that is, both (1) and (2) imply

$$N_q(C) \leq \sqrt{q}^3 + 1 \text{ if } \deg C = \sqrt{q} + 1, \quad (3)$$

where q is an even power of a prime number. From now on, when a statement contains \sqrt{q} , we tacitly understand q to be an even power of a prime number.

Three decades ago, Hirschfeld, Storme, Thas and Voloch [2] gave a characterization of Hermitian curves of degree $\sqrt{q} + 1$ over \mathbb{F}_q , which is a maximal curve in the sense of the bound (3).

Theorem 1.1 (Hirschfeld-Storme-Thas-Voloch) *In \mathbb{P}^2 over \mathbb{F}_q with $q \neq 4$, a curve over \mathbb{F}_q of degree $\sqrt{q} + 1$, without \mathbb{F}_q -linear components, which contains $\sqrt{q}^3 + 1$ \mathbb{F}_q -points, is a Hermitian curve.*

For $q = 4$, they gave an example of a nonsingular plane curve over \mathbb{F}_4 which had $9 (= 2^3 + 1)$ \mathbb{F}_4 -points, but was not a Hermitian. Actually the plane curve defined by

$$x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0 \quad (4)$$

is such an example, where $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$.

Our primary concern is to complete the determination of plane curves over \mathbb{F}_q of degree $\sqrt{q} + 1$ with $\sqrt{q}^3 + 1$ \mathbb{F}_q -points.

Theorem 1.2 *Let C be a plane curve over \mathbb{F}_q without \mathbb{F}_q -linear components. If $\deg C = \sqrt{q} + 1$ and $N_q(C) = \sqrt{q}^3 + 1$, then C is either*

- (i) *a Hermitian curve, or*
- (ii) *a nonsingular curve of degree 3 which is projectively equivalent to the curve (4) over \mathbb{F}_4 .*

The second case (ii) in the above theorem should be understood the case of $q = 4$ among Sziklai's curves [8] of degree $q - 1$ that achieve the Sziklai bound (2). Here a Sziklai's curve means one over \mathbb{F}_q of degree $q - 1$ defined by the following type of equation:

$$\alpha x_0^{q-1} + \beta x_1^{q-1} + \gamma x_2^{q-1} = 0 \text{ with } \alpha\beta\gamma \neq 0 \text{ and } \alpha + \beta + \gamma = 0. \quad (5)$$

The curve (5) will be denoted by $C_{(\alpha, \beta, \gamma)}$. Since $x^{q-1} = 1$ for any $x \in \mathbb{F}_q^*$ and $\alpha + \beta + \gamma = 1$,

$$C_{(\alpha, \beta, \gamma)}(\mathbb{F}_q) \supset \mathbb{P}^2(\mathbb{F}_q) \setminus (\cup_{i=0}^2 \{x_i = 0\}). \quad (6)$$

Here $\{x_i = 0\}$ denotes the line defined by $x_i = 0$. Furthermore, since $\deg C_{(\alpha, \beta, \gamma)} = q - 1$,

$$N_q(C_{(\alpha, \beta, \gamma)}) \leq (q - 2)q + 1 = (q - 1)^2$$

by the Szikali bound. Therefore equality must hold in (6), that is,

$$C_{(\alpha, \beta, \gamma)}(\mathbb{F}_q) = \mathbb{P}^2(\mathbb{F}_q) \setminus (\{x_0 = 0\} \cup \{x_1 = 0\} \cup \{x_2 = 0\}). \quad (7)$$

Note that $C_{(\alpha, \beta, \gamma)}$ makes sense under the condition $q > 2$.

Theorem 1.3 *The number ν_q of projective equivalent classes over \mathbb{F}_q in the family of curves*

$$\{C_{(\alpha, \beta, \gamma)} \mid \alpha, \beta, \gamma \in \mathbb{F}_q^*, \alpha + \beta + \gamma = 0\}$$

is as follows:

(I) *Suppose that the characteristic of \mathbb{F}_q is neither 2 nor 3.*

(I-i) *If $q \equiv 2 \pmod{3}$, then $\nu_q = \frac{q+1}{6}$.*

(I-ii) *If $q \equiv 1 \pmod{3}$, then $\nu_q = \frac{q+5}{6}$.*

(II) *Suppose that q is a power of 3. Then $\nu_q = \frac{q+3}{6}$.*

(III) *Suppose that q is a power of 2.*

(III-i) *If $q = 2^{2s+1}$, that is, $q \equiv 2 \pmod{3}$, then $\nu_q = \frac{q-2}{6}$.*

(III-ii) *If $q = 2^{2s}$, that is, $q \equiv 1 \pmod{3}$, then $\nu_q = \frac{q+2}{6}$.*

In this theorem, we don't assume $q > 2$ explicitly, however the assertion (III-i) says the family of curves in question is empty if $q = 2$.

The construction of this article is as follows:

In Section 2, we will give the proof of Theorem 1.3 together with the characterization of Sziklai's curve of degree $q - 1$.

In Section 3, we will give the proof of Theorem 1.2; actually we will handle the case $q = 4$.

In Section 4, we will make explicitly an \mathbb{F}_4 -isomorphism between the function field of the Hermitian curve over \mathbb{F}_4 defined by $x_0^3 + x_1^3 + x_2^3 = 0$ and that of the curve (4).

2 Sziklai's example of maximal curves of degree $q - 1$

The purpose of this section is to prove Theorem 1.3. Let $\mathcal{S}_q = \{C_{(\alpha, \beta, \gamma)} \mid \alpha, \beta, \gamma \in \mathbb{F}_q^*, \alpha + \beta + \gamma = 0\}$. The first step of the proof is to give a characterization of the member of \mathcal{S}_q .

Proposition 2.1 *Let C be a possibly reducible plane curve over \mathbb{F}_q of degree $q-1$. Then $C \in \mathcal{S}_q$ if and only if*

$$C(\mathbb{F}_q) = \mathbb{P}^2(\mathbb{F}_q) \setminus \left(\cup_{i=0}^2 \{x_i = 0\} \right). \quad (8)$$

The “only if” part has already observed in Introduction. Now we prove the “if” part.

Lemma 2.2 *In \mathbb{A}^2 with coordinates x, y over \mathbb{F}_q , the ideal I in $\mathbb{F}_q[x, y]$ of the set $\{(a, b) \in \mathbb{F}_q^2 \mid ab \neq 0\}$ is $(x^{q-1} - 1, y^{q-1} - 1)$.*

Furthermore, if $f(x, y) \in I$ is of degree at most $q-1$, then $f(x, y) = \alpha(x^{q-1} - 1) + \beta(y^{q-1} - 1)$ for some $\alpha, \beta \in \mathbb{F}_q$.

Proof. Let J denote the ideal $(x^{q-1} - 1, y^{q-1} - 1)$ of $\mathbb{F}_q[x, y]$. Obviously $J \subseteq I$. For $f(x, y) \in I$, there are polynomials $g_i(x) \in \mathbb{F}_q[x]$ ($0 \leq i \leq q-2$) of degree $\leq q-2$ so that

$$f(x, y) \equiv \sum_{i=0}^{q-2} g_i(x) y^i \pmod{J}.$$

For each $a \in \mathbb{F}_q^*$, the equation $\sum_{i=0}^{q-2} g_i(a) y^i = 0$ has to have $q-1$ ($= |\mathbb{F}_q^*|$) solutions because $\sum_{i=0}^{q-2} g_i(x) y^i \in I$. Hence $g_i(a) = 0$ for any i . Since $\deg g_i \leq q-2$, g_i must be the zero polynomial. Hence $f(x, y) \equiv 0 \pmod{J}$. This completes the proof of the first part.

For the second part, let α and β be the coefficients of x^{q-1} and y^{q-1} in $f(x, y)$ respectively. Then

$$f(x, y) - \alpha(x^{q-1} - 1) - \beta(y^{q-1} - 1) = \sum_{i=1}^{q-2} u_{q-1-i}(x) y^i + v_{q-2}(x), \quad (9)$$

where $\deg u_{q-1-i}(x) \leq q-1-i$ ($\leq q-2$) and $\deg v_{q-2}(x) \leq q-2$. So the same argument as above works well, and we know the right side of (9) is the zero polynomial. \square

Proof of Proposition 2.1. Choose a homogeneous equation $f(x_0, x_1, x_2) = 0$ of degree $q-1$ over \mathbb{F}_q for a given curve C with the property (8). From Lemma 2.2, there are elements $\alpha, \beta \in \mathbb{F}_q$ such that $f\left(\frac{x_0}{x_2}, \frac{x_1}{x_2}, 1\right) = \alpha\left(\left(\frac{x_0}{x_2}\right)^{q-1} - 1\right) + \beta\left(\left(\frac{x_1}{x_2}\right)^{q-1} - 1\right)$. Therefore $f(x_0, x_1, x_2) = x_2^{q-1} f\left(\frac{x_0}{x_2}, \frac{x_1}{x_2}, 1\right) = \alpha(x_0^{q-1} - x_2^{q-1}) + \beta(x_1^{q-1} - x_2^{q-1})$. Since $C(\mathbb{F}_q) \cap \{x_2 = 0\}$ is empty, $f(a, b, 0) \neq 0$ for any $(a, b) \in \mathbb{F}_q^2 \setminus \{(0, 0)\}$. In particular, $\alpha = f(1, 0, 0) \neq 0$, $\beta = f(0, 1, 0) \neq 0$ and $\alpha + \beta = f(1, 1, 0) \neq 0$. Hence $C \in \mathcal{S}_q$. \square

Now we want to classify \mathcal{S}_q up to projective equivalence over \mathbb{F}_q .

Definition 2.3 Let C be a possibly reducible curve in \mathbb{P}^2 over \mathbb{F}_q , and δ a nonnegative integer. An \mathbb{F}_q -line l is said to be a δ -line with respect to C if $|l \cap C(\mathbb{F}_q)| = \delta$.

δ	the number of δ -lines
0	3
$q - 2$	$(q - 1)^2$
$q - 1$	$3(q - 1)$

Table 1: δ -lines w.r.t. $C \in \mathcal{S}_q$

Lemma 2.4 *Let $C \in \mathcal{S}_q$, and δ a nonnegative integer such that a δ -line with respect to C actually exists. Then δ is either 0 or $q - 2$ or $q - 1$, and the number of δ -lines are as in Table 1.*

Proof. Note that $q > 2$ because \mathcal{S}_q is not empty. Since $\mathbb{P}^2(\mathbb{F}_q) = C(\mathbb{F}_q) \sqcup (\bigcup_{i=0}^2 \{x_i = 0\})$ (where the symbol \sqcup indicates disjoint union) and $q > 2$, the possible values of δ are 0, $q - 2$ and $q - 1$. Obviously the number of 0-lines is 3. A $(q - 1)$ -line is not a 0-line, and passes through one of intersection points of two 0-lines. Other lines are $(q - 2)$ -lines. \square

We need an elementary fact on the finite group action, so called “Burnside’s lemma” [7, Corollary 7.2.9].

Lemma 2.5 *Let G be a finite group which acts on a finite set X . For $g \in G$, $\text{Fix } g$ denotes the set of fixed points of g on X . Then the number ν of orbits of G on X is given by*

$$\nu = \frac{1}{|G|} \sum_{g \in G} |\text{Fix } g|.$$

Proof. Let us consider the set

$$\mathcal{C} := \{(g, x) \in G \times X \mid g \cdot x = x\}$$

with projections $p_1(g, x) = g$ and $p_2(g, x) = x$. Counting $|\mathcal{C}|$ by using p_1 , $|\mathcal{C}| = \sum_{g \in G} |\text{Fix } g|$, and by p_2 , $|\mathcal{C}| = \sum_{x \in X} |G_x|$, where G_x is the isotropy subgroup of $x \in X$. Let x_1, \dots, x_ν be the set of complete representatives of the orbits of G on X . Then

$$\sum_{x \in X} |G_x| = \sum_{i=1}^{\nu} |Gx_i| \cdot |G_{x_i}| = \nu |G|,$$

where Gx_i is the orbit containing x_i . So $\nu |G| = \sum_{g \in G} |\text{Fix } g|$. \square

Proof of Theorem 1.3. The first claim is that if two members $C_{(\alpha, \beta, \gamma)}, C_{(\alpha', \beta', \gamma')} \in \mathcal{S}_q$ are projectively equivalent over \mathbb{F}_q , then the point $(\alpha', \beta', \gamma') \in \mathbb{P}^2(\mathbb{F}_q)$ is a permutation of the point $(\alpha, \beta, \gamma) \in \mathbb{P}^2(\mathbb{F}_q)$, that is, there is a nonzero element $\lambda \in \mathbb{F}_q^*$ such that the triple $(\lambda\alpha', \lambda\beta', \lambda\gamma')$ is a permutation of the triple (α, β, γ) .

Actually, let Σ be a projective transformation so that $\Sigma C_{(\alpha, \beta, \gamma)} = C_{(\alpha', \beta', \gamma')}$. Note that Σ induces an automorphism of the homogeneous coordinate ring $\mathbb{F}_q[x_0, x_1, x_2]$, which is denoted by Σ^* . The set of 0-lines with respect to each of curves in \mathcal{S}_q is $\{\{x_0 = 0\}, \{x_1 = 0\}, \{x_2 = 0\}\}$ by Lemma 2.4. Hence Σ induces a permutation of

those three lines. Hence $\Sigma^*(x_i) = u_i x_{\sigma(i)}$ for some $u_i \in \mathbb{F}_q^*$, and $(\sigma(0), \sigma(1), \sigma(2))$ is a permutation of $(0, 1, 2)$. Hence

$$\Sigma^*(\alpha x_0^{q-1} + \beta x_1^{q-1} + \gamma x_2^{q-1}) = \alpha x_{\sigma(0)}^{q-1} + \beta x_{\sigma(1)}^{q-1} + \gamma x_{\sigma(2)}^{q-1}$$

because $u_i^{q-1} = 1$.

So we need to classify $\mathcal{S}_q/\mathbb{F}_q^*$ by the action of S_3 as permutations on coefficients. Observe the map

$$\rho : \mathcal{S}_q/\mathbb{F}_q^* \ni C_{(\alpha, \beta, \gamma)} \rightarrow (\alpha : \beta) \in \mathbb{P}^1,$$

which is well-defined and

$$\text{Im } \rho = \mathbb{P}^1 \setminus \{(0, 1), (1, 0), (1, -1)\}.$$

Obviously, ρ gives a one to one correspondence, so S_3 acts on $\text{Im } \rho$ also. Table 2 shows the S_3 -action on $\text{Im } \rho$ explicitly.

S_3	$\mathcal{S}_q/\mathbb{F}_q^*$	$\text{Im } \rho$
(1)	$(\alpha, \beta, \gamma) \mapsto (\alpha, \beta, \gamma)$	$(\alpha : \beta) \mapsto (\alpha : \beta)$
(1, 2)	$(\alpha, \beta, \gamma) \mapsto (\beta, \alpha, \gamma)$	$(\alpha : \beta) \mapsto (\beta : \alpha)$
(2, 3)	$(\alpha, \beta, \gamma) \mapsto (\alpha, \gamma, \beta)$	$(\alpha : \beta) \mapsto (\alpha : -(\alpha + \beta))$
(1, 3)	$(\alpha, \beta, \gamma) \mapsto (\gamma, \beta, \alpha)$	$(\alpha : \beta) \mapsto (-(\alpha + \beta) : \beta)$
(1, 2, 3)	$(\alpha, \beta, \gamma) \mapsto (\gamma, \alpha, \beta)$	$(\alpha : \beta) \mapsto (-(\alpha + \beta) : \alpha)$
(1, 3, 2)	$(\alpha, \beta, \gamma) \mapsto (\beta, \gamma, \alpha)$	$(\alpha : \beta) \mapsto (\beta : -(\alpha + \beta))$

Table 2: S_3 -action on $\text{Im } \rho$

Now we compute the number of fixed points on $\text{Im } \rho$ by each $\sigma \in S_3$.

- Fixed points of the identity (1) are all the $q - 2$ points of $\text{Im } \rho$.
- $(\alpha : \beta) \in \text{Fix}(1, 2) \Leftrightarrow (\alpha : \beta) = (\beta : \alpha) \Leftrightarrow \alpha^2 - \beta^2 = 0$. If the characteristic of $\mathbb{F}_q \neq 2$, then $\text{Fix}(1, 2) = \{(1 : 1)\}$ because $(1 : -1) \notin \text{Im } \rho$. If q is a power of 2, then $\text{Fix}(1, 2)$ is empty.
- $(\alpha : \beta) \in \text{Fix}(2, 3) \Leftrightarrow (\alpha : \beta) = (\alpha : -(\alpha + \beta)) \Leftrightarrow \alpha = -2\beta$ because $\alpha \neq 0$. If the characteristic of $\mathbb{F}_q \neq 2$, then $\text{Fix}(2, 3) = \{(-2 : 1)\}$. If q is a power of 2, then $\text{Fix}(2, 3)$ is empty.
- $(\alpha : \beta) \in \text{Fix}(1, 3) \Leftrightarrow (\alpha : \beta) = (-(\alpha + \beta) : \beta) \Leftrightarrow \beta = -2\alpha$ because $\beta \neq 0$. If the characteristic of $\mathbb{F}_q \neq 2$, then $\text{Fix}(1, 3) = \{(1 : -2)\}$. If q is a power of 2, then $\text{Fix}(1, 3)$ is empty.
- $(\alpha : \beta) \in \text{Fix}(1, 2, 3) \Leftrightarrow (\alpha : \beta) = (-(\alpha + \beta) : \alpha) \Leftrightarrow \alpha^2 + \alpha\beta + \beta^2 = 0 \Leftrightarrow (\alpha : \beta) = (\eta : 1)$ with $\eta^2 + \eta + 1 = 0$ and $\eta \in \mathbb{F}_q$.
- $(\alpha : \beta) \in \text{Fix}(1, 3, 2) \Leftrightarrow (\alpha : \beta) = (\beta : -(\alpha + \beta)) \Leftrightarrow \alpha^2 + \alpha\beta + \beta^2 = 0 \Leftrightarrow (\alpha : \beta) = (\eta : 1)$ with $\eta^2 + \eta + 1 = 0$ and $\eta \in \mathbb{F}_q$.

For the last two cases, since a cubic root of 1 other than 1 exists in \mathbb{F}_q if and only if $q \equiv 1 \pmod{3}$, and only the cubic root of 1 is 1 if q is a power of 3,

$$|\text{Fix}(1, 2, 3)| = |\text{Fix}(1, 3, 2)| = \begin{cases} 2 & \text{if } q \equiv 1 \pmod{3} \\ 1 & \text{if } q \text{ is a power of 3} \\ 0 & \text{else.} \end{cases}$$

The number of fixed points can be summarized as in Table 3.

Case	$ \text{Fix}(1) $	$ \text{Fix}(12) $	$ \text{Fix}(13) $	$ \text{Fix}(23) $	$ \text{Fix}(123) $	$ \text{Fix}(132) $
(I-i)	$q - 2$	1	1	1	0	0
(I-ii)	$q - 2$	1	1	1	2	2
(II)	$q - 2$	1	1	1	1	1
(III-i)	$q - 2$	0	0	0	0	0
(III-ii)	$q - 2$	0	0	0	2	2

Table 3: Number of fixed points

Since $\nu_q = \frac{1}{6} \sum_{\sigma \in S_3} |\text{Fix } \sigma|$ by Lemma 2.5, we are able to know ν_q explicitly. \square

At the end of this section, we raise a question: are there maximal plane curves over \mathbb{F}_q of degree $q - 1$ other than Sziklai's example?

3 Maximal curves of degree 3 over \mathbb{F}_4

Let C be a plane curve of degree 3 over \mathbb{F}_4 without \mathbb{F}_4 -linear components, and $N_4(C) = 9$. Since the degree of C is 3, C is absolutely irreducible. If C had a singular point, then C would be an image of \mathbb{P}^1 , and hence $N_4(C)$ would be at most 6 ($= N_4(\mathbb{P}^1) + 1$). Therefore C is nonsingular.

Thanks to the Hirschfeld-Storme-Thas-Voloch theorem, only the missing case for the classification of maximal curves of degree $\sqrt{q} + 1$ is the case of $q = 4$.

Theorem 3.1 *Let C be a nonsingular plane curve of degree 3 over \mathbb{F}_4 . If $N_4(C) = 9$, then C is either*

- (i) *Hermitian, or*
- (ii) *projectively equivalent to the curve*

$$x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0,$$

where $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$.

Notation 3.2 Let l be an \mathbb{F}_4 -line in \mathbb{P}^2 . The symbol $l.C$ denotes the divisor $\sum_{P \cap C} i(l.C; P)P$ on C , where $i(l.C; P)$ is the local intersection multiplicity of l and C at P . Note that though $l.C$ is defined over \mathbb{F}_4 , a point P in the support of $l.C$ may not be \mathbb{F}_4 -point.

From now on, we consider a nonsingular plane curve C of degree 3 with $N_4(C) = 9$, and lines over \mathbb{F}_4 .

Lemma 3.3 *Let l be a 2-line with respect to C , say $l \cap C(\mathbb{F}_4) = \{P_1, P_2\}$. Then $l.C = 2P_1 + P_2$ or $P_1 + 2P_2$.*

Proof. Since $\deg C = 3$, there is a closed point Q of C such that $l.C = P_1 + P_2 + Q$. Applying the Frobenius map F_4 over \mathbb{F}_4 to both side of the above equality, we know $P_1 + P_2 + Q = P_1 + P_2 + F_4(Q)$, which implies that the point Q is also \mathbb{F}_4 -point. Therefore Q must coincide with either P_1 or P_2 because l is a 2-line. \square

Lemma 3.4 *Let l_0 be a 1-line with respect to C , say $l_0 \cap C(\mathbb{F}_4) = \{P\}$. Then $l_0.C = 3P_0$.*

Proof. Consider all the \mathbb{F}_4 -lines passing through the point P , say l_0, l_1, \dots, l_4 . Counting $N_4(C)$ by using the disjoint union

$$C(\mathbb{F}_q) = \{P\} \sqcup \left(\sqcup_{i=1}^4 (l_i \cap C(\mathbb{F}_4) \setminus \{P\}) \right),$$

we know that $|l_i \cap C(\mathbb{F}_4) \setminus \{P\}|$ is 2, that is the remaining four lines l_1, \dots, l_4 to be 3-lines with respect to C . So each of them meets with C transversally because $\deg C = 3$. Therefore l_0 is the tangent line to C at P . Hence there is a closed point $Q \in C$ such that $l_0.C = 2P + Q$. Apply F_4 to this divisor, Q should be \mathbb{F}_4 -points. Since l_0 is a 1-line, $Q = P$. \square

Definition 3.5 Since C is nonsingular, for any closed point $P \in C$, the tangent line to C at P exists, which is a unique line l such that $i(l.C; P) \geq 2$. This line is denoted by $T_P(C)$. A point P with $i(T_P(C).C; P) = 3$ is called a flex or an inflection point. It is obvious that if P is an \mathbb{F}_4 -points, then $T_P(C)$ is an \mathbb{F}_4 -line.

Corollary 3.6 *Let $P \in C(\mathbb{F}_4)$.*

- (i) *If $i(T_P(C).C; P) = 3$, then $T_P(C)$ is a 1-line, and conversely, if an \mathbb{F}_4 -line l passing through P is a 1-line, then $l = T_P(C)$ and $i(T_P(C).C; P) = 3$.*
- (ii) *If $i(T_P(C).C; P) = 2$, then $T_P(C)$ is a 2-line, and conversely, if an \mathbb{F}_4 -line l passing through $P_1, P_2 \in C(\mathbb{F}_4)$ is a 2-line, then l coincides with either $T_{P_1}(C)$ or $T_{P_2}(C)$.*

Proof. (i) The first part is obvious because $\deg C = 3$, and the second part is a consequence of Lemma 3.4.

(ii) This is also a consequence of Lemma 3.4: since $T_P(C)$ is not a 1-line, it should be a 2-line, and the second part is just in Lemma 3.3. \square

Notation 3.7 For each nonnegative integer $\delta \leq 3$, \mathcal{L}_δ denotes the set of δ -lines with respect to C , and μ_δ denotes the cardinality of the set \mathcal{L}_δ .

The next lemma is essential for the proof of Theorem 3.1.

Lemma 3.8 *The possibilities of quadruple $(\mu_0, \mu_1, \mu_2, \mu_3)$ are either*

- (i) $\mu_0 = 0, \mu_1 = 9, \mu_2 = 0, \mu_3 = 12$; or
- (ii) $\mu_0 = 3, \mu_1 = 0, \mu_2 = 9, \mu_3 = 9$.

Proof. Step 1. Let us consider the correspondence

$$\mathcal{I} := \{(l, P) \in \check{\mathbb{P}}^2(\mathbb{F}_4) \times C(\mathbb{F}_4) \mid l \ni P\}$$

with projections $p_1 : \mathcal{I} \rightarrow \check{\mathbb{P}}^2(\mathbb{F}_4)$ and $p_2 : \mathcal{I} \rightarrow C(\mathbb{F}_4)$, where $\check{\mathbb{P}}^2(\mathbb{F}_4)$ is the projective space of the \mathbb{F}_4 -lines. Since $|p_2^{-1}(P)| = 5$ for all $P \in C(\mathbb{F}_4)$ and $|C(\mathbb{F}_4)| = 9$, we know $|\mathcal{I}| = 45$.

From Corollary 3.6, the tangent line at an \mathbb{F}_q -point is a 1-line or 2-line, and vice versa. Since $\deg C = 3$, there are no bi-tangents. Hence

$$\mu_1 + \mu_2 = 9. \quad (10)$$

Since $|p_1^{-1}(l)| = \delta$ if l is a δ -line,

$$\mu_1 + 2\mu_2 + 3\mu_3 = |\mathcal{I}| = 45. \quad (11)$$

Additionally, since the total number of \mathbb{F}_q -lines is 21,

$$\mu_0 + \mu_1 + \mu_2 + \mu_3 = 21. \quad (12)$$

Step 2. Suppose that $\mu_1 = 0$. From (10), (11), (12), we have $\mu_0 = 3, \mu_2 = \mu_3 = 9$, which is the case (ii).

Step 3. Suppose that $\mu_1 \neq 0$. Since (10) and (11), $\mu_1 \equiv 0 \pmod{3}$. Hence there are at least three 1-lines, and hence there are at least three inflection \mathbb{F}_4 -points. Choose two inflection \mathbb{F}_4 -points Q_1 and Q_2 , and consider the line l_0 passing through these two points, which is an \mathbb{F}_4 -line. Hence l_0 meets C at another point Q_0 , which is also an \mathbb{F}_4 -point.

Claim 1. Q_0 is also a flex.

We need more notation. The linear equivalence relation of divisors on C will be denoted by \sim , and a general line section on C by L . Here a general line section means a representative of the divisor cut out by a line on C , which makes sense up to the relation \sim .

Proof of claim 1. Since $Q_0 + Q_1 + Q_2 \sim L$ and $3Q_i \sim L$ for $i = 1$ and 2, we have $3Q_0 \sim 3L - 3Q_1 - 3Q_2 \sim L$, which means that Q_0 is a flex. \square

Hence the following property holds.

- (†) There are exactly three \mathbb{F}_4 -lines passing through Q_0 besides l_0 and $T_{Q_0}(C)$, say l_1, l_2, l_3 . Each l_i is a 3-line.

Actually, since

$$C(\mathbb{F}_4) = \{Q_0, Q_1, Q_2\} \sqcup \left(\sqcup_{i=1}^3 (l_i \cap C(\mathbb{F}_4) \setminus \{Q_0\}) \right)$$

and $|l_i \cap C(\mathbb{F}_4) \setminus \{Q_0\}| \leq 2$, each l_i is a 3-line.

The six points of $C(\mathbb{F}_4) \setminus \{Q_0, Q_1, Q_2\}$ are named $\{P_i^{(j)} \mid i = 1, 2, 3; j = 1, 2\}$ so that $l_i \cap C(\mathbb{F}_4) = \{Q_0, P_i^{(1)}, P_i^{(2)}\}$.

Claim 2. $\sum_{i=1}^3 (P_i^{(1)} + P_i^{(2)}) \sim 2L$.

Proof of claim 2. Since $Q_0 + P_i^{(1)} + P_i^{(2)} \sim L$ and $3Q_0 \sim L$, we get $L + \sum_{i=1}^3 (P_i^{(1)} + P_i^{(2)}) \sim 3L$. \square

Since a nonsingular plane curve is projectively normal, the divisor $\sum_{i=1}^3 (P_i^{(1)} + P_i^{(2)})$ on C is cut out by a quadratic curve. Let D be the quadratic curve passing through those six points. Suppose that D is absolutely irreducible. Then D has exactly five \mathbb{F}_4 -points if it is defined over \mathbb{F}_4 , or at most four \mathbb{F}_4 -points if it is not defined over \mathbb{F}_4 because an \mathbb{F}_4 -point of D is a point of $D \cap F_4(D)$; both are absurd. Therefore D is a union of two lines m, m' . If a line is not defined over \mathbb{F}_4 , then $F_4(m) = m'$ and D has only one \mathbb{F}_4 -point: also absurd. Hence this split occurs over \mathbb{F}_4 . Since $\deg C = 3$, those six points split into two groups; three of them lie on m and the remaining three lie on m' , and $P_i^{(1)}$ and $P_i^{(2)}$ do not belong to the same group. Hence we may assume that $P_1^{(1)}, P_2^{(1)}, P_3^{(1)} \in m$ and $P_1^{(2)}, P_2^{(2)}, P_3^{(2)} \in m'$. Note that m and m' do not contain Q_0 nor Q_1 nor Q_2 .

Apply the same arguments to Q_1 instead of Q_0 after (\dagger) . Since Q_1 does not lie on m nor m' , there is a permutation $(\sigma(1), \sigma(2), \sigma(3))$ of $(1, 2, 3)$ such that $Q_1, P_i^{(1)}, P_{\sigma(i)}^{(2)}$ are collinear for $i = 1, 2, 3$. Similarly, there is another permutation τ such that $Q_2, P_i^{(1)}, P_{\tau(i)}^{(2)}$ are collinear for $i = 1, 2, 3$. Therefore

$$\left. \begin{array}{l} Q_0 + P_1^{(1)} + P_1^{(2)} \sim L \\ Q_1 + P_1^{(1)} + P_{\sigma(1)}^{(2)} \sim L \\ Q_2 + P_1^{(1)} + P_{\tau(1)}^{(2)} \sim L \end{array} \right\} \quad (13)$$

Claim 3. $\{\sigma(1), \tau(1)\} = \{2, 3\}$.

Proof of claim 3. If not, two of $\{P_1^{(2)}, P_{\sigma(1)}^{(2)}, P_{\tau(1)}^{(2)}\}$ coincide. For example, if $P_1^{(2)} = P_{\sigma(1)}^{(2)}$, then $Q_0, P_1^{(1)}, P_1^{(2)} = P_{\sigma(1)}^{(2)}, Q_1$ are collinear, which is impossible because the line joining Q_0 and Q_1 is l_0 . Other cases can be handled by similar way. \square

By this claim,

$$P_1^{(2)} + P_{\sigma(1)}^{(2)} + P_{\tau(1)}^{(2)} \sim L. \quad (14)$$

Hence adding all equivalence relations in (13), together with (14) we have $3P_1^{(1)} + 2L \sim 3L$, which implies $3P_1^{(1)} \sim L$. Hence $P_1^{(1)}$ is a flex. Similarly we have that any $P_i^{(j)}$ is a flex. Hence $\mu_1 = 9$. Hence, from (10), (11) and (12) in Step 1, $\mu_0 = 0$, $\mu_2 = 0$ and $\mu_3 = 12$. \square

Remark 3.9 In Step 3 of the proof of Lemma 3.8, what we have shown is essentially that if a point of $C(\mathbb{F}_4)$ is flex, then so are all points of $C(\mathbb{F}_4)$. If $C(\mathbb{F}_4)$ contains a flex, then C is defined over \mathbb{F}_4 as an elliptic curve. A sophisticated proof for the

above fact may be possible by using the Jacobian variety, which coincides with the elliptic curve C . For details, see the first part of [6].

Proof of Theorem 3.1. When the case (ii) in Lemma 3.8 occurs, three 0-lines are not concurrent; Actually if three 0-lines are concurrent, there is an \mathbb{F}_4 -point Q outside C , which these \mathbb{F}_4 -lines pass through. The remaining two \mathbb{F}_4 -lines pass through Q can't cover all the points of $C(\mathbb{F}_4)$.

Hence we may choose coordinates x_0, x_1, x_2 so that those 0-lines are $\{x_0 = 0\}$, $\{x_1 = 0\}$ and $\{x_2 = 0\}$. Since $|\mathbb{P}^2(\mathbb{F}_4) \setminus \bigcup_{i=0}^2 \{x_i = 0\}| = 9 = |C(\mathbb{F}_4)|$, $C \in \mathcal{S}_4$ by Proposition 2.1. Furthermore since $|\mathcal{S}_4| = 1$ by Theorem 1.3 (III-ii), and $C_{(1, \omega, \omega^2)} \in \mathcal{S}_4$, C is projectively equivalent to the curve

$$x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0.$$

Next we consider the case (i) in Lemma 3.8. In this case C has the following properties:

- (1) C is nonsingular of degree 3 defined over \mathbb{F}_4 with nine \mathbb{F}_4 -points;
- (2) for any $P \in C(\mathbb{F}_4)$, $i(T_P(C).C; P) = 3$;
- (3) each point of $\mathbb{P}^2(\mathbb{F}_4) \setminus C(\mathbb{F}_4)$ lies on three tangent lines.

Here we will confirm the property (3). Among the five \mathbb{F}_4 -lines passing through $Q \in \mathbb{P}^2(\mathbb{F}_4) \setminus C(\mathbb{F}_4)$, $\mu_\delta(Q)$ denotes the number of δ -lines. Since δ is either 1 or 3, $\mu_1(Q) + 3\mu_3(Q) = 9$ and $\mu_1(Q) + \mu_3(Q) = 5$. Hence $\mu_1(Q) = 3$.

The proof of [2, Lemma 7] works well under those three assumptions (1), (2), (3) for C . To adapt their proof to our case, beware of a difference of notation; their q is our \sqrt{q} . \square

4 Comparison of two maximal curves of degree 3 over \mathbb{F}_4

Lastly we compare two maximal curves of degree 3

$$C : x_0^3 + x_1^3 + x_2^3 = 0$$

and

$$D : x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0$$

over $\mathbb{F}_4 = \mathbb{F}_2[\omega]$.

Apparently, C and D are projectively equivalent over \mathbb{F}_{2^6} , but not over \mathbb{F}_{2^2} as we have seen. We will show the function fields $\mathbb{F}_4(C)$ and $\mathbb{F}_4(D)$ are isomorphic over \mathbb{F}_4 . This is already guaranteed theoretically by Rück and Stichtenoth [6]. Here we will give an explicit isomorphism between those two fields.

Let $x = \frac{x_0}{x_2}|C$ and $y = \frac{x_1}{x_2}|C$. Obviously $\mathbb{F}_4(C) = \mathbb{F}_4(x, y)$ with $x^3 + y^3 + 1 = 0$.

Theorem 4.1 *Three functions*

$$\begin{aligned} u &= 1 + \frac{x}{y+1} + \frac{1}{x+y+1} \\ v &= \omega^2 \frac{x}{y+1} + \frac{1}{x+y+1} \\ w &= \omega \frac{x}{y+1} + \frac{1}{x+y+1} \end{aligned} \tag{15}$$

satisfy

$$u^3 + \omega v^3 + \omega^2 w^3 = 0.$$

Proof. By straightforward computation, we have

$$\begin{aligned} &((y+1)(x+y+1)w)^3 \\ &= (\omega x(x+y+1) + (y+1))^3 \\ &= x^3(x+y+1)^3 + \omega^2 x^2(x+y+1)^2(y+1) + \omega x(x+y+1)(y+1)^2 + (y+1)^3, \\ &((y+1)(x+y+1)v)^3 \\ &= (\omega^2 x(x+y+1) + (y+1))^3 \\ &= x^3(x+y+1)^3 + \omega x^2(x+y+1)^2(y+1) + \omega^2 x(x+y+1)(y+1)^2 + (y+1)^3, \end{aligned}$$

and

$$\begin{aligned} &((y+1)(x+y+1)u)^3 \\ &= ((y+1)(x+y+1) + x(x+y+1) + (y+1))^3 = g + h, \end{aligned}$$

where

$$\begin{aligned} g &= (y+1)^3(x+y+1)^3 + (y+1)^2(x+y+1)^2(x(x+y+1) + (y+1)) \\ &\quad + (y+1)(x+y+1)(x(x+y+1) + (y+1))^2, \end{aligned}$$

$$\begin{aligned} h &= (x(x+y+1) + (y+1))^3 \\ &= x^3(x+y+1)^3 + x^2(x+y+1)^2(y+1) + x(x+y+1)(y+1)^2 + (y+1)^3. \end{aligned}$$

Hence

$$\begin{aligned} &\omega^2((y+1)(x+y+1)w)^3 + \omega((y+1)(x+y+1)v)^3 + h \\ &= (\omega^2 + \omega + 1)x^3(x+y+1)^3 \\ &\quad + (\omega^4 + \omega^2 + 1)x^2(x+y+1)^2(y+1) \\ &\quad + (\omega^3 + \omega^3 + 1)x(x+y+1)(y+1)^2 \\ &\quad + (\omega^2 + \omega + 1)(y+1)^3 \\ &= x(x+y+1)(y+1)^2. \end{aligned}$$

Therefore

$$\begin{aligned}
& \omega^2((y+1)(x+y+1)w)^3 + \omega((y+1)(x+y+1)v)^3 + ((y+1)(x+y+1)u)^3 \quad (16) \\
& = g + x(x+y+1)(y+1)^2 \\
& = (y+1)(x+y+1) \left\{ (y+1)^2(x+y+1)^2 + x(y+1)(x+y+1)^2 \right. \\
& \quad \left. + (y+1)^2(x+y+1) + x^2(x+y+1)^2 + (y+1)^2 + x(y+1) \right\}.
\end{aligned}$$

Since the sum of last two terms in the braces is $(x+y+1)(y+1)$, $(x+y+1)$ divides the polynomial in the braces. Hence (16) is equal to

$$(y+1)^3(x+y+1)^3(\omega^2w^3 + \omega v^3 + u^3) = (y+1)(x+y+1)^2f,$$

where

$$f = (y+1)^2(x+y+1) + x(y+1)(x+y+1) + (y+1)^2 + x^2(x+y+1) + (y+1)$$

Continue the computation a little more:

$$\begin{aligned}
f & = x(y+1)^2 + (y+1)^3 + x^2(y+1) + x(y+1)^2 + (y+1)^2 + x^3 + x^2(y+1) + (y+1) \\
& = (y+1)^3 + (y+1)^2 + (y+1) + x^3 \\
& = y^3 + x^3 + 1 = 0.
\end{aligned}$$

As a conclusion, we have $u^3 + \omega v^3 + \omega^2 w^3 = 0$. □

Corollary 4.2 $\mathbb{F}_4(C) \cong \mathbb{F}_4(D)$.

Proof. Trivially $\mathbb{F}_4(C) = \mathbb{F}_4(x, y) = \mathbb{F}_4(\frac{x}{y+1}, \frac{1}{x+y+1})$. On the other hand, by definition of u, v, w (15)

$$\omega^2 \frac{v}{u} + \omega \frac{w}{u} = 1 - \frac{1}{u}.$$

Hence $\mathbb{F}_4(D) \cong \mathbb{F}_4(\frac{v}{u}, \frac{w}{u}) = \mathbb{F}_4(u, v, w)$. Since

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & \omega^2 & 1 \\ 0 & \omega & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \frac{x}{y+1} \\ \frac{1}{x+y+1} \end{pmatrix},$$

we know $\mathbb{F}_4(u, v, w) = \mathbb{F}_4(\frac{x}{y+1}, \frac{1}{x+y+1})$. Summing up, we get $\mathbb{F}_4(D) \cong \mathbb{F}_4(C)$. □

References

[1] Y. Aubry and M. Perret, *A Weil theorem for singular curves*, in: R. Pellikaan, M. Perret and S. Vlăduț (Eds.), *Arithmetic geometry and coding theory* (Luminy, 1993), de Gruyter, Berlin, 1996, 1–7.

- [2] J. W. P. Hirschfeld, L. Storme, J. A. Thas and J. F. A. Voloch, *A characterization of Hermitian curves*, J. Geom. 41 (1991) 72–78.
- [3] M. Homma and S. J. Kim, *Around Sziklai’s conjecture on the number of points of a plane curve over a finite field*, Finite Fields Appl. 15 (2009), 468-474.
- [4] M. Homma and S. J. Kim, *Sziklai’s conjecture on the number of points of a plane curve over a finite field II*, in: G. McGuire, G.L. Mullen, D. Panario, I.E. Shparlinski (Eds.), Finite Fields: Theory and Applications, 225–234, Contemp. Math., vol. 518, AMS, Providence, 2010. (An update is available at arXiv 0907.1325v2.)
- [5] M. Homma and S. J. Kim, *Sziklai’s conjecture on the number of points of a plane curve over a finite field III*, Finite Fields Appl. 16 (2010) 315–319.
- [6] H.-G. Rück and H. Stichtenoth, *A characterization of Hermitian function fields over finite fields*, J. Reine Angew. Math. 457 (1994) 185–188.
- [7] B. Steinberg, Representation theory of finite groups. An introductory approach, Universitext, Springer, New York, 2012.
- [8] P. Sziklai, *A bound on the number of points of a plane curve*, Finite Fields Appl. 14 (2008) 41–43.