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Abstract: Knowledge representation in autonomous robots with social roles has steadily gained
importance through their supportive task assistance in domestic, hospital, and industrial activities.
For active assistance, these robots must process semantic knowledge to perform the task more effi-
ciently. In this context, ontology-based knowledge representation and reasoning (KR & R) techniques
appear as a powerful tool and provide sophisticated domain knowledge for processing complex
robotic tasks in a real-world environment. In this article, we surveyed ontology-based semantic
representation unified into the current state of robotic knowledge base systems, with our aim be-
ing three-fold: (i) to present the recent developments in ontology-based knowledge representation
systems that have led to the effective solutions of real-world robotic applications; (ii) to review
the selected knowledge-based systems in seven dimensions: application, idea, development tools,
architecture, ontology scope, reasoning scope, and limitations; (iii) to pin-down lessons learned
from the review of existing knowledge-based systems for designing better solutions and delineating
research limitations that might be addressed in future studies. This survey article concludes with
a discussion of future research challenges that can serve as a guide to those who are interested in
working on the ontology-based semantic knowledge representation systems for autonomous robots.

Keywords: knowledge representation; ontology; reasoning; robot; knowledge-based system;
applications

1. Introduction

Ontology-based knowledge representation is significantly important for autonomous
robots [1]. Autonomous robots are goal-oriented intelligent agents. Using knowledge
representation (KR) in a robotic platform endows the robots with cognitive skills that
enable the robots to autonomously perform a task, make decisions, and interact with a
variety of environments ranging from static, structured, or fully observable to dynamic,
unstructured, or partially observable [2]. Social robots are autonomous systems capable
of human-robot interaction (HRI) in a socially acceptable fashion and act as assistants
at workplaces and homes. Within the realm of autonomous social robotic systems [3],
the demand for knowledge representation about the objects and the environment using
ontologies [4] to improve the semantic understanding of the task has become a primary
concern. Knowledge representation in these robotic systems through ontologies defines the
link between individual instances and describes their roles in the domain [5]. An ontology is
a mechanism to conceptualize the knowledge for defining formal and explicit specifications
of shared concepts related to the domain entities. Ontology-based domain knowledge
representation [6] increases the flexibility, re-usability [7], and adaptability of various
robotic tasks (i.e., recognition [8], navigation [9], planning [10], and manipulation [11])
in different environments such as at the home, work, and public places [12]. One of the
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biggest challenges in the development of these knowledge-based (KB) robotic systems is to
make the programming efforts feasible for combining different types of tasks, robots, and
environments. To handle this, knowledge-enabled approaches based on ontology to get the
semantics of the environment are adopted. The advantage of ontology-based approaches is
that knowledge pieces, which are independent of the robot, task, and environment, can
be shared between different robots and applied to a variety of robotic applications. In
particular, the potential benefit of ontology-based semantic knowledge representation can
be obtained using web-based services for knowledge sharing among different robots to
perform the tasks such as RoboEarth [13], KnowRob [14], openEASE [15], RoboBrain [16],
and RoboCSE [17].

In this article, we focused on a systematic review of the ontology-based KB systems of
autonomous social robots that are working in domestic, hospital, and industrial sectors.
In the domestic environment, an ontology-based knowledge representation shares the
concepts between household robots and humans to help the robot to understand the
objects in the environment [9]. Domestic environments are indeed dynamic in which
robots and human users share the same space [18]. Therefore, ontologies developed [1]
for domestic robots are expected to be dynamic and conceptually evolved over time when
robots perceive the objects. This is one of the challenging tasks for researchers in this
domain. However, it has gained much importance in recent years, and researchers have
investigated systematic architectures and algorithms for automatic ontology creation in
the domestic environment [19]. Service robots in hospitals require semantic knowledge
representation of healthcare objects and their properties to perform a task in an unstructured
environment such as tracking object locations in the healthcare system, i.e., for Alzheimer’s
patients [20], and facilitating elderly people in therapy in hospitals [21]. These tasks are
performed by associating semantic knowledge of shared concepts, e.g., objects with an
instance in the ontology. The development of ontology-based knowledge representation
has also been identified as an emerging field for surgical robotics [22]. Recently, equipping
industrial robots with sufficient knowledge has become the subject of attention in the
robotics community. Researchers have conceived of more ontology-based knowledge
representation approaches to describe the industrial environment of robots and their goals
and reasoning capabilities [23]. The idea of a complex interaction between human co-
workers and robots is also one of the key ideas of the Industry 5.0 paradigm [24]. This idea
is starting to materialize currently, and researchers are working in that direction [25].

The purpose of this article was to review recent research developments related to
ontology-based knowledge representation systems in the domain of robotics and pro-
vide fresh insight to the readers. In this context, ten ontology-based KB systems were
surveyed. For each of them, their underlying idea, architecture, development tools, as
well as ontology, reasoning, and application domains are discussed. The collection of the
presented knowledge-based systems was founded on the selection criteria. To the best
of our knowledge, we included recent ontology-based robotic KB systems that satisfy
the criteria.

1.1. Contribution

Figure 1 shows the domain and scope of our survey. It illustrates that our review was
based on only those ontology-based KR & R systems that have applications in the domain
of robotics, while the approaches in the domain of smart environments are beyond the
scope of our survey.



Appl. Sci. 2021, 11,4324

30f 30

Ontology-based Knowledge
Representation Systems

N Applications
@ Domestic
Autonomous @ Hospital/ Medical
@ Industrial

Robotic Systems

Domain & Scope

Figure 1. Survey domain and scope.

To complete complex tasks in the real world, it is often necessary for the autonomous
mobile robots operating in an uncertain environment to have semantic knowledge about
their surroundings, tasks, and objects. Therefore, many efforts have been initiated towards
the development of semantic knowledge representation in the form of ontologies to help
the robotic systems reason about the world to take more robust measurements.

Researchers have surveyed the knowledge-based systems in particular with the focus
on a certain task. For example, Reference [26] reviewed the knowledge base of eight
systems with three typical knowledge representation languages for robot task planning
and related task planners, while [27] discussed the knowledge base of nine systems in the
context of finding a substitute for missing objects. Although, like the previous researchers,
we also investigated knowledge representation systems (KRS) for robotics.

Compared to [28], which concentrated on the field of computer vision with special
attention on object perception using hybrid methods, our review was mainly focused
on the field of robotic autonomy with a special interest in ontology-based knowledge
representation systems that are oriented toward knowledge-based robotic applications.

However, our current review concentrated on a broader aspect in the context of social
robots [3] that perform their tasks in industry, hospitals, and homes using ontology-based
knowledge representation systems (KRSs). For this, we discussed ten ontology-based KRS,
shown in Table 1, used in industry, hospitals, homes, and public places.

Compared to the existing survey papers, the present review was different in the
following terms:

To the best of our knowledge,

e It facilitated novice researchers and experts to overcome the challenging task of
determining and utilizing the most suitable ontology-based semantic knowledge
representation system for the intended robotic application (Section 3).

e It provided an analysis of selected KB systems from the domain of robotics, delin-
eated the advantages, summarized the current main research trends, discussed the
limitations, and outlined the possible future directions.

e Compared to the earlier surveys, this study tended to be more concerned with the
most recent work. Therefore, it provided the readers an important opportunity to
advance their understanding of state-of-the-art methods.

1.2. Inclusion and Exclusion Criteria

As a subject of study, in Section 3 on the analyzed knowledge representation systems,
we considered the ontology-based knowledge representation of ten systems in the domain
of robotics for comparison, published from 2014 to 2020. We included only those articles
that satisfied all the inclusion criteria in the scope of our review for knowledge representa-
tion (Section 3), as described in Figure 2. The articles that did not match even with a single
inclusion criterion were excluded.
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Figure 2. Inclusion and exclusion criteria for KR systems reviewed in our survey (Section 3).

1.3. Survey Structure

This article is organized in a top-down manner. The entire structure of our survey
with related topics and subsections is diagrammatically demonstrated in Figure 3, which
provides a quick overview of the topics discussed in our survey. In Section 3, we investigate
ten different ontology-based knowledge representation systems (KRS) based on seven
dimensions and highlight the research gap by discussing their limitations. Consequently;,
in Section 4, we discuss current research challenges and future research directions. Finally,
we conclude our survey with a summary in Section 6.
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Figure 3. Survey structure and its corresponding sections.

2. Related Works

In this section, we review the literature related to ontology-based knowledge represen-
tation for cognitive robots. Cognitive robots are autonomous systems that are intelligent
agents capable of performing a task with a high degree of autonomy in different applica-
tion domains.

To achieve semantic integration, ontologies work as the conceptual backbones for
autonomous systems and offer several benefits such as [29]: interoperability through
shared understanding of the problem domain; formalization to make shared understanding
machine-processable; semantic representation to provide quality services in automatic
robot systems.

A domain ontology for autonomous systems (OASys) was developed by [30] for anal-
ysis, implementation, and run-time processes. It was designed to capture the knowledge
from the system, environment, and task models to exploit cognitive control loops. The
ontology-based conceptual model of OASys provided the support for both the description
and generic development of the engineering process. It used four ontologies: the system
ontology for including the elements to define the details of autonomous system; the ASys
system ontology for defining the structure, behavior, and functions; the system engineering
ontology for listing the engineering process related to the system and its software; the ASys
system engineering ontology for addressing the additional ontological elements related to
the engineering process of the autonomous system.

In another study [31], an ontology-driven framework was designed. It was composed
of OASys (as the domain ontology) and an ontology-driven engineering methodology
(ODEM) for developing self-x mechanisms into autonomous robots. The OASys contained
two layers [32] for representing higher and lower level ontological elements, which were
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used to address general and autonomous systems, respectively. The ODEM was more
focused on generic engineering processes and development support for ontology-based
autonomous systems [30].

Robotic systems can perform human-like tasks more flexibly if they can share knowl-
edge among themselves and use crowdsourcing to tap human skills. One approach towards
this direction is using an ontology as a cloud application. In a study, Reference [33] pre-
sented the openEASE cloud engine (https://data.openease.org) with ontologies in the
kitchen domain and execution logs from three robots operating in two kitchens.

Reference [34] made a seminal contribution towards the extension of existing onto-
logical standards through the development of behavior-, action-, and capability-related
ontological concepts, which are crucial to enhance the cloud robotics domain.

There are many projects that use ontologies to represent vocabulary and knowledge
acquired by robots in certain scenarios, such as kitting rehabilitation [35,36].

Knowledge modeling (KMo) using ontologies focuses on making systems intelli-
gent [37]. Ontology development depends on information artifacts that can be distin-
guished according to their purpose. Reference [37] used model-based systems engineering
(MBSE) as the central information artifact, which offers benefits from the conceptual to
system development phase in the case of autonomous driving function. it demonstrated
the possible improvements by knowledge modeling and ontologies in autonomous vehi-
cle systems engineering. Ontologies address issues related to inconsistency and lack of
domain knowledge.

Recent developments in robotics have highlighted the need for conceptual knowledge
about objects in a robot’s environment to efficiently perform human-scale tasks, i.e., holding
an object or closing a drawer [38]. Embodied robotic agents require additional knowledge
related to body movement to perform these tasks in the real world. However, many Al
action models do not provide this knowledge and only concentrate on pre-post conditions
and sequences of actions. Reference [39] investigated this issue to bridge the gap by
proposing an Al action model based on human psychology. It divided ontology-based
knowledge representation into four levels and defined 18 actions that could be performed
on objects if the pre-conditions were meet.

It is essential for a cognitive robotic system to have knowledge for representing the
relation among objects with respect to human actions. Ontologies have significant impor-
tance in cognitive robotic applications that involve object identification [40,41] in the real
world, e.g., the domestic environment [42]. In this direction, an ontology-driven knowledge
retrieval framework was proposed [38] for providing the knowledge to a cognitive robotic
system in the domestic environment. It offered a domain-dependent framework in which
activities were translated as class instances through an instance generator algorithm and
queries about objects were tackled using common sense reasoning. Another study [43]
presented a knowledge retrieval framework in the household environment to endow the
robots with cognitive capabilities for performing human-scale tasks. It used a virtual home
dataset for information extraction. It obtained the knowledge about the relation between
action and object by translating human activities into the class instance of the ontology. It
handled the missing knowledge using semantic match-making by establishing a relation
between the KB entity and the entity that does not exist in the KB. It answered the quires
related to household objects through semantic match-making.

Correctly recognizing human activities [44,45] through semantic representation is
a major step towards HRI. In a study [46], hand motion information and two object
properties were combined for identifying human activities. This method used semantic
representations for skill transfer to a humanoid robot. It was composed of three main
modules related to human motion and behavior and activity demonstration by the robot.
Semantic rules were generated by human observation. A new relationship between the
object and activities was computed by adding new capabilities to the reasoning engine that
improved the dynamic growth of the ontology-based knowledge representation.
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A comprehensive study in [47] considered key decision issues and HRI challenges
at the physical and cognitive levels such as human-robot interactive communication,
human-robot joint actions to complete a task, and human-aware task execution planning.
It addressed these issues including the combination of situation assessment based on
perspective taking, affordance, inferences, and knowledge model representation for both
humans and robots. It acquired the knowledge from three sources at run-time: prior
knowledge from the OpenRobot ontology, which includes common sense and scenario-
specific knowledge; knowledge from perception, interaction, and action planning; symbolic
statements from inferences. It showed that implementing human-level semantics into
robotic systems can equip them with stronger cognitive skills and lead to higher human-
robot interactions.

Service robots capable of executing human-like tasks [48] need to interact with humans
in a natural and efficient manner. This capability can be achieved using declarative knowl-
edge representation which is a vital concept in cognitive science. Reference [49] applied
decision making using declarative knowledge representation and exploited teacher-learner
interaction in which the teacher gave instructions about the actions to be performed, rather
than hand-coded explanations of the task. Interaction with the teacher using simple natural
human language enabled the robot to perform the task if its execution plan halted.

Recent developments in robotics have led to a renewed interest in assistive robots
for cognitive education to engage the students in their learning activities. These robots
perform intelligent HRI to understand the dynamic environment and various reasoning
tasks including visual question answering (VQA) [50]. In the area of pre-school education,
Reference [51] presented a cloud-based VQA educational robot for presenting simple
questions from scene images. It was aimed at providing meta-cognition tutoring and
geometrical thinking training [52]. Its architecture was composed of robotic applications
and cloud services. The robot taught the concepts of objects in a natural scene through
resources recommended by a knowledge map during the interaction teaching. Three
modules were designed for the cloud service: an interactive instruction control module
for specifying a set of interaction strategies; a knowledge map module for providing
the description and learning material of detected objects in the scene; a questioning and
answering module for generating questions and answers about the objects that were
recognized using the deep learning-based Faster R-CNN [53].

Recently [54-57], VQA has been tackled by incorporating external knowledge repre-
sented as subject-relation-object or visual concept-relation-attribute triplets. Reference [54]
proposed a knowledge-incorporated dynamic memory network framework for retrieving
the information from external knowledge bases to answer open-domain visual questions.

Reference [58] presented the solution of the unexplored VQA problem related to
named entities in captured images that require real-world knowledge. It also provided the
largest data set to explore VQA over large knowledge graphs.

A comprehensive study [59] divided VQA methods into four categories known as
joint embedding approaches that combined deep neural networks in natural language
processing and computer vision for learning the image embedding and sentences [60,61];
attention mechanisms [62-65] that concentrated on important parts of the image and/or
question; compositional models; enhanced approaches that obtained external data from
knowledge-based systems consisting of commonsense or encyclopedic information. It fed
the image embedding and sentences to the classifier for the prediction of an answer. It
enabled the system to retrieve information that was not available in visual [66,67] datasets.

3. Analysis of Knowledge Representation Systems

The KRS, discussed in Section 3, uses ontologies that make a robot more autonomous
by providing it KR & R capabilities and semantic interoperability for performing the tasks
with semantic understanding in human-centric environments. For this, we present ten
KRSs, shown in Table 1, that use ontologies for semantic understanding of the real-world
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environment to perform a variety of robotic tasks in the industry, hospitals, homes, and
public places.

Table 1. List of selected knowledge representation systems (KRSs).

# KR Name Publication Year Ref.
1 KnowROB Know rob 2.0: a 2nd—gepgratlon knowledg? processing framework for 2018 [68]
cognition-enabled robotic agents
2 OROSU Knowledge representation applied to robotic orthopedic surgery 2015 [69]
3 CARESSES The CARESSES EU-Japan project: making assistive robots culturally 2017 [70]
competent
4 PMK PMK: A knowledge processing framewF)rk fo.r autonomous robotics 2019 [71]
perception and manipulation
5 SARbot High-level smart decision making of a robot ba.sed on an ontology in a 2019 [72]
search and rescue scenario
6 IEQ A Human01d. social rf)bojc—based approac.h f(?r indoor environment 2020 73]
quality monitoring and well-being improvement
An integrated semantic framework for designing context-aware
7 Smart Rules Internet of Robotic Things systems 2018 (741
8 ARBI Ontology-based knowledge model for human-robot interactive services 2020 [75]
9 Worker-cobot An ontology—base(.i approach to enable kpowledge repr.esentatlon and 2017 [76]
reasoning in worker-cobot agile manufacturing
10 APRS Implementation of an ontology-based approach to enable agility in kit 2018 [77]

building applications

The evaluation criteria are shown in Table 2, which is divided into three columns: the
second column represents research questions, while their related sections are listed in the
third column so that the reader can get quick access to the desired topic in a single glance.

Table 2. KR: evaluation criteria.

# Research Question Sections

1 What is the application domain? Section 3.1
2 What is the basic idea and main contribution? Section 3.2
3 Which development tools have been used? Section 3.3
4 What is the architecture? Section 3.4
5 What is the ontology scope? Section 3.5
6 What is the reasoning scope? Section 3.6
7 What are the limitations? Section 3.7

Our article classified the knowledge representation of ten systems (shown in Table 1)
according to seven research questions (given in Table 2), which are important to provide
an evidence-based discussion of ongoing research towards ontology developments in the
robotic domain concerning their real-world applications, architecture, design, or implemen-
tation of ontology development and reasoning capabilities. Based on the seven research
questions, shown in Table 2, we discussed knowledge representation systems that use
ontologies for task semantics to support robot autonomy in real-world applications.

We selected these research questions because they represent important factors that
assist in the ontology selection and development process. If someone is interested in
reusing an existing ontology or developing a new ontology from scratch, in both cases, the
first stage is to determine the domain; the second is to identify the purpose of developing
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the ontology in the particular domain; the third is to decide the scope of the ontology by
specifying the extent of the domain covered by the ontology; and the final stage is to select
the tools for developing its architecture. Questions that should be addressed at these stages
include: What will be the domain of the ontology? What will be the basic idea or purpose
of using the ontology? What will be the scope or subject matter it intends to cover? Which
components will be included in the design of its architecture? What tools will be used to
maintain it? To answer these questions, we categorized them into seven sections (shown in
Table 2), and in each section, we give the answer to one research question by analyzing the
ontology-based knowledge representation of ten systems with their limitations.

In the following subsections, we analyze the robotic KRSs, shown in Table 1, in seven
dimensions according to the research questions presented in Table 2.

3.1. Application Domain Scope

The first criterion, shown in Table 2, to analyze the KRSs, is fulfilled by categorizing
them according to their application domain. In this subsection, we thoroughly examine
the domain of each selected robotic KRS and distribute them by application. The most
demanding applications of autonomous robots have gained interest in the industrial,
medical, and domestic domain, in which knowledge representation provides meaning to
input data that a robot uses to perform delegated tasks.

The criteria based on the domain and application scope are listed in Table 3.

Table 3. KRSs: domain and application scope.

KRS Domain Application

KnowRob Domestic Household manipulation task in the kitchen

OROSU Medical /hospital Performs surgical procedures

CARESSES Domestic Culturally competent assistive robot for elderly people

PMK Domestic ir:}:l)oor manipulation and motion planning to perform tasks such as serving a
SARbot Domestic Disaster search and rescue operations

IEQ Domestic An interactive humanoid social robot that provides suggestions
SmartRules Domestic Monitoring and assisting elderly people

ARBI Medical /hospital Performs the duty of robotic receptionist in the hospital

Worker-cobot Industrial/manufacturing Establishes collaboration between human workers and industrial robots
APRS Industrial/manufacturing Kit building

The KnowRob [68] KRS was designed to perform household manipulation tasks, par-
ticularly in an assistive kitchen project. Its framework is reusable on a wide range of robotic
platforms. Additionally, it is a software product that is developed by the RoboEarth [13]
project for creating the World Wide Web of robotics with the aim of downloading the
instruction set to perform a task and upload the learned model for sharing it with other
robots. It enables the robots to perform goal-oriented manipulation tasks.

Starting from [78], OROSU [69] maps the robotic ontologies in the medical domain
with applications to a surgical procedure, inspired by [78] for hip resurfacing.

CARESSES [70] targets the domain of assistive robots for elderly support. It builds
an interaction between a culturally competent assistive robot and an elderly person for
performing everyday tasks.

PMK [71] was developed to enhance robotic capabilities for performing manipulation
tasks and motion planning (TAMP) in a wide range of scenarios such as serving a cup in
an indoor environment.

SARDbot [72] introduces robotic application in the disaster search and rescue (SAR)
domain. It represents the knowledge using an ontology that enables the robot to better



Appl. Sci. 2021, 11,4324

10 of 30

understand the environment for search and rescue operations and o make smart decisions
using the ontology-based task planning algorithm.

IEQ [73] employs a knowledge representation approach that enables social humanoid
robots to have cognitive capabilities to interact with the people in the building and provides
them with suggestions for real-time monitoring of IEQ.

The KRS of SmartRules [74] for the Internet of Robotic Things (IoRT) systems was
developed during the SemBySem and Web of Objects projects. It shows effectiveness
in ambient assisted living (AAL) applications using the semantic IoRT system to help
elderly people who suffer due to perceptual and mobility impairments by providing them
assistance through monitoring their daily living activities. Its use cases involve medicine
reminders, fall detection, emergency confirmation, activity recognition for food preparation,
and providing dietary advice.

The application of ARBI [75] involves a social robot Turtlebot2 that uses a scalable
knowledge model and acts as a medical receptionist in a hospital. The social robot performs
greetings and guides the users to the required department after understanding their
symptoms through knowledge inference.

The worker-cobot [76] targets industry to establish collaboration between human
workers and industrial robots (IRs) in a shared environment. It represents the knowledge
of all components in a shared manufacturing work cell, in a form that is understandable
for both human workers and IRs. Its application provides manufacturing knowledge
representation, sharing, and reasoning in the domain of the cooperative work cell, which
includes the cobot, co-workers, and production components.

The KRS of APRS introduces robot agility in the kitting domain [77]. Its integrated
agility allows manufacturers to empower their robotic systems with more automatic part
customization.

3.2. Idea and Contribution

Focusing on the semantic frameworks for robots that go beyond the local knowledge
bases for building a knowledge-enabled cloud-based system, KnowRob 2.0 [68], an exten-
sion of [14], is considered the most advanced knowledge representation and reasoning
system, which relies on ontologies and semantic web technologies. Its core purpose is
to integrate the physics simulation-based reasoning and photo-realistic rendering tech-
niques of the game engine into a hybrid knowledge processing architecture for successfully
mastering the autonomous robotic agents to perform complex manipulation tasks with
additional cognitive capabilities in a human-centric environment.

The main purpose of the OROSU [69] framework is to develop a KBS for human
surgeries using robotic assistance by integrating healthcare ontologies and robotic systems.
It also aims at tracking the robotic actions and adopting robot pose in drilling tasks during
medical surgical procedures.

The idea of CARESSES [70] is to define a system that endows the autonomous robot
with communication skills through speech and gesture recognition including perception
abilities for semantic recognition, as well as the cultural competence to determine the
robot’s behavior. It also aims at enabling the robot to adapt to the culture of the individual
for perceiving, acting, reasoning, planning, and decision making based on the culturally
aware capabilities.

PMK [71] contributes to both knowledge formulation and reasoning. The purpose
of the PMK knowledge base reasoning framework is to formalize and standardize the
ontological representation that contains low-level semantic data for robot perception and
high-level information of the environment for manipulation tasks. The current version
of PMK [71] aims at including the sensing information, semantic reasoning to handle
the differences, standardized ontological concepts, and geometric and spatial reasoning
knowledge for the combined task with motion planning, which was not covered in its
preliminary version [79].
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The main purpose of developing SARbot [72] is to perform complex robotic tasks
in disaster search and rescue scenarios that involve exploring an unknown environment,
locating the victims, and sending back their information immediately [80,81]. It emphasizes
high-level control, supports the decision making of the robot using the ontology, and
efficiently updates the task knowledge.

IEQ is vital to ensure the well-being and comfort [82,83] of the people working or
living inside a building. To overcome these challenges, the KRS of IEQ monitoring [73]
aims to address three types of comfort: visual, thermal, and acoustic, following six norms
for monitoring IEQ using a social robot. It mainly contributes to the development of the
IEQ ontology, the definition of normative standards, and algorithm compliance reasoning.
It finally implements this on an interactive social robotic platform that gives appropriate
suggestions after evaluation according to the preferences of the individuals and the integra-
tion of actual IEQ data with the post occupancy evaluation (POE) [84] survey information
obtained from the person.

The concept of the semantic IoRT introduced in SmartRules [74] presents a semantic
framework for context-aware IoRT systems concentrating on monitoring and assisting
an elderly person during his/her daily living activities. It generates the actions based
on contextual information. The purpose of the SmartRules framework is to integrate the
heterogeneous data and provide context awareness to determine the robot’s reaction to
context changes using symbolic representation and reasoning with first-order logic. It aims
to develop a knowledge representation framework known as SmartRules, an operational
platform for context awareness focusing on manageable objects (MOs) with minimal code.

The ARBI [75] framework aims to propose an integrated knowledge model for human-
robot interactive services that is based on the ontology. It clearly defines common concepts,
as well as domain knowledge for better understanding of agents and environmental
information. It focuses on symbolic representation, which makes the knowledge model
independent of the robotic system.

The worker-cobot [76] framework overcomes the challenges of continuously changing
production components, environmental complexity, and shared knowledge representation
for cooperative manufacturing. It provides a distributed control solution, which includes
an ontology-based multi-agent system (MAS) and a business rule management system
(BRMS) to achieve agile manufacturing in a worker—cobot cooperative work cell and to
manufacture a customized product.

The purpose of the APRS [77] kitting project is to empower the manufacturing robot
with agility in the kit-building process using ontology-based information representation
models. It contributes to making the industrial robots more agile for handling the challenges
faced by small and medium manufacturers.

Table 4 summarizes the key ideas adopted by each robotic KRS.

Table 4. KRSs: idea and contribution.

KRS Solution/Contribution

Goes beyond the local knowledge bases.

KnowRob

Builds knowledge-enabled cloud-based systems.

Relies on ontologies and semantic web technologies.
Integrates physics simulation-based reasoning and game engine-based rendering techniques.

Integrates ontologies from the health care and robotics fields.
OROSU Develops KRS for human body surgeries using robots.
Tracks robotic actions and maintains pose information in drilling tasks.

CARESSES

Endows the robot with communication skills through speech, gesture, recognition, and culturally aware
capabilities.
Enables the robot to change its behavior by adopting an individual’s culture.
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Table 4. Cont.

KRS Solution/Contribution
Formalizes ontological representation for semantic perception and manipulation.
PMK Performs TAMP by including sensing information, semantic, geometric, and spatial reasoning with ontological
concepts.
Enables robotic search and rescue operations in an unknown environment by:
SARbot . 11 . . . .
Endowing the robot with high-level control and supporting decision making using the ontology.
Develops the IEQ ontology for monitoring indoor environment quality.
IEQ Integrates IEQ with post-occupancy evaluation (POE).

Enables the robot to make appropriate suggestions based on the individual’s preferences to control the indoor
temperature.

Smart Rules

Overcomes the limitations of standalone robots.

Develops a context-aware IoRT knowledge representation system.
Allows human-robot interaction in both the physical and cyber world.
Deploys rules based on an environment ontology.

ARBI

Uses symbolic representation for a better understanding of the environment.
Develops an integrated model based on the ontology.
Endows the robot to perform human-robot interactive services.

Worker-cobot

Enables the robot to work in collaboration with human workers while sharing the same manufacturing unit.
Achieves agile manufacturing through ontology-based MAS and BRMS.

APRS

Introduces an ontology-based model for kitting process.
Empowers the robot with agility.

3.3. Development Tools

KnowRob [68] has been implemented in a modular way, which allows the users to
easily reuse it by adding, removing, or exchanging the required parts of its functionality.
Each of its modules can be extended in two ways: first is an additional knowledge-based
extension of the ontology, and second is an additional reasoning-based extension language.
KnowRob uses the combination of two languages: Web Ontology Language (OWL) [85] and
SWI-Prolog [86]. OWL is used to encode ontologies and describe the relational knowledge
such as the concepts that are semantically interconnected. It generates XML-like files. SWI-
Prolog is used to load, store, and reason on the explicit knowledge in the memory that
contains the facts represented in OWL. It manages the querying of RDF triples.

The initial guidelines for OROSU'’s [69] implementation were presented in [78]. It was
developed in Protégé and OWL. Its task definition process is implemented using Protégé,
and it contains tools included in the KnowRob framework.

CARESSES [70] used the OWL language for describing the ontology, coupled with a
Bayesian network to describe cultural knowledge, in a probabilistic sense for avoiding a
high risk of stereotyping when modeling the cultures in its KB.

The PMK [71] was implemented using the Protégé ontology editor and OWL. Queries
are created in SWI-Prolog, and its semantic web library loads ontologies represented in
OWL using Prolog predicates. These predicates obtain the knowledge required by the
robot to perform object manipulation tasks. Its perception module is used to fix and
attach 2D cameras with two Robot Operating System (ROS) [87] nodes and a C++- library
ar_track_alvar object pose detection.

SARDbot [72] uses OWL for ontology development and adopts the Semantic Web
Rule Language (SWRL) to describe complex rules in a semantic way and to overcome the
limitations of OWL. It uses JESS, which is a Java-based clip reasoner, while it defines task
preconditions and atomic actions with data properties using Protégé. The experiments
were conducted using TurtleBot3 with a real robot platform established in ROS.

IEQ monitoring [73] implements the normative reasoner [88], which is a Java-based
interpreter of the AgentSpeak Language [89] for BDI (beliefs-desires-intentions) agents
(i.e., robots).
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The SmartRules framework in [74] allows IoRT systems to use and react according to
the contextual knowledge and abstract the heterogeneity of the MOs. These SmartRules
were developed using two languages in which context management rules are defined by the
SmartRules sub-language. p-Concept is a language used in the ontology-based knowledge
representation system [90] to model the context, in particular objects and actions between
them in the IoRT environment. The u-Concept language contains three main constructs
called concepts, properties, and individuals. It specifies the IoRT environmental ontology
with entities such as physical objects and actions, and its syntax is based on the RDFS
XML schema. These two sub-languages provide efficient reasoning on MOs to generate
high-level contextual information or actions. SmartRules’ sub-language specifies context
management rules that allow the reasoner to perform the inference process, known as
matching. It is composed of if-then production rules in which p-Concept constructs are
used as predicates that are stored in variables. Compared to OWL, which uses the open
world assumption (OWA) to reason, both SmartRules and p-Concept use the closed world
assumption (CWA) for reasoning.

ARBI [75] uses SPARQL statements and Apache Jena (https:/ /jena.apache.org) to
implement the knowledge query and inference functions along with ROS-based actuator
functioning. Its context reasoner is based on Prolog, while the preconditions for a certain
action are described as OWL-based ontological restrictions on property.

In worker-cobot [76], the Holonic Control Architecture (HCA) was developed, which
was implemented via the Java Agent Development Environment (JADE) [91], while it used
the ontology-based Agent Communication Language (ACL) [92] for message exchange
between JADE agents.

The models in the APRS kitting [77] framework were defined in the XML Schema
Definition Language (XSDL) and the Web Ontology Language (OWL).

The development tools used in each KR system are listed in Table 5.

Table 5. KRSs: development tools.

KRS Development Tools
KnowRob OWL, SWI-Prolog
OROSU OWL

CARESSES OWL, Bayesian Networks
PMK OWL, SWI-Prolog
SARbot OWL, SWRL, JESS

IEQ Normative

SmartRules SmartRules sub-language, y-Concept
ARBI OWL, Prolog, SPARQL
Worker-cobot JADE, ACL

APRS XSDL

3.4. Architecture

In this subsection, we give a review of the architecture for each selected KRS, with a
discussion of their main components, summarized in Table 6.

The KnowRob 2.0 [68] architecture consists of the interface shell, logic-based language,
and hybrid reasoning shell, which are centered on the symbolic representation of the ontol-
ogy. It operates within the perception-action loop of the control system in the embodiment
of the robotic agent: the interface shell contains question answering, perception, learning,
and recorded episodic memory. It uniforms the query answering system to execute the
assigned task by referring to the captured image data, observing the state of the object, and
inferring the appropriate motion parameters. The queries related to the manipulation tasks
require parameterization of the motion and data structure along with the function calls.
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The logic-based language facilitates a hybrid reasoning shell by providing descriptions
for entities such as objects, their parts, and environments. It also uses control-level data
structures for grounding the symbolic expressions and provides ontologies-based hetero-
geneous representations. The hybrid reasoning shell implements the knowledge using
multiple methods including key components that are data structures, robotics algorithms
for inverse kinematics, and collision-free motion planning for finding accurate paths to the
precise position of the object.

Table 6. KRSs: architectural components.

KRS Major Elements of Architecture

KnowRob Three components Interface shell, logic-based language, hybrid reasoning shell

OROSU Multiple ontologies Robotic and medical ontologies

CARESSES Three modules Cultural knowledge base (CKB), cul'turally sensitive planning and execution,
culture-aware human-robot interaction

PMK Four major components Perception module, PM framework, TAMP planning, execution module

SARbot Three-level control Low-, middle-, and high-level controls
Knowledge base, dialog module, speech recognition module, light_Sound, and

1IEQ Seven components Therm_Hygrometricdata acquisition modules, normative reasoner module,
suggestion module

SmartRules Two software layers Lower abstract layer, top reasoning layer

ARBI Three components Knowledge manager, task planner, context reasoner

Worker-cobot

Three steps

Holonic Control Architecture (HCA), knowledge exchange and reasoning step

APRS

Three models

Kitting workstation, action model, robot capability model

The OROSU [69] architecture is based on the combination of multiple ontologies,
while its base ontology partially relies on the 1872-2015 IEEE Standard Ontologies for
Robotics and Automation [93]. It is among the first frameworks that merges robotic and
medical ontologies for surgical robotics. The CARESSES [70] architecture consists of
three main modules: the cultural knowledge base (CKB), the culturally sensitive planning
and execution, and the culture-aware human-robot interaction, which are integrated into
universAAL [94]. The CKB is the core of its framework architecture.

The PMK [71] architecture consists of four major components known as the perception
module, PMK framework, and TAMP planning and execution module. The perception
module detects the world entities using tags, and then, their identified poses and IDs are
used for building IOC knowledge. The PMK framework offers reasoning predicates for
perception and object features along with situation analysis. The TAMP module is used
to plan the task by the fast-forward task planner [95] and combines it with physics-based
motion planning [96]. Finally, the execution module performs the assigned task.

The SARbot [72] architecture divides the robot control into three levels. The motors
and sensors are controlled by the low-level control, while environment perception, SLAM,
and navigation are handled by the middle-level control, and smart decisions of the robot
are made by the high-level control. The IEQ [73] architecture for providing suggestions by
human-robot interaction consists of seven major elements: the knowledge base (KB), which
is the central storage for all the robot’s knowledge containing the current instance of the
domain ontology that is related to the current monitoring session; the dialog and speech
recognition module; the suggestion module; the Light_Sound data acquisition module.
The Therm_Hygrometric data acquisition module uses web services for acquiring the mean
and standard deviation of humidity and temperature values, while illuminance and sound
pressure are obtained from the user.

The SmartRules [74] architecture for the semantic IoRT system contains two software
layers. The lower abstract layer is a semantic fagade that provides an interface for handling
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the heterogeneity of low-level components and abstracts access to MOs by transforming
heterogeneous sensor data. The top reasoning layer, the reactive reasoning core (RRC),
processes the abstraction layer information, performs reasoning, and generates actions,
which are converted into commands for the lower layer, completing the perceive-plan-act
cycle. Its model is written in the database, while its function is divided among three
sub-modules known as the ontology (explained in Section 3.5), consistency checking, and
reasoning module (discussed in Section 3.6). The consistency checking module monitors
the stability of the model considering constraints given in the ontology.

The ARBI [75] architecture uses an ontology-based knowledge model, and it is com-
posed of a task planner, which is based on the JAM architecture [96], a context reasoner, and
a knowledge manager. The knowledge manager processes the agents” queries through in-
ference and matches name spaces for storing recognition and dialog data in the knowledge
model. It employs a dialog management system and a perception and action engine. It uses
the dialog manager to query the knowledge manager about the topic of the user’s dialog for
generating the final statement of the dialog by applying a situational knowledge response.

The worker-cobot [76] architecture presents agile manufacturing using three main
steps. At the first step, HCA is used to ensure the autonomy of the cooperative manufac-
turing system. A common language for representing the shared environment of workers
and the cobot is also specified at this level. In the second step, knowledge exchange in
the worker’s and robot’s understandable form is performed. The third step is to rea-
son about the production demands and the cooperative work cell’s status for obtaining
agile manufacturing.

The architecture of APRS kitting [77] for the domain of kit building consists of three
models: The first model represents a kitting workstation with the objects (e.g., parts) and
data (e.g., poses). The action model represents the structural components for the automatic
generation of the Planning Domain Definition Language (PDDL) domain [97]. The robot
capability model enables the robot to perform the specific action on one or more objects. It
also contains pointers to the new and kitting workstation model’s elements, as well as a
pointer to the robot element and assembly action by the robot.

3.5. Ontology Scope

This subsection discusses the scope of each KRS based on the ontology in the domain
of robotics. An ontology is best defined as a conceptualization-based formal representation
of knowledge that includes the explicit specification of concepts and objects, other entities
presented in the environment and relationships among them, as well as tasks and actions.
We divide this section into two parts. The first part gives an overview of the ontologies
used for each selected KR system and summarizes them in Table 7. The second part deals
with classifying KR systems according to their major ontological components that include
the object (Section 3.5.1), the map of the environment (Section 3.5.2) and the task and action
(Section 3.5.3), which are summarized in Table 8.

Starting from the overview of the ontologies, KnowRob [68] uses multiple ontologies
to allow communication for information sharing among the agents. Its main ontology
states robotic agents, their connected body parts, tasks, actions, behavior, objects with their
parts, and the environment. It provides relevant background knowledge in the form of
rules with additional axioms. Its ontological knowledge representation approach consists
of four main knowledge bases in which the inner world knowledge base contains CAD
and mesh models of real-world objects with physics simulation; the virtual knowledge
base from the data structure is computed on demand; the logic knowledge base abstracts
the data from sensors, control commands, and events such as grasping; while the recording
of these events and experiences of the robotic agents is stored in the episodic memory
knowledge base.
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Table 7. KRSs: ontology scope.

KRS Ontologies Concepts/Classes

KnowRob Inner world, virtual, logical, episodic memories, and DUL Temporal, spatial, and mathematical things
OROSU CORA, human anatomical, PARTS, and SUMO Medical sensing and manipulation action
CARESSES Modular structure Not defined in [70]

PMK Meta ontology fg;:g;f;giggf:’ WSpace, actor, sensor, context
SARbot Entity, environment, and task SLAM, object, task, and environment

IEQ 1IEQ Occupant, environment, and recommendation
SmartRules Micro, DUL, Object, person, and robot

ARBI ISRO, user, robot, action, perception, and environment Person, SocialConcept, object, robot, and event
Worker- Agent, agent administrative Not defined in [76]

cobot

APRS Three PointType, PartType

The OROSU [69] ontology uses the knowledge from the CORA ontology [93] for
defining the general concepts of medicine, human anatomical ontology, SNOMED-CT [9§],
and the KNOWROB framework [14,99]. It adopts the robot parts (PARTS) ontology along
with its interaction with the suggested upper merged ontology (SUMO). The extensive
vocabulary and flexibility of SUMO make it a top-level ontology [100].

CARESSES [70] provides human activity recognition and presents cultural information
using ontologies. Its knowledge is contained in a modular ontology structure that combines
bottom-up and top-down approaches. Its ontology for culturally competent robots relies
on three layers with four major elements, TBox, CBox, PBox, and algorithm. The culture-
generic knowledge layer contains the terminology (TBox, I) for representing information
related to the robot, goal, action, and the grounding of values for all the cultures of the
world, considered in KB. The culture-specific settings layer holds the assertions (CS-ABox,
II) for representing information to depict the cultural background of the individual, which
the robot can use when certain information is not available. The person-specific settings
layer keeps the assertions (PS-ABox, III) for representing the cultural identity, environment,
and preferences of the assisted person that specify the appropriate behavior of the robot.
The assessment and adaptation (A&A) algorithm identifies person-specific settings through
dialog or observation. The terminology box (TBox) of the ontology is composed of classes
and the general properties of the domain concepts such as data and object properties.

A preliminary version [79] of PMK [71] was inspired by [4] for the indoor robot
navigation task. It defines concepts by a hierarchy of ontologies with three layers, called
the meta ontology, which describes concepts related to a physical object, the ontology
schema, which represents domain-specific knowledge, and the ontology instance for storing
information about a specific object such as object features. It follows the hierarchical schema
to perform manipulation tasks using seven classes of three layers.
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Table 8. Summary of the evaluation results for ontological components and cognitive capabilities.

Kno-wRob  OROUS CARE-SSES PMK SARBot 1IEQ Smart-Rules ARBI Worke-rcoBot APRS
Object Definition D *D - *D - - *D *D - -
Concept C C *C C *C *C C C *C *C
Entity P P P P P N PV P P P
Type RS H S T,G K (@) M T,G S S
Onto-logy Definition -E -E -E -E -E -E -E -E -E -E
Compo-nents
Enviro-nment Type S S ' S S,G ' ' S - '
Concept PI PI -PI PI PI -PI PI PI -PI -PI
) Definition *A - -A - - -A - - - -
Action Concept E “E E *E “E E “E “E “E “E
1 - o o - - - o
2 o - - - - 0 -
3 - - - 0 - -
Inter-action 4 - o - - - - -
Based on * - -
Visual 5 - - - - - -
Cogn-itive Recogn-ition 6 _ _ - - _
Capabi-lities 7 _ _ - - o - R
8 - - - - - B
Interaction Based on
Voice Recognition B B 0 B B ° B © B -
Task Execution and
o o o o o o o o o o

Task Planning

Object-> D: object definition in natural language is given; *D: object definition in natural language was taken from another ontology; C: object concept is given; *C: object concept is given, but its natural language
definition (D and *D) is not explained. Entity (P: physical; N: non-tangible, i.e., air; V: virtual, i.e., virtual device) Type (S: specific; R: general; K: known and unknown; O: observable, i.e., temperature; M:
manageable, i.e., active, static; H: human body parts, i.e., femur; G: group parts, i.e., chairs; T: individual parts, i.e., hinges). Environment-> -E: no natural language definition of the mapping environment is
provided; PI: place concept is given; -PI: no place concept; -M: no map of the environment; S: semantic map; G: grid map. Action-> *A: action definition was taken from another ontology; -A,-E: no action
definition and its ontological concept is given; E: action concept is described; *E: action concept is given, but its natural language definition is not given. *: recognition by acquiring knowledge from observations;
-: not available; o: available.
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SARbot [72] divides the ontology into two layers: the conceptual layer for knowledge
representation of the disaster rescue domain and the instance layer for the relationship
among instances. The conceptual layer is further divided into abstract and specific layers.
The abstract layer contains concepts related to the SLAM, object, and task classes, while
the specific layer describes certain environment objects. Three main parts of its ontology
are entity ontology, environment ontology, and task ontology. The modules of these
three ontologies are combined to make a joint ontology. For efficient task execution, it
allows the robot to query and match the ontology at each layer according to the initial
state. IEQ [73] represents the IEQ ontology, which focuses on the concepts related to
physical environmental parameters of indoor areas, user’s features, their perceptions,
and preferences about the environment. The IEQ ontology consists of three parts, which
concentrate on three main concepts known as occupant, environment, and recommendation.
Occupant elements contain the attributes and relationships of the user (i.e., person), features
(i.e., age, gender), user perception (i.e., heat), and preferences (i.e., temperature, illuminance
level) about the environment to allow the robot to understand the comfortable conditions
for the occupants. SmartRules [74] contains domain ontology to create context models for
IoRT scenarios. It introduces the micro ontology for modeling the concepts of semantic
IoRT applications in indoor environments, spatial relations, sensors, and observations.
Its top level includes axiomatically simpler concepts from the DOLCE Ultra Lite (DUL)
ontology and the semantic sensors network (SSN) ontology.

ARBI [75] proposes a generic knowledge model known as the intelligent service robot
ontology (ISRO). Its high-level scheme allows dynamic generation and basic knowledge
management, which enables it to be implemented on any service robot independent of a
specific domain. The low-level information and symbolic knowledge provide support for
concretization and abstraction through semantic relationships. It achieves flexibility and
scalability by defining upper-level concepts. Environment, perception, user, action, and
robot are the main ontologies. Since the ARBI framework has been verified through its
real-world implementation in a medical reception situation, its environment ontology also
has medical domain knowledge.

Worker-cobot [76] provides an ontology-based multi-agent system (MAS). It uses
ontologies for the communication of autonomous agents to customize the pumps in a
collaborative work cell consisting of two workers and one cobot. The cobot’s task is to
pick the right amount of production parts from storage and place them in the workers’
workstation based on their manufacturing status, while the workers’ task is to assemble
the product parts. Its main ontology is the agent.

APRS [77] has implemented three ontologies in the kitting domain known as the
kitting workstation model, the action model, and the robot capability model.

3.5.1. Object

Most of the compared KR systems define the Object from various perspectives as
an essential component of their ontologies. KnowRob [99] defines the “Object”in a large
ontology from very generic classes such as SpatialThing to specific ones, e.g., Refriger-
ator—Freezer. It contains about 7000 object classes [101]. In addition to this, KnowRob
2.0 [68] considers physical, social, and mental entities as objects participating in an event.
OROSU [69] takes the basic Object definition from the IEEE suggested upper merged ontol-
ogy (SUMO) (https:/ /en.wikipedia.org/wiki/Suggested_Upper_Merged_Ontology). We
could not find the object definition in CARESSES [70]; however, it is defined as a sub-class of
Topic. PMK [71] defines the objects in WSObjectClass and their features in the Features class.
Its main WSObjectClass uses the standardized concepts of SUMO: Artifact for object and
Collections for group-level, while the new concept ArtificatComponent for component-level.
SARDbot [72] defines the concept of environment objects (e.g., victims, bookshelves, etc.)
represented as individual classes. It also contains the objects that may be initially unknown
for the robot, but can be recognized to update the environment ontology. IEQ [73] does
not describe the concept of objects in natural language. However, it shows the ontological
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concepts and relations of logical sentences about objects. SmartRules [74] concentrates on
the notion of manageable objects (MOs). It is comprised of three subcategories of object
classes: active objects that include physical objects; virtual objects, i.e., databases, files,
web services; static objects and movable objects. ARBI [75] defines different objects ranging
from object connection, components (e.g., hinges, joints, etc.), to human-scale objects (e.g.,
documents, table) in the perception ontology and their attributes such as size, color, state
(static or dynamic, open or closed), shape, and other features. Worker-cobot [76] does not
provide an object definition. However, it uses Drools [102] for pattern matching with the
ReeOO algorithm [103] by combining it with object-oriented (OO) concepts such as ab-
straction, inheritance, and encapsulation. Its agent descriptive ontology indicates different
objects and entities of the shared domain (i.e., electric motor, worker, robot). APRS [77]
describes solid objects (e.g., parts) with general information related to their basic elements.
Its PointTypeclass stores dynamic information, while the PartType class holds both static
and dynamic information about parts of the object. A finished kit becomes the instance of
the PartsTrayType class.

3.5.2. Map of Environment

KnowRob [68] does not describe the natural language definition of a map of the
environment. However, it contains the concept of SemanticEnvironmentMap as a sub-
class of Map. OROUS [69] defines places in environments where the robot performs the
task (e.g., OperatingRoom, CTRoom, EngineeringRoom) as sub-classes of Room. PMK [71]
contains Region, Physical Environment (environment topology), and SemanticEnvironment
subclasses of Workspace. SARBot [72] uses the environment ontology to give a description
of the environment map. It contains two classes: object class and SLAM class, which
builds a semantic map for locating the victim in a room (Room1, Room?2). It also presents
geometric categories of the grid map that show the detected object in the obstacle area;
the detected object is in the unknown area; the detection point is in the free area near the
obstacles; the detection point is in the free area (no obstacles nearby). In IEQ [73], concept
of indoor environment is used to detect non-compliant situations. However, it does not
contain a natural language definition of environment. SmartRules [74] defines specific
concepts related to the internal and external environments; for instance, Room Region, Living
Room Region, and Garden Region as a subconcept of Place in the DOLCE Ultra Lite (DUL)
ontology (http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS$_$Ultralite).
ARBI [75] semantically defines a knowledge representation that is constructed as general
knowledge related to OpenCyec. Its environment ontology is composed of the concepts
for places, temporal things, map information, and domain-specific knowledge. Places
are defined as spatial things (a hallway, building, street). The environment description
includes spatial relations between places, the scale, and the central point of the place in the
robot’s map.

3.5.3. Task and Action

KnowRob [99] defines Action as an Event using the definitions of the OpenCyc ontology.
The KnowRob [68] knowledge base system provides the basis for the autonomous mobile
robot by representing general class knowledge in the form of the ontology for task execution.
It uses the well-structured foundational ontology, called DUL, to execute a task by following
the “Plan” definition of the DUL ontology and defines many activity-related concepts in the
Open-EASE ontology. OROUS [69] contains sub-actions composed of the task. For instance,
sub-actions USimagePerception and RoboticBoneTracking are performed in OperatingRoom.
It also defines actions related to medical perception and algorithms and pre- and intra-
operative actions in the MedicalSensing and manipulationAction classes. However, the
Action definition in natural language is described in a few analyzed approaches (e.g.,
CARESSES [70]). PMK [71] defines the Action class in which symbolic tasks are described
at three levels (Task): Level 2 (Sub-Task) includes short-term sequences of move, pickup,
and place, while Level 1 contains AutomicFunction for perception and planning processes.
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SARBot [72] uses the TaskOntology for search and rescue operations in which the task
contains a subclass of the subtasks and atomic actions; for instance, SearchTask, RescueTusk,
and Recognizelask are three tasks of TuskOntology in which Rescuelnsk has three atomic
actions: PickUpVictim, GetOutVictim, and PutDownVictim. In IEQ [73], the recommendation
ontology models the concepts and relationship for IEQ evaluation based on comfort
standards and helps the robot to complete its task by giving suitable recommendations
to the user. The SmartRules [74] abstracts the information from lower level visual data
into high-level entities for performing context-aware actions. It proposes _VisualLMessage,
_MoveRobot, and _EmergencyAlarm to model the actions in the case of context change.
The Action ontology of ARBI [75] expresses the robot’s actions, e.g., moving, grabbing,
and speaking in service situations and inter-relations with other models for generating
complex knowledge that assists the robot in action selection and event management. The
actionontology also contains an event class that stores both recordable, as well as cognitive
events and external recognized data in the form of event instances

Worker-cobot [76] uses the agent ontology, which is divided into three categories to per-
form a task. The agent structural ontology expresses the relations (i.e., predicates) between
the entities of HCA and facilitates better understanding, while the agent administrative
ontology represents the operations or actions performed by the HCA entities (i.e., pump
assembly, pick and place). We found only the name of ontologies related to tasks and
actions, but the description of their classes was not given in [76]. APRS [77] presents an
action ontology for all the concepts required to support an action. It contains information
for the automatic generation of the PDDL domain file and problem files required by the
planner. The capability ontology represents the information related to the robot’s capability
such as performing assembly actions (i.e., pick-up-part, small-gear).

3.6. Reasoning Scope

In this section, we compare the reasoning scope of the ontology-based selected KRSs
listed in Table 9. Reasoning endows the robots with cognitive capabilities (shown in Table 8)
so that they can perform the task (Section 3.6.3) autonomously and interact through visual
(Section 3.6.1) and voice (Section 3.6.2) recognition skills, in real-world environments.

Table 9. KRSs: reasoning scope.

KRS Reasoning Scope

KnowROB Hybrid reasoning, simulation-based reasoning, motion control reasoning
OROSU Action reasoning using HermiT and Pellet reasoners

CARESSES Cultural knowledge-based reasoning

PMK lI;learrclilijrtllgal reasoning, reasoning for object features, situation analysis, and
SARbot Task reasoning

IEQ Normative reasoning

SmartRules Reactive reasoning

ARBI Logical reasoning

Worker-cobot Reasoning for interaction

APRS Reasoning based on environmental knowledge

3.6.1. Interaction Based on Visual Recognition

KnowRob [68] recognizes high-level activities by acquiring knowledge from obser-
vations. In a study, Reference [104] used KnowRob [99] to present and reason about the
knowledge of the detected object by linking the object recognition output with the mapping
system. CARESSES [70] interprets visual data acquired by the robot’s sensor in the light
of cultural knowledge. It also equips the robot with perceptual capabilities that include
human emotion estimation (e.g., happiness, anger, etc.) and daily activity recognition
(e.g., sitting, cleaning, etc.) The PMK [71] detects the IDs of world entities and performs
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pose estimation using tags. It builds domain knowledge by asserting perceptual data on
PMK. Then, reasoning for perception is performed, which is related to algorithms and
sensors, to respond to the queries. It extracts object features (e.g., color and dimensions)
and provides reasoning on features. It also contains reasoning for situation analysis to
evaluate the spatial relation of objects with others and generate agent-object relations that
are used later for the planning process. SARbot [72] enables the robot to have quick object
recognition capabilities using QR codes, using a camera to scan the QR code of the target
and detect it during research and rescue operations. It uses Bayesian reasoning to obtain
the position of victims and semantic information by QR code recognition. SmartRules [74]
performs recognition tasks related to user detection, activity recognition, and fall detection.
It recognizes the user’s activities while cooking or preparing a meal and gives dietary
advice. ARBI [75] supports user recognition, which involves face detection, emotion esti-
mation, and gender detection. The low-level extracted data are fastened to the knowledge.
In addition to this, it also performs place recognition to identify the location where the
interaction occurs. Worker-cobot [76] enables the robot co-worker to achieve cooperative
manufacturing through worker activity recognition, which is an essential step towards
physical communication between human and robot. The two-fold benefits of recognition
are: to help the robot acquire the worker status; and to help the worker establish physical
communication with the co-bot during the manufacturing process. The recognition helps
to perform a cooperative task more efficiently. The robot recognizes the object’s picking
and placing activity by the worker by detecting the natural body movements of worker and
identifies the operation performed by him/her through the specific tools he/she is holding.
In this scope, a prior work [105] of [76] added more flexibility by identifying worker hand
gestures to communicate with the co-bot by defining two modes of gesture recognition.
The explicit gesture recognition mode recognizes the gesture when a worker is directly
commanding the co-bot, while the implicit gesture recognition detects specific gestures that
notify the robot to perform a sequence of actions. The study in [106] represented different
hand gestures used by the worker to assist the human and co-bot intuitive communication.
APRS [77] updates the current state of the world by sensor processing (SP). It enables
the robot to have object recognition capability for picking up and gripping the object. It
also includes pose estimation of objects to be gripped. A failure in the context of task
identification is recognized from the visual recognition system.

3.6.2. Interaction Based on Voice Recognition

CARESSES [70] introduced reasoning based on cultural KB for efficient human-robot
interaction and intelligent verbal communication with semantic comprehension to rec-
ognize relevant keywords. In the context of CARESSES, References [107,108] introduced
two human-robot speech-based interaction scenarios involving cultural knowledge-based
assumptions. IEQ [73] endows the humanoid social robot with communication skills
to interact with humans using dialog and speech recognition modules. The dialogue
module enables the social robot Nao to communicate with the people living in an in-
door environment and obtains their perception and preference about the environment
through POE questionnaire. The speech recognition module uses Google speech recogni-
tion (https:/ /venturebeat.com/2015/05/28/google-says-its-speech-recognition-techno
logy-now-has-only-an-8-word-error-rate/, https:/ /en.wikipedia.org/wiki/ GOOG-411)
and the Speech-to Text (https://cloud.google.com/speech-to-text/docs/libraries) API
service for converting recorded audio into text. It also allows the robot to perform several
complex interactions related to the indoor environment of a building and its occupants
such as building features (e.g., window size, etc.), user’s features, preferences, and user’s
perception about the environment. ARBI [75] provides human-robot interactive services
with speech recognition and improves the natural understanding of user’s utterances by
grounding predicate information, which extracts user’s utterances through the dialog
management system. It handles the word-matching issue of grounding the non-pronoun
words using the Google word2vec model.


https://venturebeat.com/2015/05/28/google-says-its-speech-recognition-technology-now-has-only-an-8-word-error-rate/
https://venturebeat.com/2015/05/28/google-says-its-speech-recognition-technology-now-has-only-an-8-word-error-rate/
https://en.wikipedia.org/wiki/GOOG-411
https://cloud.google.com/speech-to-text/docs/libraries
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3.6.3. Task Execution and Action Planning

Cognitive capabilities in a robot enable it to interpret task execution and actions. For
this, a proper representation of the actions to perform specific tasks by the robot in the
environment is essential, which has been included in most of the compared KR systems.

KnowRob [68] uses motion control reasoning to provide tight coupling of action
representation and executable motion descriptions for attaining competence in a manip-
ulation task. It performs simulation-based reasoning to envisage the results of motion
parametrization and plans for predicting the precise course of action. It avoids the frame
problem, and compared to the logic like reasoning, it also has the advantage of capturing
physical behavior. Besides, its knowledge representation about collisions and gravity is
more generic than rules or manual knowledge. OROSU [69] is designed to track action
execution during orthopedic surgery. OROSU [69] uses HermiT and Pellet reasoners to
perform reasoning on the actions in the real scenario for performing surgical procedures,
e.g., hip surgery. It uses Pellet to obtain the query output of the defined action, e.g.,
obtain3D femurModel FromUS and RoboticBoneTracking for performing the tasks in the
OperatingRoom. It accomplishes more complex queries using the HermiT reasoner, e.g.,
to obtain a 3D model from US images or robotic bone tracking to perform the task in the
operating room. CARESSES [70] enables the robot to match its behavior with the cultural
identity of the user, which helps the robot to form its plan and execute the actions in a
culturally aware manner for making appropriate decisions to achieve the goal. It uses
constraint-based approaches [109] for plan generation with a focus on cultural constraints
and human-aware planning [110]. In the same direction, Reference [111] used a constraint-
based planner with cultural sensitivity [112] to execute the robot’s actions and maintain
the states of the environment and people. PMK [71] uses a fast-forward task-planning [95]
approach combined with physics-based motion planning [96] in the TAMP module, which
facilitates task planning and execution by providing a sequence of actions to the robot.
PMK uses geometric reasoning, dynamic interactions, along with manipulation constraints
to support this process. Its execution module performs the serving task. SARbot [72] uses
the JESS reasoner, which is a Java-based CLIPS reasoner [113]. It first reasons about the
task according to SWRL rules and actual knowledge, then it performs the task by breaking
it into automatic actions. It allows the robot to find the victim’s location through inference
and semantic information, while task reasoning is performed with JESS. IEQ [73] enables
the robot to execute human well-being tasks for visual, thermal, and acoustic comfort in
the indoor environment. The Light_Sound data acquisition module obtains and sends
user’s responses to the normative reasoner. The normative reasoner performs compliance
evaluation with normative standards. Consequently, the robot gives suggestions to the user
based on the compliance results and user’s perceptions and preferences to solve possible
discomfort in the indoor environment. The reasoning module in SmartRules [74] executes
actions based on contextual information. It allows reactive reasoning based on the closed-
world assumption (CWA) and starts the reasoning process by converting SmartRules into
the Drools [114] inference engine. It uses RRC to process information from the abstraction
layer and generates actions after the reasoning process. Then, the platform decodes these
actions into actual commands that are sent to the actuators. In the context of a person’s
presence, but not near a display MO, an action is triggered by RRC to move the service
robot to the person’s location. It observes the person’s presence in its internal map and
moves to a position (x, y), and this enables the robot to perform the tasks such as asking
the person if he/she needs any information or reminding the person to take medicine. If a
fall is detected, RRC executes an alarm action to notify other family members. In ARBI [75],
actions range from physical behavior to complex tasks that involve guiding and reasoning.
It implements a query interface consisting of four essential KB functions and ten knowledge
query protocols. It uses the context reasoner to infer spatial and temporal information and
stores the important ones in the knowledge base as static information. Worker-cobot [76]
takes cognitive actions in the assembly task distribution among the workers. If workers
have assembled an equal number of products, then Drools starts the first task assignment
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operation randomly and keeps switching if this situation happens again. It reasons about
the interaction between the order holon (OH) and operational research holons (ORHs)
using a low-cost algorithm that is written in Drools. Drools obtains the balance in the
assembly task distribution among the workers by following the business rules manage-
ment system (BRMS). APRS [77] enables the robot to perform the kitting process when
the operator receives a command to start manufacturing activity. It then requests the task
scheduler to act. The executor translates actions from the plan and continuously tracks the
exaction status. Its PickUpActionType is a complex action that requires the ability to identify
an object, measure the grip force, and determine whether the object is held firmly. If a
failure occurs due to an object dropping in the kitting process, the executor aborts the plan
and sends a status message to the operator for re-planning. The assembly action brings
components together to the assembly station in kits, which contain the necessary parts
(e.g., small gears) to complete the object assembly process.

3.7. Limitations/Challenges

We examined the ontology-based knowledge representation systems that have been
implemented successfully in autonomous robots to perform tasks in industrial, domestic,
and hospital environments. However, each robotic KRS has its drawback, described in
Table 10. In addition to these limitations, an important issue in these KRSs is the lack of
a standard for developing the ontology to represent the knowledge. Another common
problem that needs to be addressed is accessibility. KRSs should be developed such that
they can be easily accessed by developers all over the world for implementing in robotic
applications.

Table 10. KRSs: Limitations.

KRS Research Gaps/ Limitations

KnowRob Most of the works, however, focused on manipulation tasks only

OROSU There is still a need for improvement for aligning medical and robotic ontologies due to the use of different upper
ontologies

CARESSES The proposed usage of CARESSESS cultural knowledge at a large scale might be challenging in robots with a strong
bias; its cultural KB is built by hand with the help of experts
Although it provides general knowledge, some concepts are not well defined such as context-aware temporal and

PMK . : , .
spatial relations, sensors’ knowledge, and task representation

SARbot In a disaster SAR scenario, there is still a need to study the task planning for multiple heterogeneous robots in an
uncertain environment

IEQ To implement the IEQ, the environment should be robot-friendly, and the the user should have the correct

pronunciation for speech interaction with the robot

Some limitations of SmartRules include: the assumption of IoT objects known in advance; it does not deal with

Smart Rules

novelty autonomously; it needs a better method to bridge the semantic gap between entity descriptions and their

representation; it does not support reasoning in the unfamiliar model using the current states of SmartRules and

u-Concept
ARBI It requires extending the knowledge model to support a more socially relatable user experience
Worker-cobot Its case study addresses only a few operation resources

APRS

The APRS project shows that despite significant efforts to improve agility in manufacturing kitting, more research is
needed to deal with action failures.

4. Summary

In this section, we summarize the most relevant findings of knowledge representation
systems, reviewed in our survey (Section 3), in which ontologies have been used as a
knowledge artifact. We investigated the approaches that enable the robots to have semantic
skills. For this, ontology-based knowledge representation approaches that endow the
robots with semantic understanding were explored and evaluated based on seven research
questions and criteria. The first criterion concentrates on the application domain of the
selected robotic KRS in which six robotic KRSs used for domestic tasks, two developed
for medical robotics, while the remaining two designed for industrial robotics have been
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explored. The other three criteria discuss the key idea and contribution, development tools,
and architecture. The fifth criterion is concerned with the ontological scope. KnowRob,
which is the first one, uses ontologies for KRS and is in fact well documented; meanwhile,
other KR systems are more recent. OROSU is the first KRS that integrates robotic and
surgical ontologies; however, it is not fully accessible and lacks the definitions to understand
the terms. CARESSES’s cultural KB contains hand-crafted ontologies that tend to be
inflexible and complex, which needs to be addressed to make it more effective and efficient
in sharing and porting of knowledge in the cultural domain. The sixth criterion is related
to the reasoning scope of the ontologies for each robotic KRS, which demonstrates the
support of the cognitive capabilities of the robot. Our review showed that ontology-based
knowledge representation and reasoning endow the robots with a wide range of cognitive
capabilities (e.g., including perceptional capabilities to estimate human emotions, recognize
object and places, detect human actions and activities, planning and performing search
and rescue operations). Based on the prior studies in this article, it can be reported that
the efforts in these KRSs should be continued with the latest updates for reuse, and KRSs
should be extended with more options to implement in new applications. In addition, more
work is also required with the standard definitions and proper documentation of KRSs.

5. Discussion and Future Research Directions

The comparison of the ontology-based KR systems in this article did not cover all the
ontological components and cognitive capabilities of a KR-based robotic system, which is
natural. To our knowledge, there is no fixed or definitive method that could completely
address all the aspects of these kinds of ontologies in a review. However, considering
their important aspects in our survey, we presented the summary of our evaluation re-
sults (described in Tables 8 and 11) for the knowledge base of ten systems in the robotic
domain. Hence, the goal of our survey was to review novel, yet valuable recent research
developments in ontology-based KR systems for roboticists.

Table 11. Summary of the evaluation results of ontology-based knowledge representation systems in seven dimensions.

Apvplications Idea and Development . Ontology Reasoning S
# KRS PP Contribution Tools Architecture Scope Scope Limitation(s)
1 KnowRob
2 OROSU
Table 9:
3  CARESSES Table 7: KRS:
4 PMK Table 3: KRS: Reasoning
KRS: Table 4: Table 5: Table 6: Ontology Scope Table 10:
5 SARbot Applications KRS: KRS: KRS: Scope aKReS' .
6 IEQ and Idea and Development  Architectural Table 8: Limitations
Domain Contribution Tools Components Table 8: Reasoning
7 SmartRules Scope Ontological -based
Components Cognitive
8 ARBI Capabilities
9 Worker-
cobot
10 ARPS

The analysis of ontology-based KR systems led us to the following potential areas for
future research directions.

e  The researchers are more focused on the development of ontologies in the field of
knowledge representation, while the development of the mechanism lags.

e In the future, more research is needed towards the standardization and efficient
implementation of ontology-based knowledge representation systems.

*  We believe that along with the ontologies, future studies should also aim at the
development of efficient queries and reasoning mechanisms that might be applied to
many distributed ontologies with limited resources. In this direction, future work is
certainly required to achieve a sustainable solution with a sound understanding of
resources and quality.
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*  Besides, future research can be more beneficial towards robot autonomy if the po-
tential effects of ontology-based KR systems with context awareness are considered
more carefully.

¢ Looking forward, future research should be continued in more realistic settings for the
development of culturally competent KRSs, which will endow the robots the ability
to perform various complex tasks in dynamic environments by understanding the
culture-specific needs and preferences.

To summarize our discussion, the results achieved in ontology-based KR systems for
autonomous robotic systems so far seem tentative. Therefore, we highlighted the challenges
and research gaps or limitations that require more work to be done in the future. It is
expected that under the auspices of artificial intelligence, semantic web technology, and
other accompanying ideas or visions, the development of this field with real-world robotic
applications will continue to advance.

6. Conclusions

This survey was intended to show the recent developments in ontology-based knowl-
edge representation systems for robotics that can lay the groundwork to inspire future
research in this area. To summarize, in the present article, we began by enumerating the
importance of ontology-based knowledge representation systems for robotics in domestic,
hospital, and industrial environments. Then, in the context of social robots’ capabilities,
we focused on the recent publications related to robotic knowledge representation systems
between the years 2014 and 2020. We selected ontology-based knowledge base systems
for our survey using inclusion and exclusion criteria. Afterward, we evaluated them
based on seven research questions and investigated their ideas and contributions that
enable the robots to have semantic capabilities. In this context, our integrated overview
of ontology-based semantic knowledge representation systems also paid special attention
to their ontologies, reasoning capabilities, development tools, architecture, applications,
and limitations. Finally, we concluded this paper with a discussion and suggested some
promising research directions for future work.
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