
Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron1,2 Hugo Touvron1,3 Ishan Misra1 Hervé Jegou1

Julien Mairal2 Piotr Bojanowski1 Armand Joulin1

1 Facebook AI Research 2 Inria∗ 3 Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8 × 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.

Abstract

In this paper, we question if self-supervised learning pro-
vides new properties to Vision Transformer (ViT) [18] that
stand out compared to convolutional networks (convnets).
Beyond the fact that adapting self-supervised methods to this
architecture works particularly well, we make the follow-
ing observations: first, self-supervised ViT features contain
explicit information about the semantic segmentation of an
image, which does not emerge as clearly with supervised
ViTs, nor with convnets. Second, these features are also ex-
cellent k-NN classifiers, reaching 78.3% top-1 on ImageNet
with a small ViT. Our study also underlines the importance of
momentum encoder [31], multi-crop training [10], and the
use of small patches with ViTs. We implement our findings
into a simple self-supervised method, called DINO, which
we interpret as a form of self-distillation with no labels.
We show the synergy between DINO and ViTs by achieving
80.1% top-1 on ImageNet in linear evaluation with ViT-Base.

∗Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000
Grenoble, France.
Correspondence: mathilde@fb.com
Code: https://github.com/facebookresearch/dino

1. Introduction

Transformers [67] have recently emerged as an alternative
to convolutional neural networks (convnets) for visual recog-
nition [18, 66, 80]. Their adoption has been coupled with
a training strategy inspired by natural language processing
(NLP), that is, pretraining on large quantities of data and
finetuning on the target dataset [17, 53]. The resulting Vision
Transformers (ViT) [18] are competitive with convnets but,
they have not yet delivered clear benefits over them: they
are computationally more demanding, require more training
data, and their features do not exhibit unique properties.

In this paper, we question whether the muted success of
Transformers in vision can be explained by the use of super-
vision in their pretraining. Our motivation is that one of the
main ingredients for the success of Transformers in NLP was
the use of self-supervised pretraining, in the form of close
procedure in BERT [17] or language modeling in GPT [53].
These self-supervised pretraining objectives use the words
in a sentence to create pretext tasks that provide a richer
learning signal than the supervised objective of predicting
a single label per sentence. Similarly, in images, image-
level supervision often reduces the rich visual information
contained in an image to a single concept selected from a
predefined set of a few thousand categories of objects [58].

While the self-supervised pretext tasks used in NLP are

1

ar
X

iv
:2

10
4.

14
29

4v
1

 [
cs

.C
V

]
 2

9
A

pr
 2

02
1

https://github.com/facebookresearch/dino

text specific, many existing self-supervised methods have
shown their potential on images with convnets [10, 12, 28,
31]. They typically share a similar structure but with differ-
ent components designed to avoid trivial solutions (collapse)
or to improve performance [15]. In this work, inspired from
these methods, we study the impact of self-supervised pre-
training on ViT features. Of particular interest, we have
identified several interesting properties that do not emerge
with supervised ViTs, nor with convnets:

• Self-supervised ViT features explicitly contain the
scene layout and, in particular, object boundaries, as
shown in Figure 1. This information is directly accessi-
ble in the self-attention modules of the last block.

• Self-supervised ViT features perform particularly well
with a basic nearest neighbors classifier (k-NN) without
any finetuning, linear classifier nor data augmentation,
achieving 78.3% top-1 accuracy on ImageNet.

The emergence of segmentation masks seems to be a
property shared across self-supervised methods. However,
the good performance with k-NN only emerge when com-
bining certain components such as momentum encoder [31]
and multi-crop augmentation [10]. Another finding from our
study is the importance of using smaller patches with ViTs
to improve the quality of the resulting features.

Overall, our findings about the importance of these
components lead us to design a simple self-supervised ap-
proach that can be interpreted as a form of knowledge
distillation [33] with no labels. The resulting framework,
DINO, simplifies self-supervised training by directly pre-
dicting the output of a teacher network—built with a mo-
mentum encoder—by using a standard cross-entropy loss.
Interestingly, our method can work with only a centering
and sharpening of the teacher output to avoid collapse, while
other popular components such as predictor [28], advanced
normalization [10] or contrastive loss [31] add little benefits
in terms of stability or performance. Of particular impor-
tance, our framework is flexible and works on both convnets
and ViTs without the need to modify the architecture, nor
adapt internal normalizations [56].

We further validate the synergy between DINO and ViT
by outperforming previous self-supervised features on the
ImageNet linear classification benchmark with 80.1% top-1
accuracy with a ViT-Base with small patches. We also con-
firm that DINO works with convnets by matching the state
of the art with a ResNet-50 architecture. Finally, we discuss
different scenarios to use DINO with ViTs in case of limited
computation and memory capacity. In particular, training
DINO with ViT takes just two 8-GPU servers over 3 days
to achieve 76.1% on ImageNet linear benchmark, which
outperforms self-supervised systems based on convnets of
comparable sizes with significantly reduced compute require-
ments [10, 28].

student gθs

x

x2x1

teacher gθt

centering

sg

softmax

p1 p2

softmax

loss:
- p2 log p1

ema

Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (x1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the
teacher network is centered with a mean computed over the batch.
Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

2. Related work

Self-supervised learning. A large body of work on self-
supervised learning focuses on discriminative approaches
coined instance classification [12, 19, 31, 70], which con-
siders each image a different class and trains the model
by discriminating them up to data augmentations. How-
ever, explicitly learning a classifier to discriminate be-
tween all images [19] does not scale well with the num-
ber of images. Wu et al. [70] propose to use a noise
contrastive estimator (NCE) [30] to compare instances in-
stead of classifying them. A caveat of this approach is
that it requires comparing features from a large number
of images simultaneously. In practice, this requires large
batches [12] or memory banks [31, 70]. Several variants
allow automatic grouping of instances in the form of cluster-
ing [2, 8, 9, 25, 34, 40, 71, 77, 82].

Recent works have shown that we can learn unsupervised
features without discriminating between images. Of par-
ticular interest, Grill et al. [28] propose a metric-learning
formulation called BYOL, where features are trained by
matching them to representations obtained with a momen-
tum encoder. It has been shown that methods like BYOL
work even without a momentum encoder, at the cost of a
drop of performance [15, 28]. Several other works echo this
direction, showing that one can train features matching them
to a uniform distribution on the `2 hypersphere [6] or by
using whitening [22, 78]. Our approach takes its inspiration
from BYOL but operates with a different similarity matching

loss and uses the exact same architecture for the student and
the teacher. That way, our work completes the interpretation
initiated in BYOL of self-supervised learning as a form of
Mean Teacher self-distillation [62] with no labels.

Self-training and knowledge distillation. Self-training
aims at improving the quality of features by propagating
a small initial set of annotations to a large set of unlabeled
instances. This propagation can either be done with hard
assignments of labels [39, 75, 76] or with a soft assign-
ment [73]. When using soft labels, the approach is often
referred to as knowledge distillation [7, 33] and has been
primarily designed to train a small network to mimic the
output of a larger network to compress models. Xie et
al. [73] have recently shown that distillation could be used
to propagate soft pseudo-labels to unlabelled data in a self-
training pipeline, drawing an essential connection between
self-training and knowledge distillation. Our work builds on
this relation and extends knowledge distillation to the case
where no labels are available. Previous works have also com-
bined self-supervised learning and knowledge distillation,
enabling self-supervised model compression [24] and perfor-
mance gains [13, 45]. However, these works rely on a pre-
trained fixed teacher while our teacher is dynamically built
during training. This way, knowledge distillation, instead
of being used as a post-processing step to self-supervised
pre-training, is directly cast as a self-supervised objective.
Finally, our work is also related to codistillation [1] where
student and teacher have the same architecture and use distil-
lation during training. However, the teacher in codistillation
is also distilling from the student, while it is updated with a
momentum average of the student in our work.

3. Approach
3.1. SSL with Knowledge Distillation

The framework used for this work, DINO, shares the same
overall structure as recent self-supervised approaches [10,
15, 12, 28, 31]. However, our method shares also similarities
with knowledge distillation [33] and we present it under
this angle. We illustrate DINO in Figure 2 and propose a
pseudo-code implementation in Algorithm 1.

Knowledge distillation is a learning paradigm where we
train a student network gθs to match the output of a given
teacher network gθt , parameterized by θs and θt respectively.
Given an input image x, both networks output probability
distributions over K dimensions denoted by Ps and Pt. The
probability P is obtained by normalizing the output of the
network g with a softmax function. More precisely,

Ps(x)
(i) =

exp(gθs(x)
(i)/τs)∑K

k=1 exp(gθs(x)
(k)/τs)

, (1)

with τs > 0 a temperature parameter that controls the

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

gs, gt: student and teacher networks
C: center (K)
tps, tpt: student and teacher temperatures
l, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples

x1, x2 = augment(x), augment(x) # random views

s1, s2 = gs(x1), gs(x2) # student output n-by-K
t1, t2 = gt(x1), gt(x2) # teacher output n-by-K

loss = H(t1, s2)/2 + H(t2, s1)/2
loss.backward() # back-propagate

student, teacher and center updates
update(gs) # SGD
gt.params = l*gt.params + (1-l)*gs.params
C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)

def H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)).sum(dim=1).mean()

sharpness of the output distribution, and a similar formula
holds for Pt with temperature τt. Given a fixed teacher
network gθt , we learn to match these distributions by min-
imizing the cross-entropy loss w.r.t. the parameters of the
student network θs:

min
θs

H(Pt(x), Ps(x)), (2)

where H(a, b) = −a log b.
In the following, we detail how we adapt the problem

in Eq. (2) to self-supervised learning. First, we construct
different distorted views, or crops, of an image with multi-
crop strategy [10]. More precisely, from a given image, we
generate a set V of different views. This set contains two
global views, xg1 and xg2 and several local views of smaller
resolution. All crops are passed through the student while
only the global views are passed through the teacher, there-
fore encouraging “local-to-global” correspondences. We
minimize the loss:

min
θs

∑
x∈{xg

1 ,x
g
2}

∑
x′∈V
x′ 6= x

H(Pt(x), Ps(x
′)). (3)

This loss is general and can be used on any number of
views, even only 2. However, we follow the standard setting
for multi-crop by using 2 global views at resolution 2242

covering a large (for example greater than 50%) area of the
original image, and several local views of resolution 962

covering only small areas (for example less than 50%) of
the original image. We refer to this setting as the basic
parametrization of DINO, unless mentioned otherwise.

Both networks share the same architecture g with differ-
ent sets of parameters θs and θt. We learn the parameters θs
by minimizing Eq. (3) with stochastic gradient descent.

Table 1: Networks configuration. “Blocks” is the number of
Transformer blocks, “dim” is channel dimension and “heads” is the
number of heads in multi-head attention. “# tokens” is the length
of the token sequence when considering 2242 resolution inputs, “#
params” is the total number of parameters (without counting the
projection head) and “im/s” is the inference time on a NVIDIA
V100 GPU with 128 samples per forward.

model blocks dim heads #tokens #params im/s

ResNet-50 – 2048 – – 23M 1237
DeiT-S/16 12 384 6 197 21M 1007
DeiT-S/8 12 384 6 785 21M 180
ViT-B/16 12 768 12 197 85M 312
ViT-B/8 12 768 12 785 85M 63

Teacher network. Unlike knowledge distillation, we do
not have a teacher gθt given a priori and hence, we build it
from past iterations of the student network. We study dif-
ferent update rules for the teacher in Section 5.2 and show
that freezing the teacher network over an epoch works sur-
prisingly well in our framework, while copying the student
weight for the teacher fails to converge. Of particular in-
terest, using an exponential moving average (EMA) on the
student weights, i.e., a momentum encoder [31], is partic-
ularly well suited for our framework. The update rule is
θt ← λθt + (1− λ)θs, with λ following a cosine schedule
from 0.996 to 1 during training [28]. Originally the momen-
tum encoder has been introduced as a substitute for a queue
in contrastive learning [31]. However, in our framework, its
role differs since we do not have a queue nor a contrastive
loss, and may be closer to the role of the mean teacher used
in self-training [62]. Indeed, we observe that this teacher per-
forms a form of model ensembling similar to Polyak-Ruppert
averaging with an exponential decay [49, 57]. Using Polyak-
Ruppert averaging for model ensembling is a standard prac-
tice to improve the performance of a model [36]. We observe
that this teacher has better performance than the student
throughout the training, and hence, guides the training of the
student by providing target features of higher quality. This
dynamic was not observed in previous works [28, 56].

Network architecture. The neural network g is composed
of a backbone f (ViT [18] or ResNet [32]), and of a projec-
tion head h: g = h ◦ f . The features used in downstream
tasks are the backbone f output. The projection head con-
sists of a 3-layer multi-layer perceptron (MLP) with hidden
dimension 2048 followed by `2 normalization and a weight
normalized fully connected layer [59] with K dimensions,
which is similar to the design from SwAV [10]. We have
tested other projection heads and this particular design ap-
pears to work best for DINO (Appendix C). We do not use a
predictor [28, 15], resulting in the exact same architecture in

both student and teacher networks. Of particular interest, we
note that unlike standard convnets, ViT architectures do not
use batch normalizations (BN) by default. Therefore, when
applying DINO to ViT we do not use any BN also in the
projection heads, making the system entirely BN-free.

Avoiding collapse. Several self-supervised methods dif-
fer by the operation used to avoid collapse, either through
contrastive loss [70], clustering constraints [8, 10], predic-
tor [28] or batch normalizations [28, 56]. While our frame-
work can be stabilized with multiple normalizations [10],
it can also work with only a centering and sharpening of
the momentum teacher outputs to avoid model collapse. As
shown experimentally in Section 5.3, centering prevents
one dimension to dominate but encourages collapse to the
uniform distribution, while the sharpening has the oppo-
site effect. Applying both operations balances their effects
which is sufficient to avoid collapse in presence of a momen-
tum teacher. Choosing this method to avoid collapse trades
stability for less dependence over the batch: the centering
operation only depends on first-order batch statistics and
can be interpreted as adding a bias term c to the teacher:
gt(x) ← gt(x) + c. The center c is updated with an expo-
nential moving average, which allows the approach to work
well across different batch sizes as shown in Section 5.5:

c← mc+ (1−m)
1

B

B∑
i=1

gθt(xi), (4)

where m > 0 is a rate parameter and B is the batch size.
Output sharpening is obtained by using a low value for the
temperature τt in the teacher softmax normalization.

3.2. Implementation and evaluation protocols

In this section, we provide the implementation details to
train with DINO and present the evaluation protocols used
in our experiments.

Vision Transformer. We briefly describe the mechanism
of the Vision Transformer (ViT) [18, 67] and refer to
Vaswani et al. [67] for details about Transformers and to
Dosovitskiy et al. [18] for its adaptation to images. We fol-
low the implementation used in DeiT [66]. We summarize
the configuration of the different networks used in this pa-
per in Table 1. The ViT architecture takes as input a grid
of non-overlapping contiguous image patches of resolution
N × N . In this paper we typically use N = 16 (“/16”)
or N = 8 (“/8”). The patches are then passed through a
linear layer to form a set of embeddings. We add an extra
learnable token to the sequence [17, 18]. The role of this
token is to aggregate information from the entire sequence
and we attach the projection head h at its output. We refer
to this token as the class token [CLS] for consistency with

previous works[17, 18, 66], even though it is not attached
to any label nor supervision in our case. The set of patch
tokens and [CLS] token are fed to a standard Transformer
network with a “pre-norm” layer normalization [11, 37]. The
Transformer is a sequence of self-attention and feed-forward
layers, paralleled with skip connections. The self-attention
layers update the token representations by looking at the
other token representations with an attention mechanism [4].

Implementation details. We pretrain the models on the
ImageNet dataset [58] without labels. We train with the
adamw optimizer [42] and a batch size of 1024, distributed
over 16 GPUs when using DeiT-S/16. The learning rate
is linearly ramped up during the first 10 epochs to its base
value determined with the following linear scaling rule [27]:
lr = 0.0005 ∗ batchsize/256. After this warmup, we decay
the learning rate with a cosine schedule [41]. The weight
decay also follows a cosine schedule from 0.04 to 0.4. The
temperature τs is set to 0.1 while we use a linear warm-up
for τt from 0.04 to 0.07 during the first 30 epochs. We
follow the data augmentations of BYOL [28] (color jittering,
Gaussian blur and solarization) and multi-crop [10] with a
bicubic interpolation to adapt the position embeddings to
the scales [18, 66]. The code and models to reproduce our
results is publicly available.

Evaluation protocols. Standard protocols for self-
supervised learning are to either learn a linear classifier
on frozen features [79, 31] or to finetune the features
on downstream tasks. For linear evaluations, we apply
random resize crops and horizontal flips augmentation
during training, and report accuracy on a central crop.
For finetuning evaluations, we initialize networks with
the pretrained weights and adapt them during training.
However, both evaluations are sensitive to hyperparameters,
and we observe a large variance in accuracy between runs
when varying the learning rate for example. We thus also
evaluate the quality of features with a simple weighted
nearest neighbor classifier (k-NN) as in [70]. We freeze
the pretrain model to compute and store the features of the
training data of the downstream task. The nearest neighbor
classifier then matches the feature of an image to the k
nearest stored features that votes for the label. We sweep
over different number of nearest neighbors and find that
20 NN is consistently working the best for most of our
runs. This evaluation protocol does not require any other
hyperparameter tuning, nor data augmentation and can be
run with only one pass over the downstream dataset, greatly
simplifying the feature evaluation.

Table 2: Linear and k-NN classification on ImageNet. We report
top-1 accuracy for linear and k-NN evaluations on the validation
set of ImageNet for different self-supervised methods. We focus
on ResNet-50 and DeiT-small architectures, but also report the best
results obtained across architectures. ∗ are run by us. We run the
k-NN evaluation for models with official released weights. The
throughput (im/s) is calculated on a NVIDIA V100 GPU with 128
samples per forward. Parameters (M) are of the feature extractor.

Method Arch. Param. im/s Linear k-NN

Supervised RN50 23 1237 79.3 79.3
SCLR [12] RN50 23 1237 69.1 60.7
MoCov2 [14] RN50 23 1237 71.1 61.9
InfoMin [64] RN50 23 1237 73.0 65.3
BarlowT [78] RN50 23 1237 73.2 66.0
OBoW [25] RN50 23 1237 73.8 61.9
BYOL [28] RN50 23 1237 74.4 64.8
DCv2 [10] RN50 23 1237 75.2 67.1
SwAV [10] RN50 23 1237 75.3 65.7
DINO RN50 23 1237 75.3 67.5

Supervised DeiT-S 21 1007 79.8 79.8
BYOL∗ [28] DeiT-S 21 1007 71.4 66.6
MoCov2∗ [14] DeiT-S 21 1007 72.7 64.4
SwAV∗ [10] DeiT-S 21 1007 73.5 66.3
DINO DeiT-S 21 1007 77.0 74.5

Comparison across architectures
SCLR [12] RN50w4 375 117 76.8 69.3
SwAV [10] RN50w2 93 384 77.3 67.3
BYOL [28] RN50w2 93 384 77.4 –
DINO ViT-B/16 85 312 78.2 76.1
SwAV [10] RN50w5 586 76 78.5 67.1
BYOL [28] RN50w4 375 117 78.6 –
BYOL [28] RN200w2 250 123 79.6 73.9
DINO DeiT-S/8 21 180 79.7 78.3
SCLRv2 [13] RN152w3+SK 794 46 79.8 73.1
DINO ViT-B/8 85 63 80.1 77.4

4. Main Results
We first validate the DINO framework used in this study

with the standard self-supervised benchmark on ImageNet.
We then study the properties of the resulting features for
retrieval, object discovery and transfer-learning.

4.1. Comparing with SSL frameworks on ImageNet

We consider two different settings: comparison with the
same architecture and across architectures.

Comparing with the same architecture. In top panel of
Table 2, we compare DINO with other self-supervised meth-
ods with the same architecture, either a ResNet-50 [32] or a
DeiT-small (DeiT-S) [66]. The choice of DeiT-S is motivated
by its similarity with ResNet-50 along several axes: number
of parameters (21M vs 23M), throughput (1237/sec VS 1007

Table 3: Image retrieval. We compare the performance in retrieval
of off-the-shelf features pretrained with supervision or with DINO
on ImageNet and Google Landmarks v2 (GLDv2) dataset. We
report mAP on revisited Oxford and Paris. Pretraining with DINO
on a landmark dataset performs particularly well. For reference, we
also report the best retrieval method with off-the-shelf features [55].

ROx RPar

Pretrain Arch. Pretrain M H M H

Sup. [55] RN101+R-MAC ImNet 49.8 18.5 74.0 52.1

Sup. DeiT-S/16 ImNet 33.5 8.9 63.0 37.2
DINO ResNet-50 ImNet 35.4 11.1 55.9 27.5
DINO DeiT-S/16 ImNet 41.8 13.7 63.1 34.4
DINO DeiT-S/16 GLDv2 51.5 24.3 75.3 51.6

im/sec) and supervised performance on ImageNet with the
training procedure of [66] (79.3% VS 79.8%). We explore
variants of DeiT-S in Appendix D. First, we observe that
DINO performs on par with the state of the art on ResNet-50,
validating that DINO works in the standard setting. When
we switch to a ViT architecture, DINO outperforms BYOL,
MoCov2 and SwAV by +3.5% with linear classification and
by +7.9% with k-NN evaluation. More surprisingly, the
performance with a simple k-NN classifier is almost on par
with a linear classifier (74.5% versus 77.0%). This property
emerges only when using DINO with ViT architectures, and
does not appear with other existing self-supervised methods
nor with a ResNet-50.

Comparing across architectures. On the bottom panel of
Table 2, we compare the best performance obtained across
architectures. The interest of this setting is not to compare
methods directly, but to evaluate the limits of a ViT trained
with DINO when moving to larger architectures. While
training a larger ViT with DINO improves the performance,
reducing the size of the patches (“/8” variants) has a bigger
impact on the performance. While reducing the patch size
do not add parameters, it still leads to a significant reduction
of running time, and larger memory usage. Nonetheless, a
base ViT with 8 × 8 patches trained with DINO achieves
80.1% top-1 in linear classification and 77.4% with a k-NN
classifier with 10× less parameters and 1.4× faster run time
than previous state of the art [13].

4.2. Properties of ViT trained with SSL

We evaluate properties of the DINO features in terms of
nearest neighbor search, retaining information about object
location and transferability to downstream tasks.

Table 4: Copy detection. We report the mAP performance in copy
detection on Copydays “strong” subset [20]. For reference, we
also report the performance of the multigrain model [5], trained
specifically for particular object retrieval.

Method Arch. Dim. Resolution mAP

Multigrain [5] ResNet-50 2048 2242 75.1
Multigrain [5] ResNet-50 2048 largest side 800 82.5

Supervised [66] ViT-B/16 1536 2242 76.4
DINO ViT-B/16 1536 2242 81.7
DINO ViT-B/8 1536 3202 85.5

4.2.1 Nearest neighbor retrieval with DINO ViT

The results on ImageNet classification have exposed the
potential of our features for tasks relying on nearest neighbor
retrieval. In this set of experiments, we further consolidate
this finding on landmark retrieval and copy detection tasks.

Image Retrieval. We consider the revisited [51] Oxford
and Paris image retrieval datasets [48]. They contain 3 differ-
ent splits of gradual difficulty with query/database pairs. We
report the Mean Average Precision (mAP) for the Medium
(M) and Hard (H) splits. In Table 3, we compare the perfor-
mance of different off-the-shelf features obtained with either
supervised or DINO training. We freeze the features and
directly apply k-NN for retrieval. We observe that DINO
features outperform those trained on ImageNet with labels.

An advantage of SSL approaches is that they can be
trained on any dataset, without requiring any form of anno-
tations. We train DINO on the 1.2M clean set from Google
Landmarks v2 (GLDv2) [69], a dataset of landmarks de-
signed for retrieval purposes. DINO ViT features trained on
GLDv2 are remarkably good, outperforming previously pub-
lished methods based on off-the-shelf descriptors [65, 55].

Copy detection. We also evaluate the performance of ViTs
trained with DINO on a copy detection task. We report the
mean average precision on the “strong” subset of the INRIA
Copydays dataset [20]. The task is to recognize images
that have been distorted by blur, insertions, print and scan,
etc. Following prior work [5], we add 10k distractor images
randomly sampled from the YFCC100M dataset [63]. We
perform copy detection directly with cosine similarity on the
features obtained from our pretrained network. The features
are obtained as the concatenation of the output [CLS] token
and of the GeM pooled [52] output patch tokens. This results
in a 1536d descriptor for ViT-B. Following [5], we apply
whitening on the features. We learn this transformation on
an extra 20K random images from YFCC100M, distincts
from the distractors. Table 4 shows that ViT trained with
DINO is very competitive on copy detection.

Table 5: DAVIS 2017 Video object segmentation. We evaluate
the quality of frozen features on video instance tracking. We report
mean region similarity Jm and mean contour-based accuracy Fm.
We compare with existing self-supervised methods and a supervised
DeiT-S/8 trained on ImageNet. Image resolution is 480p.

Method Data Arch. (J&F)m Jm Fm

Supervised
ImageNet INet DeiT-S/8 66.0 63.9 68.1
STM [46] I/D/Y RN50 81.8 79.2 84.3

Self-supervised
CT [68] VLOG RN50 48.7 46.4 50.0
MAST [38] YT-VOS RN18 65.5 63.3 67.6
STC [35] Kinetics RN18 67.6 64.8 70.2
DINO INet DeiT-S/16 61.8 60.2 63.4
DINO INet ViT-B/16 62.3 60.7 63.9
DINO INet DeiT-S/8 69.9 66.6 73.1
DINO INet ViT-B/8 71.4 67.9 74.9

Figure 3: Attention maps from multiple heads. We consider the
heads from the last layer of a DeiT-S/8 trained with DINO and
display the self-attention for [CLS] token query. Different heads,
materialized by different colors, focus on different locations that
represents different objects or parts (more examples in Appendix).

4.2.2 Discovering the semantic layout of scenes

As shown qualitatively in Figure 1, our self-attention maps
contain information about the segmentation of an image. In
this study, we measure this property on a standard benchmark
as well as by directly probing the quality of masks generated
from these attention maps.

Video instance segmentation. In Tab. 5, we evaluate the
output patch tokens on the DAVIS-2017 video instance seg-
mentation benchmark [50]. We follow the experimental pro-
tocol in Jabri et al. [35] and segment scenes with a nearest-
neighbor between consecutive frames; we thus do not train
any model on top of the features, nor finetune any weights
for the task. We observe in Tab. 5 that even though our
training objective nor our architecture are designed for dense
tasks, the performance is competitive on this benchmark.
Since the network is not finetuned, the output of the model
must have retained some spatial information. Finally, for
this dense recognition task, the variants with small patches
(“/8”) perform much better (+9.1% (J&F)m for ViT-B).

Probing the self-attention map. In Fig. 3, we show that
different heads can attend to different semantic regions of an
image, even when they are occluded (the bushes on the third
row) or small (the flag on the second row). Visualizations are
obtained with 480p images, resulting in sequences of 3601
tokens for DeiT-S/8. In Fig. 4, we show that a supervised
ViT does not attend well to objects in presence of clutter
both qualitatively and quantitatively. We report the Jaccard
similarity between the ground truth and segmentation masks
obtained by thresholding the self-attention map to keep 60%
of the mass. Note that the self-attention maps are smooth
and not optimized to produce a mask. Nonetheless, we see
a clear difference between the supervised or DINO models
with a significant gap in terms of Jaccard similarities. Note
that self-supervised convnets also contain information about
segmentations but it requires dedicated methods to extract it
from their weights [29].

4.2.3 Transfer learning on downstream tasks

In Tab. 6, we evaluate the quality of the features pretrained
with DINO on different downstream tasks. We compare
with features from the same architectures trained with super-
vision on ImageNet. We follow the protocol used in Tou-
vron et al. [66] and finetune the features on each downstream
task. We observe that for ViT architectures, self-supervised
pretraining transfers better than features trained with su-
pervision, which is consistent with observations made on
convolutional networks [10, 31, 60]. Finally, self-supervised
pretraining greatly improves results on ImageNet (+1-2%).

5. Ablation Study of DINO
In this section, we empirically study DINO applied to

ViT. The model considered for this entire study is DeiT-S.
We also refer the reader to Appendix for additional studies.

5.1. Importance of the Different Components

We show the impact of adding different components from
self-supervised learning on ViT trained with our framework.

Supervised

DINO

Random Supervised DINO

DeiT-S/16 22.0 27.3 45.9
DeiT-S/8 21.8 23.7 44.7

Figure 4: Segmentations from supervised versus DINO. We vi-
sualize masks obtained by thresholding the self-attention maps to
keep 60% of the mass. On top, we show the resulting masks for
a DeiT-S/8 trained with supervision and DINO. We show the best
head for both models. The table at the bottom compares the Jac-
card similarity between the ground truth and these masks on the
validation images of PASCAL VOC12 dataset.

Table 6: Transfer learning by finetuning pretrained models on
different datasets. We report top-1 accuracy. Self-supervised
pretraining with DINO transfers better than supervised pretraining.

Cifar10 Cifar100 INat18 INat19 Flwrs Cars INet

DeiT-S/16
Sup. [66] 99.0 89.5 70.7 76.6 98.2 92.1 79.9
DINO 99.0 90.5 72.0 78.2 98.5 93.0 81.5

ViT-B/16
Sup. [66] 99.0 90.8 73.2 77.7 98.4 92.1 81.8
DINO 99.1 91.7 72.6 78.6 98.8 93.0 82.8

In Table 7, we report different model variants as we add
or remove components. First, we observe that in the absence
of momentum, our framework does not work (row 2) and
more advanced operations, SK for example, are required to
avoid collapse (row 9). However, with momentum, using
SK has little impact (row 3). In addtition, comparing rows 3
and 9 highlights the importance of the momentum encoder
for performance. Second, in rows 4 and 5, we observe that
multi-crop training and the cross-entropy loss in DINO are
important components to obtain good features. We also ob-
serve that adding a predictor to the student network has little
impact (row 6) while it is critical in BYOL to prevent col-
lapse [15, 28]. For completeness, we propose in Appendix B
an extended version of this ablation study.

Importance of the patch size. In Fig. 5, we compare the
k-NN classification performance of DeiT-S models trained

Table 7: Important component for self-supervised ViT pre-
training. Models are trained for 300 epochs with DeiT-S/16. We
study the different components that matter for the k-NN and linear
(“Lin.”) evaluations. For the different variants, we highlight the
differences from the default DINO setting. The best combination
is the momentum encoder with the multicrop augmentation and
the cross-entropy loss. We also report results with BYOL [28],
MoCo-v2 [14] and SwAV [10].

Method Mom. SK MC Loss Pred. k-NN Lin.

1 DINO X 7 X CE 7 72.8 76.1
2 7 7 X CE 7 0.1 0.1
3 X X X CE 7 72.2 76.0
4 X 7 7 CE 7 67.9 72.5
5 X 7 X MSE 7 52.6 62.4
6 X 7 X CE X 71.8 75.6

7 BYOL X 7 7 MSE X 66.6 71.4
8 MoCov2 X 7 7 INCE 7 62.0 71.6
9 SwAV 7 X X CE 7 64.7 71.8

SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor
CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE

102 103
throughput (im/s)

72

74

76

78

Im
ag

eN
et

to
p-

1

5x5 8x8

16x16

8x8
16x16

ViT-B DeiT-S Figure 5: Effect of
Patch Size. k-NN eval-
uation as a function of
the throughputs for dif-
ferent input patch sizes
with ViT-B and DeiT-S.
Models are trained for
300 epochs.

with different patch sizes, 16 × 16, 8 × 8 and 5 × 5. We
also compare to ViT-B with 16× 16 and 8× 8 patches. All
the models are trained for 300 epochs. We observe that the
performance greatly improves as we decrease the size of the
patch. It is interesting to see that performance can be greatly
improved without adding additional parameters. However,
the performance gain from using smaller patches comes at
the expense of throughput: when using 5×5 patches, the
throughput falls to 44 im/s, vs 180 im/s for 8×8 patches.

5.2. Impact of the choice of Teacher Network

In this ablation, we experiment with different teacher
network to understand its role in DINO. We compare models
trained for 300 epochs using the k-NN protocol.

Building different teachers from the student. In
Fig. 6(right), we compare different strategies to build the
teacher from previous instances of the student besides the

0 100 200 300
epochs

64

68

72

va
l a

cc
@

1

Student
Teacher

Teacher Top-1

Student copy 0.1
Previous iter 0.1
Previous epoch 66.6
Momentum 72.8

Figure 6: Top-1 accuracy on ImageNet validation with k-NN classi-
fier. (left) Comparison between the performance of the momentum
teacher and the student during training. (right) Comparison be-
tween different types of teacher network. The momentum encoder
leads to the best performance but is not the only viable option.

momentum teacher. First we consider using the student net-
work from a previous epoch as a teacher. This strategy has
been used in the memory bank of Wu et al. [70] and as a
form of hard-distillation in Caron et al. [8] and Asano et
al. [2]. Second, we consider using the student network from
the previous iteration, as well as a copy of the student for the
teacher. In our setting, using a teacher based on a recent ver-
sion of the student does not converge. This setting requires
more normalizations to work. Interestingly, we observe that
using a teacher from the previous epoch does not collapse,
providing performance in the k-NN evaluation competitive
with existing frameworks such as MoCo-v2 or BYOL. While
using a momentum encoder clearly provides superior perfor-
mance to this naive teacher, this finding suggests that there
is a space to investigate alternatives for the teacher.

Analyzing the training dynamic. To further understand
the reasons why a momentum teacher works well in our
framework, we study its dynamic during the training of a
ViT in the left panel of Fig. 6. A key observation is that
this teacher constantly outperforms the student during the
training, and we observe the same behavior when training
with a ResNet-50 (Appendix D). This behavior has not been
observed by other frameworks also using momentum [31,
28], nor when the teacher is built from the previous epoch.
We propose to interpret the momentum teacher in DINO
as a form of Polyak-Ruppert averaging [49, 57] with an
exponentially decay. Polyak-Ruppert averaging is often used
to simulate model ensembling to improve the performance
of a network at the end of the training [36]. Our method can
be interpreted as applying Polyak-Ruppert averaging during
the training to constantly build a model ensembling that has
superior performances. This model ensembling then guides
the training of the student network [62].

5.3. Avoiding collapse

We study the complementarity role of centering and tar-
get sharpening to avoid collapse. There are two forms of

0 100epochs
0
2
4
6
8

Ta
rg

et
En

tro
py

sharpening centering both

0 100epochs
0

2

KL
 d

iv
er

ge
nc

e

Figure 7: Collapse study. (left): evolution of the teacher’s target
entropy along training epochs; (right): evolution of KL divergence
between teacher and student outputs.

Table 8: Time and memory requirements. We show total running
time and peak memory per GPU (“mem.”) when running DeiT-S/16
DINO models on two 8-GPU machines. We report top-1 ImageNet
val acc with linear evaluation for several variants of multi-crop,
each having a different level of compute requirement.

100 epochs 300 epochs

multi-crop top-1 time top-1 time mem.

2×2242 67.8 15.3h 72.5 45.9h 9.3G
2×2242 + 2×962 71.5 17.0h 74.5 51.0h 10.5G
2×2242 + 6×962 73.8 20.3h 75.9 60.9h 12.9G
2×2242 + 10×962 74.6 24.2h 76.1 72.6h 15.4G

collapse: regardless of the input, the model output is uniform
along all the dimensions or dominated by one dimension.
The centering avoids the collapse induced by a dominant
dimension, but encourages an uniform output. Sharpening
induces the opposite effect. We show this complementarity
by decomposing the cross-entropy H into an entropy h and
the Kullback-Leibler divergence (“KL”) DKL:

H(Pt, Ps) = h(Pt) +DKL(Pt|Ps). (5)

A KL equal to zero indicates a constant output, and hence
a collapse. In Fig. 7, we plot the entropy and KL during
training with and without centering and sharpening. If one
operation is missing, the KL converges to zero, indicating
a collapse. However, the entropy h converges to different
values: 0 with no centering and − log(1/K) with no sharp-
ening, indicating that both operations induce different form
of collapse. Applying both operations balances these effects
(see study of the sharpening parameter τt in Appendix D).

5.4. Compute requirements

In Tab. 8, we detail the time and GPU memory require-
ments when running DeiT-S/16 DINO models on two 8-
GPU machines. We report results with several variants of
multi-crop training, each having a different level of compute
requirement. We observe in Tab. 8 that using multi-crop im-
proves the accuracy / running-time tradeoff for DINO runs.

For example, the performance is 72.5% after 46 hours of
training without multi-crop (i.e. 2×2242) while DINO in
2×2242+10×962 crop setting reaches 74.6% in 24 hours only.
This is an improvement of +2% while requiring 2× less time,
though the memory usage is higher (15.4G versus 9.3G). We
observe that the performance boost brought with multi-crop
cannot be caught up by more training in the 2×2242 setting,
which shows the value of the “local-to-global” augmentation.
Finally, the gain from adding more views diminishes (+.2%
form 6× to 10× 962 crops) for longer trainings.

Overall, training DINO with Vision Transformers
achieves 76.1 top-1 accuracy using two 8-GPU servers for 3
days. This result outperforms state-of-the-art self-supervised
systems based on convolutional networks of comparable
sizes with a significant reduction of computational require-
ments [28, 10]. Our code is available to train self-supervised
ViT on a limited number of GPUs.

5.5. Training with small batches

bs 128 256 512 1024

top-1 57.9 59.1 59.6 59.9

Table 9: Effect of batch
sizes. Top-1 with k-NN
for models trained for 100
epochs without multi-crop.

In Tab. 9, we study the impact of the batch size on the
features obtained with DINO. We also study the impact
of the smooth parameter m used in the centering update
rule of Eq. 4 in Appendix D. We scale the learning rate lin-
early with the batch size [27]: lr = 0.0005 ∗ batchsize/256.
Tab. 9 confirms that we can train models to high perfor-
mance with small batches. Results with the smaller batch
sizes (bs = 128) are slightly below our default training setup
of bs = 1024, and would certainly require to re-tune hyper-
parameters like the momentum rates for example. Note that
the experiment with batch size of 128 runs on only 1 GPU.
We have explored training a model with a batch size of 8,
reaching 35.2% after 50 epochs, showing the potential for
training large models that barely fit an image per GPU.

6. Conclusion
In this work, we have shown the potential of self-

supervised pretraining a standard ViT model, achieving per-
formance that are comparable with the best convnets specifi-
cally designed for this setting. We have also seen emerged
two properties that can be leveraged in future applications:
the quality of the features in k-NN classification has a po-
tential for image retrieval where ViT are already showing
promising results [21]. The presence of information about
the scene layout in the features can also benefit weakly super-
vised image segmentation. However, the main result of this
paper is that we have evidences that self-supervised learning
could be the key to developing a BERT-like model based on

ViT. In the future, we plan to explore if pretraining a large
ViT model with DINO on random uncurated images could
push the limits of visual features [26].

Acknowledgement. We thank Mahmoud Assran, Matthijs
Douze, Allan Jabri, Jure Zbontar, Alaaeldin El-Nouby, Y-
Lan Boureau, Kaiming He, Thomas Lucas as well as the
Thoth and FAIR teams for their help, support and discussions
around this project. Julien Mairal was funded by the ERC
grant number 714381 (SOLARIS project) and by ANR 3IA
MIAI@Grenoble Alpes (ANR-19-P3IA-0003).

References
[1] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Or-

mandi, George E Dahl, and Geoffrey E Hinton. Large scale
distributed neural network training through online distillation.
arXiv preprint arXiv:1804.03235, 2018. 3

[2] Yuki Markus Asano, Christian Rupprecht, and Andrea
Vedaldi. Self-labelling via simultaneous clustering and repre-
sentation learning. In ICLR, 2020. 2, 9

[3] Mahmoud Assran, Nicolas Ballas, Lluis Castrejon, and
Michael Rabbat. Recovering petaflops in contrastive semi-
supervised learning of visual representations. preprint
arXiv:2006.10803, 2020. 14

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. preprint arXiv:1409.0473, 2014. 5

[5] Maxim Berman, Hervé Jégou, Vedaldi Andrea, Iasonas
Kokkinos, and Matthijs Douze. MultiGrain: a unified im-
age embedding for classes and instances. arXiv preprint
arXiv:1902.05509, 2019. 6

[6] Piotr Bojanowski and Armand Joulin. Unsupervised learning
by predicting noise. In ICML, 2017. 2

[7] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-
Mizil. Model compression. In SIGKDD, 2006. 3

[8] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning of
visual features. In ECCV, 2018. 2, 4, 9

[9] Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Ar-
mand Joulin. Unsupervised pre-training of image features on
non-curated data. In ICCV, 2019. 2, 16

[10] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal,
Piotr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurIPS, 2020. 1, 2, 3, 4, 5, 7, 8, 10, 14, 15, 16, 17, 18

[11] Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson,
Wolfgang Macherey, George Foster, Llion Jones, Niki Parmar,
Mike Schuster, Zhifeng Chen, et al. The best of both worlds:
Combining recent advances in neural machine translation.
preprint arXiv:1804.09849, 2018. 5

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. preprint arXiv:2002.05709, 2020. 2,
3, 5, 15, 17

[13] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey Hinton. Big self-supervised models
are strong semi-supervised learners. In NeurIPS, 2020. 3, 5,
6, 14

[14] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
preprint arXiv:2003.04297, 2020. 5, 8, 14, 15, 18

[15] Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. preprint arXiv:2011.10566, 2020. 2,
3, 4, 8, 14, 15, 16, 18

[16] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In NeurIPS, 2013. 15

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. preprint arXiv:1810.04805,
2018. 1, 4, 5, 18

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. preprint arXiv:2010.11929,
2020. 1, 4, 5, 13

[19] Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springen-
berg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with exemplar convolutional
neural networks. TPAMI, 2016. 2

[20] Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia, Lau-
rent Amsaleg, and Cordelia Schmid. Evaluation of gist de-
scriptors for web-scale image search. In CIVR, 2009. 6

[21] Alaaeldin El-Nouby, Natalia Neverova, Ivan Laptev, and
Hervé Jégou. Training vision transformers for image retrieval.
preprint arXiv:2102.05644, 2021. 10

[22] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto,
and Nicu Sebe. Whitening for self-supervised representation
learning. preprint arXiv:2007.06346, 2020. 2

[23] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 2010. 13

[24] Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang,
Yezhou Yang, and Zicheng Liu. Seed: Self-supervised distil-
lation for visual representation. 2021. 3

[25] Spyros Gidaris, Andrei Bursuc, Gilles Puy, Nikos Komodakis,
Matthieu Cord, and Patrick Pérez. Online bag-of-visual-
words generation for unsupervised representation learning.
arXiv preprint arXiv:2012.11552, 2020. 2, 5

[26] Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min
Xu, Pengchao Wang, Vivek Pai, Mannat Singh, Vitaliy
Liptchinsky, Ishan Misra, Armand Joulin, et al. Self-
supervised pretraining of visual features in the wild. preprint
arXiv:2103.01988, 2021. 10

[27] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. preprint arXiv:1706.02677,
2017. 5, 10

[28] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-

ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent: A new
approach to self-supervised learning. In NeurIPS, 2020. 2, 3,
4, 5, 8, 9, 10, 14, 15, 16, 18

[29] Shir Gur, Ameen Ali, and Lior Wolf. Visualization of su-
pervised and self-supervised neural networks via attribution
guided factorization. preprint arXiv:2012.02166, 2020. 7

[30] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive
estimation: A new estimation principle for unnormalized
statistical models. In International Conference on Artificial
Intelligence and Statistics, 2010. 2

[31] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020. 1, 2, 3, 4, 5, 7, 9,
16

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
4, 5

[33] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. preprint arXiv:1503.02531,
2015. 2, 3

[34] Jiabo Huang, Qi Dong, Shaogang Gong, and Xiatian Zhu.
Unsupervised deep learning by neighbourhood discovery. In
ICML, 2019. 2

[35] Allan Jabri, Andrew Owens, and Alexei A Efros. Space-time
correspondence as a contrastive random walk. 2020. 7

[36] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. On using very large target vocabulary for
neural machine translation. preprint arXiv:1412.2007, 2014.
4, 9

[37] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart,
and Alexander M Rush. Opennmt: Open-source toolkit for
neural machine translation. preprint arXiv:1701.02810, 2017.
5

[38] Zihang Lai, Erika Lu, and Weidi Xie. Mast: A memory-
augmented self-supervised tracker. In CVPR, 2020. 7

[39] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
In Workshop on challenges in representation learning, ICML,
2013. 3

[40] Junnan Li, Pan Zhou, Caiming Xiong, and Steven C.H. Hoi.
Prototypical contrastive learning of unsupervised representa-
tions. ICLR, 2021. 2

[41] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. preprint arXiv:1608.03983, 2016.
5

[42] Ilya Loshchilov and Frank Hutter. Fixing weight decay regu-
larization in adam. 2018. 5

[43] Julien Mairal. Cyanure: An open-source toolbox for empirical
risk minimization for python, c++, and soon more. preprint
arXiv:1912.08165, 2019. 13

[44] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, 2008. 13

[45] Mehdi Noroozi, Ananth Vinjimoor, Paolo Favaro, and Hamed
Pirsiavash. Boosting self-supervised learning via knowledge
transfer. In CVPR, 2018. 3

[46] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo
Kim. Video object segmentation using space-time memory
networks. In ICCV, 2019. 7

[47] Hieu Pham, Qizhe Xie, Zihang Dai, and Quoc V Le. Meta
pseudo labels. preprint arXiv:2003.10580, 2020. 14

[48] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic,
and Andrew Zisserman. Lost in quantization: Improving
particular object retrieval in large scale image databases. In
CVPR, 2008. 6

[49] Boris T Polyak and Anatoli B Juditsky. Acceleration of
stochastic approximation by averaging. SIAM journal on
control and optimization, 30(4):838–855, 1992. 4, 9, 17

[50] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, Alex Sorkine-Hornung, and Luc Van Gool. The
2017 davis challenge on video object segmentation. preprint
arXiv:1704.00675, 2017. 7

[51] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis
Avrithis, and Ondřej Chum. Revisiting oxford and paris:
Large-scale image retrieval benchmarking. 2018. 6

[52] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-
tuning cnn image retrieval with no human annotation. IEEE
transactions on pattern analysis and machine intelligence,
2018. 6

[53] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. 1

[54] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaim-
ing He, and Piotr Dollár. Designing network design spaces.
In CVPR, 2020. 13

[55] Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar
Roberto de Souza. Learning with average precision: Training
image retrieval with a listwise loss. In ICCV, 2019. 6

[56] Pierre H Richemond, Jean-Bastien Grill, Florent Altché,
Corentin Tallec, Florian Strub, Andrew Brock, Samuel Smith,
Soham De, Razvan Pascanu, Bilal Piot, et al. Byol works even
without batch statistics. preprint arXiv:2010.10241, 2020. 2,
4

[57] David Ruppert. Efficient estimations from a slowly conver-
gent robbins-monro process. Technical report, 1988. 4, 9

[58] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li
Fei-Fei. Imagenet large scale visual recognition challenge.
IJCV, 2015. 1, 5, 13

[59] Tim Salimans and Diederik P Kingma. Weight normalization:
A simple reparameterization to accelerate training of deep
neural networks. NeurIPS, 2016. 4, 16

[60] Mert Bulent Sariyildiz, Yannis Kalantidis, Diane Larlus, and
Karteek Alahari. Concept generalization in visual representa-
tion learning. arXiv preprint arXiv:2012.05649, 2020. 7

[61] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang,
Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han Zhang,
and Colin Raffel. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. In NeurIPS, 2020.
14

[62] Antti Tarvainen and Harri Valpola. Mean teachers are
better role models: Weight-averaged consistency targets
improve semi-supervised deep learning results. preprint
arXiv:1703.01780, 2017. 3, 4, 9, 17

[63] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin
Elizalde, Karl Ni, Douglas Poland, Damian Borth, and Li-Jia
Li. Yfcc100m: The new data in multimedia research. arXiv
preprint arXiv:1503.01817, 2015. 6

[64] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning. NeurIPS, 2020. 5

[65] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular
object retrieval with integral max-pooling of cnn activations.
arXiv preprint arXiv:1511.05879, 2015. 6

[66] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. preprint arXiv:2012.12877, 2020. 1, 4, 5, 6, 7, 8, 13,
17

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1, 4

[68] Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning
correspondence from the cycle-consistency of time. In CVPR,
2019. 7

[69] Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim.
Google landmarks dataset v2-a large-scale benchmark for
instance-level recognition and retrieval. 2020. 6

[70] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, 2018. 2, 4, 5, 9, 18

[71] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. In ICML, 2016. 2

[72] Qizhe Xie, Zihang Dai Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V. Le. Unsupervised data augmentation for
consistency training. preprint arXiv:1904.12848, 2020. 14

[73] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet clas-
sification. In CVPR, 2020. 3

[74] Haohang Xu, Xiaopeng Zhang, Hao Li, Lingxi Xie, Hongkai
Xiong, and Qi Tian. Seed the views: Hierarchical seman-
tic alignment for contrastive representation learning. arXiv
preprint arXiv:2012.02733, 2021. 15

[75] Qiantong Xu, Tatiana Likhomanenko, Jacob Kahn, Awni
Hannun, Gabriel Synnaeve, and Ronan Collobert. Iter-
ative pseudo-labeling for speech recognition. preprint
arXiv:2005.09267, 2020. 3

[76] I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and
Dhruv Mahajan. Billion-scale semi-supervised learning for
image classification. preprint arXiv:1905.00546, 2019. 3

[77] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-
vised learning of deep representations and image clusters. In
CVPR, 2016. 2

[78] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane
Deny. Barlow twins: Self-supervised learning via redundancy
reduction. arXiv preprint arXiv:2103.03230, 2021. 2, 5

[79] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In ECCV, 2016. 5

[80] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring
self-attention for image recognition. In CVPR, 2020. 1

[81] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva. Learning deep features for scene
recognition using places database. In NeurIPS, 2014. 13

[82] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In ICCV, 2019. 2

Appendix

A. Additional Results

k-NN classification. In Tab. 10, we evaluate the frozen
representations given by ResNet-50 or DeiT-small pre-
trained with DINO with two evaluation protocols: linear
or k-NN. For both evaluations, we extract representations
from a pre-trained network without using any data augmen-
tation. Then, we perform classification either with weighted
k-NN or with a linear regression learned with cyanure
library [43]. In Tab. 10 we see that DeiT-S accuracies are
better than accuracies obtained with RN50 both with a linear
or a k-NN classifier. However, the performance gap when
using the k-NN evaluation is much more significant than
when considering linear evaluation. For example on Ima-
geNet 1%, DeiT-S outperforms ResNet-50 by a large margin
of +14.1% with k-NN evaluation. This suggests that trans-
formers architectures trained with DINO might offer more
model flexibility that benefits the k-NN evaluation. K-NN
classifiers have the great advantage of being fast and light
to deploy, without requiring any domain adaptation. Over-
all, ViT trained with DINO provides features that combine
particularly well with k-NN classifiers.

Table 10: k-NN and linear evaluation for DeiT-S/16 and ResNet-
50 pre-trained with DINO. We use ImageNet-1k [58] (“Inet”),
Places205 [81], PASCAL VOC [23] and Oxford-102 flowers
(“FLOWERS”) [44]. ViT trained with DINO provides features
that are particularly k-NN friendly.

Logistic k-NN

RN50 DeiT-S ∆ RN50 DeiT-S ∆

Inet 100% 72.1 75.7 3.6 67.5 74.5 7.0
Inet 10% 67.8 72.2 4.4 59.3 69.1 9.8
Inet 1% 55.1 64.5 9.4 47.2 61.3 14.1
Pl. 10% 53.4 52.1 -1.3 46.9 48.6 1.7
Pl. 1% 46.5 46.3 -0.2 39.2 41.3 2.1
VOC07 88.9 89.2 0.3 84.9 88.0 3.1
FLOWERS 95.6 96.4 0.8 87.9 89.1 1.2

Average ∆ 2.4 5.6

Table 11: ImageNet classification with different pretraining.
Top-1 accuracy on ImageNet for supervised ViT-B/16 models using
different pretrainings or using an additional pretrained convnet to
guide the training. The methods use different image resolution
(“res.”) and training procedure (“tr. proc.”), i.e., data augmentation
and optimization. “MPP” is Masked Patch Prediction.

Pretraining

method data res. tr. proc. Top-1

Pretrain on additional data
MMP JFT-300M 384 [18] 79.9
Supervised JFT-300M 384 [18] 84.2

Train with additional model
Rand. init. - 224 [66] 83.4

No additional data nor model
Rand. init. - 224 [18] 77.9
Rand. init. - 224 [66] 81.8
Supervised ImNet 224 [66] 81.9
DINO ImNet 224 [66] 82.8

Self-supervised ImageNet pretraining of ViT. In this ex-
periment, we study the impact of pretraining a supervised
ViT model with our method. In Tab. 11, we compare the
performance of supervised ViT models that are initialized
with different pretraining or guided during training with an
additional pretrained convnet. The first set of models are
pretrained with and without supervision on the large curated
dataset composed of 300M images. The second set of mod-
els are trained with hard knowledge distillation from a pre-
trained supervised RegNetY [54]. The last set of models do
not use any additional data nor models, and are initialized ei-
ther randomly or after a pretraining with DINO on ImageNet.
Compare to random initialization, pretraining with DINO
leads to a performance gain of +1%. This is not caused by a
longer training since pretraining with supervision instead of
DINO does not improve performance. Using self-supervised
pretraining reduces the gap with models pretrained on extra
data or distilled from a convnet.

Low-shot learning on ImageNet. We evaluate the fea-
tures obtained with DINO applied on DeiT-S on low-shot
learning. In Tab. 12, we report the validation accuracy of
a logistic regression trained on frozen features (FROZEN)
with 1% and 10% labels. The logistic regression is trained
with the cyanure library [43]. When comparing mod-
els with a similar number of parameters and image/sec, we
observe that our features are on par with state-of-the-art
semi-supervised models. Interestingly, this performance
is obtained by training a multi-class logistic regression on
frozen features, without data augmentation nor finetuning.

Figure 8: Self-attention for a set of reference points. We visualize the self-attention module from the last block of a DeiT-S/8 trained with
DINO. The network is able to separate objects, though it has been trained with no supervision at all.

Table 12: Low-shot learning on ImageNet with frozen ViT fea-
tures. We train a logistic regression on frozen features (FROZEN).
Note that this FROZEN evaluation is performed without any fine-
tuning nor data augmentation. We report top-1 accuracy. For
reference, we show previously published results that uses finetun-
ing and semi-supervised learning.

Top 1
Method Arch Param. 1% 10%

Self-supervised pretraining with finetuning
UDA [72] RN50 23 – 68.1
SimCLRv2 [13] RN50 23 57.9 68.4
BYOL [28] RN50 23 53.2 68.8
SwAV [10] RN50 23 53.9 70.2
SimCLRv2 [15] RN50w4 375 63.0 74.4
BYOL [28] RN200w2 250 71.2 77.7

Semi-supervised methods
SimCLRv2+KD [13] RN50 23 60.0 70.5
SwAV+CT [3] RN50 23 – 70.8
FixMatch [61] RN50 23 – 71.5
MPL [47] RN50 23 – 73.9
SimCLRv2+KD [13] RN152w3+SK 794 76.6 80.9

Frozen self-supervised features
DINO -FROZEN DeiT-S/16 21 64.5 72.2

B. Methodology Comparison

We compare the performance of different self-supervised
frameworks, MoCo-v2 [14], SwAV [10] and BYOL [28]
when using convnet or ViT. In Tab. 13, we see that when
trained with ResNet-50 (convnet), DINO performs on par
with SwAV and BYOL. However, DINO unravels its poten-
tial with DeiT-S (ViT), outperforming MoCo-v2, SwAV and
BYOL by large margins (+4.3% with linear and +6.2% with
k-NN evaluations). In the rest of this section, we perform
ablations to better understand the performance of DINO
applied to ViT. In particular, we provide a detailed com-
parison with methods that either use a momentum encoder,
namely MoCo-v2 and BYOL, and methods that use multi-
crop, namely SwAV.

Table 13: Methodology comparison for DEIT-small and
ResNet-50. We report ImageNet linear and k-NN evaluations
validation accuracy after 300 epochs pre-training. All numbers are
run by us and match or outperform published results.

ResNet-50 DeiT-small

Method Linear k-NN Linear k-NN

MoCo-v2 71.1 62.9 71.6 62.0
BYOL 72.7 65.4 71.4 66.6
SwAV 74.1 65.4 71.8 64.7

DINO 74.5 65.6 76.1 72.8

Table 14: Relation to SwAV. We vary the operation on the teacher
output between centering, a softmax applied over the batch di-
mension and the Sinkhorn-Knopp algorithm. We also ablate the
Momentum encoder by replacing it with a hard copy of the student
with a stop-gradient as in SwAV. Models are run for 300 epochs
with DeiT-S/16. We report top-1 accuracy on ImageNet linear
evaluation.

Method Momentum Operation Top-1

1 DINO X Centering 76.1
2 – X Softmax(batch) 75.8
3 – X Sinkhorn-Knopp 76.0
4 – Centering 0.1
5 – Softmax(batch) 72.2
6 SwAV Sinkhorn-Knopp 71.8

Relation to SwAV. In Tab. 14, we evaluate the differences
between DINO and SwAV: the presence of the momentum
encoder and the operation on top of the teacher output. In
absence of the momentum, a copy of the student with a stop-
gradient is used. We consider three operations on the teacher
output: Centering, Sinkhorn-Knopp or a Softmax
along the batch axis. The Softmax is similar to a single
Sinkhorn-Knopp iteration as detailed in the next paragraph.
First, these ablations show that using a momentum encoder
significantly improves the performance for ViT (3 versus 6,
and 2 versus 5). Second, the momentum encoder also avoids

collapse when using only centering (row 1). In the absence
of momentum, centering the outputs does not work (4) and
more advanced operations are required (5, 6). Overall, these
ablations highlight the importance of the momentum en-
coder, not only for performance but also to stabilize training,
removing the need for normalization beyond centering.

Details on the Softmax(batch) variant. The itera-
tive Sinkhorn-Knopp algorithm [16] used in SwAV [10] is
implemented simply with the following PyTorch style code.

x is n-by-K
tau is Sinkhorn regularization param
x = exp(x / tau)
for _ in range(num_iters): # 1 iter of Sinkhorn
total weight per dimension (or cluster)
c = sum(x, dim=0, keepdim=True)
x /= c

total weight per sample
n = sum(x, dim=1, keepdim=True)
x sums to 1 for each sample (assignment)
x /= n

When performing a single Sinkhorn iteration
(num iters=1) the implementation can be highly
simplified into only two lines of code, which is our
softmax(batch) variant:

x = softmax(x / tau, dim=0)
x /= sum(x, dim=1, keepdim=True)

We have seen in Tab. 14 that this highly simplified variant
of SwAV works competitively with SwAV. Intuitively, the
softmax operation on the batch axis allows to select for
each dimension (or “cluster”) its best matches in the batch.

Relation to MoCo-v2 and BYOL. In Tab. 15, we present
the impact of ablating components that differ between DINO,
MoCo-v2 and BYOL: the choice of loss, the predictor in the
student head, the centering operation, the batch normaliza-
tion in the projection heads, and finally, the multi-crop aug-
mentation. The loss in DINO is a cross-entropy on sharpened
softmax outputs (CE) while MoCo-v2 uses the InfoNCE con-
trastive loss (INCE) and BYOL a mean squared error on
l2-normalized outputs (MSE). No sharpening is applied with
the MSE criterion. Though, DINO surprisingly still works
when changing the loss function to MSE, but this signifi-
cantly alters the performance (see rows (1, 2) and (4, 9)).
We also observe that adding a predictor has little impact (1,
3). However, in the case of BYOL, the predictor is critical
to prevent collapse (7, 8) which is consistent with previous
studies [15, 28]. Interestingly, we observe that the teacher
output centering avoids collapse without predictor nor batch
normalizations in BYOL (7, 9), though with a significant
performance drop which can likely be explained by the fact
that our centering operator is designed to work in combina-
tion with sharpening. Finally, we observe that multi-crop

Table 15: Relation to MoCo-v2 and BYOL. We ablate the com-
ponents that differ between DINO, MoCo-v2 and BYOL: the loss
function (cross-entropy, CE, versus InfoNCE, INCE, versus mean-
square error, MSE), the multi-crop training, the centering operator,
the batch normalization in the projection heads and the student
predictor. Models are run for 300 epochs with DeiT-S/16. We
report top-1 accuracy on ImageNet linear evaluation.

Method Loss multi-crop Center. BN Pred. Top-1

1 DINO CE X X 76.1
2 – MSE X X 62.4
3 – CE X X X 75.6
4 – CE X 72.5

5 MoCov2 INCE X 71.4
6 INCE X X 73.4

7 BYOL MSE X X 71.4
8 – MSE X 0.1
9 – MSE X 52.6
10 – MSE X X X 64.8

works particularly well with DINO and MoCo-v2, removing
it hurts performance by 2− 4% (1 versus 4 and, 5 versus 6).
Adding multi-crop to BYOL does not work out-of-the-box
(7, 10) as detailed in Appendix E and further adaptation may
be required.

Validating our implementation. We observe in Tab. 13
that our reproduction of BYOL, MoCo-v2, SwAV matches
or outperforms the corresponding published numbers with
ResNet-50. Indeed, we obtain 72.7% for BYOL while [28]
report 72.5% in this 300-epochs setting. We obtain 71.1%
for MoCo after 300 epochs of training while [14] report
71.1% after 800 epochs of training. Our improvement com-
pared to the implementation of [14] can be explained by
the use of a larger projection head (3-layer, use of batch-
normalizations and projection dimension of 256).

Concurrent work CsMI. The concurrent work CsMI [74]
also exhibits strong performance with simple k-NN classi-
fiers on ImageNet, even with convnets. As DINO, CsMI
combines a momentum network and multi-crop training,
which we have seen are both crucial for good k-NN perfor-
mance in our experiments with ViTs. We believe studying
this work would help us identifying more precisely the com-
ponents important for good k-NN performance and leave
this investigation for future work.

C. Projection Head

Similarly to other self-supervised frameworks, using a
projection head [12] improves greatly the accuracy of our
method. The projection head starts with a n-layer multi-
layer perceptron (MLP). The hidden layers are 2048d and

are with gaussian error linear units (GELU) activations. The
last layer of the MLP is without GELU. Then we apply a
`2 normalization and a weight normalized fully connected
layer [15, 59] with K dimensions. This design is inspired
from the projection head with a “prototype layer” used in
SwAV [10]. We do not apply batch normalizations.

BN-free system. Unlike standard convnets, ViT architec-
tures do not use batch normalizations (BN) by default. There-

DeiT-S, 100 epochs heads w/o BN heads w/ BN

k-NN top-1 69.7 68.6

fore, when applying DINO to ViT we do not use any BN also
in the projection heads. In this table we evaluate the impact
of adding BN in the heads. We observe that adding BN in
the projection heads has little impact, showing that BN is not
important in our framework. Overall, when applying DINO
to ViT, we do not use any BN anywhere, making the system
entirely BN-free. This is a great advantage of DINO + ViT to
work at state-of-the-art performance without requiring any
BN. Indeed, training with BN typically slows down trainings
considerably, especially when these BN modules need to be
synchronized across processes [31, 10, 9, 28].

f

n-layer MLP

l2 normalization

linear layer

x B x 3 x 224 x 224

B x 384

B x 256

B x 256

B x K

g(x)

pr
oj

ec
tio

n
he

ad
 h

f

n-layer MLP

x

B x 384

B x K

g(x)

pr
oj

ec
tio

n
he

ad
 h

B x 3 x 224 x 224

w/ l2-bottleneck w/o l2-bottleneck

Figure 9: Projection head design w/ or w/o l2-norm bottleneck.

L2-normalization bottleneck in projection head. We il-
lustrate the design of the projection head with or without l2-
normalization bottleneck in Fig. 9. We evaluate the accuracy

proj. head linear layers 1 2 3 4

w/ l2-norm bottleneck – 62.2 68.0 69.3
w/o l2-norm bottleneck 61.6 62.9 0.1 0.1

of DINO models trained with or without l2-normalization
bottleneck and we vary the number of linear layers in the
projection head. With l2 bottleneck, the total number of
linear layers is n + 1 (n from the MLP and 1 from the

weight normalized layer) while without bottleneck the to-
tal number of linear layers is n in the head. In this table,
we report ImageNet top-1 k-NN evaluation accuracy after
100 epochs pre-training with DeiT-S/16. The output dimen-
sionality K is set to 4096 in this experiment. We observe
that DINO training fails without the l2-normalization bot-
tleneck when increasing the depth of the projection head.
L2-normalization bottleneck stabilizes the training of DINO
with deep projection head. We observe that increasing the
depth of the projection head improves accuracy. Our default
is to use a total of 4 linear layers: 3 are in the MLP and one
is after the l2 bottleneck.

Output dimension. In this table, we evaluate the effect
of varying the output dimensionality K. We observe that a

K 1024 4096 16384 65536 262144

k-NN top-1 67.8 69.3 69.2 69.7 69.1

large output dimensionality improves the performance. We
note that the use of l2-normalization bottleneck permits to
use a large output dimension with a moderate increase in the
total number of parameters. Our default is to use K equals
to 65536 and d = 256 for the bottleneck.

GELU activations. By default, the activations used in ViT
are gaussian error linear units (GELU). Therefore, for consis-

DeiT-S, 100 epochs heads w/ GELU heads w/ ReLU

k-NN top-1 69.7 68.9

tency within the architecture, we choose to use GELU also
in the projection head. We evaluate the effect of using ReLU
instead of GELU in this table and observe that changing the
activation unit to ReLU has relatively little impact.

D. Additional Ablations

We have detailed in the main paper that the combination
of centering and sharpening is important to avoid collapse in
DINO. We ablate the hyperparameters for these two opera-
tions in the following. We also study the impact of training
length and some design choices for the ViT networks.

Online centering. We study the impact of the smoothing
parameters in the update rule for the center c used in the
output of the teacher network. The convergence is robust

m 0 0.9 0.99 0.999

k-NN top-1 69.1 69.7 69.4 0.1

to a wide range of smoothing, and the model only collapses
when the update is too slow, i.e., m = 0.999.

Sharpening. We enforce sharp targets by tuning the
teacher softmax temperature parameter τt. In this table,
we observe that a temperature lower than 0.06 is required to
avoid collapse. When the temperature is higher than 0.06,
τt 0 0.02 0.04 0.06 0.08 0.04→ 0.07

k-NN top-1 43.9 66.7 69.6 68.7 0.1 69.7

the training loss consistently converges to ln(K). However,
we have observed that using higher temperature than 0.06
does not collapse if we start the training from a smaller value
and increase it during the first epochs. In practice, we use
a linear warm-up for τt from 0.04 to 0.07 during the first
30 epochs of training. Finally, note that τ → 0 (extreme
sharpening) correspond to the argmax operation and leads
to one-hot hard distributions.

Longer training. We observe in this table that longer train-
ing improves the performance of DINO applied to DeiT-
Small. This observation is consistent with self-supervised

DINO DeiT-S 100-ep 300-ep 800-ep

k-NN top-1 70.9 72.8 74.5

results obtained with convolutional architectures [12]. We
note that in our experiments with BYOL on DeiT-S, training
longer than 300 epochs has been leading to worse perfor-
mance compare our 300 epochs run. For this reason we
report BYOL for 300 epochs in Tab. 2 while SwAV, MoCo-
v2 and DINO are trained for 800 epochs.

The teacher outperforms the student. We have shown
in Fig. 6 that the momentum teacher outperforms the student
with ViT and we show in this Figure that it is also the case
with ResNet-50. The fact that the teacher continually out-

0 100
epochs

40
45
50
55
60

va
l a

cc
@

1

Student
Teacher

performs the student further encourages the interpretation of
DINO as a form of Mean Teacher [62] self-distillation. In-
deed, as motivated in Tarvainen et al. [62], weight averaging
usually produces a better model than the individual models
from each iteration [49]. By aiming a target obtained with a
teacher better than the student, the student’s representations
improve. Consequently, the teacher also improves since it is
built directly from the student weights.

Self-attention maps from supervised versus self-
supervised learning. We evaluate the masks obtained
by thresholding the self-attention maps to keep 80% of

DeiT-S/16 weights

Random weights 22.0
Supervised 27.3

DINO 45.9
DINO w/o multicrop 45.1
MoCo-v2 46.3
BYOL 47.8
SwAV 46.8

the mass. We compare the Jaccard similarity between the
ground truth and these masks on the validation images of
PASCAL VOC12 dataset for different DeiT-S trained with
different frameworks. The properties that self-attention
maps from ViT explicitly contain the scene layout and, in
particular, object boundaries is observed across different
self-supervised methods.

Impact of the number of heads in DeiT-S. We study the
impact of the number of heads in DeiT-S on the accuracy and
throughput (images processed per second at inference time
on a singe V100 GPU). We find that increasing the number
heads dim dim/head # params im/sec k-NN

6 384 64 21 1007 72.8
8 384 48 21 971 73.1
12 384 32 21 927 73.7
16 384 24 21 860 73.8

of heads improves the performance, at the cost of a slighlty
worse throughput. In our paper, all experiments are run with
the default model presented in [66], i.e. with 6 heads only.

E. Multi-crop

In this Appendix, we study a core component of DINO:
multi-crop training [10].

Range of scales in multi-crop. For generating the dif-
ferent views, we use the RandomResizedCrop method
from torchvision.transforms module in PyTorch.
We sample two global views with scale range (s, 1) before

(0.05, s), (s, 1), s: 0.08 0.16 0.24 0.32 0.48

k-NN top-1 65.6 68.0 69.7 69.8 69.5

resizing them to 2242 and 6 local views with scale sampled
in the range (0.05, s) resized to 962 pixels. Note that we
arbitrarily choose to have non-overlapping scaling range for
the global and local views following the original design of
SwAV. However, the ranges could definitely be overlapping
and experimenting with finer hyperparameters search could
lead to a more optimal setting. In this table, we vary the pa-
rameter s that controls the range of scales used in multi-crop
and find the optimum to be around 0.3 in our experiments.
We note that this is higher than the parameter used in SwAV
which is of 0.14.

Multi-crop in different self-supervised frameworks.
We compare different recent self-supervised learning frame-
works, namely MoCo-v2 [14], BYOL [28] and SwAV [10]
with DeiT-S/16 architecture. For fair comparisons, all mod-

crops 2× 2242 2× 2242 + 6× 962

eval k-NN linear k-NN linear

BYOL 66.6 71.4 59.8 64.8
SwAV 60.5 68.5 64.7 71.8
MoCo-v2 62.0 71.6 65.4 73.4
DINO 67.9 72.5 72.7 75.9

els are pretrained either with two 2242 crops or with multi-
crop [10] training, i.e. two 2242 crops and six 962 crops for
each image. We report k-NN and linear probing evaluations
after 300 epochs of training. Multi-crop does not benefit all
frameworks equally, which has been ignored in benchmarks
considering only the two crops setting [15]. The effective-
ness of multi-crop depends on the considered framework,
which positions multi-crop as a core component of a model
and not a simple “add-ons” that will boost any framework the
same way. Without multi-crop, DINO has better accuracy
than other frameworks, though by a moderate margin (1%).
Remarkably, DINO benefits the most from multi-crop train-
ing (+3.4% in linear eval). Interestingly, we also observe
that the ranking of the frameworks depends on the evaluation
protocol considered.

Training BYOL with multi-crop. When applying multi-
crop to BYOL with DeiT-S, we observe the transfer perfor-
mance is higher than the baseline without multi-crop for
the first training epochs. However, the transfer performance

0 100 200 300
epochs

45
50
55
60
65

k-
nn

 v
al

to
p-

1

w/o mc
w/ mc

growth rate is slowing down and declines after a certain
amount of training. We have performed learning rate, weight
decay, multi-crop parameters sweeps for this setting and
systematically observe the same pattern. More precisely, we
experiment with {1e−5, 3e−5, 1e−4, 3e−4, 1e−3, 3e−3} for
learning rate base values, with {0.02, 0.05, 0.1} for weight
decay and with different number of small crops: {2, 4, 6}.
All our runs are performed with synchronized batch normal-
izations in the heads. When using a low learning rate, we
did not observe the performance break point, i.e. the trans-
fer performance was improving continually during training,
but the overall accuracy was low. We have tried a run with

multi-crop training on ResNet-50 where we also observe
the same behavior. Since integrating multi-crop training to
BYOL is not the focus of this study we did not push that
direction further. However, we believe this is worth investi-
gating why multi-crop does not combine well with BYOL in
our experiments and leave this for future work.

F. Evaluation Protocols

F.1 k-NN classification

Following the setting of Wu et al. [70], we evaluate the qual-
ity of features with a simple weighted k Nearest Neighbor
classifier. We freeze the pretrained model to compute and
store the features of the training data of the downstream task.
To classify a test image x, we compute its representation
and compare it against all stored training features T . The
representation of an image is given by the output [CLS] to-
ken: it has dimensionality d = 384 for DeiT-S and d = 768
for ViT-B. The top k NN (denoted Nk) are used to make a
prediction via weighted voting. Specifically, the class c gets
a total weight of

∑
i∈Nk

αi1ci=c, where αi is a contribution
weight. We use αi = exp(Tix/τ) with τ equals to 0.07 as
in [70] which we do not tune. We evaluate different values
for k and find that k = 20 is consistently leading to the best
accuracy across our runs. This evaluation protocol does not
require hyperparameter tuning, nor data augmentation and
can be run with only one pass over the downstream dataset.

F.2 Linear classification

Following common practice in self-supervised learning, we
evaluate the representation quality with a linear classifier.
The projection head is removed, and we train a supervised
linear classifier on top of frozen features. This linear clas-
sifier is trained with SGD and a batch size of 1024 during
100 epochs on ImageNet. We do not apply weight decay.
For each model, we sweep the learning rate value. Dur-
ing training, we apply only random resizes crops (with de-
fault parameters from PyTorch RandomResizedCrop)
and horizontal flips as data augmentation. We report central-
crop top-1 accuracy. When evaluating convnets, the common
practice is to perform global average pooling on the final
feature map before the linear classifier. In the following, we
describe how we adapt this design when evaluating ViTs.

DeiT-S representations for linear eval. Following the
feature-based evaluations in BERT [17], we concatenate
the [CLS] tokens from the l last layers. We experiment

concatenate l last layers 1 2 4 6

representation dim 384 768 1536 2304
DeiT-S/16 linear eval 76.1 76.6 77.0 77.0

with the concatenation of a different number l of layers and
similarly to [17] we find l = 4 to be optimal.

ViT-B representations for linear eval. With ViT-B we
did not find that concatenating the representations from the
last l layers to provide any performance gain, and consider
the final layer only (l = 1). In this setting, we adapt the

pooling strategy [CLS] tok. concatenate [CLS] tok.
only and avgpooled patch tok.

representation dim 768 1536
ViT-B/16 linear eval 78.0 78.2

pipeline used in convnets with global average pooling on the
output patch tokens. We concatenate these pooled features
to the final [CLS] output token.

G. Self-Attention Visualizations

We provide more self-attention visualizations in Fig. 8
and in Fig. 10. The images are randomly selected from
COCO validation set, and are not used during training of
DINO. In Fig. 8, we show the self-attention from the last
layer of a DINO DeiT-S/8 for several reference points.

H. Class Representation

As a final visualization, we propose to look at the distribu-
tion of ImageNet concepts in the feature space from DINO.
We represent each ImageNet class with the average feature
vector for its validation images. We reduce the dimension
of these features to 30 with PCA, and run t-SNE with a
perplexity of 20, a learning rate of 200 for 5000 iterations.
We present the resulting class embeddings in Fig. 11. Our
model recovers structures between classes: similar animal
species are grouped together, forming coherent clusters of
birds (top) or dogs, and especially terriers (far right).

DINO Supervised DINO Supervised

Figure 10: Self-attention heads from the last layer. We look at the attention map when using the [CLS] token as a query for the different
heads in the last layer. Note that the [CLS] token is not attached to any label or supervision.

tench

goldfish

great white sharktiger shark
hammerheadelectric ray stingray

cockhen ostrich

brambling

goldfinch

house finch

junco

indigo bunting robin
bulbuljay

magpie

chickadee

water ouzel

kite
bald eagle

vulture

great grey owl

European fire salamander
common newt eftspotted salamander

axolotl

bullfrog

tree frog

tailed frog

loggerheadleatherback turtle

mud turtle
terrapin

box turtle

banded gecko common iguana

American chameleonwhiptail

agama
frilled lizard

alligator lizard

Gila monster

green lizard

African chameleon

Komodo dragon
African crocodile

American alligator

triceratops

thunder snake
ringneck snakehognose snake

green snake

king snake
garter snake

water snake
vine snake

night snake

boa constrictor
rock python

Indian cobra
green mamba

sea snake

horned viper
diamondback

sidewinder

trilobiteharvestman scorpion

black and gold garden spider
barn spidergarden spiderblack widow

tarantula
wolf spider

tick centipede

black grouse ptarmigan

ruffed grouse
prairie chicken

peacock

quailpartridge

African greymacawsulphur-crested cockatoo
lorikeet

coucal

bee eater

hornbillhummingbird
jacamar toucan

drake red-breasted merganser

goose black swan

tusker

echidna

platypus

wallaby

koala

wombat

jellyfish
sea anemone

brain coral
flatworm

nematode

conch
snailslug

sea slug

chiton

chambered nautilus
Dungeness crab

rock crab

fiddler crab
king crabAmerican lobster

spiny lobster

crayfish
hermit crab

isopod

white stork

black stork
spoonbill

flamingo
little blue heronAmerican egret

bittern
crane

limpkin

European gallinule
American coot

bustard

ruddy turnstone
red-backed sandpiper

redshank dowitcher

oystercatcher

pelican

king penguin

albatross

grey whale
killer whale

dugong

sea lion

Chihuahua

Japanese spaniel

Maltese dog
Pekinese

Shih-Tzu

Blenheim spanielpapillon

toy terrier

Rhodesian ridgeback

Afghan hound

bassetbeagle

bloodhound

bluetick

black-and-tan coonhound

Walker houndEnglish foxhound

redbone

borzoi

Irish wolfhound

Italian greyhound

whippetIbizan hound

Norwegian elkhound

otterhound

Saluki

Scottish deerhound

Weimaraner

Staffordshire bullterrier

American Staffordshire terrier

Bedlington terrier

Border terrier

Kerry blue terrier Irish terrier
Norfolk terrier

Norwich terrier

Yorkshire terrier
wire-haired fox terrier

Lakeland terrier

Sealyham terrier

Airedale cairn
Australian terrier

Dandie Dinmont

Boston bull

miniature schnauzer
giant schnauzer

standard schnauzer
Scotch terrier

Tibetan terrier
silky terrier

soft-coated wheaten terrier

West Highland white terrier
Lhasa

flat-coated retriever

curly-coated retriever

golden retriever

Labrador retriever
Chesapeake Bay retriever

German short-haired pointer

vizsla

English setter
Irish setter

Gordon setter

Brittany spaniel

clumber

English springer

Welsh springer spaniel

cocker spaniel

Sussex spaniel

Irish water spaniel

kuvasz

schipperkegroenendael

malinois

briard

kelpie

komondorOld English sheepdog

Shetland sheepdog collie
Border collie

Bouvier des Flandres

Rottweiler

German shepherd

Doberman miniature pinscher

Greater Swiss Mountain dog

Bernese mountain dog
Appenzeller

EntleBucher

boxer

bull mastiff

Tibetan mastiff

French bulldog
Great Dane

Saint Bernard
Eskimo dog

malamute

Siberian husky

dalmatian

affenpinscher

basenji

pug

Leonberg
Newfoundland

Great Pyrenees

Samoyed
Pomeranian

chowkeeshond

Brabancon griffon

PembrokeCardigan

toy poodleminiature poodle
standard poodle

Mexican hairless

timber wolf
white wolf

red wolf
coyote

dingo
dholeAfrican hunting dog

hyena red fox
kit fox

Arctic fox
grey fox

tabby
tiger cat

Persian cat
Siamese catEgyptian cat

cougar
lynx

leopardsnow leopardjaguar

liontiger
cheetah

brown bear
American black bear

ice bear

sloth bear

mongoose
meerkat

tiger beetle

ladybug

ground beetlelong-horned beetle

leaf beetle
dung beetle

rhinoceros beetle

weevil

fly

bee

antgrasshopper
cricket

walking stick cockroach
mantis

cicada
leafhopper

lacewing
dragonfly

damselfly

admiral

ringlet
monarch

cabbage butterfly
sulphur butterfly

lycaenid

starfish

sea urchin

sea cucumber

wood rabbit
hare

Angorahamster

porcupine

fox squirrel
marmot

beaver
guinea pig

sorrel

zebra

hog
wild boarwarthog

hippopotamus

ox
water buffalo

bison ram

bighorn
ibex

hartebeest
impala gazelle

Arabian camel

llama

weaselmink
polecatblack-footed ferret

otter

skunkbadger

armadillo

three-toed sloth

orangutan

gorilla chimpanzeegibbon siamang
guenon

patas
baboon

macaque

langur

colobus

proboscis monkey

marmoset
capuchin howler monkeytiti spider monkeysquirrel monkey

Madagascar catindri

Indian elephant
African elephant

lesser panda giant panda

barracoutaeel coho

rock beauty

anemone fish

sturgeongar

lionfish

puffer

abacus

abaya

academic gown

accordion acoustic guitar

aircraft carrier

airliner

airship

altar

ambulance

amphibian

analog clock

apiary

apron

ashcan

assault rifle
backpack

bakery

balance beam

balloon

ballpoint

Band Aid

banjo

bannister

barbell

barber chair

barbershop

barnbarometer

barrel

barrow

baseball
basketball

bassinet

bassoon

bathing cap

bath towel

bathtub

beach wagon

beacon

beaker

bearskin

beer bottle

beer glass

bell cote

bib

bicycle-built-for-two

bikini

binder

binoculars

birdhouse boathouse

bobsled

bolo tie

bonnet

bookcase
bookshop

bottlecap
bow

bow tie

brass

brassiere

breakwater

breastplate

broom

bucket
buckle

bulletproof vest

bullet train

butcher shop

cab

caldron

candle

cannon

canoe

can opener

cardigan

car mirror

carousel

carpenters kit

carton

car wheel

cash machine

cassette

cassette player

castle

catamaran

CD player

cello

cellular telephone

chain

chainlink fence

chain mail

chain saw

chest

chiffonier

chime

china cabinet

Christmas stocking

church

cinema

cleaver

cliff dwelling

cloak

clog
cocktail shaker

coffee mug

coffeepot

coil

combination lock

computer keyboard

confectionery

container ship

convertible

corkscrew

cornet

cowboy boot
cowboy hat

cradle

crane
crash helmet

crate

crib

Crock Pot

croquet ball
crutch

cuirass

dam

deskdesktop computer

dial telephone

diaper

digital clock

digital watch

dining table

dishrag

dishwasher

disk brake dock

dogsled

dome

doormat

drilling platform

drum

drumstick dumbbell

Dutch oven

electric fan

electric guitar

electric locomotive

entertainment center

envelope

espresso maker

face powder

feather boa

file

fireboat

fire engine

fire screen flagpole

flute

folding chair

football helmet

forklift

fountain

fountain pen

four-poster

freight car

French horn

frying pan
fur coat

garbage truck

gasmask

gas pump

goblet

go-kart

golf ball

golfcart

gondolagong

gown

grand piano
greenhouse

grille

grocery store

guillotine

hair slide

hair spray

half track

hammer

hamper

hand blower

hand-held computer

handkerchief

hard disc

harmonica

harp

harvester

hatchet

holster

home theater

honeycomb

hook

hoopskirt

horizontal bar

horse cart

hourglass

iPod

iron

jack-o-lantern

jean

jeep

jersey

jigsaw puzzle
jinrikisha

joystick

kimono

knee pad

knot

lab coat

ladle

lampshade

laptop

lawn mower

lens cap

letter opener

library

lifeboat

lighter

limousine

liner

lipstick

Loafer

lotion

loudspeaker

loupe

lumbermill

magnetic compass

mailbag

mailbox

maillot

maillot

manhole cover

maraca

marimbamask

matchstick maypole

maze

measuring cup

medicine chest

megalith

microphone

microwave

military uniform

milk can

minibus

miniskirt

minivan

missile

mitten

mixing bowl

mobile home

Model T

modem

monastery

monitor

moped

mortar

mortarboard

mosque

mosquito net

motor scooter

mountain bike

mountain tent

mouse

mousetrap

moving van

muzzle

nail

neck brace

necklace

nipple

notebook

obelisk

oboe

ocarina

odometer oil filter

organ

oscilloscope

overskirt

oxcart

oxygen mask

packet

paddle

paddlewheel

padlockpaintbrush

pajama

palace

panpipe

paper towel

parachute

parallel bars

park bench

parking meter

passenger car

patio

pay-phone

pedestal

pencil box
pencil sharpenerperfume

Petri dish

photocopier

pick

pickelhaube

picket fence

pickup

pier

piggy bank

pill bottle

pillow

ping-pong ball

pinwheel

pirate

pitcher

plane

planetarium

plastic bag

plate rack

plow

plunger

Polaroid camera

pole

police van

poncho

pool tablepop bottle

pot

potters wheel

power drill

prayer rug

printer

prison projectile

projector

puck

punching bag
purse

quill

quilt

racer

racket

radiator

radio

radio telescope

rain barrel

recreational vehicle

reel

reflex camera

refrigerator
remote control

restaurant

revolver

rifle

rocking chair

rotisserie

rubber eraser

rugby ball

rule

running shoe

safe

safety pin

saltshaker sandal

sarong

sax

scabbard

scale

school bus

schooner

scoreboard
screen

screw

screwdriver

seat belt

sewing machine

shield

shoe shop

shoji

shopping basket

shopping cart

shovel

shower cap

shower curtain

ski

ski mask

sleeping bag

slide rule

sliding door

slot

snorkel

snowmobile

snowplow

soap dispenser

soccer ball

sock

solar dish

sombrero

soup bowl

space bar

space heater

space shuttle

spatula

speedboat

spider web

spindle

sports car

spotlight

stage

steam locomotive

steel arch bridge

steel drum

stethoscope

stole

stone wall

stopwatch

stove

strainer

streetcar

stretcher

studio couch

stupa

submarine

suit

sundial

sunglass
sunglasses

sunscreen

suspension bridge

swab

sweatshirt

swimming trunks

swing

switch

syringe

table lamp

tank
tape player

teapot

teddy

television

tennis ball

thatch

theater curtain

thimble

thresher

throne

tile roof

toaster

tobacco shop

toilet seat

torch

totem pole

tow truck

toyshop
tractor

trailer truck

tray

trench coat

tricycle

trimaran

tripod

triumphal arch

trolleybus

trombone

tub

turnstile
typewriter keyboard

umbrella unicycle

upright

vacuum

vase

vault

velvet

vending machine

vestment

viaduct

violin volleyball

waffle iron

wall clock

wallet

wardrobe warplane

washbasin

washer

water bottle

water jug

water tower

whiskey jug

whistle

wig

window screen

window shade

Windsor tie

wine bottle

wing

wok

wooden spoon

wool

worm fence
wreck yawl

yurt

web site

comic book
crossword puzzle

street sign
traffic light

book jacket
menu

plate
guacamole

consomme
hot pot

trifle

ice cream

ice lolly

French loafbagel

pretzel

cheeseburger
hotdog

mashed potato

head cabbagebroccoli cauliflower
zucchini

spaghetti squash
acorn squash

butternut squash

cucumber

artichoke

bell pepper

cardoon mushroom

Granny Smith

strawberry
orange

lemon

fig

pineapple

banana

jackfruit

custard apple

pomegranate

hay

carbonara
chocolate sauce

dough
meat loaf

pizza
potpieburrito

red wine

espresso

cup
eggnog

alp

bubble

cliff

coral reef

geyser
lakeside

promontory
sandbarseashore

valley

volcano

ballplayer

groom

scuba diver

rapeseed

daisy
yellow ladys slipper

corn

acorn
hip buckeye

coral fungus
agaric

gyromitra

stinkhorn

earthstar

hen-of-the-woods

bolete

ear

toilet tissue

Figure 11: t-SNE visualization of ImageNet classes as represented using DINO. For each class, we obtain the embedding by taking the
average feature for all images of that class in the validation set.

