2104.14294v1 [cs.CV] 29 Apr 2021

arxXiv

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron'+
Julien Mairal?

I Facebook Al Research

Hugo Touvron'
Piotr Bojanowski!

2 Inria*

Ishan Misra!  Hervé Jegou!
Armand Joulin!

3 Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.

Abstract

In this paper, we question if self-supervised learning pro-
vides new properties to Vision Transformer (ViT) [ 18] that
stand out compared to convolutional networks (convnets).
Beyond the fact that adapting self-supervised methods to this
architecture works particularly well, we make the follow-
ing observations: first, self-supervised ViT features contain
explicit information about the semantic segmentation of an
image, which does not emerge as clearly with supervised
ViTs, nor with convnets. Second, these features are also ex-
cellent k-NN classifiers, reaching 78.3% top-1 on ImageNet
with a small ViT. Our study also underlines the importance of
momentum encoder [3 1], multi-crop training [10], and the
use of small patches with ViTs. We implement our findings
into a simple self-supervised method, called DINO, which
we interpret as a form of self-distillation with no labels.
We show the synergy between DINO and ViTs by achieving
80.1% top-1 on ImageNet in linear evaluation with ViT-Base.

*Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000
Grenoble, France.
Correspondence: mathilde @fb.com
Code: https://github.com/facebookresearch/dino

1. Introduction

Transformers [67] have recently emerged as an alternative
to convolutional neural networks (convnets) for visual recog-
nition [18, 66, 80]. Their adoption has been coupled with
a training strategy inspired by natural language processing
(NLP), that is, pretraining on large quantities of data and
finetuning on the target dataset [17, 53]. The resulting Vision
Transformers (ViT) [18] are competitive with convnets but,
they have not yet delivered clear benefits over them: they
are computationally more demanding, require more training
data, and their features do not exhibit unique properties.

In this paper, we question whether the muted success of
Transformers in vision can be explained by the use of super-
vision in their pretraining. Our motivation is that one of the
main ingredients for the success of Transformers in NLP was
the use of self-supervised pretraining, in the form of close
procedure in BERT [17] or language modeling in GPT [53].
These self-supervised pretraining objectives use the words
in a sentence to create pretext tasks that provide a richer
learning signal than the supervised objective of predicting
a single label per sentence. Similarly, in images, image-
level supervision often reduces the rich visual information
contained in an image to a single concept selected from a
predefined set of a few thousand categories of objects [58].

While the self-supervised pretext tasks used in NLP are


https://github.com/facebookresearch/dino

text specific, many existing self-supervised methods have
shown their potential on images with convnets [10, 12, 28,

]. They typically share a similar structure but with differ-
ent components designed to avoid trivial solutions (collapse)
or to improve performance [15]. In this work, inspired from
these methods, we study the impact of self-supervised pre-
training on ViT features. Of particular interest, we have
identified several interesting properties that do not emerge
with supervised ViTs, nor with convnets:

* Self-supervised ViT features explicitly contain the
scene layout and, in particular, object boundaries, as
shown in Figure 1. This information is directly accessi-
ble in the self-attention modules of the last block.

* Self-supervised ViT features perform particularly well
with a basic nearest neighbors classifier (k-NN) without
any finetuning, linear classifier nor data augmentation,
achieving 78.3% top-1 accuracy on ImageNet.

The emergence of segmentation masks seems to be a
property shared across self-supervised methods. However,
the good performance with k-NN only emerge when com-
bining certain components such as momentum encoder [3 1]
and multi-crop augmentation [10]. Another finding from our
study is the importance of using smaller patches with ViTs
to improve the quality of the resulting features.

Overall, our findings about the importance of these
components lead us to design a simple self-supervised ap-
proach that can be interpreted as a form of knowledge
distillation [33] with no labels. The resulting framework,
DINO, simplifies self-supervised training by directly pre-
dicting the output of a teacher network—built with a mo-
mentum encoder—by using a standard cross-entropy loss.
Interestingly, our method can work with only a centering
and sharpening of the teacher output to avoid collapse, while
other popular components such as predictor [28], advanced
normalization [10] or contrastive loss [31] add little benefits
in terms of stability or performance. Of particular impor-
tance, our framework is flexible and works on both convnets
and ViTs without the need to modify the architecture, nor
adapt internal normalizations [56].

We further validate the synergy between DINO and ViT
by outperforming previous self-supervised features on the
ImageNet linear classification benchmark with 80.1% top-1
accuracy with a ViT-Base with small patches. We also con-
firm that DINO works with convnets by matching the state
of the art with a ResNet-50 architecture. Finally, we discuss
different scenarios to use DINO with ViTs in case of limited
computation and memory capacity. In particular, training
DINO with ViT takes just two 8-GPU servers over 3 days
to achieve 76.1% on ImageNet linear benchmark, which
outperforms self-supervised systems based on convnets of
comparable sizes with significantly reduced compute require-
ments [10, 28].

ot
ema
student ggg — teacher gg;

Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (z1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the
teacher network is centered with a mean computed over the batch.
Each networks outputs a K dimensional feature that is normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

2. Related work

Self-supervised learning. A large body of work on self-
supervised learning focuses on discriminative approaches
coined instance classification [12, 19, 31, 70], which con-
siders each image a different class and trains the model
by discriminating them up to data augmentations. How-
ever, explicitly learning a classifier to discriminate be-
tween all images [19] does not scale well with the num-
ber of images. Wu et al. [70] propose to use a noise
contrastive estimator (NCE) [30] to compare instances in-
stead of classifying them. A caveat of this approach is
that it requires comparing features from a large number
of images simultaneously. In practice, this requires large
batches [12] or memory banks [31, 70]. Several variants
allow automatic grouping of instances in the form of cluster-
ing [2, 8,9, 25, 34,40, 71,77, 82].

Recent works have shown that we can learn unsupervised
features without discriminating between images. Of par-
ticular interest, Grill et al. [28] propose a metric-learning
formulation called BYOL, where features are trained by
matching them to representations obtained with a momen-
tum encoder. It has been shown that methods like BYOL
work even without a momentum encoder, at the cost of a
drop of performance [15, 28]. Several other works echo this
direction, showing that one can train features matching them
to a uniform distribution on the ¢5 hypersphere [0] or by
using whitening [22, 78]. Our approach takes its inspiration
from BYOL but operates with a different similarity matching



loss and uses the exact same architecture for the student and
the teacher. That way, our work completes the interpretation
initiated in BYOL of self-supervised learning as a form of
Mean Teacher self-distillation [62] with no labels.

Self-training and knowledge distillation. Self-training
aims at improving the quality of features by propagating
a small initial set of annotations to a large set of unlabeled
instances. This propagation can either be done with hard
assignments of labels [39, 75, 76] or with a soft assign-
ment [73]. When using soft labels, the approach is often
referred to as knowledge distillation [7, 33] and has been
primarily designed to train a small network to mimic the
output of a larger network to compress models. Xie et
al. [73] have recently shown that distillation could be used
to propagate soft pseudo-labels to unlabelled data in a self-
training pipeline, drawing an essential connection between
self-training and knowledge distillation. Our work builds on
this relation and extends knowledge distillation to the case
where no labels are available. Previous works have also com-
bined self-supervised learning and knowledge distillation,
enabling self-supervised model compression [24] and perfor-
mance gains [13, 45]. However, these works rely on a pre-
trained fixed teacher while our teacher is dynamically built
during training. This way, knowledge distillation, instead
of being used as a post-processing step to self-supervised
pre-training, is directly cast as a self-supervised objective.
Finally, our work is also related to codistillation [ 1] where
student and teacher have the same architecture and use distil-
lation during training. However, the teacher in codistillation
is also distilling from the student, while it is updated with a
momentum average of the student in our work.

3. Approach
3.1. SSL with Knowledge Distillation

The framework used for this work, DINO, shares the same

overall structure as recent self-supervised approaches [ 10,
, 12,28, 31]. However, our method shares also similarities

with knowledge distillation [33] and we present it under
this angle. We illustrate DINO in Figure 2 and propose a
pseudo-code implementation in Algorithm 1.

Knowledge distillation is a learning paradigm where we
train a student network gy, to match the output of a given
teacher network gy, , parameterized by 6, and 6; respectively.
Given an input image z, both networks output probability
distributions over K dimensions denoted by P, and P;. The
probability P is obtained by normalizing the output of the
network g with a softmax function. More precisely,

Pu(2)® = exp(go, ()W /75) 7
) S exp(go, (@) ) /7,)

with 7, > 0 a temperature parameter that controls the

(1

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks

# C: center (K)

# tps, tpt: student and teacher temperatures

# 1, m: network and center momentum rates

gt .params = gs.params

for x in loader: # load a minibatch x with n samples
x1l, x2 = augment (x), augment (x) # random views

sl, s2
tl, t2

= gs(xl), gs(x2) # student output n-by-K
= gt (x1l), gt(x2) # teacher output n-by-K
loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

# student, teacher and center updates
update (gs) # SGD

gt .params = lxgt.params + (1-1)*gs.params
C = mxC + (1-m)xcat([tl, t2]) .mean(dim=0)

def H(t, s):
t t.detach() # stop gradient
s softmax (s / tps, dim=1)
t softmax ((t — C) / tpt, dim=1l) # center + sharpen
return - (t * log(s)) .sum(dim=1) .mean ()

sharpness of the output distribution, and a similar formula
holds for P, with temperature 7,. Given a fixed teacher
network gp,, we learn to match these distributions by min-
imizing the cross-entropy loss w.r.t. the parameters of the
student network 6,:

n;?lff(}%(x)afg(x))a (2)

where H(a,b) = —alogb.

In the following, we detail how we adapt the problem
in Eq. (2) to self-supervised learning. First, we construct
different distorted views, or crops, of an image with multi-
crop strategy [10]. More precisely, from a given image, we
generate a set ' of different views. This set contains two
global views, z{ and z and several local views of smaller
resolution. All crops are passed through the student while
only the global views are passed through the teacher, there-
fore encouraging “local-to-global” correspondences. We
minimize the loss:

r%isn Z Z H(Pi(z), Ps(2")).  (3)
ze{z{,xf} '€V
z'#x
This loss is general and can be used on any number of
views, even only 2. However, we follow the standard setting
for multi-crop by using 2 global views at resolution 2242
covering a large (for example greater than 50%) area of the
original image, and several local views of resolution 962
covering only small areas (for example less than 50%) of
the original image. We refer to this setting as the basic
parametrization of DINO, unless mentioned otherwise.
Both networks share the same architecture g with differ-
ent sets of parameters 05 and ;. We learn the parameters 6
by minimizing Eq. (3) with stochastic gradient descent.



Table 1: Networks configuration. ‘“Blocks” is the number of
Transformer blocks, “dim” is channel dimension and “heads” is the
number of heads in multi-head attention. “# tokens” is the length
of the token sequence when considering 2242 resolution inputs, “#
params” is the total number of parameters (without counting the
projection head) and “im/s” is the inference time on a NVIDIA
V100 GPU with 128 samples per forward.

model blocks dim heads #tokens #params im/s

ResNet-50 - 2048 - - 23M 1237
DeiT-S/16 12 384 6 197 21M 1007
DeiT-S/8 12 384 6 785 2IM 180
ViT-B/16 12 768 12 197 85M 312
ViT-B/8 12 768 12 785 8M 63

Teacher network. Unlike knowledge distillation, we do
not have a teacher gg, given a priori and hence, we build it
from past iterations of the student network. We study dif-
ferent update rules for the teacher in Section 5.2 and show
that freezing the teacher network over an epoch works sur-
prisingly well in our framework, while copying the student
weight for the teacher fails to converge. Of particular in-
terest, using an exponential moving average (EMA) on the
student weights, i.e., a momentum encoder [31], is partic-
ularly well suited for our framework. The update rule is
0; <+ \0: + (1 — \)f,, with A following a cosine schedule
from 0.996 to 1 during training [28]. Originally the momen-
tum encoder has been introduced as a substitute for a queue
in contrastive learning [31]. However, in our framework, its
role differs since we do not have a queue nor a contrastive
loss, and may be closer to the role of the mean teacher used
in self-training [62]. Indeed, we observe that this teacher per-
forms a form of model ensembling similar to Polyak-Ruppert
averaging with an exponential decay [49, 57]. Using Polyak-
Ruppert averaging for model ensembling is a standard prac-
tice to improve the performance of a model [36]. We observe
that this teacher has better performance than the student
throughout the training, and hence, guides the training of the
student by providing target features of higher quality. This
dynamic was not observed in previous works [28, 56].

Network architecture. The neural network g is composed
of a backbone f (ViT [18] or ResNet [32]), and of a projec-
tion head h: g = h o f. The features used in downstream
tasks are the backbone f output. The projection head con-
sists of a 3-layer multi-layer perceptron (MLP) with hidden
dimension 2048 followed by /s normalization and a weight
normalized fully connected layer [59] with K dimensions,
which is similar to the design from SwAV [10]. We have
tested other projection heads and this particular design ap-
pears to work best for DINO (Appendix C). We do not use a
predictor [28, 15], resulting in the exact same architecture in

both student and teacher networks. Of particular interest, we
note that unlike standard convnets, ViT architectures do not
use batch normalizations (BN) by default. Therefore, when
applying DINO to ViT we do not use any BN also in the
projection heads, making the system entirely BN-free.

Avoiding collapse. Several self-supervised methods dif-
fer by the operation used to avoid collapse, either through
contrastive loss [70], clustering constraints [8, 10], predic-
tor [28] or batch normalizations [28, 56]. While our frame-
work can be stabilized with multiple normalizations [10],
it can also work with only a centering and sharpening of
the momentum teacher outputs to avoid model collapse. As
shown experimentally in Section 5.3, centering prevents
one dimension to dominate but encourages collapse to the
uniform distribution, while the sharpening has the oppo-
site effect. Applying both operations balances their effects
which is sufficient to avoid collapse in presence of a momen-
tum teacher. Choosing this method to avoid collapse trades
stability for less dependence over the batch: the centering
operation only depends on first-order batch statistics and
can be interpreted as adding a bias term c to the teacher:
g¢(x) < g:(x) + c. The center c is updated with an expo-
nential moving average, which allows the approach to work
well across different batch sizes as shown in Section 5.5:

B
1
c<—mc+(1—m)§ det(%‘)’ “4)
i1

where m > 0 is a rate parameter and B is the batch size.
Output sharpening is obtained by using a low value for the
temperature 7; in the teacher softmax normalization.

3.2. Implementation and evaluation protocols

In this section, we provide the implementation details to
train with DINO and present the evaluation protocols used
in our experiments.

Vision Transformer. We briefly describe the mechanism
of the Vision Transformer (ViT) [18, 67] and refer to
Vaswani et al. [67] for details about Transformers and to
Dosovitskiy et al. [ 18] for its adaptation to images. We fol-
low the implementation used in DeiT [66]. We summarize
the configuration of the different networks used in this pa-
per in Table 1. The ViT architecture takes as input a grid
of non-overlapping contiguous image patches of resolution
N x N. In this paper we typically use N = 16 (“/16”)
or N = 8 (*“/8”). The patches are then passed through a
linear layer to form a set of embeddings. We add an extra
learnable token to the sequence [17, 18]. The role of this
token is to aggregate information from the entire sequence
and we attach the projection head h at its output. We refer
to this token as the class token [CLS] for consistency with



previous works[17, 18, 66], even though it is not attached
to any label nor supervision in our case. The set of patch
tokens and [CLS] token are fed to a standard Transformer
network with a “pre-norm” layer normalization [ |, 37]. The
Transformer is a sequence of self-attention and feed-forward
layers, paralleled with skip connections. The self-attention
layers update the token representations by looking at the
other token representations with an attention mechanism [4].

Implementation details. We pretrain the models on the
ImageNet dataset [58] without labels. We train with the
adamw optimizer [42] and a batch size of 1024, distributed
over 16 GPUs when using DeiT-S/16. The learning rate
is linearly ramped up during the first 10 epochs to its base
value determined with the following linear scaling rule [27]:
Ir = 0.0005 x batchsize/256. After this warmup, we decay
the learning rate with a cosine schedule [41]. The weight
decay also follows a cosine schedule from 0.04 to 0.4. The
temperature 7 is set to 0.1 while we use a linear warm-up
for 7, from 0.04 to 0.07 during the first 30 epochs. We
follow the data augmentations of BYOL [28] (color jittering,
Gaussian blur and solarization) and multi-crop [10] with a
bicubic interpolation to adapt the position embeddings to
the scales [18, 66]. The code and models to reproduce our
results is publicly available.

Evaluation protocols. Standard protocols for self-
supervised learning are to either learn a linear classifier
on frozen features [79, 31] or to finetune the features
on downstream tasks. For linear evaluations, we apply
random resize crops and horizontal flips augmentation
during training, and report accuracy on a central crop.
For finetuning evaluations, we initialize networks with
the pretrained weights and adapt them during training.
However, both evaluations are sensitive to hyperparameters,
and we observe a large variance in accuracy between runs
when varying the learning rate for example. We thus also
evaluate the quality of features with a simple weighted
nearest neighbor classifier (k-NN) as in [70]. We freeze
the pretrain model to compute and store the features of the
training data of the downstream task. The nearest neighbor
classifier then matches the feature of an image to the k
nearest stored features that votes for the label. We sweep
over different number of nearest neighbors and find that
20 NN is consistently working the best for most of our
runs. This evaluation protocol does not require any other
hyperparameter tuning, nor data augmentation and can be
run with only one pass over the downstream dataset, greatly
simplifying the feature evaluation.

Table 2: Linear and k-NN classification on ImageNet. We report
top-1 accuracy for linear and k-NN evaluations on the validation
set of ImageNet for different self-supervised methods. We focus
on ResNet-50 and DeiT-small architectures, but also report the best
results obtained across architectures. * are run by us. We run the
k-NN evaluation for models with official released weights. The
throughput (im/s) is calculated on a NVIDIA V100 GPU with 128
samples per forward. Parameters (M) are of the feature extractor.

Method Arch. Param. im/s Linear k-NN
Supervised RNS50 23 1237 79.3 793
SCLR [12] RNS50 23 1237 69.1  60.7
MoCov2 [14]  RNS50 23 1237  71.1 619
InfoMin [64]  RNS50 23 1237 730 653
BarlowT [78] RNS0 23 1237 732  66.0
OBoW [25] RNS50 23 1237 738 619
BYOL [28] RN50 23 1237 744 6438
DCv2 [10] RNS50 23 1237 752 67.1
SwAV [10] RNS50 23 1237 753 657
DINO RN50 23 1237 1753 675
Supervised DeiT-S 21 1007 79.8  79.8
BYOL™ [28] DeiT-S 21 1007 714  66.6
MoCov2* [14] DeiT-S 21 1007 727 644
SwWAV* [10] DeiT-S 21 1007 735 663
DINO DeiT-S 21 1007 77.0 745
Comparison across architectures

SCLR [12] RN50w4 375 117 76.8 69.3
SwAV [10] RN50w2 93 384 773 673
BYOL [28] RN50w2 93 384 774 -
DINO ViT-B/16 85 312 782  76.1
SwAV [10] RNS50wS5 586 76 785  67.1
BYOL [28] RN50w4 375 117 78.6 -
BYOL [28] RN200w2 250 123 79.6 739
DINO DeiT-S/8 21 180 79.7 1783
SCLRv2 [13] RNI152w3+SK 794 46 79.8  73.1
DINO ViT-B/8 85 63 80.1 774
4. Main Results

We first validate the DINO framework used in this study
with the standard self-supervised benchmark on ImageNet.
We then study the properties of the resulting features for
retrieval, object discovery and transfer-learning.

4.1. Comparing with SSL frameworks on ImageNet

We consider two different settings: comparison with the
same architecture and across architectures.

Comparing with the same architecture. In top panel of
Table 2, we compare DINO with other self-supervised meth-
ods with the same architecture, either a ResNet-50 [32] or a
DeiT-small (DeiT-S) [66]. The choice of DeiT-S is motivated
by its similarity with ResNet-50 along several axes: number
of parameters (21M vs 23M), throughput (1237/sec VS 1007



Table 3: Image retrieval. We compare the performance in retrieval
of off-the-shelf features pretrained with supervision or with DINO
on ImageNet and Google Landmarks v2 (GLDv2) dataset. We
report mAP on revisited Oxford and Paris. Pretraining with DINO
on a landmark dataset performs particularly well. For reference, we
also report the best retrieval method with off-the-shelf features [55].

ROx ‘RPar
Pretrain M H M H
ImNet 49.8 185 74.0 52.1

Pretrain  Arch.

Sup. [55] RN1014+R-MAC

Sup. DeiT-S/16 ImNet 335 89 630 372
DINO ResNet-50 ImNet 354 11.1 559 275
DINO DeiT-S/16 ImNet 41.8 13.7 63.1 34.4
DINO DeiT-S/16 GLDv2 51.5 243 753 51.6

im/sec) and supervised performance on ImageNet with the
training procedure of [66] (79.3% VS 79.8%). We explore
variants of DeiT-S in Appendix D. First, we observe that
DINO performs on par with the state of the art on ResNet-50,
validating that DINO works in the standard setting. When
we switch to a ViT architecture, DINO outperforms BYOL,
MoCov2 and SWAV by +3.5% with linear classification and
by +7.9% with k-NN evaluation. More surprisingly, the
performance with a simple £-NN classifier is almost on par
with a linear classifier (74.5% versus 77.0%). This property
emerges only when using DINO with ViT architectures, and
does not appear with other existing self-supervised methods
nor with a ResNet-50.

Comparing across architectures. On the bottom panel of
Table 2, we compare the best performance obtained across
architectures. The interest of this setting is not to compare
methods directly, but to evaluate the limits of a ViT trained
with DINO when moving to larger architectures. While
training a larger ViT with DINO improves the performance,
reducing the size of the patches (“/8” variants) has a bigger
impact on the performance. While reducing the patch size
do not add parameters, it still leads to a significant reduction
of running time, and larger memory usage. Nonetheless, a
base ViT with 8 x 8 patches trained with DINO achieves
80.1% top-1 in linear classification and 77.4% with a k-NN
classifier with 10x less parameters and 1.4 x faster run time
than previous state of the art [13].

4.2. Properties of ViT trained with SSL

We evaluate properties of the DINO features in terms of
nearest neighbor search, retaining information about object
location and transferability to downstream tasks.

Table 4: Copy detection. We report the mAP performance in copy
detection on Copydays “strong” subset [20]. For reference, we
also report the performance of the multigrain model [5], trained
specifically for particular object retrieval.

Method Arch. Dim. Resolution mAP
Multigrain [S]  ResNet-50 2048 2242 75.1
Multigrain [5] ResNet-50 2048  largest side 800  82.5
Supervised [66]  VIT-B/16 1536 2242 76.4
DINO VIT-B/16 1536 2242 81.7
DINO ViT-B/8 1536 3202 85.5

4.2.1 Nearest neighbor retrieval with DINO ViT

The results on ImageNet classification have exposed the
potential of our features for tasks relying on nearest neighbor
retrieval. In this set of experiments, we further consolidate
this finding on landmark retrieval and copy detection tasks.

Image Retrieval. We consider the revisited [51] Oxford
and Paris image retrieval datasets [48]. They contain 3 differ-
ent splits of gradual difficulty with query/database pairs. We
report the Mean Average Precision (mAP) for the Medium
(M) and Hard (H) splits. In Table 3, we compare the perfor-
mance of different off-the-shelf features obtained with either
supervised or DINO training. We freeze the features and
directly apply k-NN for retrieval. We observe that DINO
features outperform those trained on ImageNet with labels.
An advantage of SSL approaches is that they can be
trained on any dataset, without requiring any form of anno-
tations. We train DINO on the 1.2M clean set from Google
Landmarks v2 (GLDv2) [69], a dataset of landmarks de-
signed for retrieval purposes. DINO ViT features trained on
GLDv2 are remarkably good, outperforming previously pub-
lished methods based on off-the-shelf descriptors [65, 55].

Copy detection. We also evaluate the performance of ViTs
trained with DINO on a copy detection task. We report the
mean average precision on the “strong” subset of the INRIA
Copydays dataset [20]. The task is to recognize images
that have been distorted by blur, insertions, print and scan,
etc. Following prior work [5], we add 10k distractor images
randomly sampled from the YFCC100M dataset [63]. We
perform copy detection directly with cosine similarity on the
features obtained from our pretrained network. The features
are obtained as the concatenation of the output [CLS] token
and of the GeM pooled [52] output patch tokens. This results
in a 1536d descriptor for ViT-B. Following [5], we apply
whitening on the features. We learn this transformation on
an extra 20K random images from YFCC100M, distincts
from the distractors. Table 4 shows that ViT trained with
DINO is very competitive on copy detection.



Table 5: DAVIS 2017 Video object segmentation. We evaluate
the quality of frozen features on video instance tracking. We report
mean region similarity .7,, and mean contour-based accuracy F,.
We compare with existing self-supervised methods and a supervised
DeiT-S/8 trained on ImageNet. Image resolution is 480p.

Method Data Arch. (T&F)m TIm  Fm
Supervised

ImageNet INet DeiT-S/8 66.0 63.9 68.1
STM [46] I/D/Y RN50 81.8 79.2 843
Self-supervised

CT [68] VLOG RN50 48.7 464 50.0
MAST [38] YT-VOS RNIS8 65.5 63.3 67.6
STC [35] Kinetics  RN18 67.6 64.8 70.2
DINO INet DeiT-S/16 61.8 60.2 63.4
DINO INet ViT-B/16 62.3 60.7 63.9
DINO INet DeiT-S/8 69.9 66.6 73.1
DINO INet ViT-B/8 71.4 67.9 749

Figure 3: Attention maps from multiple heads. We consider the
heads from the last layer of a DeiT-S/8 trained with DINO and
display the self-attention for [CLS] token query. Different heads,
materialized by different colors, focus on different locations that
represents different objects or parts (more examples in Appendix).

4.2.2 Discovering the semantic layout of scenes

As shown qualitatively in Figure 1, our self-attention maps
contain information about the segmentation of an image. In
this study, we measure this property on a standard benchmark
as well as by directly probing the quality of masks generated
from these attention maps.

Video instance segmentation. In Tab. 5, we evaluate the
output patch tokens on the DAVIS-2017 video instance seg-
mentation benchmark [50]. We follow the experimental pro-
tocol in Jabri et al. [35] and segment scenes with a nearest-
neighbor between consecutive frames; we thus do not train
any model on top of the features, nor finetune any weights
for the task. We observe in Tab. 5 that even though our
training objective nor our architecture are designed for dense
tasks, the performance is competitive on this benchmark.
Since the network is not finetuned, the output of the model
must have retained some spatial information. Finally, for
this dense recognition task, the variants with small patches
(“/8”) perform much better (+9.1% (J &F).,, for ViT-B).

Probing the self-attention map. In Fig. 3, we show that
different heads can attend to different semantic regions of an
image, even when they are occluded (the bushes on the third
row) or small (the flag on the second row). Visualizations are
obtained with 480p images, resulting in sequences of 3601
tokens for DeiT-S/8. In Fig. 4, we show that a supervised
ViT does not attend well to objects in presence of clutter
both qualitatively and quantitatively. We report the Jaccard
similarity between the ground truth and segmentation masks
obtained by thresholding the self-attention map to keep 60%
of the mass. Note that the self-attention maps are smooth
and not optimized to produce a mask. Nonetheless, we see
a clear difference between the supervised or DINO models
with a significant gap in terms of Jaccard similarities. Note
that self-supervised convnets also contain information about
segmentations but it requires dedicated methods to extract it
from their weights [29].

4.2.3 Transfer learning on downstream tasks

In Tab. 6, we evaluate the quality of the features pretrained
with DINO on different downstream tasks. We compare
with features from the same architectures trained with super-
vision on ImageNet. We follow the protocol used in Tou-
vron et al. [66] and finetune the features on each downstream
task. We observe that for ViT architectures, self-supervised
pretraining transfers better than features trained with su-
pervision, which is consistent with observations made on
convolutional networks [10, 31, 60]. Finally, self-supervised
pretraining greatly improves results on ImageNet (+1-2%).

5. Ablation Study of DINO

In this section, we empirically study DINO applied to
ViT. The model considered for this entire study is DeiT-S.
We also refer the reader to Appendix for additional studies.

5.1. Importance of the Different Components

We show the impact of adding different components from
self-supervised learning on ViT trained with our framework.



Supervised

Random  Supervised DINO

DeiT-S/16 22.0 27.3 45.9
DeiT-S/8 21.8 23.7 44.7

Figure 4: Segmentations from supervised versus DINO. We vi-
sualize masks obtained by thresholding the self-attention maps to
keep 60% of the mass. On top, we show the resulting masks for
a DeiT-S/8 trained with supervision and DINO. We show the best
head for both models. The table at the bottom compares the Jac-
card similarity between the ground truth and these masks on the
validation images of PASCAL VOC12 dataset.

Table 6: Transfer learning by finetuning pretrained models on
different datasets. We report top-1 accuracy. Self-supervised
pretraining with DINO transfers better than supervised pretraining.

Cifaryg Cifarioo INat;g INatj9 Flwrs Cars INet

DeiT-S/16
Sup. [66]  99.0 895 707 766 982 92.1 799
DINO 99.0 90.5 72.0 782 98.5 93.0 81.5
ViT-B/16
Sup. [66]  99.0 90.8 732 777 984 92.1 81.8

DINO 99.1 91.7 726 78.6 98.8 93.0 82.8

In Table 7, we report different model variants as we add
or remove components. First, we observe that in the absence
of momentum, our framework does not work (row 2) and
more advanced operations, SK for example, are required to
avoid collapse (row Y). However, with momentum, using
SK has little impact (row 3). In addtition, comparing rows
and 9 highlights the importance of the momentum encoder
for performance. Second, in rows 4 and 5, we observe that
multi-crop training and the cross-entropy loss in DINO are
important components to obtain good features. We also ob-
serve that adding a predictor to the student network has little
impact (row 6) while it is critical in BYOL to prevent col-
lapse [15, 28]. For completeness, we propose in Appendix B
an extended version of this ablation study.

Importance of the patch size. In Fig. 5, we compare the
k-NN classification performance of DeiT-S models trained

Table 7: Important component for self-supervised ViT pre-
training. Models are trained for 300 epochs with DeiT-S/16. We
study the different components that matter for the k-NN and linear
(“Lin.”) evaluations. For the different variants, we highlight the
differences from the default DINO setting. The best combination
is the momentum encoder with the multicrop augmentation and
the cross-entropy loss. We also report results with BYOL [28],
MoCo-v2 [14] and SWAV [10].

Method Mom. SK MC Loss Pred. k-NN Lin.

DINO v X v CE X 72.8 76.1
X X Vv CE X 0.1 0.1
v v v CE X 72.2 76.0
v X X CE X 67.9 72.5
v X v’ MSE X 52.6 62.4
v X v CE v 71.8 75.6
BYOL v X X  MSE v 66.6 71.4
MoCov2 v X X INCE X 62.0 71.6
SwAV X v v CE X 64.7 71.8

SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor
CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE

~f= ViT-B == DeiT-S  Figure 5: Effect of
Patch Size. k-NN eval-
— 78t 8x8 uation as a function of
? - ;e;‘ = =y A 16x16 the throughputs for dif-
B T6F 8x8* ferent input patch sizes
5t ~ with ViT-B and DeiT-S.
& 741 > i
E '\ Models are trained for
= r 16x16| 300 epochs.
72 > S
102 3
throughput (im/s)

with different patch sizes, 16 x 16, 8 x 8 and 5 x 5. We
also compare to ViT-B with 16 x 16 and 8 x 8 patches. All
the models are trained for 300 epochs. We observe that the
performance greatly improves as we decrease the size of the
patch. It is interesting to see that performance can be greatly
improved without adding additional parameters. However,
the performance gain from using smaller patches comes at
the expense of throughput: when using 5x5 patches, the
throughput falls to 44 im/s, vs 180 im/s for 8 x8 patches.

5.2. Impact of the choice of Teacher Network

In this ablation, we experiment with different teacher
network to understand its role in DINO. We compare models
trained for 300 epochs using the k-NN protocol.

Building different teachers from the student. In
Fig. 6(right), we compare different strategies to build the
teacher from previous instances of the student besides the



— 72 Teacher Top-1
®
3 68 Student copy 0.1
%: m= Student Prev%ous iter 0.1
> T Previous epoch  66.6
eacher
64 Momentum 72.8

0 100 200 300
epochs

Figure 6: Top-1 accuracy on ImageNet validation with &£-NN classi-

fier. (left) Comparison between the performance of the momentum

teacher and the student during training. (right) Comparison be-

tween different types of teacher network. The momentum encoder
leads to the best performance but is not the only viable option.

momentum teacher. First we consider using the student net-
work from a previous epoch as a teacher. This strategy has
been used in the memory bank of Wu ef al. [70] and as a
form of hard-distillation in Caron et al. [8] and Asano et
al. [2]. Second, we consider using the student network from
the previous iteration, as well as a copy of the student for the
teacher. In our setting, using a teacher based on a recent ver-
sion of the student does not converge. This setting requires
more normalizations to work. Interestingly, we observe that
using a teacher from the previous epoch does not collapse,
providing performance in the k-NN evaluation competitive
with existing frameworks such as MoCo-v2 or BYOL. While
using a momentum encoder clearly provides superior perfor-
mance to this naive teacher, this finding suggests that there
is a space to investigate alternatives for the teacher.

Analyzing the training dynamic. To further understand
the reasons why a momentum teacher works well in our
framework, we study its dynamic during the training of a
ViT in the left panel of Fig. 6. A key observation is that
this teacher constantly outperforms the student during the
training, and we observe the same behavior when training
with a ResNet-50 (Appendix D). This behavior has not been
observed by other frameworks also using momentum [31,

], nor when the teacher is built from the previous epoch.
We propose to interpret the momentum teacher in DINO
as a form of Polyak-Ruppert averaging [49, 57] with an
exponentially decay. Polyak-Ruppert averaging is often used
to simulate model ensembling to improve the performance
of a network at the end of the training [36]. Our method can
be interpreted as applying Polyak-Ruppert averaging during
the training to constantly build a model ensembling that has
superior performances. This model ensembling then guides
the training of the student network [62].

5.3. Avoiding collapse

We study the complementarity role of centering and tar-
get sharpening to avoid collapse. There are two forms of

=== sharpening == = centering both

2 8
26 52
= o0
SOl o
g 5
52 3
=0 %0
0 epochs 100 0 epochs 100

Figure 7: Collapse study. (left): evolution of the teacher’s target
entropy along training epochs; (right): evolution of KL divergence
between teacher and student outputs.

Table 8: Time and memory requirements. We show total running
time and peak memory per GPU (“mem.”) when running DeiT-S/16
DINO models on two 8-GPU machines. We report top-1 ImageNet
val acc with linear evaluation for several variants of multi-crop,
each having a different level of compute requirement.

100 epochs 300 epochs
multi-crop top-1 time top-1 time mem.
2% 2242 67.8 153h 725 459h 9.3G

2x224%2 + 2x962 71.5 17.0h
2x224%2 + 6x962 73.8 20.3h
2x224%2 +10x 962 74.6 24.2h

74.5 51.0h 10.5G
75.9 60.9h 12.9G
76.1 72.6h 15.4G

collapse: regardless of the input, the model output is uniform
along all the dimensions or dominated by one dimension.
The centering avoids the collapse induced by a dominant
dimension, but encourages an uniform output. Sharpening
induces the opposite effect. We show this complementarity
by decomposing the cross-entropy H into an entropy /& and
the Kullback-Leibler divergence (“KL”) Dgr.:

H(P;, Ps) = h(P) + Dk (P Ps). ®)

A KL equal to zero indicates a constant output, and hence
a collapse. In Fig. 7, we plot the entropy and KL during
training with and without centering and sharpening. If one
operation is missing, the KL converges to zero, indicating
a collapse. However, the entropy h converges to different
values: 0 with no centering and — log(1/K’) with no sharp-
ening, indicating that both operations induce different form
of collapse. Applying both operations balances these effects
(see study of the sharpening parameter 7; in Appendix D).

5.4. Compute requirements

In Tab. 8, we detail the time and GPU memory require-
ments when running DeiT-S/16 DINO models on two 8-
GPU machines. We report results with several variants of
multi-crop training, each having a different level of compute
requirement. We observe in Tab. 8 that using multi-crop im-
proves the accuracy / running-time tradeoff for DINO runs.



For example, the performance is 72.5% after 46 hours of
training without multi-crop (i.e. 2 x 2242) while DINO in
2x22424+10x962 crop setting reaches 74.6% in 24 hours only.
This is an improvement of +2% while requiring 2x less time,
though the memory usage is higher (15.4G versus 9.3G). We
observe that the performance boost brought with multi-crop
cannot be caught up by more training in the 2 x 2242 setting,
which shows the value of the “local-to-global” augmentation.
Finally, the gain from adding more views diminishes (+.2%
form 6x to 10x 962 crops) for longer trainings.

Overall, training DINO with Vision Transformers
achieves 76.1 top-1 accuracy using two 8-GPU servers for 3
days. This result outperforms state-of-the-art self-supervised
systems based on convolutional networks of comparable
sizes with a significant reduction of computational require-
ments [28, 10]. Our code is available to train self-supervised
ViT on a limited number of GPUs.

5.5. Training with small batches

Table 9: Effect of batch
sizes. Top-1 with £-NN
for models trained for 100
epochs without multi-crop.

bs 128 256 512 1024
top-1 579 59.1 59.6 599

In Tab. 9, we study the impact of the batch size on the
features obtained with DINO. We also study the impact
of the smooth parameter m used in the centering update
rule of Eq. 4 in Appendix D. We scale the learning rate lin-
early with the batch size [27]: I = 0.0005 = batchsize /256.
Tab. 9 confirms that we can train models to high perfor-
mance with small batches. Results with the smaller batch
sizes (bs = 128) are slightly below our default training setup
of bs = 1024, and would certainly require to re-tune hyper-
parameters like the momentum rates for example. Note that
the experiment with batch size of 128 runs on only 1 GPU.
We have explored training a model with a batch size of 8,
reaching 35.2% after 50 epochs, showing the potential for
training large models that barely fit an image per GPU.

6. Conclusion

In this work, we have shown the potential of self-
supervised pretraining a standard ViT model, achieving per-
formance that are comparable with the best convnets specifi-
cally designed for this setting. We have also seen emerged
two properties that can be leveraged in future applications:
the quality of the features in k-NN classification has a po-
tential for image retrieval where ViT are already showing
promising results [21]. The presence of information about
the scene layout in the features can also benefit weakly super-
vised image segmentation. However, the main result of this
paper is that we have evidences that self-supervised learning
could be the key to developing a BERT-like model based on

ViT. In the future, we plan to explore if pretraining a large
ViT model with DINO on random uncurated images could
push the limits of visual features [26].

Acknowledgement. We thank Mahmoud Assran, Matthijs
Douze, Allan Jabri, Jure Zbontar, Alaaeldin El-Nouby, Y-
Lan Boureau, Kaiming He, Thomas Lucas as well as the
Thoth and FAIR teams for their help, support and discussions
around this project. Julien Mairal was funded by the ERC
grant number 714381 (SOLARIS project) and by ANR 3IA
MIAI@Grenoble Alpes (ANR-19-P31A-0003).

References

[1] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Or-
mandi, George E Dahl, and Geoffrey E Hinton. Large scale
distributed neural network training through online distillation.
arXiv preprint arXiv:1804.03235, 2018. 3

[2] Yuki Markus Asano, Christian Rupprecht, and Andrea

Vedaldi. Self-labelling via simultaneous clustering and repre-

sentation learning. In /CLR, 2020. 2,9

Mahmoud Assran, Nicolas Ballas, Lluis Castrejon, and

Michael Rabbat. Recovering petaflops in contrastive semi-

supervised learning of visual representations. preprint

arXiv:2006.10803, 2020. 14

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and

translate. preprint arXiv:1409.0473, 2014. 5

Maxim Berman, Hervé Jégou, Vedaldi Andrea, lasonas

Kokkinos, and Matthijs Douze. MultiGrain: a unified im-

age embedding for classes and instances. arXiv preprint

arXiv:1902.05509, 2019. 6

Piotr Bojanowski and Armand Joulin. Unsupervised learning

by predicting noise. In ICML, 2017. 2

Cristian Bucilud, Rich Caruana, and Alexandru Niculescu-

Mizil. Model compression. In SIGKDD, 2006. 3

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning of

visual features. In ECCV, 2018. 2,4, 9

Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Ar-

mand Joulin. Unsupervised pre-training of image features on
non-curated data. In ICCV, 2019. 2, 16
[10] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal,
Piotr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurlPS, 2020. 1, 2,3,4,5,7,8, 10, 14, 15, 16, 17, 18
[11] Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson,
Wolfgang Macherey, George Foster, Llion Jones, Niki Parmar,
Mike Schuster, Zhifeng Chen, et al. The best of both worlds:
Combining recent advances in neural machine translation.
preprint arXiv:1804.09849, 2018. 5

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. preprint arXiv:2002.05709, 2020. 2,
3,5,15,17

3

—

[4

—

(5

—

[6

—_

[7

—

[8

—

[9

—



[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey Hinton. Big self-supervised models
are strong semi-supervised learners. In NeurIPS, 2020. 3, 5,
6, 14

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
preprint arXiv:2003.04297, 2020. 5, 8, 14, 15, 18

Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. preprint arXiv:2011.10566, 2020. 2,
3,4,8, 14,15, 16, 18

Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In NeurIPS, 2013. 15

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. preprint arXiv:1810.04805,
2018. 1,4,5, 18

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. preprint arXiv:2010.11929,
2020. 1,4,5,13

Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springen-
berg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with exemplar convolutional
neural networks. TPAMI, 2016. 2

Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia, Lau-
rent Amsaleg, and Cordelia Schmid. Evaluation of gist de-
scriptors for web-scale image search. In CIVR, 2009. 6
Alaaeldin El-Nouby, Natalia Neverova, Ivan Laptev, and
Hervé Jégou. Training vision transformers for image retrieval.
preprint arXiv:2102.05644,2021. 10

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto,
and Nicu Sebe. Whitening for self-supervised representation
learning. preprint arXiv:2007.06346, 2020. 2

Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. 1JCV, 2010. 13

Zhiyuan Fang, Jianfeng Wang, Lijuan Wang, Lei Zhang,
Yezhou Yang, and Zicheng Liu. Seed: Self-supervised distil-
lation for visual representation. 2021. 3

Spyros Gidaris, Andrei Bursuc, Gilles Puy, Nikos Komodakis,
Matthieu Cord, and Patrick Pérez. Online bag-of-visual-
words generation for unsupervised representation learning.
arXiv preprint arXiv:2012.11552, 2020. 2, 5

Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min
Xu, Pengchao Wang, Vivek Pai, Mannat Singh, Vitaliy
Liptchinsky, Ishan Misra, Armand Joulin, et al. Self-
supervised pretraining of visual features in the wild. preprint
arXiv:2103.01988, 2021. 10

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. preprint arXiv:1706.02677,
2017. 5,10

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

[44]

ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent: A new
approach to self-supervised learning. In NeurIPS, 2020. 2, 3,
4,5,8,9, 10, 14, 15, 16, 18

Shir Gur, Ameen Ali, and Lior Wolf. Visualization of su-
pervised and self-supervised neural networks via attribution
guided factorization. preprint arXiv:2012.02166, 2020. 7
Michael Gutmann and Aapo Hyvérinen. Noise-contrastive
estimation: A new estimation principle for unnormalized
statistical models. In International Conference on Artificial
Intelligence and Statistics, 2010. 2

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020. 1, 2, 3,4, 5,7, 9,
16

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
4,5

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. preprint arXiv:1503.02531,
2015. 2,3

Jiabo Huang, Qi Dong, Shaogang Gong, and Xiatian Zhu.
Unsupervised deep learning by neighbourhood discovery. In
ICML, 2019. 2

Allan Jabri, Andrew Owens, and Alexei A Efros. Space-time
correspondence as a contrastive random walk. 2020. 7
Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. On using very large target vocabulary for
neural machine translation. preprint arXiv:1412.2007, 2014.
4,9

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart,
and Alexander M Rush. Opennmt: Open-source toolkit for
neural machine translation. preprint arXiv:1701.02810, 2017.
5

Zihang Lai, Erika Lu, and Weidi Xie. Mast: A memory-
augmented self-supervised tracker. In CVPR, 2020. 7
Dong-Hyun Lee et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural networks.
In Workshop on challenges in representation learning, ICML,
2013. 3

Junnan Li, Pan Zhou, Caiming Xiong, and Steven C.H. Hoi.
Prototypical contrastive learning of unsupervised representa-
tions. ICLR, 2021. 2

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. preprint arXiv:1608.03983, 2016.
5

Ilya Loshchilov and Frank Hutter. Fixing weight decay regu-
larization in adam. 2018. 5

Julien Mairal. Cyanure: An open-source toolbox for empirical
risk minimization for python, c++, and soon more. preprint
arXiv:1912.08165, 2019. 13

Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, 2008. 13



[45]

[46]

[47]

(48]

[49]

(501

[51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

Mehdi Noroozi, Ananth Vinjimoor, Paolo Favaro, and Hamed
Pirsiavash. Boosting self-supervised learning via knowledge
transfer. In CVPR, 2018. 3

Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo
Kim. Video object segmentation using space-time memory
networks. In ICCV, 2019. 7

Hieu Pham, Qizhe Xie, Zihang Dai, and Quoc V Le. Meta
pseudo labels. preprint arXiv:2003.10580, 2020. 14

James Philbin, Ondrej Chum, Michael Isard, Josef Sivic,
and Andrew Zisserman. Lost in quantization: Improving
particular object retrieval in large scale image databases. In
CVPR, 2008. 6

Boris T Polyak and Anatoli B Juditsky. Acceleration of
stochastic approximation by averaging. SIAM journal on
control and optimization, 30(4):838-855, 1992. 4,9, 17
Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beldez, Alex Sorkine-Hornung, and Luc Van Gool. The
2017 davis challenge on video object segmentation. preprint
arXiv:1704.00675, 2017. 7

Filip Radenovi¢, Ahmet Iscen, Giorgos Tolias, Yannis
Avrithis, and Ondfej Chum. Revisiting oxford and paris:
Large-scale image retrieval benchmarking. 2018. 6

Filip Radenovi¢, Giorgos Tolias, and Ondfej Chum. Fine-
tuning cnn image retrieval with no human annotation. /IEEE
transactions on pattern analysis and machine intelligence,
2018. 6

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. 1

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaim-
ing He, and Piotr Dollar. Designing network design spaces.
In CVPR, 2020. 13

Jerome Revaud, Jon Almazan, Rafael S Rezende, and Cesar
Roberto de Souza. Learning with average precision: Training
image retrieval with a listwise loss. In ICCV, 2019. 6

Pierre H Richemond, Jean-Bastien Grill, Florent Altché,
Corentin Tallec, Florian Strub, Andrew Brock, Samuel Smith,
Soham De, Razvan Pascanu, Bilal Piot, et al. Byol works even
without batch statistics. preprint arXiv:2010.10241, 2020. 2,
4

David Ruppert. Efficient estimations from a slowly conver-
gent robbins-monro process. Technical report, 1988. 4, 9
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li
Fei-Fei. Imagenet large scale visual recognition challenge.
1JCV,2015. 1,5, 13

Tim Salimans and Diederik P Kingma. Weight normalization:
A simple reparameterization to accelerate training of deep
neural networks. NeurIPS, 2016. 4, 16

Mert Bulent Sariyildiz, Yannis Kalantidis, Diane Larlus, and
Karteek Alahari. Concept generalization in visual representa-
tion learning. arXiv preprint arXiv:2012.05649, 2020. 7
Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang,
Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han Zhang,
and Colin Raffel. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. In NeurIPS, 2020.
14

[62]

[63]

[64]

[65]

(66]

[67]

(68]

[69]

(70]

(71]

(72]

(73]

[74]

[75]

[76]

(771

(78]

Antti Tarvainen and Harri Valpola. Mean teachers are
better role models: Weight-averaged consistency targets
improve semi-supervised deep learning results. preprint
arXiv:1703.01780,2017. 3, 4,9, 17

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin
Elizalde, Karl Ni, Douglas Poland, Damian Borth, and Li-Jia
Li. Yfcc100m: The new data in multimedia research. arXiv
preprint arXiv:1503.01817, 2015. 6

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning. NeurIPS, 2020. 5

Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular
object retrieval with integral max-pooling of cnn activations.
arXiv preprint arXiv:1511.05879, 2015. 6

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. preprint arXiv:2012.12877, 2020. 1,4, 5,6, 7, 8, 13,
17

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, fukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1, 4
Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning
correspondence from the cycle-consistency of time. In CVPR,
2019. 7

Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim.
Google landmarks dataset v2-a large-scale benchmark for
instance-level recognition and retrieval. 2020. 6

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, 2018. 2,4,5,9, 18

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. In ICML, 2016. 2
Qizhe Xie, Zihang Dai Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V. Le. Unsupervised data augmentation for
consistency training. preprint arXiv:1904.12848, 2020. 14
Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet clas-
sification. In CVPR, 2020. 3

Haohang Xu, Xiaopeng Zhang, Hao Li, Lingxi Xie, Hongkai
Xiong, and Qi Tian. Seed the views: Hierarchical seman-
tic alignment for contrastive representation learning. arXiv
preprint arXiv:2012.02733,2021. 15

Qiantong Xu, Tatiana Likhomanenko, Jacob Kahn, Awni
Hannun, Gabriel Synnaeve, and Ronan Collobert. Iter-
ative pseudo-labeling for speech recognition. preprint
arXiv:2005.09267, 2020. 3

I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and
Dhruv Mahajan. Billion-scale semi-supervised learning for
image classification. preprint arXiv:1905.00546, 2019. 3
Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-
vised learning of deep representations and image clusters. In
CVPR, 2016. 2

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane
Deny. Barlow twins: Self-supervised learning via redundancy
reduction. arXiv preprint arXiv:2103.03230, 2021. 2, 5



[79] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In ECCV, 2016. 5

[80] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring
self-attention for image recognition. In CVPR, 2020. 1

[81] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva. Learning deep features for scene
recognition using places database. In NeurIPS, 2014. 13

[82] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local

aggregation for unsupervised learning of visual embeddings.
In ICCV, 2019. 2

Appendix
A. Additional Results

k-NN classification. In Tab. 10, we evaluate the frozen
representations given by ResNet-50 or DeiT-small pre-
trained with DINO with two evaluation protocols: linear
or k-NN. For both evaluations, we extract representations
from a pre-trained network without using any data augmen-
tation. Then, we perform classification either with weighted
k-NN or with a linear regression learned with cyanure
library [43]. In Tab. 10 we see that DeiT-S accuracies are
better than accuracies obtained with RN50 both with a linear
or a k-NN classifier. However, the performance gap when
using the k-NN evaluation is much more significant than
when considering linear evaluation. For example on Ima-
geNet 1%, DeiT-S outperforms ResNet-50 by a large margin
of +14.1% with k-NN evaluation. This suggests that trans-
formers architectures trained with DINO might offer more
model flexibility that benefits the k-NN evaluation. K-NN
classifiers have the great advantage of being fast and light
to deploy, without requiring any domain adaptation. Over-
all, ViT trained with DINO provides features that combine
particularly well with k-NN classifiers.

Table 10: £-NN and linear evaluation for DeiT-S/16 and ResNet-
50 pre-trained with DINO. We use ImageNet-1k [58] (“Inet”),
Places205 [81], PASCAL VOC [23] and Oxford-102 flowers
(“FLOWERS?”) [44]. ViT trained with DINO provides features
that are particularly &£-NN friendly.

Logistic k-NN
RN50 DeiT-S A RN50 DeiT-S A

Inet 100% 72.1 75.7 3.6 67.5 74.5 7.0
Inet 10% 67.8 72.2 44 59.3 69.1 9.8

Inet 1% 55.1 645 94 472 613 14.1
Pl. 10% 534 521 -13 46.9 48.6 1.7
PL. 1% 46.5 46.3 -0.2 39.2 41.3 2.1
VOCO07 88.9 89.2 03 84.9 88.0 3.1
FLOWERS 95.6 96.4 0.8 87.9 89.1 1.2
Average A 2.4 5.6

Table 11: ImageNet classification with different pretraining.
Top-1 accuracy on ImageNet for supervised ViT-B/16 models using
different pretrainings or using an additional pretrained convnet to
guide the training. The methods use different image resolution
(“res.”) and training procedure (“tr. proc.”), i.e., data augmentation
and optimization. “MPP” is Masked Patch Prediction.

Pretraining

method data res. tr. proc. Top-1
Pretrain on additional data

MMP JFT-300M 384 [18] 79.9
Supervised  JFT-300M 384 [18] 84.2
Train with additional model

Rand. init. - 224 [66] 83.4
No additional data nor model

Rand. init. - 224 [18] 77.9
Rand. init. - 224 [66] 81.8
Supervised ImNet 224 [66] 81.9
DINO ImNet 224 [66] 82.8

Self-supervised ImageNet pretraining of ViT. In this ex-

periment, we study the impact of pretraining a supervised
ViT model with our method. In Tab. 11, we compare the
performance of supervised ViT models that are initialized
with different pretraining or guided during training with an
additional pretrained convnet. The first set of models are
pretrained with and without supervision on the large curated
dataset composed of 300M images. The second set of mod-
els are trained with hard knowledge distillation from a pre-
trained supervised RegNetY [54]. The last set of models do
not use any additional data nor models, and are initialized ei-
ther randomly or after a pretraining with DINO on ImageNet.
Compare to random initialization, pretraining with DINO
leads to a performance gain of +1%. This is not caused by a
longer training since pretraining with supervision instead of
DINO does not improve performance. Using self-supervised
pretraining reduces the gap with models pretrained on extra
data or distilled from a convnet.

Low-shot learning on ImageNet. We evaluate the fea-
tures obtained with DINO applied on DeiT-S on low-shot
learning. In Tab. 12, we report the validation accuracy of
a logistic regression trained on frozen features (FROZEN)
with 1% and 10% labels. The logistic regression is trained
with the cyanure library [43]. When comparing mod-
els with a similar number of parameters and image/sec, we
observe that our features are on par with state-of-the-art
semi-supervised models. Interestingly, this performance
is obtained by training a multi-class logistic regression on
frozen features, without data augmentation nor finetuning.



Figure 8: Self-attention for a set of reference points. We visualize the self-attention module from the last block of a DeiT-S/8 trained with
DINO. The network is able to separate objects, though it has been trained with no supervision at all.

Table 12: Low-shot learning on ImageNet with frozen ViT fea-
tures. We train a logistic regression on frozen features (FROZEN).
Note that this FROZEN evaluation is performed without any fine-
tuning nor data augmentation. We report top-1 accuracy. For
reference, we show previously published results that uses finetun-
ing and semi-supervised learning.

Top 1

Method Arch Param. 1% 10%
Self-supervised pretraining with finetuning

UDA [72] RN50 23 - 68.1
SimCLRv2 [13] RNS50 23 579 684
BYOL [28] RNS50 23 53.2 68.8
SwAV [10] RN50 23 539 702
SimCLRv2 [15] RN50w4 375 63.0 744
BYOL [28] RN200w2 250 712 777
Semi-supervised methods

SimCLRv2+KD [13] RNS50 23 60.0 70.5
SwAV+CT [3] RN50 23 - 70.8
FixMatch [61] RN50 23 - 71.5
MPL [47] RN50 23 73.9

SimCLRv2+KD [13] RN152w3+SK 794 76.6 809

Frozen self-supervised features
DINO -FROZEN DeiT-S/16 21 645 722

B. Methodology Comparison

We compare the performance of different self-supervised
frameworks, MoCo-v2 [14], SWAV [10] and BYOL [28]
when using convnet or ViT. In Tab. 13, we see that when
trained with ResNet-50 (convnet), DINO performs on par
with SWAV and BYOL. However, DINO unravels its poten-
tial with DeiT-S (ViT), outperforming MoCo-v2, SWAV and
BYOL by large margins (+4.3% with linear and +6.2% with
k-NN evaluations). In the rest of this section, we perform
ablations to better understand the performance of DINO
applied to ViT. In particular, we provide a detailed com-
parison with methods that either use a momentum encoder,
namely MoCo-v2 and BYOL, and methods that use multi-
crop, namely SWAV.

Table 13: Methodology comparison for DEIT-small and
ResNet-50. We report ImageNet linear and k-NN evaluations
validation accuracy after 300 epochs pre-training. All numbers are
run by us and match or outperform published results.

ResNet-50 DeiT-small
Method Linear k-NN Linear k-NN
MoCo-v2 71.1 62.9 71.6 62.0
BYOL 72.7 65.4 71.4 66.6
SwAV 74.1 65.4 71.8 64.7
DINO 74.5 65.6 76.1 72.8

Table 14: Relation to SWAV. We vary the operation on the teacher
output between centering, a softmax applied over the batch di-
mension and the Sinkhorn-Knopp algorithm. We also ablate the
Momentum encoder by replacing it with a hard copy of the student
with a stop-gradient as in SWAV. Models are run for 300 epochs
with DeiT-S/16. We report top-1 accuracy on ImageNet linear
evaluation.

Method Momentum Operation Top-1
DINO v Centering 76.1
- v Softmax (batch) 75.8
- v Sinkhorn-Knopp  76.0
- Centering 0.1
- Softmax (batch) 72.2
SwAV Sinkhorn-Knopp 71.8
Relation to SWAV. In Tab. 14, we evaluate the differences

between DINO and SwAV: the presence of the momentum
encoder and the operation on top of the teacher output. In
absence of the momentum, a copy of the student with a stop-
gradient is used. We consider three operations on the teacher
output: Centering, Sinkhorn-Knopp ora Softmax
along the batch axis. The Softmax is similar to a single
Sinkhorn-Knopp iteration as detailed in the next paragraph.
First, these ablations show that using a momentum encoder
significantly improves the performance for ViT (3 versus 6,
and 2 versus 5). Second, the momentum encoder also avoids



collapse when using only centering (row |). In the absence
of momentum, centering the outputs does not work (4) and
more advanced operations are required (5, 6). Overall, these
ablations highlight the importance of the momentum en-
coder, not only for performance but also to stabilize training,
removing the need for normalization beyond centering.

Details on the Softmax (batch) variant. The itera-
tive Sinkhorn-Knopp algorithm [16] used in SWAV [10] is
implemented simply with the following PyTorch style code.
# x is n-by-K

# tau is Sinkhorn regularization param

x = exp(x / tau)

for _ in range(num_iters): # 1 iter of Sinkhorn
# total weight per dimension (or cluster)
c = sum(x, dim=0, keepdim=True)
x /= ¢C
# total weight per sample
n = sum(x, dim=1, keepdim=True)
# x sums to 1 for each sample (assignment)
X /= n
When performing a single Sinkhorn iteration

(num_iters=1) the implementation can be highly
simplified into only two lines of code, which is our
softmax (batch) variant:

x = softmax(x / tau, dim=0)
x /= sum(x, dim=1, keepdim=True)

We have seen in Tab. 14 that this highly simplified variant
of SWAV works competitively with SwWAV. Intuitively, the
softmax operation on the batch axis allows to select for
each dimension (or “cluster”) its best matches in the batch.

Relation to MoCo-v2 and BYOL. In Tab. 15, we present
the impact of ablating components that differ between DINO,
MoCo-v2 and BYOL: the choice of loss, the predictor in the
student head, the centering operation, the batch normaliza-
tion in the projection heads, and finally, the multi-crop aug-
mentation. The loss in DINO is a cross-entropy on sharpened
softmax outputs (CE) while MoCo-v2 uses the InfoNCE con-
trastive loss (INCE) and BYOL a mean squared error on
12-normalized outputs (MSE). No sharpening is applied with
the MSE criterion. Though, DINO surprisingly still works
when changing the loss function to MSE, but this signifi-
cantly alters the performance (see rows (1, 2) and (4, 9)).
We also observe that adding a predictor has little impact (1,

). However, in the case of BYOL, the predictor is critical
to prevent collapse (7, &) which is consistent with previous
studies [15, 28]. Interestingly, we observe that the teacher
output centering avoids collapse without predictor nor batch
normalizations in BYOL (7, 9), though with a significant
performance drop which can likely be explained by the fact
that our centering operator is designed to work in combina-
tion with sharpening. Finally, we observe that multi-crop

Table 15: Relation to MoCo-v2 and BYOL. We ablate the com-
ponents that differ between DINO, MoCo-v2 and BYOL.: the loss
function (cross-entropy, CE, versus InfoNCE, INCE, versus mean-
square error, MSE), the multi-crop training, the centering operator,
the batch normalization in the projection heads and the student
predictor. Models are run for 300 epochs with DeiT-S/16. We
report top-1 accuracy on ImageNet linear evaluation.

Method  Loss multi-crop Center. BN Pred. Top-1

DINO CE v v 76.1
- MSE v v 62.4
- CE v v v 75.6
- CE v 72.5
MoCov2 INCE v 71.4

INCE v v 73.4
BYOL MSE v v 714
— MSE N 0.1
- MSE v 52.6
- MSE v v v 64.8

works particularly well with DINO and MoCo-v2, removing
it hurts performance by 2 — 4% (! versus 4 and, 5 versus 0).
Adding multi-crop to BYOL does not work out-of-the-box
(7, 10) as detailed in Appendix E and further adaptation may
be required.

Validating our implementation. We observe in Tab. 13
that our reproduction of BYOL, MoCo-v2, SWAV matches
or outperforms the corresponding published numbers with
ResNet-50. Indeed, we obtain 72.7% for BYOL while [28]
report 72.5% in this 300-epochs setting. We obtain 71.1%
for MoCo after 300 epochs of training while [14] report
71.1% after 800 epochs of training. Our improvement com-
pared to the implementation of [14] can be explained by
the use of a larger projection head (3-layer, use of batch-
normalizations and projection dimension of 256).

Concurrent work CsMI. The concurrent work CsMI [74]
also exhibits strong performance with simple k-NN classi-
fiers on ImageNet, even with convnets. As DINO, CsMI
combines a momentum network and multi-crop training,
which we have seen are both crucial for good k-NN perfor-
mance in our experiments with ViTs. We believe studying
this work would help us identifying more precisely the com-
ponents important for good k-NN performance and leave
this investigation for future work.

C. Projection Head

Similarly to other self-supervised frameworks, using a
projection head [12] improves greatly the accuracy of our
method. The projection head starts with a n-layer multi-
layer perceptron (MLP). The hidden layers are 2048d and



are with gaussian error linear units (GELU) activations. The
last layer of the MLP is without GELU. Then we apply a
{5 normalization and a weight normalized fully connected
layer [15, 59] with K dimensions. This design is inspired
from the projection head with a “prototype layer” used in
SwAV [10]. We do not apply batch normalizations.

BN-free system. Unlike standard convnets, ViT architec-
tures do not use batch normalizations (BN) by default. There-

DeiT-S, 100 epochs  heads w/o BN  heads w/ BN
k-NN top-1 69.7 68.6

fore, when applying DINO to ViT we do not use any BN also
in the projection heads. In this table we evaluate the impact
of adding BN in the heads. We observe that adding BN in
the projection heads has little impact, showing that BN is not
important in our framework. Overall, when applying DINO
to ViT, we do not use any BN anywhere, making the system
entirely BN-free. This is a great advantage of DINO + ViT to
work at state-of-the-art performance without requiring any
BN. Indeed, training with BN typically slows down trainings
considerably, especially when these BN modules need to be
synchronized across processes [31, 10, 9, 28].

w/ 12-bottleneck w/o 12-bottleneck

linear layer

T Bx 256

12 normalization

T B x 256

n-layer MLP

projection head h
projection head h

n-layer MLP

Figure 9: Projection head design w/ or w/o 12-norm bottleneck.

L2-normalization bottleneck in projection head. We il-
lustrate the design of the projection head with or without 12-
normalization bottleneck in Fig. 9. We evaluate the accuracy

# proj. head linear layers 1 2 3 4

w/ 12-norm bottleneck - 622 680 693
w/o 12-norm bottleneck 61.6 629 0.1 0.1

of DINO models trained with or without 12-normalization
bottleneck and we vary the number of linear layers in the
projection head. With 12 bottleneck, the total number of
linear layers is n 4+ 1 (n from the MLP and 1 from the

weight normalized layer) while without bottleneck the to-
tal number of linear layers is n in the head. In this table,
we report ImageNet top-1 k-NN evaluation accuracy after
100 epochs pre-training with DeiT-S/16. The output dimen-
sionality K is set to 4096 in this experiment. We observe
that DINO training fails without the 12-normalization bot-
tleneck when increasing the depth of the projection head.
L2-normalization bottleneck stabilizes the training of DINO
with deep projection head. We observe that increasing the
depth of the projection head improves accuracy. Our default
is to use a total of 4 linear layers: 3 are in the MLP and one
is after the 12 bottleneck.

Output dimension. In this table, we evaluate the effect
of varying the output dimensionality K. We observe that a

K 1024 4096 16384 65536 262144
k-NN top-1 67.8 693  69.2 69.7 69.1

large output dimensionality improves the performance. We
note that the use of 12-normalization bottleneck permits to
use a large output dimension with a moderate increase in the
total number of parameters. Our default is to use K equals
to 65536 and d = 256 for the bottleneck.

GELU activations. By default, the activations used in ViT
are gaussian error linear units (GELU). Therefore, for consis-

DeiT-S, 100 epochs  heads w/ GELU heads w/ ReLU
k-NN top-1 69.7 68.9

tency within the architecture, we choose to use GELU also
in the projection head. We evaluate the effect of using ReLU
instead of GELU in this table and observe that changing the
activation unit to ReL.U has relatively little impact.

D. Additional Ablations

We have detailed in the main paper that the combination
of centering and sharpening is important to avoid collapse in
DINO. We ablate the hyperparameters for these two opera-
tions in the following. We also study the impact of training
length and some design choices for the ViT networks.

Online centering. We study the impact of the smoothing
parameters in the update rule for the center c used in the
output of the teacher network. The convergence is robust

m 0 09 099 0.999
k-NNtop-1 69.1 69.7 694 0.1

to a wide range of smoothing, and the model only collapses
when the update is too slow, i.e., m = 0.999.



Sharpening. We enforce sharp targets by tuning the
teacher softmax temperature parameter 7;. In this table,
we observe that a temperature lower than 0.06 is required to
avoid collapse. When the temperature is higher than 0.06,

T 0 0.02 0.04 0.06 0.08 0.04— 0.07
k-NNtop-1 439 66.7 69.6 68.7 0.1 69.7

the training loss consistently converges to in(K ). However,
we have observed that using higher temperature than 0.06
does not collapse if we start the training from a smaller value
and increase it during the first epochs. In practice, we use
a linear warm-up for 7, from 0.04 to 0.07 during the first
30 epochs of training. Finally, note that 7 — 0 (extreme
sharpening) correspond to the argmax operation and leads
to one-hot hard distributions.

Longer training. We observe in this table that longer train-
ing improves the performance of DINO applied to DeiT-
Small. This observation is consistent with self-supervised

DINO DeiT-S  100-ep 300-ep 800-ep
k-NN top-1 70.9 72.8 74.5

results obtained with convolutional architectures [12]. We
note that in our experiments with BYOL on DeiT-S, training
longer than 300 epochs has been leading to worse perfor-
mance compare our 300 epochs run. For this reason we
report BYOL for 300 epochs in Tab. 2 while SwAV, MoCo-
v2 and DINO are trained for 800 epochs.

The teacher outperforms the student. We have shown
in Fig. 6 that the momentum teacher outperforms the student
with ViT and we show in this Figure that it is also the case
with ResNet-50. The fact that the teacher continually out-

60
® 55
S
g >0 w== Student
> 45 Teacher
400 100
epochs

performs the student further encourages the interpretation of
DINO as a form of Mean Teacher [62] self-distillation. In-
deed, as motivated in Tarvainen et al. [62], weight averaging
usually produces a better model than the individual models
from each iteration [49]. By aiming a target obtained with a
teacher better than the student, the student’s representations
improve. Consequently, the teacher also improves since it is
built directly from the student weights.

Self-attention maps from supervised versus self-
supervised learning. We evaluate the masks obtained
by thresholding the self-attention maps to keep 80% of

DeiT-S/16 weights

Random weights 22.0
Supervised 27.3
DINO 459
DINO w/o multicrop 45.1
MoCo-v2 46.3
BYOL 47.8
SwAV 46.8

the mass. We compare the Jaccard similarity between the
ground truth and these masks on the validation images of
PASCAL VOCI12 dataset for different DeiT-S trained with
different frameworks. The properties that self-attention
maps from ViT explicitly contain the scene layout and, in
particular, object boundaries is observed across different
self-supervised methods.

Impact of the number of heads in DeiT-S. We study the
impact of the number of heads in DeiT-S on the accuracy and
throughput (images processed per second at inference time
on a singe V100 GPU). We find that increasing the number

#heads dim dim/head # params im/sec k-NN
6 384 64 21 1007  72.8
8 384 48 21 971 73.1
12 384 32 21 927 73.7
16 384 24 21 860 73.8

of heads improves the performance, at the cost of a slighlty
worse throughput. In our paper, all experiments are run with
the default model presented in [06], i.e. with 6 heads only.

E. Multi-crop

In this Appendix, we study a core component of DINO:
multi-crop training [10].

Range of scales in multi-crop. For generating the dif-
ferent views, we use the RandomResizedCrop method
from torchvision.transforms module in PyTorch.
We sample two global views with scale range (s, 1) before

(0.05, s), (s, 1),s: 008 0.16 024 032 048
k-NN top-1 65.6 68.0 69.7 69.8 69.5

resizing them to 2242 and 6 local views with scale sampled
in the range (0.05, s) resized to 962 pixels. Note that we
arbitrarily choose to have non-overlapping scaling range for
the global and local views following the original design of
SwAV. However, the ranges could definitely be overlapping
and experimenting with finer hyperparameters search could
lead to a more optimal setting. In this table, we vary the pa-
rameter s that controls the range of scales used in multi-crop
and find the optimum to be around 0.3 in our experiments.
We note that this is higher than the parameter used in SWAV
which is of 0.14.




Multi-crop in different self-supervised frameworks.
We compare different recent self-supervised learning frame-
works, namely MoCo-v2 [14], BYOL [28] and SwAV [10]
with DeiT-S/16 architecture. For fair comparisons, all mod-

crops 2 x 2242 2 x 2242 + 6 x 962
eval k-NN  linear k-NN linear
BYOL 66.6 71.4 59.8 64.8
SwAV 60.5 68.5 64.7 71.8
MoCo-v2 62.0 71.6 65.4 73.4
DINO 67.9 725 72.7 75.9

els are pretrained either with two 2242 crops or with multi-
crop [10] training, i.e. two 2242 crops and six 962 crops for
each image. We report k-NN and linear probing evaluations
after 300 epochs of training. Multi-crop does not benefit all
frameworks equally, which has been ignored in benchmarks
considering only the two crops setting [|5]. The effective-
ness of multi-crop depends on the considered framework,
which positions multi-crop as a core component of a model
and not a simple “add-ons” that will boost any framework the
same way. Without multi-crop, DINO has better accuracy
than other frameworks, though by a moderate margin (1%).
Remarkably, DINO benefits the most from multi-crop train-
ing (+3.4% in linear eval). Interestingly, we also observe
that the ranking of the frameworks depends on the evaluation
protocol considered.

Training BYOL with multi-crop. When applying multi-
crop to BYOL with DeiT-S, we observe the transfer perfor-
mance is higher than the baseline without multi-crop for
the first training epochs. However, the transfer performance

65

—
'

5-60
=55
- 0 / — /0 MC
o w/ mc
45

0 100 200 300
epochs

growth rate is slowing down and declines after a certain
amount of training. We have performed learning rate, weight
decay, multi-crop parameters sweeps for this setting and
systematically observe the same pattern. More precisely, we
experiment with {1e=5, 3¢, le ™%, 3e7%, 173, 3¢ =3} for
learning rate base values, with {0.02, 0.05, 0.1} for weight
decay and with different number of small crops: {2, 4, 6}.
All our runs are performed with synchronized batch normal-
izations in the heads. When using a low learning rate, we
did not observe the performance break point, i.e. the trans-
fer performance was improving continually during training,
but the overall accuracy was low. We have tried a run with

multi-crop training on ResNet-50 where we also observe
the same behavior. Since integrating multi-crop training to
BYOL is not the focus of this study we did not push that
direction further. However, we believe this is worth investi-
gating why multi-crop does not combine well with BYOL in
our experiments and leave this for future work.

F. Evaluation Protocols
F.1 k-NN classification

Following the setting of Wu et al. [70], we evaluate the qual-
ity of features with a simple weighted k Nearest Neighbor
classifier. We freeze the pretrained model to compute and
store the features of the training data of the downstream task.
To classify a test image z, we compute its representation
and compare it against all stored training features 7'. The
representation of an image is given by the output [CLS] to-
ken: it has dimensionality d = 384 for DeiT-S and d = 768
for ViT-B. The top k NN (denoted N},) are used to make a
prediction via weighted voting. Specifically, the class c gets
a total weight of Zie N a;1c,—c, where ¢; is a contribution
weight. We use «; = exp(T;2/7) with 7 equals to 0.07 as
in [70] which we do not tune. We evaluate different values
for k and find that k£ = 20 is consistently leading to the best
accuracy across our runs. This evaluation protocol does not
require hyperparameter tuning, nor data augmentation and
can be run with only one pass over the downstream dataset.

F.2 Linear classification

Following common practice in self-supervised learning, we
evaluate the representation quality with a linear classifier.
The projection head is removed, and we train a supervised
linear classifier on top of frozen features. This linear clas-
sifier is trained with SGD and a batch size of 1024 during
100 epochs on ImageNet. We do not apply weight decay.
For each model, we sweep the learning rate value. Dur-
ing training, we apply only random resizes crops (with de-
fault parameters from PyTorch RandomResizedCrop)
and horizontal flips as data augmentation. We report central-
crop top-1 accuracy. When evaluating convnets, the common
practice is to perform global average pooling on the final
feature map before the linear classifier. In the following, we
describe how we adapt this design when evaluating ViTs.

DeiT-S representations for linear eval. Following the
feature-based evaluations in BERT [17], we concatenate
the [CLS] tokens from the [ last layers. We experiment

concatenate [ last layers 1 2 4 6

representation dim 384 768 1536 2304
DeiT-S/16 linear eval 76.1 766 77.0 77.0

with the concatenation of a different number [ of layers and
similarly to [17] we find [ = 4 to be optimal.



ViT-B representations for linear eval. With ViT-B we
did not find that concatenating the representations from the
last [ layers to provide any performance gain, and consider
the final layer only (I = 1). In this setting, we adapt the

pooling strategy [CLS] tok. concatenate [CLS] tok.
only and avgpooled patch tok.

representation dim 768 1536

ViT-B/16 linear eval 78.0 78.2

pipeline used in convnets with global average pooling on the
output patch tokens. We concatenate these pooled features
to the final [CLS] output token.

G. Self-Attention Visualizations

We provide more self-attention visualizations in Fig. 8
and in Fig. 10. The images are randomly selected from
COCO validation set, and are not used during training of
DINO. In Fig. 8, we show the self-attention from the last
layer of a DINO DeiT-S/8 for several reference points.

H. Class Representation

As a final visualization, we propose to look at the distribu-
tion of ImageNet concepts in the feature space from DINO.
We represent each ImageNet class with the average feature
vector for its validation images. We reduce the dimension
of these features to 30 with PCA, and run t-SNE with a
perplexity of 20, a learning rate of 200 for 5000 iterations.
We present the resulting class embeddings in Fig. 11. Our
model recovers structures between classes: similar animal
species are grouped together, forming coherent clusters of
birds (top) or dogs, and especially terriers (far right).



Supervised Supervised

Figure 10: Self-attention heads from the last layer. We look at the attention map when using the [CLS] token as a query for the different
heads in the last layer. Note that the [CLS] token is not attached to any label or supervision.




chickadee goldfinch
e

sul

brambling
indigo bunting
ous

great grey owl

er snake
wmuer kmg snake

side
— Lﬁ%. Tingneck snake
orned viper-
F%ﬁdm —obra thunder snake

boa constrictf

ater snaigecen green snake
Vine snake
green lizard
European fire salamander alligator lizard wmp American chameleon
spotied saa ree frog
common newt: . ameleo
bandec Common iguana

i ’w G
o emado cragon

roirican crocodile
errapi® " §=—Gila monster
tiger beetle Srmadillo
weevil black and gold garden spider
Ry el g R
o

arclot
ok vﬂms igor _ leatherback g ench
grasshupuer oy Vol spider " 1o m/‘wus g boracouta
i [ # Tagntte upeae“"g et o snakey urgeo
camopig peete i gy lobster usong. ngersnark grealwhl(eshark
walking sti cal rﬁ (5 ctric.
! er v ot Mﬁw&ﬁ*
agonfl pion,
fiy Dee fggier cratrgasfish  hopallelHs ” e
Oungeness crbr g ity » = MQA‘M“ en

ere
gl

American alligator.
boX T

i
Iycaeni arch eannstzl ®
B gy L
sulphor butrty 0 deisy ;mm rofthe-w
yellow ladys slipper " agic eapple
custard apple-e &= %lb
. b *nmzm}" i
surawberry_ogom ear
bell pepy L

e
Granny Smith deBasayash
spaghetti sqUash’

bu!lemul squash

cheeseburger. :b"agu‘sﬁ aistreg

m =~ rotisserie

carbonara— % 8ca

mitten
meat loaf-_ s dor8 g ge cream butcher shop oF
e b
Pizzgy lwmg\ed psm?;'a'e sau .—gm(ery store handkerchiel | e
pot %,6 L

staurang
Soup. bak Christmas stocking

s
‘consomme’ trifly 8, Jrving pan
5 W8 cn oven bath towel =

Crock Pot—8 eeping bag

caldrdnpotters wheel

550
‘mixing bowl nematode,

re: N
i Pegg#{a{ Ny bap_ strainer spmme gﬁk

measuring cuj %isgy an} kBt

o ekri digh/” mara ba

beake] Iskey g i
e g e imp’?iﬂ‘% erorer-e Igl/e.a ottl *M‘ﬂ st RS o,
shaker ."‘,hﬁ" “ﬁé wperen s““{".“ %ﬂ“
5 spatuly g
i ﬂ:‘"‘ by padlo:E

st
g engy
black grou

ru skirt
on
p'(ke'"z"tbe balance beam 0¥ v
””"’evml. }bﬁn olleyb ping-pong ball

- allplayer
r:fscor ogg mus‘meunz. o Sy L
foe(bal\ helmet_‘ﬁ J/““e' bag”o\l ball

all

ul\e(

y boot
PR nﬂ
uﬂ—

ket
Mncan arey

vuddy turnstone
red-backed sandpiper

red-breasted merganser

%
T T o rake

vater ouzel BT o ingo
" rtri }h iFAN egret
Sicer impin PR
grouse /hite stork

orangutan

boon

b
macaque_ iy

proboscis monkey— &
squirrel monkey —_guengg!

chimpanzee
amang
L

ey
Fowler monkey

three 023 Sioth. in
s cotnus
Lpda
loth bear
Amerca =
ae&aﬁﬁﬁs
rsku,‘k Blown bear g affenpinscher niature schnauzer
[38ooted ferre gjent schnauzer cotch terrie jorwich terrier
Bouvier des Flandrés
mungnose auinea pio cmy coated retriever ea) Standard schnauzer
Lkl A Kerr n terrier
e Ang0r Silky terrier
E;S %, Psriliis Rteunds Hpreotk Teri
wood rabtit g ersian cat ige e = Tibetan terrier
hareg Arctic fo Ceonberg g Sussex Spanl%comﬂ, 87ga Shin-Tzu
sea lign " keeshond - gy e
“ngmar;ms s wnill o e Englis T Maltese dog
tnceraton g o3 imber ol s L i teerterricr
g 285wl Pometirences PRGNSl PoplElaure poodte odle
i
Afican elephant, tuske? blsmf’a'“ T > N springer spaniel 0 P
Indan T i

ebra
water buffdlo .h?},.an camd?d!
gg,g‘/ﬁ\p‘gazeue
impala

orcag?
horse cait hartebeest

Staffordshire bullterrier-

hna Plass\ere
e e e

on-ig fab coat
G?baﬁ— ab coaf athing cap

maillot

oboe
maidt® Sswimming trunks
ammgown 7 sl
We‘ fone  parallel bars
orizontal bar

Sragd"
reaStpiale gmr(?v ) (roquel
ski

e(\ar\d sheepdog.
Legs? e ot B el
s
oea an shepher %panesespa 1 rittany spaniel
,

nglish springer

%80} nese mountain dog
!ogs\ed ?agwﬂo Appenzeller

und
English 'oxhounﬂ g <
ém - EntleBucher
soner " sy M cater Suiss Mountain dog
Chinuanis e—ta bt}
Boston B! F",;g,; ol German short-haired pointer

GheRigscher
Brabancon griffon X
[Ty black-and-tan coonhound
bor terrier
bull mastiff — Labrador retriever
Chesapeake Bay retriever
Rhodesian ridg@back  weimaraner

hnis ball

("‘m‘& ungua un-cyc
[iﬁ‘ ungery i, ntain bIke. snowmobile
oc Rt  plunger stretcher B‘Y e.g%u mJ two

a
op bottle—W hing bag i
S0 e bottle thimi e a
——e le ourglass | tal
Moot &20iarbotic 9555 rumsil ol Sl moBr (ha,nsawﬁw /‘i B
rerume R W&s&@f’sm”‘sg‘awﬂ—if,  Bocrons mt .a:k& W.,,u i roro S
hair spray holster. en
‘seabbal e hal
}‘Mopener"h.ﬁ“ S ™ Shopoingbasket _opaly pmw cannon orey whale
orkscren &, Side e %, o "o Qumodmil Aromontory s
revolve vt i o ® e ("ecwlqgwe|\‘n valley *  candvar %00
rain barrel e
ashcan
ig<rige g . am“é"e'n'?ne"‘e = '“° S ‘ Ereakwa;er
assin picket' lence e
gond mmgm rsge e eRain digenhbuse—_go~ trimaran
analog clock wall clock " i
° barorm & electric fap Q\ (sﬂ paper to e‘ R grand plano? (hxlnlmk lE Sg ‘PQM"“USE ' Dr" e
odometer il filter disk bral és W P edow screen Bﬁ%mgs bm feboat *Pecdboat
Sy ST e o iyt g ad " o o e solr i qmmm e
e e BB R Sapnter st eescak Fﬂc ole SO ".“m'é DEhier 7o S
Sigital wmhde I elegp 91 fing <& ng annister msnhole mvepr:d e:t?u mﬁm % hig?”
E &fﬁ%@ R
oot kesboard ™" camers UG wih L o gm"me momate ﬁ%m pRERChUtS missicS ”'I*w""f
puter keyboard S, el M@( el deor P throne) e space shuttle
e mode: e, P, orarg Barberant Bale P oo mosaue S bulet train
remote control_hard disch - .mm ST oo o ’%— 5 organ - dome
hand-held comuuler% 1 "G "o Shoe (5% S ihan siurebuar triumphal arch
cellular telephone ! traffic light
(on'e((lone cinemd@—!
e A A I e
ox
oscilloscope safe pay-phone- % g meter hamsm* W"’"“
-ash machiné steam locomotive’ Model T
Bifcart

electric locomotive.

orkdift 8,
freight car. 5"3WD'°"§ Tacg__car mirror
rgler truck jeey o wheel

enger cag« 8. 4
mobile hdme Garbase, iuGKRA 9 o 3, 13

stre
recreational vehicle

school b b
o AT Convertble

ambulance

Figure 11: t-SNE visualization of ImageNet classes as represented using DINO. For each class, we obtain the embedding by taking the
average feature for all images of that class in the validation set.



