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Abstract

We present VideoGPT: a conceptually simple ar-
chitecture for scaling likelihood based generative
modeling to natural videos. VideoGPT uses VQ-
VAE that learns downsampled discrete latent rep-
resentations of a raw video by employing 3D con-
volutions and axial self-attention. A simple GPT-
like architecture is then used to autoregressively
model the discrete latents using spatio-temporal
position encodings. Despite the simplicity in for-
mulation and ease of training, our architecture is
able to generate samples competitive with state-
of-the-art GAN models for video generation on
the BAIR Robot dataset, and generate high fi-
delity natural images from UCF-101 and Tum-
bler GIF Dataset (TGIF). We hope our proposed
architecture serves as a reproducible reference
for a minimalistic implementation of transformer
based video generation models. Samples and
code are available at https://wilsonlyan.
github.io/videogpt/index.html.

1. Introduction

Deep generative models of multiple types (Kingma &
Welling, 2013; Goodfellow et al., 2014; van den Oord et al.,
2016b; Dinh et al., 2016) have seen incredible progress in
the last few years on multiple modalities including natural
images (van den Oord et al., 2016¢; Zhang et al., 2019;
Brock et al., 2018; Kingma & Dhariwal, 2018; Ho et al.,
2019a; Karras et al., 2017; 2019; Van Den Oord et al.,
2017; Razavi et al., 2019; Vahdat & Kautz, 2020; Ho et al.,
2020; Chen et al., 2020; Ramesh et al., 2021), audio wave-
forms conditioned on language features (van den Oord et al.,
2016a; Oord et al., 2017; Prenger et al., 2019; Binkowski
et al., 2019), natural language in the form of text (Rad-
ford et al., 2019; Brown et al., 2020), and music genera-
tion (Dhariwal et al., 2020). These results have been made
possible thanks to fundamental advances in deep learning
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architectures (He et al., 2015; van den Oord et al., 2016b;c;
Vaswani et al., 2017; Zhang et al., 2019; Menick & Kalch-
brenner, 2018) as well as the availability of compute re-
sources (Jouppi et al., 2017; Amodei & Hernandez, 2018)
that are more powerful and plentiful than a few years ago.

While there have certainly been impressive efforts to model
videos (Vondrick et al., 2016; Kalchbrenner et al., 2016;
Tulyakov et al., 2018; Clark et al., 2019), high-fidelity nat-
ural videos is one notable modality that has not seen the
same level of progress in generative modeling as compared
to images, audio, and text. This is reasonable since the
complexity of natural videos requires modeling correlations
across both space and time with much higher input dimen-
sions. Video modeling is therefore a natural next challenge
for current deep generative models. The complexity of the
problem also demands more compute resources which can
also be deemed as one important reason for the relatively
slow progress in generative modeling of videos.

Why is it useful to build generative models of videos? Con-
ditional and unconditional video generation implicitly ad-
dresses the problem of video prediction and forecasting.
Video prediction (Srivastava et al., 2015; Finn et al., 2016;
Kalchbrenner et al., 2017; Sgnderby et al., 2020) can be
seen as learning a generative model of future frames con-
ditioned on the past frames. Architectures developed for
video generation can be useful in forecasting applications
for weather prediction (Sgnderby et al., 2020), autonomous
driving (for e.g., such as predicting the future in more se-
mantic and dense abstractions like segmentation masks (Luc
et al., 2017)). Finally, building generative models of the
world around us is considered as one way to measure our
understanding of physical common sense and predictive
intelligence (Lake et al., 2015).

Multiple classes of generative models have been shown
to produce strikingly good samples such as autoregres-
sive models (van den Oord et al., 2016b;c; Parmar et al.,
2018; Menick & Kalchbrenner, 2018; Radford et al.,
2019; Chen et al., 2020), generative adversarial networks
(GANSs) (Goodfellow et al., 2014; Radford et al., 2015),
variational autoencoders (VAEs) (Kingma & Welling, 2013;
Kingma et al., 2016; Vahdat & Kautz, 2020; Child, 2020),
Flows (Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018;
Ho et al., 2019a), vector quantized VAE (VQ-VAE) (Van
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Figure 1. 64 x 64 and 128 x 128 video samples generated by VideoGPT

Den Oord et al., 2017; Razavi et al., 2019; Ramesh et al.,
2021), and lately diffusion and score matching models (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al.,
2020). These different generative model families have
their tradeoffs across various dimensions: sampling speed,
sample diversity, sample quality, optimization stability,
compute requirements, ease of evaluation, and so forth.
Excluding score-matching models, at a broad level, one
can group these models into likelihood-based (Pixel CNNs,
iGPT, NVAE, VQ-VAE, Glow), and adversarial generative
models (GANSs). The natural question is: What is a good
model class to pick for studying and scaling video genera-
tion?

First, we make a choice between likelihood-based and adver-
sarial models. Likelihood-based models are convenient to
train since the objective is well understood, easy to optimize
across a range of batch sizes, and easy to evaluate. Given
that videos already present a hard modeling challenge due to
the nature of the data, we believe likelihood-based models
present fewer difficulties in the optimization and evaluation,
hence allowing us to focus on the architecture modeling'.
Next, among likelihood-based models, we pick autoregres-
sive models simply because they have worked well on dis-
crete data in particular, have shown greater success in terms
of sample quality (Ramesh et al., 2021), and have well es-
tablished training recipes and modeling architectures that
take advantage of latest innovations in Transformer archi-
tectures (Vaswani et al., 2017; Child et al., 2019; Ho et al.,
2019b).

Finally, among autoregressive models, we consider the fol-
lowing question: Is it better to perform autoregressive mod-
eling in a downsampled latent space without spatio-temporal
redundancies compared to modeling at the atomic level of all

'Tt is not the focus of this paper to say likelihood models are
better than GANs for video modeling. This is purely a design
choice guided by our inclination to explore likelihood based gener-
ative models and non-empirically established beliefs with respect
to stability of training.

pixels across space and time? Below, we present our reasons
for choosing the former: Natural images and videos contain
a lot of spatial and temporal redundancies and hence the
reason we use image compression tools such as JPEG (Wal-
lace, 1992) and video codecs such as MPEG (Le Gall, 1991)
everyday. These redundancies can be removed by learning
a denoised downsampled encoding of the high resolution
inputs. For example, 4x downsampling across spatial and
temporal dimensions results in 64x downsampled resolu-
tion so that the computation of powerful deep generative
models is spent on these more fewer and useful bits. As
shown in VQ-VAE (Van Den Oord et al., 2017), even a lossy
decoder can transform the latents to generate sufficiently
realistic samples. This framework has in recent times pro-
duce high quality text-to-image generation models such as
DALL-E (Ramesh et al., 2021). Furthermore, modeling in
the latent space downsampled across space and time instead
of the pixel space improves sampling speed and compute
requirements due to reduced dimensionality.

The above line of reasoning leads us to our proposed model:
VideoGPT?, a simple video generation architecture that is
a minimal adaptation of VQ-VAE and GPT architectures
for videos. VideoGPT employs 3D convolutions and trans-
posed convolutions (Tran et al., 2015) along with axial atten-
tion (Clark et al., 2019; Ho et al., 2019b) for the autoencoder
in VQ-VAE, learning a downsampled set of discrete latents
from raw pixels of the video frames. These latents are then
modeled using a strong autoregressive prior using a GPT-
like (Radford et al., 2019; Child et al., 2019; Chen et al.,
2020) architecture. The generated latents from the autore-
gressive prior are then decoded to videos of the original
resolution using the decoder of the VQ-VAE.

2We note that Video Transformers (Weissenborn et al., 2019)
also employ generative pre-training for videos using the Subscale
Pixel Networks (SPN) (Menick & Kalchbrenner, 2018) architec-
ture. Despite this, it is fair to use the GPT terminology for our
model because our architecture more closely resembles the vanilla
Transformer in a manner similar to iGPT (Chen et al., 2020).
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Figure 2. We break down the training pipeline into two sequential stages: training VQ-VAE (Left) and training an autoregressive
transformer in the latent space (Right). The first stage is similar to the original VQ-VAE training procedure. During the second stage,
VQ-VAE encodes video data to latent sequences as training data for the prior model. For inference, we first sample a latent sequence from
the prior, and then use VQ-VAE to decode the latent sequence to a video sample.

Our results are highlighted below:

1. On the widely benchmarked BAIR Robot Pushing
dataset (Ebert et al., 2017), VideoGPT can generate realistic
samples that are competitive with existing methods such as
TrIVD-GAN (Luc et al., 2020), achieving an FVD of 103
when benchmarked with real samples, and an FVD* (Razavi
et al., 2019) of 94 when benchmarked with reconstructions.

2. In addition, VideoGPT is able to generate realistic sam-
ples from complex natural video datasets, such as UCF-101
and the Tumblr GIF dataset

3. We present careful ablation studies for the several archi-
tecture design choices in VideoGPT including the benefit of
axial attention blocks, the size of the VQ-VAE latent space,
number of codebooks, and the capacity (model size) of the
autoregressive prior.

4. VideoGPT can easily be adapted for action conditional
video generation. We present qualitative results on the BAIR
Robot Pushing dataset and Vizdoom simulator (Kempka
et al., 2016).

2. Background
2.1. VQ-VAE

The Vector Quantized Variational Autoencoder (VQ-
VAE) (Van Den Oord et al., 2017) is a model that learns to
compress high dimensional data points into a discretized
latent space and reconstruct them. The encoder E(z) — h
first encodes x into a series of latent vectors A which is
then discretized by performing a nearest neighbors lookup
in a codebook of embeddings C = {e; }[X | of size K. The
decoder D(e) — & then learns to reconstruct  from the
quantized encodings. The VQ-VAE is trained using the

following objective:

L= |la - D(e)ll; + |lsg[E(z)] - ells + 8 |sgle] - E(=)|

Lrecon L codebook

Accommi\

where sg refers to a stop-gradient. The objective consists
of a reconstruction 108s Lecon, @ codebook 108s Leodebooks
and a commitment 108S Leommit- The reconstruction loss
encourages the VQ-VAE to learn good representations to
accurately reconstruct data samples. The codebook loss
brings codebook embeddings closer to their corresponding
encoder outputs, and the commitment loss is weighted by
a hyperparameter 3 and prevents the encoder outputs from
fluctuating between different code vectors.

An alternative replacement for the codebook loss described
in (Van Den Oord et al., 2017) is to use an EMA update
which empirically shows faster training and convergence
speed. In this paper, we use the EMA update when training
the VQ-VAE.

2.2. GPT

GPT and Image-GPT (Chen et al., 2020) are a class of
autoregressive transformers that have shown tremendous
success in modelling discrete data such as natural language
and high dimensional images. These models factorize the
data distribution p(x) according to p(x) = H?zl p(zi|z<s)
through masked self-attention mechanisms and are opti-
mized through maximum likelihood. The architectures em-
ploy multi-head self-attention blocks followed by pointwise
MLP feedforward blocks following the standard design from
(Vaswani et al., 2017).

3. VideoGPT

Our primary contribution is VideoGPT, a new method to
model complex video data in a computationally efficient
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manner. An overview of our method is shown in Fig 2.
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Figure 3. Architecture of the attention residual block in the VQ-
VAE as a replacement for standard residual blocks.

Learning Latent Codes In order to learn a set of discrete
latent codes, we first train a VQ-VAE on the video data. The
encoder architecture consists of a series of 3D convolutions
that downsample over space-time, followed by attention
residual blocks. Each attention residual block is designed as
shown in Fig 3, where we use LayerNorm (Ba et al., 2016),
and axial attention layers following (Ho et al., 2019b).

The architecture for the decoder is the reverse of the encoder,
with attention residual blocks followed by a series of 3D
transposed convolution that upsample over space-time. The
position encodings are learned spatio-temporal embeddings
that are shared between all axial attention layers in the
encoder and decoder.

Learning a Prior The second stage of our method is to
learn a prior over the VQ-VAE latent codes from the first
stage. We follow the Image-GPT architecture for prior
network, except that we add dropout layers after the feed-
forward and attention block layers for regularization.

Although the VQ-VAE is trained unconditionally, we can
generate conditional samples by training a conditional prior.
We use two types of conditioning:

* Cross Attention: For video frame conditioning, we
first feed the conditioned frames into a 3D ResNet,
and then perform cross-attention on the ResNet output
representation during prior network training.

* Conditional Norms: Similar to conditioning methods
used in GANs, we parameterize the gain and bias in
the transformer Layer Normalization (Ba et al., 2016)
layers as affine functions of the conditional vector.
This conditioning method is used for action and class-
conditioning models.

4. Experiments

In the following section, we evaluate our method and design
experiments to answer the following questions:

» Can we generate high-fidelity samples from complex
video datasets?

* How do different architecture design choices for VQ-
VAE and prior network affect performance?

4.1. Training Details

All image data is scaled to [—0.5, 0.5] before training. For
VQ-VAE training, we use random restarts for embeddings,
and codebook initialization by copying encoder latents as
described in (Dhariwal et al., 2020). In addition, we found
VQ-VAE training to be more stable (less codebook collapse)
when using Normalized MSE for the reconstruction loss,
where MSE loss is divided by the variance of the dataset.
For all datasets except UCF-101, we train on 64 x 64 videos
of sequence length 16. For the transformer, we train Sparse
Transformers (Child et al., 2019) with local and strided
attention across space-time. Exact architecture details and
hyperparameters can be found in Appendix A. We achieve
all results with a maximum of 8 Quadro RTX 6000 GPUs
(24 GB memory).

4.2. Moving MNIST

For Moving MNIST, VQ-VAE downsamples input videos
by a factor of 4 over space-time (64x total reduction), and
contains two residual layers with no axial-attention. We
use a codebook of 512 codes, each 64-dim embeddings.
To learn the single-frame conditional prior, we train a con-
ditional transformer with 384 hidden features, 4 heads, 8
layers, and a ResNet-18 single frame encoder. Fig 6 shows
several different generated trajectories conditioned on a sin-
gle frame.

Table 1. FVD on BAIR

Method? FVD (})
SV2PpP 262.5
LVT 125.8
SAVP 116.4
DVD-GAN-FP 109.8
VideoGPT (ours) 103.3
TrIVD-GAN-FP 103.3
Video Transformer 94 + 2

4.3. BAIR Robot Pushing

For BAIR, VQ-VAE downsamples the inputs by a factor of
2x over each of height, width and time dimensions. The
embedding in the latent space is a 256-dimensional vector,
which is discretized through a codebook with 1024 codes.
We use 4 axial-attention residual blocks for the VQ-VAE
encoder and a prior network with a hidden size of 512 and
16 layers.

Quantitatively, Table 13 shows FVD results on BAIR, com-

3SV2P (Babaeizadeh et al., 2017), SAVP (Lee et al., 2018),
DVD-GAN-FP (Clark et al., 2019), Video Transformer (Weis-
senborn et al., 2019), Latent Video Transformer (LVT) (Rakhimov
et al., 2020), and TrIVD-GAN (Luc et al., 2020) are our baselines
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Figure 4. VQ-VAE reconstructions for BAIR Robot Pushing. The original videos are contained in green boxes and reconstructions in

blue.
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Figure 5. BAIR Robot Pushing samples from a single-frame conditioned VideoGPT model. Frames highlighting in red are conditioning
frames. Although all videos follow the same starting frame, the samples eventually diverge to varied trajectories.

paring our method with prior work. Although our method
does not achieve state of the art, it is able to produce very re-
alistic samples competitive with the best performing GANs.

Qualitatively, Fig 4 shows VQ-VAE reconstructions on
BAIR. Fig 5 shows samples primed with a single frames.
We can see that our method is able to generate realistically
looking samples. In addition, we see that VideoGPT is able
to sample different trajectories from the same initial frame,
showing that it is not simply copying the dataset.

4.4. ViZDoom

For ViZDoom, we use the same VQ-VAE and transformer
architectures as for the BAIR dataset, with the exception
that the transformer is trained without single-frame condi-
tioning. We collect the training data by training a policy
in each ViZDoom environment, and collecting rollouts of
the final trained policies. The total dataset size consists of
1000 episodes of length 100 trajectories, split into an 8:1:1
train / validataion / test ratio. We experiment on the Health
Gathering Supreme and Battle2 ViZDoom environments,
training both unconditional and action-conditioned priors.

VideoGPT is able to capture complex 3D camera move-
ments and environment interactions. In addition, action-
conditioned samples are visually consistent with the input
action sequence and show a diverse range of backgrounds
and scenarios under different random generations for the
same set of actions. Samples can be found in Appendix B.*

4.5. UCF-101

UCF-101 (Soomro et al., 2012) is an action classification
dataset with 13,320 videos from 101 different classes. We
train unconditional VideoGPT models on 16 frame 64 x 64
and 128 x 128 videos, where the original videos have their
shorter side scaled to 128 pixels, and then center cropped.

Table 2 shows results comparing Inception Score’ (IS) (Sal-

*VGAN (Vondrick et al., 2016), TGAN (Saito et al., 2017),
MoCoGAN (Tulyakov et al., 2018), Progressive VGAN (Acharya
et al., 2018), TGAN-F (Kahembwe & Ramamoorthy, 2020),
TGANV2 (Saito & Saito, 2018), DVD-GAN (Clark et al., 2019)
are our baselines for IS on UCF-101.

SInception Score is calculated using the code at https: //
github.com/pfnet-research/tgan2
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Figure 6. Moving MNIST samples conditioned on a single given frame (red).

Table 2. 1S on UCF-101

Method* IS (1)
VGAN 8.31 +£0.09
TGAN 11.85 +0.07

MoCoGAN 12.42 £ 0.03
Progressive VGAN  14.56 £ 0.05
TGAN-F 22.91 £0.19
VideoGPT (ours) 24.69 +0.30
TGANv2 28.87 £ 0.67
DVD-GAN 3297+1.7

imans et al., 2016) calculations against various baselines.
Unconditionally generated samples are shown in Figure 7.
Similarly observed in (Clark et al., 2019), we notice that that
VideoGPT easily overfits UCF-101 with a train loss of 3.40
and test loss of 3.12, suggesting that UCF-101 may be too
small a dataset of the relative complexity of the data itself,
and more exploration would be needed on larger datasets.

4.6. Tumblr GIF (TGIF)

TGIF (Li et al., 2016) is a dataset of 103,068 selected GIFs
from Tumblr, totalling around 100,000 hours of video. Fig-
ure 8 shows samples from a trained unconditional VideoGPT
model. We see that the video sample generations are able
to capture complex interactions, such as camera movement,
scene changes, and human and object dynamics. Unlike
UCF-101, VideoGPT did not overfit on TGIF with a train
loss of 2.87 and test loss 2.86.

4.7. Ablations

In this section, we perform ablations on various architectural
design choices for VideoGPT.

Axial-attention in VQ-VAE increases reconstruction
and generation quality.

Table 3. Ablation on attention in VQ-VAE. R-FVD is with recon-
structed examples

VQ-VAE Architecture NMSE (]) R-FVD ({)
No Attention 0.0041 15.3
With Attention 0.0033 14.9

We compare VQ-VAE with and without axial attention
blocks as shown in Table 3. Empirically, incorporating axial
attention into the VQ-VAE architecture improves reconstruc-
tion (NMSE) performance, and has better reconstruction
FVD. Note that in order to take into account the added pa-
rameter count from attention layers, we increase the number
of convolutional residual blocks in the "No Attention” ver-
sion for better comparability. Fig 4 shows samples of videos
reconstructed by VQ-VAE with axial attention module.

Larger prior network capacity increases performance.

Table 4. Ablations comparing the number of transformer layers

Transformer Layers  bits/dim FVD (})
2 2.84 120.4 +6.0
4 2.52 110.0+2.4
8 2.39 103.3 £ 2.2
16 2.05 103.6 2.0

Computational efficiency is a primary advantage of our
method, where we can first use the VQ-VAE to downsam-
ple by space-time before learning an autoregressive prior.
Lower resolution latents allow us to train a larger and more
expressive prior network to learn complex data distributions
under memory constraints. We run an ablation on the prior
network size which shows that a larger transformer network
produces better results. Table 4 shows the results of training
transformers of varied number of layers on BAIR. We can
see that for BAIR, our method benefits from training larger
models, where the bits per dim shows substantial improve-
ment in increasing layers, and FVD and sample quality show
increments in performance up until around 8 layers.
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Figure 8. 64 x 64 TGIF unconditional samples

A balanced temporal-spatial downsampling in VQ-VAE
latent space increase performance.

Table 5. Ablations comparing different VideoGPT latent sizes on
BAIR. R-FVD is the FVD of VQ-VAE reconstructions, and FVD*
is the FVD between samples generated by VideoGPT and samples
encoded-decoded from VQ-VAE. For each partition below, the to-
tal number of latents is the same with varying amounts of spatio-
temporal downsampling

Latent Size  R-FVD (]) FVD () FVD* (})

4 x 16 x 16 82.1 135.4+3.7 81.8+2.3

16 x 8 x 8 108.1 166.9+3.1 81.6+2.2
8 x 16 x 16 49.9 124.7+£27 902424
1 x 64 x 64 41.6 126.7+3.1 98.1+3.6
4 x32x32 28.3 104.6 +2.7  90.6 + 2.7
16 x 16 x 16 32.8 113.4+25 949+ 1.7
2 X 64 x 64 22.4 124.3+1.4 1044425
8 x 32 x 32 14.9 103.6 £t2.0 946+1.5
4 x 64 x 64 15.7 109.4+2.1 1023428
16 x 32 x 32 10.1 1184+3.2 113.84+3.3

A larger downsampling ratio results in a smaller latent code
size, which allows us to train larger and more expressive
prior models. However, limiting the expressivity of the dis-
crete latent codes may introduce a bottleneck that results
in poor VQ-VAE reconstruction and sample quality. Thus,
VideoGPT presents an inherent trade-off between the size
of the latents, and the allowed capacity of prior network.

[
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Table 5 shows FVD results from training VideoGPT on vary-
ing latent sizes for BAIR. We can see that larger latents sizes
have better reconstruction quality (lower R-FVD), however,
the largest latents 16 x 32 x 32 does not perform the best
sample-quality-wise due to limited compute constraints on
prior model size. On the other hand, the smallest set of
latents 4 x 16 x 16 and 16 x 8 x 8 have poor reconstruc-
tion quality and poor samples. There is a sweet-spot in the
trade-off at around 8 x 32 x 32 where we observe the best
sample quality.

In addition to looking at the total number of latents, we also
investigate the appropriate downsampling for each latent
resolution. Each partition in Table 5 shows latent sizes
with the same number of total latents, each with different
spatio-temporal downsampling allocations. Unsurprisingly,
we find that a balance of downsampling ratio (2 x 2 x 2,
corresponding to latent size 8 X 32 x 32) between space
and time is the best, as opposed to downsampling over only
space or only time.

Further increasing the number of latent codes does not
affect performance.

Table 6. Ablations comparing the number of codebook codes

#0f Codes R-FVD(]) FVD(]) bits/dim
256 18.2 103.84£3.7 155
1024 14.9 103.6+2.0  2.05
4096 11.3 103.94+51  2.60
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In Table 6, we show experimental results for running
VideoGPT with different number of codes in the codebooks.
For all three runs, the VQ-VAE latent code vector has size
8 x 32 x 32. In the case of BAIR, we find that reconstruction
quality improves with increasing the number of codes due
to better expressivity in the discrete bottleneck. However,
they ultimately do not affect sample quality. This may be
due to the fact that in the case of BAIR, using 256 codes
surpasses a base threshold for generation quality.

Using one VQ-VAE codebook instead of multiple im-
proves performance.

Table 7. Ablations comparing the number of codebooks

Latent Size R-FVD ({) FVD () bits/dim
8x32x32x1 14.9 103.6 = 2.0 2.05
16 x 16 x 16 x 2 17.2 106.3 £ 1.7 2.41
8 x 16 x 16 x 4 17.7 131.4+2.9 2.68
4x16x16x8 23.1 135.7+ 3.3 2.97

In our main results, we use one codebook for VQ-VAE.
In Table 7, we compare VideoGPT with different number
of codebooks. Specifically, multiple codebooks is imple-
mented by multiplying VQ-VAE’s encode output channel
dimension by C' times, where C'is the number of codebooks.
The encoder output is then sliced along channel dimension,
and each slice is quantized through a separate codebook.
As a result, the size of the discrete latents are of dimen-
sionT x H x W x C, as opposed to T' x H x W when
using a single codebook. Generally, multiple codebooks
may be more favorable over increasing the downsampling
resolution as multiple codebooks allows a combinatorially
better scaling in bottleneck complexity. In our experiments,
we increase the number of codebooks, and reduce spatio-
temporal resolutions on latent sizes to keep the size of the
latent space constant. We see that increasing the number
of codebooks worsens sample quality performance, and the
best results are attained at the highest resolution with one
codebook. Nevertheless, incorporating multiple codebooks
might shows its advantage when trained with a larger dataset
or a different VQ-VAE architecture design.

5. Related Work

Video Prediction The problem of video prediction (Srivas-
tava et al., 2015) is quite related to video generation in that
the latter is one way to solve the former. Plenty of methods
have been proposed for video prediction on the BAIR Robot
dataset (Finn et al., 2016; Ebert et al., 2017; Babaeizadeh
et al., 2017; Denton et al., 2017; Denton & Fergus, 2018;
Lee et al., 2018) where the future frames are predicted given
the past frame(s) and (or) action(s) of a robot arm moving

across multiple objects thereby benchmarking the ability
of video models to capture object-robot interaction, object
permanance, robot arm motion, etc. Translating videos to
videos is another paradigm to think about video prediction
with a prominent example being vid2vid (Wang et al.,
2018). The vid2vid framework uses automatically gen-
erated supervision from more abstract information such as
semantic segmentation (Luc et al., 2017) masks, keypoints,
poses, edge detectors, etc to further condition the GAN
based video translation setup.

Video Generation Most modern generative modeling archi-
tectures allow for easy adaptation of unconditional video
generation to conditional versions through conditional batch-
norm (Brock et al., 2018), concatenation (Salimans et al.,
2017; van den Oord et al., 2016c¢), etc. Video Pixel Net-
works (Kalchbrenner et al., 2017) propose a convolutional
LSTM based encoding of the past frames to be able to gen-
erate the next frame pixel by pixel autoregressively with a
PixelICNN (van den Oord et al., 2016¢) decoder. The archi-
tecture serves both as a video generative as well as predictive
model, optimized through log-likelihood loss at the pixel
level. Subscale Video Transformers (Weissenborn et al.,
2019) extend the idea of Subscale Pixel Networks (Menick
& Kalchbrenner, 2018) for video generation at the pixel
level using the subscale ordering across space and time.
However, the sampling time and compute requirements are
large for these models. In the past, video specific architec-
tures have been proposed for GAN based video generation
with primitive results by (Vondrick et al., 2016). Recently,
DVD-GAN proposed by (Clark et al., 2019) adopts a Big-
GAN like architecture for videos with disentangled (axial)
non-local (Wang et al., 2017) blocks across space and time.
They present a wide range of results, unconditional, past
frame(s) conditional, and class conditional video generation.

Other examples of prior work with video generation of
GAN:Ss include (Saito et al., 2017), (Tulyakov et al., 2018),
(Acharya et al., 2018), (Yushchenko et al., 2019). In addi-
tion, (Saito & Saito, 2018) and (Kahembwe & Ramamoor-
thy, 2020) propose more scalable and efficient GAN models
for training on less compute. Our approach builds on top
of VQ-VAE (Van Den Oord et al., 2017) by adapting it for
video generation. A clean architecture with VQ-VAE for
video generation has not been presented yet and we hope
VideoGPT is useful from that standpoint. While VQ-VAE-
2 (Razavi et al., 2019) proposes using multi-scale hierarchi-
cal latents and SNAIL blocks (Chen et al., 2017) (and this
setup has been applied to videos in (Walker et al., 2021)),
the pipeline is inherently complicated and hard to reproduce.
For simplicity, ease of reproduction and presenting the first
VQ-VAE based video generation model with minimal com-
plexity, we stick with a single scale of discrete latents and
transformers for the autoregressive priors, a design choice
also adopted in DALL-E (Ramesh et al., 2021).
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6. Conclusion

We have presented VideoGPT, a new video generation archi-
tecture adapting VQ-VAE and Transformer models typically
used for image generation to the domain of videos with mini-
mal modifications. We have shown that VideoGPT is able to
synthesize videos that are competitive with state-of-the-art
GAN based video generation models. We have also pre-
sented ablations on key design choices used in VideoGPT
which we hope is useful for future design of architectures in
video generation.
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A. Architecture Details and Hyperparameters

A.1. VQ-VAE Encoder and Decoder

Table 8. Hyperparameters of VQ-VAE encoder and decoder models for each dataset

Moving MNIST BAIR /RoboNet/ ViZDoom UCF-101/TGIF

Input size

Latent size

3 (commitment loss coefficient)
Batch size

Learning rate

Hidden units

Residual units

Residual layers

Uses attention

Codebook size

Codebook dimension
Encoder filter size
Upsampling conv filter size
Training steps

16 x 64 x 64 16 x 64 x 64 16 x 64 x 64
4 x16 x 16 8 x 32 x 32 4 x 32 x 32
0.25 0.25 0.25

32 32 32

7x 1074 7x 1074 7x 1074
240 240 240
128 128 128

2 4 4

No Yes Yes
512 1024 1024

64 256 256

3 3 3

4 4 4

20k 100K 100K

A.2. Prior Networks

Table 9. Hyperparameters of prior networks for each dataset

Moving MNIST BAIR /RoboNet ViZDoom UCF-101/ TGIF
Input size 4x16 x 16 8 x 32 x 32 8 x 32 x 32 4 x 32 x 32
Conditional sizes 1 x64 x 64 3 x64 x64,64 60 (HGS), 315 (Battle2) n/a
Batch size 32 32 32 32
Learning rate 3x 1074 3x 1074 3x 1074 3x 1074
Vocabulary size 512 1024 1024 1024
Attention heads 4 4 4 8
Attention layers 8 16 16 20
Embedding size 192 512 512 1024
Feedforward hidden size | 384 2048 2048 4096
Resnet depth 18 34 n/a n/a
Resnet units 512 512 n/a n/a
Dropout 0.1 0.2 0.2 0.2
Training steps 80k 150K 150K 200K / 600K
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B. ViZDoom Samples

Figure 9. Samples for ViZDoom health gathering supreme environment. (Top) shows unconditionally generated samples. (Bottom) shows
samples conditioned on the same action sequence (turn right and go straight).

Figure 10. Samples for ViZDoom battle2 environment. (Top) shows unconditionally generated samples. (Bottom) shows three samples
conditioned on the same action sequence (moving forward and right).



