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FLIP SIGNATURES

SIEYE RYU

ABSTRACT. A Doo-topological Markov chain is a topological Markov chain
provided with the action of the infinite dihedral group Doo. It is defined by
two zero-one square matrices A and J satisfying AJ = JAT and J? = I.
We introduce the notion of flip signatures. Flip signature is obtained from
symmetric bilinear forms with respect to J on the eventual kernel of A. We
modify Williams’ decomposition theorem to prove flip signature is a Doo-
conjugacy invariant. The Flip signatures show that Ashley’s eight-by-eight
and the full two-shift are not Dso-conjugate. We also discuss the notion of
Doo-shift equivalence and the Lind zeta function.

1. INTRODUCTION

A topological flip system (X, T, F) is a topological dynamical system (X,T') con-
sisting of a topological space X, a homeomorphism 7" : X — X and a topological
conjugacy F: (X,T~ ') — (X,T) with F? =Idy. (See the survey paper [6] for the
further study of flip systems.) We call the map F a flip for (X,T). If F is a flip
for a discrete-time topological dynamical system (X,T), then the triple (X, T, F)
is called a D, -system because the infinite dihedral group

Do = {a,b:ab=0ba"* and b* = 1)
acts on X as follows:
(a,z) — T(x) and (b,x) — F(x) (x € X).

Two Doo-systems (X, T, F) and (X', T’, F') are said to be Do -conjugate if there
is a Dy-equivariant homeomorphism 6 : X — X’. We call the map 6 a D -
conjugacy from (X, T, F) to (X', T', F").

Suppose that A is a finite set. A topological Markov chain (TMC) (X4,04) over
A is a shift space which has a zero-one A x A matrix A as a transition matrix:

XA = {ZL' S AZ : A(zi,zi+1) =1Vie Z}

A Do-system (X, T, F') is said to be a D, -topological Markov chain, or D,-TMC
for short, if (X, T) is a topological Markov chain.

A flip F for (X,T) is called a one-block flip if xy = z{, implies F(x)y = F(a')o
for all x and 2’ in X. In [4], Representation Theorem (Theorem 3.1) says that if
(X,T,F) is a Doo-TMC, then there is a topological Markov chain (X’,7") and a
one-block flip F’ for (X', T") such that (X, T, F') and (X', T’, F') are Dy-conjugate.

When (X, T) is a TMC, we denote the set of all n-blocks occurring in points in
X by B, (X) for all nonnegative integers n.

2020 Mathematics Subject Classification. Primary 37B10, 37B05; Secondary 15A18.

Key words and phrases. flip signatures, Do-topological Markov chains, D.-conjugacy invari-
ants, eventual kernels, Ashley’s eight-by-eight and the full two-shift.

1



2 SIEYE RYU

Suppose that A is a finite set. A pair (4, J) of zero-one A x A matrices satisfying
AJ=JAT and J*=1

is called a flip pair. Since J is a zero-one matrix and J? = I, it follows that for any
a € A, there is a unique b € A such that J(a,b) = 1. Since J(a,b) = 1 if and only if
J(b,a) =1, it follows that the matrix J is symmetric and it defines a permutation
77 of A of order two as follows:

J(a,b) =1 & Ts(a) =10 (a,be A).
It is obvious that the map ¢ : A% — A? defined by
ps(x)i=7s(z—i)  (z€X)

is a flip for the full A-shift. The restriction w4 s of ¢; to X4 becomes a flip for
(X4,04) because AJ = JAT implies that ab € Ba(Xa) and 7;(b)7s(a) € B2(X4)
are equivalent.

The classification of shifts of finite type up to conjugacy is one of the central
problems in symbolic dynamics. There is an algorithm determining whether or not
two one-sided shifts of finite type (N-SFTs) are N-conjugate. (See Section 2.1 in [5].)
In the case of two-sided shifts of finite type (Z-SFTs), however, one cannot deter-
mine whether or not two systems are Z-conjugate, even though many Z-conjugacy
invariants have been discovered. For instance, it is well known (Proposition 7.3.7
in [8]) that if two Z-SFTs are Z-conjugate, then their transition matrices have the
same set of nonzero eigenvalues. In 1990, Ashley introduced an eight-by-eight zero-
one matrix, which is called Ashley’s eight-by-eight and he asked whether or not it is
Z-conjugate to the full two-shift. (See Example 2.2.7 in [5] or Section 3 in [2].) Since
the characteristic polynomial of Ashley’s eight-by-eight is t7(t — 2), we could say
Ashley’s eight-by-eight is very simple in terms of spectrum and it is easy to prove
that Ashley’s eight by eight is not N-conjugate to the full two-shift. Nevertheless,
this problem has not been solved yet. Meanwhile, both Ashley’s eight-by-eight and
the full-two shift have one-block flips. More precisely, if we set

11000000 00001000
00100010 00000100
00010100 00000010

4_|0 1000001}, J0OO0OO0O0O0O0O1
10001000 1000000 O0]"
00001001 01000000
00100100 000100000
(00010010, (0001000 0|
po[1 1] e[ wmak=[0 2]y

then A is Ashley’s eight-by-eight, ¢ 4, s is a unique one-block flip for (X4,04), B is
the minimal zero-one matrix defining the full two-shift and (Xp, o) has exactly two
one-block flips ¢pp 1 and ¢p k. It is natural to ask whether or not (X4,04,¢4,7)
is Doo-conjugate to (Xg,0m,¢p.1) or (XB,0B, 9B k). First, we consider the Lind
zeta functions. In [4], an explicit formula for the Lind zeta function for Dy-TMC
was established, which can be expressed in terms of matrices from flip pairs. From
its formula (See also Section 6.), it is obvious that the Lind zeta function is a
Do.-conjugacy invariant. Example 1 in Section 7 shows that (Xa,04,94,7) and
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(XB,0B,¢B,1) do not share the same Lind zeta functions, while the Lind zeta
functions of (Xa,04,¢4,7) and (Xg,0B, ¢B,k) coincide. Second, we consider the
notion of D..-shift equivalence (Ds-SE) (We define it in Section 6.) which is an
analogue of shift equivalence. Example 1 in Section 7 again shows that there is a
Do.-SE from (A, J) to (B, K). So the Lind zeta function and Dw.-SE do not help us
determine whether or not (X4, 04, ¢4 ) is Doo-conjugate to (Xg, op, ¢p, k). In this
paper, we introduce the notion of flip signatures which shows that (X4,04,%4,7)
is not Do-conjugate to (Xp,op,¥B K)-

We first introduce analogues of elementary equivalence (EE), strong shift equiv-
alence (SSE) and Williams’ decomposition theorem for Do.-TMCs. Let us recall
the notions of EE and SSE. (See [8, 9] for the details.) Suppose that A and B are
zero-one square matrices. A pair (D, E) of zero-one matrices satisfying

A=DE and B=ED

is said to be an elementary equivalence (EE) from A to B and we write (D, E) :
A®N B. If (D,E): AN B, then there is a Z-conjugacy vp, g from (Xa,04) to
(Xp,op) satisfying

’YD,E(-T) =y = VieZ D(l‘i,yi) = E(yi,xi+1) =1. (1.2)

The map vp g is called an elementary conjugacy.
A strong shift equivalence (SSE) of lagl from A to B is a sequence of | elementary
equivalences

(Dl,El)IA%Al, (DQ,EQ):Al%AQ, crey (DZ,EZ)SAZ%B.

It is evident that if A and B are strong shift equivalent, then (X4,04) and (Xg,0p)
are Z-conjugate. Williams’ decomposition theorem, found in [9], says that every
Z-conjugacy between two Z-TMCs can be decomposed into the composition of a
finite number of elementary conjugacies.

To establish analogues of EE, SSE and Williams’ decomposition theorem for
Do.-TMCs, we first observe some properties of a Dy.-system. If (X, T, F) is a Doo-
system, then (X, T, T™oF') are also D-systems for all integers n. It is obvious that
T™ are Dy -conjugacy from (X, T, F) to (X,T,T?" o F) and from (X,T,T o F) to
(X, T, T?" 1o F) for all integers n. For one’s information, we will see that (X, T, F)
is not Doo-conjugate to (X, T, T o F') in Proposition

Let (A, J) and (B, K) be flip pairs. A pair (D, E) of zero-one matrices satisfying

A=DE, B=ED and E=KD'J

is said to be a Doo-half elementary equivalence (Doo-HEE) from (A, J) to (B, K)
and write (D, E) : (A,J) & (B, K). In Proposition 2.1} we will see that if (D, E) :
(A,J) ® (B, K), then the elementary conjugacy vp g from (1.2)) becomes a Do~
conjugacy from (Xa,04,94,7) to (Xp,08,08 © ¢ k). We call the map vp g a
D -half elementary conjugacy from (Xa, o4, @a.y) to (X, 0B, 0B © 9B K)-

A sequence of | D..-HEEs

(D1, Ey) = (A, J) & (Ao, Jo), -+, (A, Dy) s (A, D) & (B, K)

is said to be a D -strong shift equivalence (Doo-SSE) of lag [ from (A, J) to (B, K).
If there is a Doo-SSE of lag I from (A4, J) to (B, K), then (Xa,04,94,7) 18 Doo-
conjugate to (Xp,op,0k% o ¢vp,K). Iflis an even number, then (X4,04,04.5) is
Do.-conjugate to (Xp,op, vB k), while if [ is an odd number, then (X4,04,94.7)
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is Dso-conjugate to (Xp,op,0p © ¢p k). In Section 4, we will prove the following
decomposition theorem.

Proposition A. Suppose that (A,J) and (B, K) are flip pairs.

(1) Two Doo-TMCs (Xa,04,94,7) and (XB,0B,¢p k) are Do-conjugate if and
only if there is a Doo-SSE of lag 21 between (A, J) and (B, K) for some positive
integer .

(2) Two Doo-TMCs (Xa,04,¢4,5) and (Xp,08,08 0 ¢ k) are Do -conjugate if
and only if there is a Doo-SSE of lag 21 — 1 between (A, J) and (B, K) for some
positive integer [.

In order to introduce the notion of flip signatures, we discuss some properties of
D, .-TMCs. We first indicate notation. If A; and Ay are finite sets and M is an
A; x As zero-one matrix, then for each a € A, we set

Fru(a)={be Ay : M(a,b) =1}
and for each b € Ay, we set
Pu(b) ={a e Ay : M(a,b) =1}

We assume that (A4, J) and (B, K) are flip pairs and that (D, E) is a Do-HEE
from (4, J) to (B, K). From B = ED and the fact that B is a zero-one matrix, it
follows that

]:D(al) ﬁfD(ag) 75 %)
PE(al)ﬂPE(ag)#Q = fD(al)me(aQ):

for all a1,as € Bl(XA)
Suppose that « and v are real-valued functions defined on By (X4) and By (Xp),

respectively. If |B1(X4)| = m and |B1(Xp)| = n, then v and v can be regarded as
vectors in R™ and R™, respectively. If u and v satisfy

Vae Bi(Xa) ula)= Z v(b), (1.4)

beFp (a)

4
3
=
8
D
>
=
S
<
I

then for each a € B1(X4), we have
u(ry(a)u(a) = Y w(rk(®) Y v(b)
bePE(a) beFp(a)
by E = KDT.J and (1.3) leads to
Yo ulm(@ula)= Y D v(rk(d)u(b).
aeBl(XA) bGBl(XB) dEPB(b)

Since J and K are symmetric, this formula can be expressed in terms of symmetric
bilinear forms with respect to J and K:

u' Ju = (Bv)"Kwv.

We note that if both A and B have X as their real eigenvalues and v is an eigenvector
of B corresponding to A, then u satisfying is an eigenvector of A corresponding
to A. We consider the case where A and B have 0 as their eigenvalues and find
out some relationships between the symmetric bilinear forms of the eigenvectors
of A and B corresponding to 0 when (A,J) and (B, K) are Doo-half elementary
equivalent.
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We call the subspace K(A) of u € R™ such that APu = 0 for some p € N the

eventual kernel of A:

K(A) ={u e R™: APy = 0 for some p € N}.

If u € K(A)\ {0} and p is the smallest integer for which APy = 0, then the ordered

set
a={AP" - Au,ul

is called a cycle of generalized eigenvectors of A corresponding to 0. In this paper,
we sometimes call a a cycle in K(A) for simplicity. The vectors AP~y and u are

called the initial vector and the terminal vector of a, respectively and we write

Ini(a) = APty and Ter(a) = u.

We say that the length of « is p and write || = p. It is well known [3] that there is
a basis for K(A) consisting of a union of disjoint cycles of generalized eigenvectors
of A corresponding to 0. The set of bases for K(A) consisting of a union of disjoint
cycles of generalized eigenvectors of A corresponding to 0 is denoted by Bas(K(A)).

We will prove the following proposition in Section 3.

Proposition B. Suppose that (D, E) : (A,J) & (B,K). Then there exist bases

E(A) € Bas(K(A)) and E(B) € Bas(K(B)) such that if p > 1 and o = {uy,usg,- - -

is a cycle in E(A) then one of the following holds.
(1) There is a cycle = {vi,v2,--- ,vpt1} in E(B) such that

Dugy1 = ug and Euy, = vy, (k=1,---,p).
(2) There is a cycle f = {v1,v2, -+ ,vp_1} in E(B) such that
Dy, = ug, and Fugi1 = vy (k=1,---,p—1).
In either case, we have

Ini(e) " JTer(a) = Ini(8) "K Ter(8

).
In Lemma we will show that there is a basis £(A) € Bas(K(A)) such that

s up}

(1.5)

the left hand-side of ([1.5)) is not 0 for every cycle a in £(A). In this case, we define

the sign of a cycle o = {u1,ug, - ,up} in £(A) by

+1  ifuf{Ju, >0
sgn(a) = 1
-1 if uy Ju, <0.
We denote the set of || such that « is a cycle in E(A) by Znd(IC(A)):
Ind(K(A)) ={pe N\ {0} :a C £(A) and |a| = p}.

It is clear that Znd(KC(A)) is independent of the choice of basis for £(A). We denote
the union of the cycles « of length p in £(A) by &,(A) for each p € Ind(K(A)) and

define the sign of &£,(A) by
sgn(&,(4)) = H sgn(a).

aCEp(A)

In Section 3, we will prove the sign of £,(A) is also independent of the choice of

basis for IC(A) if it is well-defined.
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Proposition C. Suppose that E(A) and E'(A) are two distinct bases in Bas(KC(A))
such that the sign of every cycle in both E(A) and E'(A) is well-defined. For each
p € Ind(K(A)), we have

sgn(&p(A)) = sgn(&,(4)).

Suppose that £(A) € Bas(K(A)) and that the sign of every cycle in £(A) is
well-defined. We arrange the elements of Znd(K(A)) = {p1,p2, - ,pa} to satisfy

p1<p2<---pa

and write

ep = sgn(&(A4)).
If |Znd(K(A))| = k, the k-tuple (ep,,ep,, - ,€p,) is called the flip signature of
(A,J) and €, is called the leading signature of (A, J). The flip signature of (A, J)
is denoted by

F.81g(A, J) = (€py:Epar - 1Epa)-

The following is the main result of this paper.

Theorem D. Suppose that (A, J) and (B, K) are flip pairs and that (Xa,04,p4.7)
and (Xg,0B, B k) are Doo-conjugate. If

FS’Lg(A, J) = (5p175p2a"' ’EPA)

and
F.Sig(B, K) = (5(11766127 T 76(113)7
then F.Sig(A,J) and F.Sig(B, K) have the same number of —1’s and

€pa = €qp-

In Section 7, we will compute the flip signatures of (A, J), (B,I) and (B, K),
where A, J, B, I and K are as in and prove that neither (Xg,op,¢5.1)
nor (Xp,0p,¢B,K) is Doo-conjugate to (X4,04,94,7). In the same section, we
will also see that the coincidence of the Lind zeta functions of two Z-TMCs does
not guarantee the existence of D..-shift equivalence between their flip pairs. It
is analogous to the case of Z-TMCs because the coincidence of Artin-Mazur zeta
functions of Z-TMCs does not guarantee the existence of SE between their defining
matrices. (See Section 7.4 in [8].) However, the converse is not analogous to the
case of Z-TMCs. The existence of D.-shift equivalence between two flip pairs does
not imply that the corresponding Z-TMCs share the same Lind zeta functions. This
is a contrast to the fact that the existence of shift equivalence between two defining
matrices A and B implies that two Z-TMCs (Xa,04) and (Xp, o) share the same
Artin-Mazur zeta functions.

This paper is organized as follows. In Section 2, we introduce the notions of
half elementary equivalence and D.-strong shift equivalence. In Section 3, we
investigate symmetric bilinear forms with respect to J and K on the eventual
kernels of A and B when there is a D.-half elementary equivalence between two
flip pairs (A,J) and (B,K). In the same section, we prove Proposition B and
Proposition C. Proposition A and Theorem D will be proved in Section 4 and 5,
respectively. In section 6, we discuss the notion of D..-shift equivalence and the
Lind zeta function. Section 7 consists of examples.
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2. D -STRONG SHIFT EQUIVALENCE
Let (A, J) and (B, K) be flip pairs. A pair (D, E) of zero-one matrices satisfying
A=DE, B=ED, and E=KD"J

is said to be a Dy -half elementary equivalence from (A,J) to (B, K). If there is
a Doo-half elementary equivalence from (A4, J) to (B, K), then we write (D, E) :
(A, J) & (B, K).

We note that symmetricities of J and K imply that £ = KDTJ is equivalent to
D=JETK.

Proposition 2.1. If (D, E) : (A,J) & (B, K), then (Xa,04,¢,4) is Doo-conjugate
to (XB,UB,O'B o @K,B)-

Proof. Since D and E are zero-one and A = DF, it follows that for all ayas €
Bs(X4), there is a unique b € B1(Xp) such that

D(ay,b) = E(b,az) = 1.

We denote the map which sends ajas € Ba(X4) to b € B1(Xg) by I'p . If we
define the map vp g : (Xa,04) = (Xg,08) by

vp.e(2)i = T'p g (Tizit1) (x € Xa; i € Z),

then we have vyp pooa =0 ovp,E.

Since (E,D) : (B,K) & (A,J), the block map I'g p : B2(Xp) — Bi(Xa) is
well-defined and the map vg p : (Xg,08) — (Xa,04) can be defined in the same
way. Since yg,p ovp,r = ldx, and vp g o yg,p = Idx,, it follows that vp g is
one-to-one and onto.

It remains to show that

Yp,E°¢a.) = (0B °¢BK)OVD,E- (2.1)
Since E = KD'J, it follows that
E(b,a)=1 < D(r5(a),7x(b)) =1 (a € B1(Xa),b € B1(Xp)).
This is equivalent to
D(a,b)=1 < E(1x(b),75(a)) =1 (a € B1(Xa),b € B1(Xp)).
Thus, we obtain
I'pre(aiaz) =b & TI'pgr(ri(az)ri(ar)) =71x(b) (a1a2 € B2(X4)). (2.2)
By , we have

ypEowsa(z); = Tpe(ti(z_)ri(z_ic1)) =7k (TCp e(r_ic12-;))

= ¢B K °Yp,E(T)it1 = (0B 0o ¥B K)oVD E(T):

and this proves (2.1)). O
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Let (A, J) and (B, K) be flip pairs. A sequence of [ half elementary equivalences
(D1, Er) : (A, J) R (A2, J2),
(D2, E3) : (A2, J2) N (A3, J3),

(D1, E2) = (A, 1) ® (B, K)
is said to be a D-SSE of lag | from (A, J) to (B, K). If there is a D-SSE of lag
[ from (A, J) to (B, K), then we say that (A, J) is Do-strong shift equivalent to
(B, K) and write (A, J) = (B, K) (lag ).
By Proposition [2.1] it is clear that
(A,J) =~ (B,K) (lagl) = (Xa,04,974) = (Xp,05,08'0px,). (2.3)
Because o' is a conjugacy from (Xg, 05,0k 5) to (Xp,05,05% 0 ¢k p), the im-
plication in (2.3)) can be rewritten as follows:
(A,J) ~ (B,K) (lag2l) = (Xa,04,9754) = (Xp,08,¢K,B) (2.4)
and
(A, J) = (B,K) (lag2l —1) = (Xa,04,9054) = (Xp,08,05°0¢K,B). (2.5)
In Section we will prove Proposition A which says that the converses of (2.4) and
(2.5) are also true.

3. SYMMETRIC BILINEAR FORMS

Suppose that (A, J) is a flip pair and that |[B;(Xa4)| = m. Let V be an m-
dimensional vector space over the filed C of complex numbers. We denote the
bilinear form V x V' — C defined by

(u,v) — u'Jo
by (u,v);. Since J is a non-singular symmetric matrix, it follows that the bilinear
form ( , ), is symmetric and non-degenerate. If u,v € V and (u,v); = 0, then
u and v are said to be orthogonal with respect to J and we write u L ; v. From
AJ = JAT, we see that A itself is the adjoint of A in the following sense:
(Au,v); = (u, Av) . (3.1)
If X is an eigenvalue of A and u is an eigenvector of A corresponding to A, then for
any v € V, we have
Mu,v) ;= QAu, vy = (Au,v); = (u, Av) . (3.2)

Let sp(A) denote the set of eigenvalues of A. For each A € sp(A), let Kx(A)

denote the set of u € V such that (A — AI)Pu = 0 for some p € N:
Kx(A)={ueV:3peNst. (A—-A)Pu=0}

If u € Kx(A)\ {0} and p is the smallest integer for which (A — AI)Pu = 0, then the
ordered set

a={(A- AP u, - (A= X)u,u}
is called a cycle of generalized eigenvectors of A corresponding to A. The vectors
(A — X)P7lu and u are called the initial vector and the terminal vector of «,
respectively and we write

Ini(a) = (A — X)P"tu and Ter(a) = w.
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We say that the length of « is p and write |a| = p. It is well known [3] that there is
a basis for IC)(A) consisting of a union of disjoint cycles of generalized eigenvectors
of A corresponding to A. From here on, when we say o = {u1,--- ,u,} is a cycle in
KA(A), it means « is a cycle of generalized eigenvectors of A corresponding to A,
Ini(a) = uq, Ter(a) = up and |a| = p.

Suppose that U(A) is a basis for V consisting of generalized eigenvectors of A
and that £(A) is the subset of U(A) consisting of the generalized eigenvectors of A
corresponding to 0. Non-degeneracy of { , ), says that for each u € £(A), there
is a v € U(A) such that (u,v); # 0. The following lemma says that the vector v
must be in £(A).

Lemma 3.1. Suppose that A, € sp(A). If A is distinct from the complex conjugate
f of p, then IC\(A) L IC.(A).

Proof. Suppose that

a={u, -, up} and B=A{v1, - ,v4}
are cycles in ICx(A) and K, (A), respectively. Since (3.2) implies

Mui,v1) g = (u1, Avy) g = flur, v1) g,
it follows that
<'LL1,'U1>J = 0.
Using (3.2)) again, we have
AMut, vjp1)g = (U1, poj41 +v5) 7 = ilur, vj41)g + (w1, v5) g

for each j =1,---,¢ — 1. By mathematical induction on j, we see that
(ui,v5)0 =0 (F=1,--+,q).
Applying the same process to each us, - - - up, we obtain
Vi=1,---,p, Vj=1,---,q (ui,vj) 7 = 0.
O

Remark. Suppose that £(A) = {u1, - ,up} is a basis for Ky(A) consisting of
generalized eigenvectors of A corresponding to 0. If T is the m x p matrix whose
i-th column is u; for each i = 1,--- ,p, then non-degeneracy of { , ); and Lemma
implies that T JT is non-singular.

From here on, we restrict our attention to the zero eigenvalue and the generalized
eigenvectors corresponding to 0. For notational simplicity, the smallest subspace of
V containing all generalized eigenvectors of A corresponding to 0 is denoted by K(A)
and we call the subspace K(A) of V the eventual kernel of A. We may assume that
the eventual kernel of A is a real vector space. The set of bases for (A) consisting
of a union of disjoint cycles of generalized eigenvectors of A corresponding to 0 is
denoted by Bas(KC(A)). If E(A) € Bas(K(A)), the set of |a] such that « is a cycle
in £(A) is denoted by Znd(KC(A)):

Tnd(K(4)) = {p € N\ {0} : o C £(A) and |y = p}

and we call Znd(KC(A)) the index set for the eventual kernel of A. Tt is clear
that Znd(K(A)) is independent of the choice of £(A) € Bas(K(A)). When p €
Ind(K(A)), we denote the union of the cycles of length p in £(A) by £,(A).
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Lemma 3.2. Suppose that E(A) € Bas(K(A)) and thatp € Ind(K(A)). IfE,(A) =
{u1, -+ ,u,} and T, is the mxr matric whose i-th column is u; for eachi =1,--- ,r,
then T, JT, is non-singular.

Proof. We only consider the case where Znd(K(A)) = {p, ¢} (p < ¢) and both £,(A)
and &,(A) have one cycles. If T' is the m x (p + ¢) matrix defined by

T:[Tp E Tq}’
then

Ty JT, : T)JT,
TrJT,  T]JT,

TVIT =

is non-singular by remark of Lemma 3.1
Suppose that o = {uy, -+ ,up} and f = {v1, -+ ,v4} are cycles in £,(A) and
E,(A), respectively. By (3.1), we have

(ur,ui) g = (ur, A1) g = (Aur, uip1)g =0
and
(Wig1,u5) g — (Uiswjgp1) g = (Wigr, Aujpr) g — (Ui ujp1)g =0 (3.3)

for each 4,5 = 1,--- ,p — 1. Thus, if we set (u;,up)y = b; for each ¢ = 1,2,--- ,p,
then T;-JTP is of the form

o O
o O
o O
oo
5o
o O
N =

T, JT, =

o
o
o
.S
iy
=
N
S
W

by by by -+ bys by1 by

Obviously, TJ JT is of the same form. We set

o o0 o0 --- 0 0 dq
o o0 o0 --- 0 dq dsy
T;—JTq _ 0 0 0o --- dy da ds
di dy ds --- dq,Q dq,1 dq

Now we consider TpT JT,. By 1) again, we have

<u17vk>J =0 (kzl""aq_l)a
<U2,'Uk>.] = 0 (kzlyaq_2)a

<up7vk>J = 0 (kzl,aqu)
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If we set (u;,vq)s = ¢; for each i = 1,2,--- ,p, then the same argument in (3.3)
shows that TpT JT, is of the form

o -- 0 0 0 --- 0 0 c1
o - 0 0 0 --- 0 c1 Co
TJJTq: o --- 0 0 o --- C1 Cc2 c3
0 -+ ¢ ¢ ¢33 -+ Cp—2 Cp_1 Cp

Finally, TqT JT, is the transpose of TpT JT,. Hence, by and d; must be nonzero and
we have Rank(T, JT},) = p and Rank(T] JT,) = q. O

The aim of this section is to find out a relationship between ( , ); and ( , )x
on bases £(A) € Bas(K(A)) and £(B) € Bas(K(B)) when (D, E) : (A,J) &8 (B, K).
The following lemma will provide us good bases to handle.
Lemma 3.3. Suppose that A has the zero eigenvalue. There is a basis E(A) €
Bas(KC(A)) having the following properties.
(1) If « is a cycle in E(A), then

(Ini(c), Ter(a)) s # 0.

(2) Suppose that « is a cycle in E(A) with Ter(a) = w and |a| = p. For each
k=0,1,---p—1, v = AP~1"Fy is the unique vector in a such that (A*u,v); # 0.
(3) If « and B are distinct cycles in E(A), then

span(a) L s span(f).

Proof. (1) First we consider the case where £(A) has only one cycle v = {uq, -+ ,up}.
By (3.1), we have
(ur,ui)g = (u1, Auipr)g = (Aur, uipr)y =0 (i=1,---,p—1). (3.4)
By non-degeneracy of { , ); and Lemma (u1, up) ;s must be nonzero.
Suppose that £(A) is the union of disjoint cycles ay, - - - , «;. of generalized eigen-
vectors of A corresponding to 0 for some r > 1 and that |a;| < |ag] < -+ < ay.
Assuming

(Ini(a;), Ter(ay))s #0 (G =1,---,r—=1),
we will construct a cycle S of generalized eigenvectors of A corresponding to 0
such that the union of the cycles aq, -+, .1, forms a basis for K(A) and that

(Ini(8), Ter(8)). # 0.
If we set o, = {w1,- - ,wy}, the argument used in (3.4]) shows that

<’LU1,U)j>J =0 (.] = 13 4 — 1) (35)

Suppose that o = {uq,---,u,} is a cycle in £(A) which is distinct from .. If
la] = p < ¢, then we have

(wi, Aluy) g = (AT wg, Alup) = (wg, AT )y =0
forall j=0,---,p—1. From (3.5) and Lemma it follows that
lar] < o < -+ < o] <oy = (wi,wg)y #0.

In the case where there are other cycles of length ¢ in £(A), however, (w1, wq)s
is not necessarily nonzero. When (wq,wq); = 0, there is a vector v € £(A) such
that (wy,v)s # 0 by non-degeneracy of ( , ); and Lemma Since (wy,v)y =
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(wg, A7 ) 4, it follows that v must be the terminal vector of a cycle in £(A) of
length ¢ by the maximality of g. We put v; = A% 'v and v, = v and find a number
k € R\{0} such that (w —kvi, wg—kvg) s # 0. We denote the cycle whose terminal
vector is wq — kvg by 3. It is obvious that the length of 8 is ¢ and that the union
of the cycles ay,--- ,a,_1, 5 forms a basis of K(A).
(2) We assume that £(A) has property (1) and that o = {uq,--- ,u,} is a cycle
in £(A). By , we have (uj,u;)y =0foralli=1,--- ,p—1. By , we have
(i1, uz)g — (Ui, wjs1) g = (i1, Aujr) s — (Ui ujpr)s =0 (3.6)

for each 4,5 =1,---,p— 1. Let (u;,up)y =b; for each i = 1,2,--- ,p. If T, is the
m X p matrix whose i-th column is u;, then T;-JTQ is of the form

o o o -- 0 0 b
o o o -- 0 b1 be
v, =| 0 0 0 - b by b
by by b3 - bp_2 bpy_1 by
There are unique real numbers £, - - - , k, such that if we set
ky kp1 o K
k= |0t
0 0 ek
then KTT1JT, K becomes
0O 0 -+ 0 b
0O 0 --- b O
KTTK=| 0
0 b -+ 0 O
bp 0 -+ 0 O

If o is a cycle in K(A) whose terminal vector is w = >_"_| kju;, then we have
|o/| = p and
(A'w, Aw); = ! tJ p !
0 otherwise

for each 0 < 4,5 < p—1. If we replace a with o’ for each « in £(A), then the result
follows.

(3) Suppose that £(A) has properties (1) and (2). Assuming that £(A) is the
union of disjoint cycles ay, -+ , . of generalized eigenvectors of A corresponding
to 0 for some 7 > 1, |a1| < |az| < -+ < |ay| and that

span(a;) Lyspan(a;) (6,7 =1,---,r =10 # j),
we will construct a cycle 8 such that the union of the cycles ay,--- ,a,_1, 8 forms
a basis for K(A) and that «; is orthogonal to 8 with respect to J for each i =
1o r—1.
Suppose that o = {u1,--- ,up} is a cycle in £(A) which is distinct from «, =
{wy, -+, wg}. We set

<U1,UP>JZG(§£ 0)? <ui7wq>J:bi (Zzla 7p)
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and
by bs b,

Z=Wqg— —Up — —Up_1 —** — —UL.
T e a'? a

Let 8 denote the cycle whose terminal vector is z.
We first show that u; L span(8). Direct computation yields

(ur,2); = 0. (3.7)
Since Au; = 0, it follows that
(u, Alz); =0 (=1, ,q4-1)
by . Thus, (uy, A72);=0forall j=1,--- ,q.
Now, we show that ug L ; span(3). Direct computation yields
(ug,z) s = 0.
From A2us = 0, it follows that
(up, A72); =0 (j=2,---,q—1).

It remains to show that (uz, Az); = 0 but this is an immediate consequence of (3.1)

and .

Applying this process to each u; inductively, the result follows. O

Corollary 3.4. There is a basis E(A) € Bas(K(A)) such that if u is the terminal
vector of a cycle a in E(A) with |a| = p, then v = AP~1=%y is the unique vector in
E(A) satisfying

(A*u,v); #0
for each k=0,1,---p—1.

In the rest of the section, we investigate a relationship between ( , ); and
(, )Yk on bases £(A) € Bas(K(A)) and £(B) € Bas(K(B)) when there is a Duo-
HEE between two flip pairs (A, J) and (B, K). Throughout the section, we assume
(A,J) and (B, K) are flip pairs with |[B;(X4)| = m and |B1(Xp)| = n and (D, E)
is a Doo-HEE from (A, J) to (B, K).

We note that E = KD"J implies

(u, Dv); = (Bu,v) g (uwe R™ v eR").

From this, we see that Ker(F) and Ran(D) are mutually orthogonal with respect
to J and that Ker(D) and Ran(F) are mutually orthogonal with respect to K, that
is,

Ker(E) Ly Ran(D) and Ker(D) Lk Ran(E). (3.8)

Lemma 3.5. There exist bases E(A) € Bas(K(A)) and E(B) € Bas(K(B)) having
the following properties.
(1) Suppose that o is a cycle in E(A) with || = p and v = Ter(a). Then we have

u € Ran(D) & AP~y ¢ Ker(E) (3.9)
(2) Suppose that B is a cycle in E(B) with |B| = p and v = Ter(5). Then we have
v € Ran(FE) & B~y ¢ Ker(D).
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Proof. We only prove (3.9). Suppose that £(A) € Bas(K(A)) has properties (1),
(2) and (3) from Lemm Since (AP~ tu,u); # 0, follows from .
Suppose that u ¢ Ran(D). To draw contradiction, we assume that AP~ 1y ¢
Ker(E). By non-degeneracy of ( , )k, thereisav € K(B) such that (EFAP~ u, v)f #
0, or equivalently, (AP~1u, Dv) ; # 0. This is a contradiction because (AP~ 1u, u); #
0 and (AP~ tu,w); =0 for all w € E(A) \ {u}. O
Now we are ready to prove Proposition B. We first indicate some notation. When
p € Ind(K(A)), let £,(A;0p ) denote the union of cycles « in &,(A) such that
Ter(«) ¢ Ran(D) and let sp(A;a;’E) denote the union of cycles a in &£,(A) such

that Ter(«) € Ran(D). With this notation, Proposition B can be rewritten as
follows.

Proposition B. If (D,E) : (A,J) & (B,K), then there exist bases E(A) €
Bas(KC(A)) and E(B) € Bas(K(B)) having the following properties.
(1) Suppose that p € Ind(K(A)) and « is a cycle in Sp(A;GBE) with Ter(a) = u.
There is a cycle B in Ey41(B; 0y p) such that if Ter(8) = v, then Dv = u. In this
case, we have
(AP~ u,u) y = (BPv,v) k. (3.10)

(2) Suppose that p € Ind(K(A)), p > 1 and « is a cycle in Ey(A;0p p) with
Ter(a) = u. There is a cycle B in Ep,l(B;GE’D) such that if Ter(8) = v, then
v = FEu. In this case, we have

(AP~ Yy u) ; = (BP 720, 0) k. (3.11)

Proof. If we define zero-one matrices M and F by

0 D J 0
M:{EO} and F:{OK}’

then (M, F') is a flip pair. Suppose that £(A) € Bas(K(A)) and £(B) € Bas(K(B))
have properties (1), (2) and (3) from Lemma[3.3] If we set
5(A)@o":{ [ g ] cu € E(A) andOeR"}

" OmEBé'(B){[2]:v€5(3)and0€ﬂ£m},

then the elements in £(A) & 0™ or 0™ @ £(B) belong to K(M). Conversely, every
vector in K(M) can be expressed as linear combination of vectors in £(A) @ 0™ and
0™ @ E(B). Thus, the set E(M) = {E(A) ® 0"} U{0™ @ E(B)} becomes a basis for
K(M).

If a is a cycle in (M), then || is an odd number by Lemma[3.5] If || = 2p—1
for some positive integer p, then « is one of the following forms:

o et L0 L [0 R 6 ])
et L1 s o[ LT[0

The formulas (3.10) and (3.11]) are followed from (3.6). O

or
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Suppose that £(A) € Bas(K(A)) has property (1) from Lemma If a is a
cycle in £(A), we define the sign of a by

w- {1 HpTel 20
We define the sign of £,(A) for p € Ind(K(A)) by

+1 if Haesp(A) sgn(a) >0
-1 if [Taee,(a)sgn(e) <O.

When (D, E): (A,J) & (B, K), we define the signs of £,(4; (‘)BE) and &,(A;9p g)
for each p € Ind(K(A)) in similar ways.

Proposition B says that if (D, E) : (A,J) 8 (B, K), there exist bases £(A) €
Bas(K(A)) and £(B) € Bas(K(B)) such that

sgn(Ep(A; 05 ) = sen(Ep1(B; 05 ) (p € Ind(K(A))),

sgn(&,(A)) = {

and
sgn(E,(A;9p ) = sen(Ep-1(B; 9% p))  (p € Ind(K(A));p > 1).

In Proposition below, we will see that the sign of & (4; 5‘57E) is always +1 if
&1(A;0p p) is non-empty. We first prove Proposition C.

Proof of Proposition C. Suppose that £(A) € Bas(K(A)) has properties (1), (2)
and (3) from Lemma [3.3|and that p € Znd(K(A)). We denote the terminal vectors
of the cycles in £,(A) by u(1),- -+ ,u(). Suppose that P is the m x ¢ matrix whose
i-th column is u(;) for each i = 1,---,q. If we set M = PTJAP=1P| then the entry

of M is given by
(AP~ Ly, ugy)g ifi =g
0 otherwise

and the sign of £,(A) is determined by the product of the diagonal entries of M,
that is,
1[I, M(i,d) > 0
E(A)) = =1 ’
sen(&,(4)) {—1 if T12_, M(i,i) < 0.
Suppose that £'(A) € Bas(K(A)) is another basis having property (1) from
Lemma Then obviously £,(A) is the union of ¢ disjoint cycles. If w is the

terminal vector of a cycle in £ (A), then w can be expressed as a linear combination
of vectors in £(A) N Ker(AP), that is,

w = Z ku.

kER
ueE(A)NKer(AP)

If u € & (A) for k < p, then AP~ u =0. If u € &(A) for k > p or u € £,(A) and
u is not a terminal vector, then (AP~ u,u); = 0 by property (2) from Lemma
This means that the sign of £,(A) is not affected by vectors u € E(A) for k # p or
u € E,(A) \ Ter(E,(A)). In other words, if we write

q
w=> kugp+ Y. ku  (k,k€R),
i=1 ug¢Ter(E,(A))
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then we have . .
(AP~ L, w) ; = (AP~ Z kiu(i),z kiugy) s
i=1 i=1

To compute the sign of £,(A), we may assume that

q
w=> kg (k1 kg €R).
=1

We denote the terminal vectors of the cycles in £'(A) by w(y),--- ,w(, and let Q
be the m x ¢ matrix whose i-th column is w;) for each i =1,--- , ¢ so that

+1 if TI7.,Q(i,7) >0
sen(£y(4) = 1L @)
-1 if TI7_, Q(i,4) <O0.
Since £’(A) has property (1) from Lemma it follows that () is non-singular and

that [T{_, Q(i,4) # 0. It is obvious that there is a non-singular matrix R such that
PR = (@Q. Since

H M(i,i) >0 & f[ R"MR(i,i) >0

i=1 i=1
and
q q
I[ MG.iy<o = ] R"™MR(,i) <0,
i=1 i=1
we have the desired result. O

Proposition 3.6. Suppose that (D, E) : (A,J) & (B, K) and that Znd(KC(A)) con-
tains 1. There is a basis £(A) € Bas(K(A)) such that if a is a cycle in &1(A; 0p ),
then sgn(a) = +1. Hence, we have sgn(&1(A;0p p)) = +1.
Proof. Suppose that U is a basis for the subspace Ker(A) of (A). We may assume
that for each u € U,

ai,as € Bl(XA), U(CL1) 7& 0 and PE(al) N PE(CLQ) =9 = U(ag) =0 (312)
for the following reason. If u(as) # 0, then we define u; and ug by

if N 1%
i (a) = u(a) i PE(@) Pe(a) #
0 otherwise

and

0 otherwise

up(a) = {u(a) if Pe(az) N Pela) 7 2

It is obvious that {u;,us} is linearly independent. If we set ug = u — u; — uz and
uz # 0, then obviously, {u1,ug,us} is also linearly independent. We set
U =UU{ur,uz,uz} \ {u}.

If necessary, we apply the same process to u3z and to each u € U so that every
element in U’ satisfies and then we remove some elements in U’ so that it
becomes a basis for Ker(A).

We first show the following:

uel = u(ry(a))u(a) >0 Va e Bi(Xa).
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Suppose that u € Ker(FE), ap € B1(X4) and that u(ag) # 0. If ag = 75(ag), then
u(7y(ao))u(ag) > 0 and we are done. When ag # 77(ao) and u(r(ag)) = 0, there
is nothing to do. So we assume that ag # 77(ao) and u(rs(ag)) # 0. If there were
b € Pg(ap) N Pr(7s(ap)), then we would have

1 > B(b, TK(b)) > E(b, a())D(a(),TK(b)) + E(b, TJ(G()))D(T](G()),TK(I))) =2
from E = KDTJ. Thus, we have Pg(ag) N Pg(rs(ap)) = & and this implies

u(7s(ap)) = 0 by assumption (3.12)).
Now, we denote the intersection of U and & (A; 05 ) by V and assume that the
elements of V are uq, - - -, ug, that is,

V=UNE&(A;0p ) ={ur, - ukt.

By Lemma and (3.8), for each u € V there is a v € V such that (u,v); #
0. If (uy,u1)y; = 0, we choose u; € V such that (uj,u;); # 0. There are real
numbers ki, ko such that {u; + kiu;, ug + kou;} is linearly independent and that
both (w1 + kyu;, u1 + k1u;) s and (ug + ko, w1 + kou;) y are positive. We replace uq
and u; with u; + kju; and uy + kou;. Continuing this process, we can construct a
new basis for £1(4; 0p, ) such that if a is a cycle in & (4; 0, ), then sgn(a) = +1.
O

Suppose that £(A) € Bas(K(A)) has property (1) from Lemma[3.3] We arrange
the elements of Znd(KC(A)) = {p1,p2, -+ ,pa} to satisfy

P1 <p2 <---pa.
and write g, = sgn(&,(A)). If |[Ind(K(A))|=k, the k-tuple (ep,,Epy,- " ,Ep,) IS
called the flip signature of (A, J) and €,, is called the leading signature of (A, J).
The flip signature of (A, J) is denoted by
F.Sig(A, J) = (£py1Epas* +Epa)-

We have seen that both the flip signature and the leading signature are independent
of the choice of basis £4 € Bas(K(A)) as long as £4 has property (1) from Lemma
9.0l

In the next section, we prove Proposition A and in Section 5, we prove Theorem
D.

4. PROOF OF PROPOSITION A

We start with the notion of D.-higher block codes. (See [5, [§] for more details
about higher block codes.) We need some notation. Suppose that (X, ox) is a shift
space over a finite set 4 and that ¢, is a one-block flip for (X, ox) defined by

or(x); = 7m(z_y) (x € X;i€Z).

For each positive integer n, we define the n-initial map i, : [y, Br(X) = Bn(X),
the n-terminal map ¢, : (Jr-,, Br(X) — B,(X) and the mirror map M,, : A™ — A"
by
in(a1az - am) =araz---an (a1 am € Bp(X); m >n),
tn(a1G2 -+ Q) = Gm-ni1Gm-nt2" " Om (a1 am € Bp(X); m >n)
and
Mn(a1a2...an):an...a1 (al...aneAn)_
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For each positive integer n, if we denote the map
a1ag -+ an — 7(a1)7(ag) - (an) (a1+--a, € A™)

by 7, : A" — A", then the restriction of the map M,, o7, to B, (X) is a permutation
of order 2.

For each positive integer n, we define the n-th higher block code h, : X —
B, (X)% by

hn(l')z = 117[7;,1‘4_”_1] (IE S X,Z S Z)
We denote the image of (X,o0x) under h,, by (X,,0,) and call (X,,,0,) the n-th
higher block shift of (X, ox). If we write v = M, o7, then the map ¢, : X,, = X,
defined by
wo(); = v(T_y) (x e Xn;i€Z)

becomes a natural one-block flip for (X,,,0,). It is obvious that the n-th higher
block code hy, is a Dy-conjugacy from (X,ox,¢,) to (X, on, (0,)" Lo p,). We
call the Doo-system (X,,, o, ©,) the n-th higher block Dy -system of (X,ox,pr).

For notational simplicity, we drop the subscript n and write 7 = 7, if the domain
of 7, is clear in the context.

Suppose that (A, J) is a flip pair. Then the flip pair (A4,,, J,,) for the n-th higher
block Doo-system (X, 0, @) of (Xa,04,9p4,s) consists of B,,(X4) x B,,(X4) zero-
one matrices A,, and J,, defined by

1 if tn,l(u) = Z'nfl(’l}),
An ) = . 5 n X
(u,v) {0 otherwise (u v € Bl A))
and
1 if v=(Mors)(u),
n\U, = s n X .
Inlu,v) {0 otherwise (u v € Bl A))

In the following lemma, we prove that there is a D-SSE from (A4, J) to (A, J,).

Lemma 4.1. If n is a positive integer greater than 1, then we have
(A1, 1) = (An, Jn) (lagn —1).

Proof. Foreach k =1,2,--- ,n—1, we define a zero-one By (X ) X B4+1(X4) matrix
Dy, and a zero-one Bj1(X4) x Br(X4) matrix Ej by

Dy (u,v) = {

1L ifu=ig(v),
€ Bi,(Xa),veERB X
0 otherwise, (u k(Xa), v ke ( A))

and
1 if u =t (v),

€ By(Xa), v € Bry1(Xa)).
0 otherwise (u k(Xa), v o1 ( A))

Ep(v,u) = {

It is straightforward to see that (Dg, Fx) : (Ak, Jk) B (Ak+1, Jp+1) for each k. O

In the proof of Lemma it is obvious that (Xa,,,, A, PAw1,Jres) 1S €qual
to the second higher block D.o-system of (X4, , 04, , ¥4,.7.) by recoding of symbols
and that the half elementary conjugacy

YDy ,Ey - (XAk7O-Ak’(pAk)Jk) - (XAkJrl 1O Apy19)0Aps1 © LIOAk+1ka+1)

induced by (D, Ex) can be regarded as the second Dy,-higher block code for each
k=1,2,---,n—1. A D-HEE (D,FE) : (A,J) ® (B, K) is said to be a complete
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Doy -half elementary equivalence from (A, J) to (B, K) if vp g is the second Doo-
higher block code.
In the rest of the section, we prove Proposition A.

Proof of Proposition A. We only prove (a). One can prove (b) in a similar way.

We denote the flip pairs for the n-th higher block Do-systems of (X4,04,¢4,s)
and (Xg, 0B, ¢B k) by (An, Jp) and (By, K,,), respectively. If ¢ : (X4,04,04,5) =
(XB,0B,¢B i) is a De-conjugacy, then there are nonnegative integers s and ¢ and
a block map ¥ : Byy44+1(Xa) — B1(Xp) such that

V()i = U(T}i—s,ite) (x €Xa; i €Z).

We may assume that s+t is even by extending window size if necessary. By Lemma

there is a D-SSE of lag (s + t) from (A4, J) to (Astt+1, Jstt+1). From (2.4),
it follows that the (s 4+t + 1)-th Dy-higher block code hsy¢11 is a Doo-conjugacy.
It is clear that there is a Doo-conjugacy 1" induced by 1 satisfying 1) = 9’ o hsi 441
and

T,y € hspiy1(X) and To = Yo = Y (2)o =¥ (y)o-

So we may assume s = t = 0 and show that there is a D-SSE of lag 2[ from (A, J)
to (B, K) for some positive integer [.
If ¢~ is the inverse of 1, there is a nonnegative integer m such that

y7yl S XB and y[fm,m] = yf—m}m] = w_l(y)o = 1ﬁ_l(y/)c' (41)

by compactness of Xz and the continuity of ¢y~'. For each k=1, ---, 2m + 1, we
define a set Ay by

v
A = w | ru,v € Bi(Xp),w € B;(Xa) and u¥(w)v € Bi(Xg) p ,
u

where i = [551] and j = k — 2[ 251 |. We define Aj, x Ay matrices My and Fy to
be

/

v v v v
Mk< w s w’ ) = == \I’(U}) \I/(w’) S BQ(XBk)
u u’

and  ww' € Ba(Xa,)

and
v v’ , ,
Fk( w w’ ) -1 & u' = (MoT)(v), w' = (Mory)(w)
/
At and ' = (Mo 7)(u)
for all
v v’
w y w’ € Ay.
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A direct computation shows that (Mg, F) is a flip pair for each k. Next, we define
a zero-one Ay X Aiy1 matrix Ry and a zero-one Ag;1 X Ag matrix Sy to be

!
i
Y Y and t;(w) = i1 (w')
and
/
/
Y u and t;(w') =iy (w),
for all
v v
w | € A and w' | € Agy1.
U u

A direct computation shows that
(Ri, Sk) : (M, Fio) R (My1, Fietr).
Because My = A and F} = J, we obtain
(A, J) = (May11, Formt1) (lag 2m). (4.2)

Finally, (4.1) implies that the D.-TMC determined by the flip pair (Map,41,
Fom+1) is equal to the (2m + 1)-th higher block Doo-system of (Xg, g, ¢x,B) by
recoding of symbols. From Lemma we have

(B7 K) ~ (M2m+17 F2m+1) (1ag Qm) (43)
From (4.2) and (4.3)), it follows that
(A,J) = (B, K) (lag 4m).

5. PROOF OF THEOREM D

We start with the case where (B, K) in Theorem D is the flip pair for the n-th
higher block Deo-system of (Xa,04,9p4.)-

Lemma 5.1. Suppose that (B, K) is the flip pair for the n-th higher block D -
system of (Xa,04,¢a.1). If the flip signatures of (A, J) and (B, K) are given by
F.Sig(A, J) = (€py1s€par - 1Epa)

and
F.Sig(B,K) = (eq,+€q2, " 1€qp)s

then we have

i ifl<i<n—1

qi{pi_n+1+1 ifi>n—1

and

ES ifl<i<n-—1

Fa {emw ifi>n—1.
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Proof. We only prove the case n = 2. We assume £(A) € Bas(K(A)) and £(B) €
Bas(K(B)) are bases having property from Proposition B.
Suppose that « is a cycle in £(A) and that w is the initial vector of «. For any

ayas € By(X4), we have
a9 o
Eu([ ar }) = u(az)

and this implies that Eu is not identically zero. Under the assumption that £(A)
and £(B) have property from Proposition B, we can find a cycle 8 in £(B) such
that the initial vector of 8 is EFu. Hence, we have

p € Ind(K(A)) & p+ 1€ ZInd(K(B)),
Ef(A0pp) =2  and i (B;Of ) =2 (p € Ind(K(A)))  (5.1)
by Lemma [3.5] and this implies that
sgn(&p(A)) = sgn(&p41(B))  (p € Ind(K(A)))

by Proposition B. From , it follows that &1(B) = &1(B; 9y p) and from Propo-
sition (3.6} it follows that

sgn(&1(B)) = +1.
This completes the proof. (Il

Remark. If two D,,-TMCs are finite, then we can directly determine whether or
not they are D..-conjugate. In this paper, we do not consider D,,-TMCs who have
finite cardinalities. Hence, when (B, K) is the flip pair for the n-th higher block
Doo-system of (X4,04,pa4,s) for some positive integer n > 1, B must have zero as
its eigenvalue.

In the rest of the section, we prove Theorem D.

Proof of Theorem D. Suppose that (A,J) and (B, K) are flip pairs and that ¢ :
(Xa,04,94,5) = (XB,0B,98,K) is a De-conjugacy. As we can see in the proof
of Proposition A, there is a D-SSE from (A, J) to (B, K) consisting of the even
number of complete Dyo-half elementary equivalences and (Rg, Sg) : (Mg, Fi) &
(M1, Fry1) (k=1,--+,2m). In Lemma 5.1 we have already seen that Theorem
D is true in the case of complete D.-half elementary equivalences. So, we need to
compare the flip signatures of (My, Fy) and (M1, Fry1) for each k =1,--- ,2m.
Throughout the proof, we assume Ay and (Ry, Sk) : (Mg, Fr) &8 (Myt1, Fry1) are
as in the proof of Proposition A.
We only discuss the following two cases:
(].) (RQ, 52) : (MQ,FQ) N (Mg,Fg)
(2) (Rg, Sg) : (M37F3) ) (M4,F4).
When k =1, (Ry,S1) is a complete Dy-half elementary conjugacy. When k& is an
even number, one can apply the argument used in (1) to (Rg,Sk) : (Mg, Fr) &
(My+41, Frq1). When k is an odd number, one can apply the argument used in (2).
(1) Suppose that (Ba, K») is the flip pair for the second higher block D..-system
of (Xg,0B, 95 k). We first compare the flip signatures of (By, K3) and (Ms, F3).
We define a zero-one Ba(Xp) x Az matrix Uy and a zero-one Ajs x Ba(Xp) matrix

V5 by
a([B]]6])=fr b= ma v =
? b |’ dj o otherwise
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and
y 33 [ by } C[1 ifby=ds and U(az) = by
2 d2 | b o otherwise
1
for all
b ds
[ b2 :| S BQ(XB) and as € As.
1 dl

A direct computation shows that
(Uz, Va) : (Ba, K3) & (Ms, F3).

Suppose that £(Bg) € Bas(K(Bz)) and E(M3) € Bas(K(Ms)) are bases having
property (1) from Lemma By remark of Lemma K(Bs2) is not a trivial

vector space. Suppose that {w1,---,w,} is a cycle in £(Bz). Since
b3 bS
b-
(o | J=m((B]) (] [e)
b1 2 bl

it follows that w; ¢ Ker(V2). This implies that if the index set for the eventual
kernel of By is

Ind(K(Bz)) = {p1,--- ,ps},

then the index set for the eventual kernel of M3 is either
Ind(K(Ms)) ={1,p1+1,--- ,pp+1}  or  Ind(K(Ms))={p1+1,--- ,pp+1}
by Lemma [3.5] By Proposition B and Proposition C, we have
sgn(€p(B2)) = sgn(Ept1(Ms)).
If £,(Ms3) is non-empty, then £ (M3) = & (Mg;a;z’UQ) and
sgn(&1(Ms)) = +1 (5.2)

by Proposition [3.6]
Now, we compare the flip signatures of (Ma, Fy) and (Ms, F5). If & (Ms) is
non-empty, then we have

Sgn(gl(Mb’?a;,RQ) = Sgn(gl(M?);aEQ,RQ)) =+l

by and . Thus, the cycles in 51(]\/[3;8;271%2) or 51(M3;8§2,R2) could be
ignored when we consider the number of —1’s in the flip signature of (M3, F3). Let
B = {v1,--- ,vpp1} be a cycle in E(Mjz) for some p > 1. If bibobs € B3(Xp) and
az,al € U71(by), then from Mzvy = vy, it follows that

b3 b4
by as€W—1(b3) byc Fp(b3) by

and this implies that
bs b3
(%1 ( a2 > =1 < a’2 ) .
b1 bl
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Since v; is a nonzero vector, there is a block b1babs € B3(Xp) and a nonzero real
number k& such that

bs
1}1< as ) =k Vas € \I/_l(bg).
by

Since M3zv; = 0, it follows that

b3 b3
Z Z U1 ( a9 ) =k Z U1 ( as ) =0.
as€U—1(by) b3€Fp (ba) b1 bs€Fp (bs) b1

This implies that

ma([2])= S (] ae])-o

bseFp(b2) by

for any a; € ¥=1(b;) and ajas € B2(X4). Hence, vy € Ker(Ry) and f3 is a cycle in
Ep+1(M3;0g, g,) by Lemmaﬁ Since

pr+1,-,pp+ 1€ Ind(K(Ms)),
it follows that
P1,,PB € Ind(lC(M2))
If £(Ms) € Bas(K(Ms)) has property (1) from Lemma then we have
sgn(E,(Ms)) = sgn(Ep (Ms))

for each p = p1,---,pp by Proposition B. Proposition [3.6] says that cycles in
(E1(M2;0g, 5,)) could be ignored when we consider the number of —1’s in the
flip signature of (My, F»). As a result, the flip signatures of (Ms, F») and (M3, F3)

have the same number of —1’s and their leading signatures coincide.
(2) Suppose that « is a cycle in K(M3) and that u is the initial vector of . Since

b4 b4
a ba a
Sau 3 =u as SleAd],
az \Il(a ) az
b1 2 bl
it follows that Fu is not identically zero. The same argument used in the proof of
Lemma [5.1| completes the proof. O

6. Dso-SHIFT EQUIVALENCE AND THE LIND ZETA FUNCTIONS

We first introduce the notion of D-shift equivalence which is an analogue of
shift equivalence. Let (A, J) and (B, K) be flip pairs and let [ be a positive integer.
A Do -shift equivalence (Dso-SE) of lag I from (A, J) to (B, K) is a pair (D, E) of
nonnegative integral matrices satisfying

A'=DE, B'=ED, AD=DB, and E=KD"J.

We observe that AD = DB, E = KD'.J and the fact that (4, J) and (B, K) are
flip pairs imply EA = BE. If there is a D-SE of lag [ from (A, J) to (B, K), then
we say that (A4, J) is Deo-shift equivalent to (B, K) and write

(4, ) ~ (B, K) (lag ).
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Suppose that
(D1, Er), (D2, E2), -+, (D, Et)
is a Do-SSE of lag [ from (A, J) to (B, K). If we set
D:DlDQ-“Dl and E:El-“EgEl,
then (D, E) is a D-SE of lag [ from (A, J) to (B, K). Hence, we have
(A, J) = (B,K) (lagl) = (A J)~ (B, K) (lagl).

In the rest of the section, we review the Lind zeta function of a D,-TMC. In
[4], an explicit formula for the Lind zeta function of a D.-system was established.
In the case of a D, -TMC, the Lind zeta function can be expressed in terms of
matrices from flip pairs. We briefly discuss the formula.

Suppose that G is a group and that « is a G-action on a set X. Let F denote
the set of finite index subgroups of G. For each H € F, we set

pa(a) ={r € X :Yh e H a(h,z) =z}

The Lind zeta function (, of the action « is defined by

Ca(t) = exp < pi(@) t'G/H|> . (6.1)

It is clear that if @ : Z x X — X is given by a(n,z) = T™(z), then the Lind zeta
function (, becomes the Artin-Mazur zeta function (1 of a topological dynamical
system (X, T). The formula for the Artin-Mazur zeta function can be found in [IJ.
Lind defined the function in [7] for the case G = Z.

Every finite index subgroup of the infinite dihedral group Dy, = (a,b : ab =
ba~—! and b? = 1) can be written in one and only one of the following forms:

(a™) or (a™, a*b) (m=1,2,---;k=1,--- ,m—1)

and the index is given by
|G2/(a™)] = 2m or |G/ (a™, a*b)| = m.

Suppose that (X, T, F) is a Dy-system. If m is a positive integer, then the number
of periodic points in X of period m will be denoted by p,,,(T):

pm(T) = {x € X : T™(x) = z}|.

If m is a positive integer and n is an integer, then p,, (T, F') will denote the number
of points in X fixed by T" and T" o F:

Pin(T,F)={z e X : T™(z) =T" o F(x) = z}|.
Thus, the Lind zeta function {7 p of a Doo-system (X, T, F) is given by

o) co m—1
ety = exp (S LoD 57 5o el oy (g )
m=1 m=1 k=0

It is evident if two Doo-systems (X, T, F') and (X', T', F') are Do.-conjugate, then
Pm (T) =Pm (T,) and pm,n(Ta F) = pm,n(T/: F/)

for all positive integers m and integers n. As a consequence, the Lind zeta function
is a Dy,-conjugacy invariant.
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The formula (6.2) can be simplified as follows. Since T o F = F o T~! and
F? =1dy, it follows that

pm,n(Tv F) = pm,n-‘rm(Tv F) = Pm,n+2 (Tv F)
and this implies that
P (T, F) = pmo(T, F) if m is odd, (6.3)
P (T, F) = pmo(T, F) if m and n are even,
P (T, F) = pma (T, F) if m is even and n is odd.

Hence, we obtain

1 Pm,o(T, F') if m is odd,
3 Poan(T, F)
k=0 m pm,O(Ta F) + pm,1<T7 F)

if m is even.

2
Using this, (6.2) becomes

1/2
Calt) = o () exp (Grr (1))
where (r is the Artin-Mazur zeta function of (X,T) and Gr p is given by

S oy Pomo (T F) 4 pomn (T, F) o,
Grp(t) = Z (pzm_Lo(T,F)tQ 1+P2 o0 )2102 a( )t2 )
m=1

If there is a Doo-SSE of lag 2l between flip pairs (4, J) and (B, K) for some
positive integer [, then (X4,04,94.5) and (Xp, 085, ¢p, k) have the same Lind zeta
function by (1) in Proposition A . The following proposition says that the Lind zeta
function is actually an invariant for Do,-SSE.

Proposition 6.1. If (X,T, F) is a D -system, then
P2m—1,0(T, F) = pam—1,0(T, T o F),
p2m70(Ta F) = p2m,1(T7 To F)7
P2m 1 (T, F) = pam o(T, T o F)

for all positive integers m. As a consequence, the Lind zeta functions of (X, T, F)
and (X, T,T o F) are the same.

Proof. The last equality is trivially true. To prove the first two equalities, we
observe that

T"z)=F(x)=2 < T"(Tx)=To(ToF)(Tx)=Tx

for all positive integers m. Thus, we have

Pmo(T, F) = pm 1 (T, T o F) (m=1,2,---). (6.4)
Replacing m with 2m yields the second equality. From (6.3]) and (6.4]), the first one
follows. (]

When (A4, J) is a flip pair, the numbers p,, 5(ca,pa,s) of fixed points can be
expressed in terms of A and J for all positive integers m and § € {0,1}. In order
to present it, we indicate notation. If M is a square matrix, then Aj,; will denote
the column vector whose i-th coordinates are identical with i-th diagonal entries of
M, that is,

AJVI(i) = M(Z’ Z)
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For instance, if I is the 2 x 2 identity matrix, then

Ar= { ' } .
The following proposition is proved in [4].
Proposition 6.2. If (A, J) is a flip pair, then
Pom-1,0(04,054) = AsT (A1) Any,
Pomo(oa,pra) =0T (A™) Ay,
Pami(0a,pra)=Aga" (A1) Aay
for all positive integers m.
7. EXAMPLES

Let A be Ashley’s eight-by-eight and let B be the minimal zero-one transition
matrix for the full two-shift, that is,

11000000
00100010
00010100
01000001 11

A=110001000 andB:Ll}
00001001
00100100
(00010010,

There is a unique one-block flip for (X4,04) and there are exactly two one-block
flips for (Xp,0p). Those flips are determined by the permutation matrices

000 01 000
00000100
0000 O0OO0OT1F@W0
0 00O O0OO0OO 01 10 0 1
7=11 00000 0 0 ’I_[Ol} andK‘[lo]'
01 0 0 0 0 00O
001 00 000
|00 0 1 0 0 0 0]
Example 1. Direct computation shows that the Lind zeta functions of (X4,04,%4,7),
(XB,oB,¢B,1) and (Xp,0B, 9B k) are as follows:

1 2
t = —— _—
Caa(t) = =3 eXp(1_2t2>,
1 2t + 3t*
)= —— -
il = =5 eXp<1—2t2)

and

C (t)—#e L
B = Ao “P\1 22 )

Thus, (Xa,04,9a4,s) is not Do-conjugate to (Xp,op,¢p,r). The Lind zeta func-
tion does not determine whether or not (X4, 04, ¢a,7) is Doo-conjugate to (Xg, 05, B,k )
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If D and E are matrices given by

I

[N}
= = s = e
= = e e e e

then (D, FE) is a Dw-SE of lag 6 from (A, J) to (B, K). We still cannot decide
whether or not (X4,04,¢4,7) is Dso-conjugate to (Xg,0p, ¢B,K)-

We also observe that in spite of (g 1 # (B K, there is a Dy-SE from (B,I) to
(B, K)

(BY,BY): (B,I) ~ (B, K) (lag 21).

This contrasts with the fact that the existence of SE between two transition matrices
implies that the corresponding Z-TMCs share the same Artin-Mazur zeta functions.
(See Section 7 in [§].)

Example 2. We compare the flip signatures of (A, .J), (B,I) and (B, K). Direct
computation shows that the index sets for the eventual kernels of A and B are

Ind(K(A)) = {1,6}, and  Znd(K(B)) = {1}
and the flip signatures are
F.Sig(A,J) = (—1,+1), F.Sig(B,I) = (+1) and F.Sig(B,K) = (—1).
By Theorem D, we see that

(Xa,04,04,7) % (XB,0B,¢B,1),

(Xa,04,04,7) % (XB,0B,¥B,K)
and
(XAvo—AszB,I) ;7—3 (XB;O—BaQOB,K)~

In the following example, we see that the coincidence of the Lind zeta functions
does not guarantee the existence of D.-SE between the corresponding flip pairs.

Example 3. Let

(1 1 1 0 0 0 0] [1 1 0 0 0 0 0]
01 01000 0101110
0010010 001 1110
A=|10 001 00 1|, B=l00O010 01
1110100 1000100
1110010 0010010
(0001 10 1| 000 1 1 1 1|
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and
[1 0 0 0 0 0 0F
0O 0 0 0 1 0 0
000 0 O0T1FO
J=10 0 0 0 0 0 1
01 00 O0O0OTO
0 0 1 0 0 0 O
000100 0|

Then (A, J) and (B, J) are flip pairs and
the same Lind zeta functions

—~

Xa,04,04,7) and (Xg, 0B, ¢p,s) share

t+3t2—t3—2t4)
1-3t24¢4 '

1
21— 23132 1+t P (

If there is a Doo-SE (D, E) from (A, J) to (B, J), then (D, E) also becomes a SE
from A to B. It is well known [§] that the existence of SE from A to B implies that
A and B have the same Jordan forms away from zero up to the order of Jordan
blocks. The characteristic functions x4 and xg of A and B are the same:

xa(t) = xs(t) =t(t —1)*(* = 3t +1).

If we denote the zeros of t> — 3t + 1 by A and p, then the Jordan canonical forms
of A and B are given by

A A

oo o+

OO ==

O = = O

= =0 O

0

and

O =

—_ =

O =

_ =

0

respectively. From this, we see that (A, J) cannot be Dy-shift equivalent to (B, J).
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