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Affine representability of quadrics revisited

Aravind Asok*

Abstract

The quadric Q,, is the Z-scheme defined by the equation Y | x;y; = z(1 — z). We show that Q,,
is a homogeneous space for the split reductive group scheme SOy, over Z. The quadric Q,, is
know to have the A'-homotopy type of a motivic sphere and the identification as a homogeneous space
allows us to give a characteristic independent affine representability statement for motivic spheres. This
last observation allows us to give characteristic independent comparison results between Chow—Witt
groups, motivic stable cohomotopy groups and Euler class groups.

1 Introduction

Assume k is an arbitrary commutative (unital) base ring. Consider the hypersurface Q,, in Ai"“ =
Speck|xy,...,x2,+1] cut out by the equation

n
Y xixri = xon1 (1= x2n1);
i=1
the quadric hypersurface so-defined is smooth over Speck. Let ¢»,,+1 be the standard split quadratic form
Y xixnti +x%n 41 1n 2n+ 1-variables, and let us provisionally write Sy, for the quadric hypersurface 2,41 =
Lin A2+
If 2 is invertible in k, then the standard action of SO,,,;1 on Ai”“ as isometries preserving go,,+1 yields,
upon choice of a base-point, an isomorphism between S and the homogeneous space SOa,. 1 /SOs,.
Since 2 is invertible in k, the quadric Q,, is isomorphic to S, and is thus itself a homogeneous space
for SOy,11 (see, e.g., [ , Lemma 3.1.7]). If 2 is not a unit in k, then the quadric S,, fails to be
smooth over k and thus is neither isomorphic to Q,, nor a homogeneous space for SOy, 1. Nevertheless,
the following result shows that Q,,, is still isomorphic to SOy, / SO2,.

Theorem 1 (See Theorem 2.3.2). Assume k is a commutative ring and n > 1 is an integer.
1. There is an action of SOy, 11 on Q,, such that taking the orbit through the point xy € Q,,, (k) given
by xop+v1 =1, x; =0, 1 <i < 2n yields a surjective smooth morphism SO, — Q,, that factors
through an SOy, 1-equivariant isomorphism

(O SOZn-H /SOQ,, L) an .
2. The induced SOyy,-torsor SOz, 1 — Qo is Zariski locally trivial.

While the action of SO,,,+1 on Sy, is classical, the action of SO;,1 on Q,, is slightly less transparent.
Once we have described the action, a sequence of standard algebro-geometric results about actions of
group-schemes reduces the proof of Theorem 1 to an elementary analysis of transitivity of actions of the
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special orthogonal groups in the spirit of [ , II.10-11]. Our main interest in the above result is due
to its numerous concrete consequences, which stem from the fact that, vaguely speaking, Q,, is “well-
behaved” from the standpoint of A!-homotopy theory.

Theorem 2 (See Corollary 3.1.1). Ifk is a field and n > 1 is an integer; then the scheme Q,, is A'-naive; in
particular, for any smooth affine k-scheme X, the naive A'-homotopy classes of maps X — Q,, coincides
with the true A'-homotopy classes, i.e., there is a canonical bijection

7o (Sing™ Qu, (X)) — [X,Qu a1

Remark 3. The notion of an A!-naive space was introduced in [ , Definition 2.1.1], and the final
statement follows directly from the preceding statement by appeal to general results. If 2 is invertible in k,
then Theorem 1 is the conjunction of [ , Lemma 3.1.7, Theorem 4.2.2] if k is infinite and [ ,
Theorem 2.15] if & is finite. If 2 is not assumed invertible in k, then Theorem 1 was known when n < 3
by appeal to various low-dimensional exceptional isomorphisms: Q, = SL, /G,,, Q4 = Sp4 /(Sp, X Sp,)
(again [ , Theorem 4.2.2]), and Qg = G, /SL3 (see [ , Theorem 2.3.5]). The case n =4 can
be analyzed by using an interpretation of Qg as the octonionic projective line.

The variety Q,, arises naturally in the theory of complete intersection ideals [ ] and provides
a smooth affine model of the motivic sphere S**" in the Morel-Voevodsky A!-homotopy category (see
[ , p- 111] for discussion of motivic spheres, and [ , Theorem 2] for a precise statement).
In [ ], these points of view were put together to establish links between Bhatwadekar—Sridharan Eu-
ler class groups (after M. Nori) [ ], motivic stable cohomotopy groups, and Chow—Witt groups (as
introduced by Barge-Morel [ 1); we refer the reader to [ ] for a more complete collection of
references in this direction. Theorem 2 allows us to weaken the hypotheses in the main result of [ ,
Theorem 1], which we restate here for convenience (though we refer the reader to [ ] for the relevant
notation).

Theorem 4 (Asok, Fasel). Suppose k is a field, n and d are integers, n > 2, and X is a smooth affine
k-scheme of dimension d < 2n — 2.
1. The set [X,Qy,| a1 has a functorial abelian group structure, and
2. there is a functorial “Hurewicz” homomorphism [X,Qy,|x1 — 5I:In(X ), which is an isomorphism if
d<n.
3. If, furthermore, k is infinite, then there is a functorial and surjective “Segre class” homomorphism
s E"(X) — [X7Q2n]A1;
4. if d > 2, then the morphism s is an isomorphism.
In particular, under the hypotheses in Point (4), if X is a smooth affine k-scheme of dimension d, then there
is a functorial isomorphism

EY(X) = CH' (X).

The proof of Theorem 1 was inspired by analysis of the case n = 3 from [ ] mentioned above,
which after various algebro-geometric reductions follows from [ , Corollary 1.7.5]. At the heart of
those reductions is an interpretation of Q,, in terms of conditions on traces and norms of split octonion
algebras. This paper can be viewed in a similar vein: SO,, 1| acts transitively on vectors in a represen-
tation space satisfying suitable “norm” and “trace” conditions. The algebraic structures underlying the
notions of “norm” and “trace” we use in this paper are quadratic Jordan algebras, and Q,, may be inter-
preted as a “projective space” for such an algebra, in a sense that we we explain momentarily. While the
theory of (quadratic) Jordan algebras make no appearance in the proofs, it does suggest various avenues of
generalization, so we add a few comments about this point of view here.



3 2 Orthogonal group actions on split quadrics

Assume (J, 1,U) is quadratic Jordan algebra over a commutative ring k; for us, J is a finitely generated,
projective k-module, 1 is a distinguished element of J and U : J — Endi(J) (x — Uy) is a quadratic map
satisfying various identities (see [ , §1.2 Definition 3] for the general definition; the cases of interest
will even be obtained by base-change from k = Z). Of particular interest will be a class of quadratic Jordan
algebras attached to quadratic spaces over k called a (quadratic) spin factors; see [ , Chapter 1.7]. The
special orthogonal group-schemes SO; act by automorphisms on quadratic spin factors, even when 2 is not
invertible in k.

Given any quadratic Jordan algebra (J, 1,U) over a commutative ring k, the quadratic map U allows one
to speak of “projection operators”. Indeed, if one defines x> := U,1, then a projection operator is one that
satisfies x> = x. Also attached to a quadratic spin factor is a suitable trace function, and one may consider
“rank 1” projection operators by imposing a suitable trace condition. Granted these identifications, the
scheme Q,,, is precisely the projective space attached to a quadratic spin factor and SOy, acts by Jordan
algebra automorphisms.

While the above interpretation does not aid in any calculations, it does suggest various natural gener-
alizations of the main result. For example, one can study “octonionic projective space” OP? := Fy4 / Sping
over an arbitrary commutative ring as a suitable “projective space” of the exceptional quadratic Jordan
algebra of Hermitian 3 x 3-matrices over the octonions. Once again, this variety admits a description in
terms of explicit “rank 1” projection operators. Because of the applications of Theorem 1 stated above,
we have decided to present a proof less encumbered by additional notation and terminology, and we defer
possible generalizations to projective spaces of more general quadratic Jordan algebras to future work.
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2 Orthogonal group actions on split quadrics

Throughout this section we will assume that £ is an arbitary commutative base ring. Section 2.1 recalls
some basic facts about orthogonal groups in arbitrary characteristic. Section 2.2 studies various properties
of actions of reductive group schemes, and allows us to give a characteristic independent description of
the action of SO,,+1 on Q,,. Finally, Theorem 1 is established in Section 2.3.

2.1 Quadratic spaces and orthogonal groups

We begin by recalling some facts about orthogonal groups over k, in particular, we will not assume 2 is
invertible in k. Assume (V,q) is a quadratic space over a k; we will always assume that V is a projective
k-module of constant rank, and that either (V,q) is regular (a.k.a. non-singular) or, if V has odd rank,
semi-regular (see [ , 1.3.2] for the former and [ , 81V.3.1] for the latter).
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Special orthogonal groups

We write O(V, gq) for the associated orthogonal group of isometries of (V,q). We will mostly be interested
in the standard split forms:

n n
Gon(X1,. .. X0n) = inanrh and  gopp1 (X1, X0041) = inxn+l +x%n+1
i=1 i=1
on the free modules of rank 2n and 2n+ 1 over k. We write O; for the orthogonal group scheme; functori-
ally, this group scheme assigns to a k-algebra R the usual orthogonal group O(R¥, ;) of automorphisms
of R preserving g;. We also consider the group-scheme GO; assigning to a k-algebra R the group of
orthogonal similitudes, i.e., the group of linear automorphisms of R®" that preserve g; up to a unit.
Abusing notation slightly, we write Z /2 for the (constant) group scheme assigning to a k-algebra R the
additive group of continuous functions Spec R — Z/2. To discuss special orthgonal group schemes, recall
that there is a Dickson invariant homomorphism

D:0;,—Z/2;

(see [ ,IV.5.1]) and a morphism y : Z/2 — u, defined by f + (—1)/ such that the composite y o D
coincides with the determinant homomorphism det : O; — u,. If i = 2n, the Dickson invariant is split and
surjective and one defines SO;, to be the kernel of the Dickson invariant, while if i = 2n+ 1, we define
SOy,+1 to be the kernel of the composite map ) o D. The group-scheme GO has a subgroup scheme GSO;
which is the fppf sub-group functor generated by G,, and SO;. The group schemes O,, and SO,, are both
smooth k-group schemes; the group scheme SOy, is a smooth k-group scheme, while Oy, is a smooth
k-group scheme if and only if 2 is a unit in k (see [ , C.1.5] for these assertion). Likewise, the group
scheme GSO; is a smooth k-group scheme while GO; fails to be smooth if i is odd (see, e.g., [ ,
Remark C.3.11] and the discussion just preceding that statement).

We view (kP2"1 g5, 1) as a quadratic submodule of (k22 g5,.2) by the embedding

(617"'762n+1) = (ely"'7en762n+laen+17'"762n+1)-

Likewise, we view (k¥2" g,,) the subspace of (k®>"*1 g5, ) where the coordinate function x,,,| van-

ishes. These embeddings give rise to stabilization homomorphisms
O; — OH—I . and SO, — SOH—I

that we will need in the sequel.

Bilinear forms, pointed quadratic spaces and traces

If g is a quadratic form, then we write B for the associated bilinear form obtained by polarization, i.e.,
B(x,y) = q(x+y) — q(x) — g(y). When we consider ¢; on k* with coordinates xi,...,x;, the associated
bilinear forms are

n n
inyn+i+xn+iyia and inyn+i + XpiVi + 2X0041Y2n+1
i=1 i=1
depending on whether i is even or odd.
Recall that a pointed quadratic space over a commutative ring k is a triple (V,q,1) where (V,q) is
a quadratic space and 1 € V such that g(1) = 1 € k. We point the split quadratic spaces (k™' ¢q;) as
follows: for i = 2n, we define 1 € k**" tobe x, = 1,00, = 1,x; = x4, =0,i=1,...,n—1;fori =2n+1,
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we define 1 € k&1 by xo,+1 =1 and x; = 0,1 <i < 2n. With this convention, only the embedding
(k%24 goni1) = (K522, gany2) is pointed.

Given a pointed quadratic space (V,q, 1), there is an associated trace function 7(x) := B(x,1). In the
special case (k22 gy,12,1), this trace function is given by the formula

n2(X) = Xp1 +X2n42.

k@2n+l

Note that with this convention, ( ,qan+1) is contained in the orthogonal complement of the k-

subspace k- 1.

2.2 Orthogonal group actions

We now analyze various orthogonal group actions; what we say is well-known over a field, but we review
the statements over an arbitrary base ring for the convenience of the reader. In order to streamline the
analysis of actions over a general base, we begin by recalling some general facts about actions of reductive
group schemes and homogeneous spaces by fiberwise techniques.

Homogeneous spaces for reductive group schemes

We recall the following result that allows us to deduce structural results about homogeneous spaces from
“fiberwise” computations over geometric points. Recall that a reductive k-group scheme is a smooth affine
k-group scheme G such that the geometric fibers are connected reductive groups (e.g., [ , Definition
3.1.1]). Unfortunately, we will need to deal with possibly disconnected group schemes and here the notion
of geometric reductivity will be more useful for us; we refer the reader to [ , Definition 9.1.1] for a
modern treatment of this notion.

Proposition 2.2.1. Assume G is an equidimensional (finitely presented) reductive k-group scheme with
connected fibers and (X,x) is an equidimensional, pointed, finitely presented smooth affine k-scheme
equipped with an action of G. Consider the orbit morphism:

¢p:G—X

sending g to g-x. Write G, for the stabilizer subgroup scheme of G. If for every geometric point s of Speck
the action of Gy(s) on Xy(s) is transitive, then
1. @ is finitely presented, faithfully flat and factors through a (pointed) isomorphism @ : G /G, — X
(in particular, G / Gy exists as a scheme), and
2. the group scheme G, is a finitely presented flat affine group scheme that is moreover geometrically
reductive;
3. if for every geometric point s € Speck, the fiber (Gy)s is regular, then Gy is a finitely presented
smooth affine k-group scheme, Gy / Gy, is a finite étale k-group scheme, and G, is reductive.

Proof. The first assertion is the implication (ii) = (i) from [ , IIT §3 Proposition 2.1]. We repeat the
proof of the result to clarify and strengthen the conclusions. Since G and X are both finitely presented over
k, @ is finitely presented [ , 1.6.2(v)]. In that case, since G is k-smooth and affine by assumption as
a reductive k-group scheme, the fibral flatness criterion of [ , 11.3.10] states that @ is flat if and only
if the fibers of ¢ at points s of Speck are flat. Since flatness can be checked after faithfully flat extension,
we reduce to considering the geometric fibers of Q.

Since X is smooth, it is automatically reduced. By generic flatness [ , Proposition 052B], there
is a dense open subscheme U of X such that @' (U) — U is flat and finitely presented. In that case, the
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transitivity of the action guarantees that we can cover X by translates of U and thus conclude that ¢ is
faithfully flat. In conjunction with the discussion of the preceding paragraph, @ is fppf. Moreover the
geometric fibers of @ are isomorphic to (G, )s, so if they are regular, then @ is smooth.

Since G, — G is a closed subgroup scheme by construction, we see that G, is a finitely presented, flat,
affine k-group scheme. In that case, the second assertion is “Matsushima’s theorem”. In more detail, by
[ , Theorem 9.4.1] we conclude that G, is geometrically reductive group scheme. In that case, note
that G, / G} is necessarily also a geometrically reductive k-group scheme.

If G, happens to be smooth, which as we observed in the previous paragraph happens if and only if its

geometric fibers are regular, then [ , Theorem 9.7.6] guarantees that G, is geometrically reductive if
and only if G} is reductive and G, / G is finite. In that case, it is automatically also smooth and therefore
étale. U

Remark 2.2.2. In Proposition 2.2.1, to guarantee smoothness of the fibers, the hypothesis that geometric
fibers of G, are smooth is essential. For example, the morphism G,, — G,, given by 7 — ¢" is transitive at
the level of geometric points and makes the source into the total space of a L,-torsor over the target. Thus,
if k is a field having characteristic p with p|n, the morphism in question is flat but not smooth since it has
non-reduced geometric fibers.

Checking transitivity

In order to apply Proposition 2.2.1 we need some group-theoretic facts to aid in checking transitivity at
geometric points, especially in the case of orthogonal group actions. We review some distinguished classes
of elements in orthogonal group schemes.

2.2.3 (Reflections). Suppose (V,q) is a quadratic space over a commutative ring k, and B is the k-bilinear
form obtained from g by polarization. Assume that v € V is an element such that ¢(v) € k*. In that case,
the reflection r, is defined by the formula

r(w) =w—q(v) ' B(v,w)v.

The reflection r, is an element of O(V,q). Note that if (V,q) = (k®*",¢2,), then the Dickson invariant of
ry is equal to 1, while if (V,q) = (k*?"*! g,,,1) the element r, has determinant —1 [ , §4.1.1].

Lemma 2.2.4 ([ , Lemma 8.2]). Suppose (V,q) is a quadratic space over a field k, and B is the
k-blinear form obtained from q by polarization. Suppose x and 'y are elements of v such that q(x) = q(y).
1. If g(x—y) is non-zero, then ry_y(x) = y.
2. If q(x—y) =0, w is a vector such that q(w),B(x,w) and B(y,w) are simultaneously non-zero, then
setting w =x—r,y, g(w') # 0 and (r,ory)(x) =y.

Representation spaces

Consider the standard action of GSOy,,,» on A,%"”. This action preserves g»,,+» = 0 by definition and there
is an induced action of GSO,, 1, on the smooth affine k-scheme Ai"” ~ {q2n+2 = 0}. The base-point 1
defines a k-point of A,%"” and the next result yields an embedding of Oy,11 in GSOy,.1, as the subgroup
stabilizing this point.

Proposition 2.2.5. The action of GSOy,12 on Ai”"’z ~A{Gon+2 = 0} is transitive on geometric points and
taking the orbit through 1, there is an induced isomorphism of schemes

GSO242 / O2nit — AP\ {qonsa = 0}.
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Proof. Suppose x is a geometric point of A,%"” ~ {qon+2 = 0}. Henceforth, we write g for ga,42. By
construction g(x) # 0 and ¢(1) = 1 # 0. Since k is algebraically closed, we can always find A € k*
such that g(Ax) = ¢(1) = 1. In that case, if g(Ax — 1) # 0, then the reflection r;, | moves Ax to 1
(Lemma 2.2.4.1), and the composite of scaling by A and ry,_; lies in GSO,,, 5.

Thus, suppose that g(Ax — 1) = 0. In that case, since Ax # 0, we know that Ax has a non-zero coordi-
nate, and taking the standard basis vector e; for suitable i we see that B(Ax,e;) is non-zero, i.e., the locus
B(Ax,—) # 0 is a non-empty open subscheme of A%”"’z. Likewise, the locus B(1,—) # 0 is a non-empty
open subscheme of Ai"”. Since k is algebraically closed and thus infinite, it follows that the intersection
of B(Ax,—) # 0 and B(1,—) # 0 with g(—) # 0 is non-empty. Therefore, by Lemma 2.2.4.2 there exists a
composite of reflections taking Ax to 1.

Appealing to the first two points of Proposition 2.2.1, there is an induced isomorphism

GSOy,12 /Stab; 5 AP 2\ {g2,12 =0},

and it remains to identify Stab,, which is a geometrically reductive flat affine k-group scheme. To this end,
we analyze the fibers of Stab; over points of Speck. Note that any element of GSO,,;, that stabilizes 1
necessarily fixes the restriction of g to the orthogonal complement to k- 1. In other words, any element
of GSO,,,1; that stabilizes 1 preserves the form ¢;,+1 and thus lies in Oy,4;. Conversely any element
of Oy, stabilizes 1, so we conclude that Stab; = O, ;. Note: we cannot appeal to the third point of
Proposition 2.2.1 as Oy, fails to be a smooth group scheme. O

Remark 2.2.6. In line with the discussion of the introduction, Proposition 2.2.5 is a special case of a
more general statement relating the structure group of quadratic Jordan algebra and the automorphism
group. General results of [ , Corollary 6.6] guarantee that the structure group of a separable, unital,
quadratic Jordan algebra is a reductive group scheme. The automorphism group of the Jordan algebra
can be identified with the subgroup scheme of the structure group scheme that preserves the identity. The
relationship between the structure group and the automorphism group for quadratic Jordan algebras was
analyzed in [ , $14] and we refer the reader to [ , §3] for more general results in the spirit of
the above proposition.

2.3  Proof of Theorem 1

Consider the pointed quadratic space (k2"*2 ¢5,.2,1). Recall that the trace form ty,5(x) = By, 12(x,1)

where By, is the bilinear form obtained from gy,4, by polarization. Explicitly, this trace form is given
by t2,+2(X) = Xp+1 + X2n42. Proposition 2.2.5 shows that the stabilizer of 1 in GSO,,4 is identified with
O3,,11. It follows that there is an action of SOy, 11 C Op,11 On Ai"” as automorphisms that preserve ¢z, 2
and fix 1. This SOy, -action then preserves the hypersurface t5,42(x) = 1 since it fixes 1 and thus induces
an action on the variety defined by ¢2,+2(x) = 0 and #,,12(x) = 1. After renaming variables appropriately,
the variety defined by ¢,.2 = 0,t5,.2 = 1 is precisely Q,,. We summarize these observations in the
following result.

Lemma 2.3.1. The closed subscheme of A%”"’z defined by t,12 = 1 and qp,12 = 0 is isomorphic to the
scheme Qy,,; this scheme comes equipped with the action of SO, 11 as a subgroup of SOy, stabilizing
the base-point 1 € A,%"”.

We consider the point xy € Q,, (k) given by x2,12 = 1, x; = -++ = xp,41 = 0, and we view Q,, as
pointed by xy. Observe that under the inclusion O, < O, 1, there is an inclusion

0y, — Stabe (02n+1)'
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Our goal will be to use this fact to identify the stabilizer in SO, of the point xy. The next result yields
Theorem 1 from the introduction.

Theorem 2.3.2. Assume k is a commutative ring and n > 1 is an integer. Consider the action of SOy,
on Q,, of Lemma 2.3.1.

1. Taking the SOy, 1-orbit through the k-point xy on Q,,, yields a surjective smooth morphism
¢ :SO2 41 — Qy,
that factors through an SOq,1-equivariant isomorphism
©:502,11/S02, — Qy,.
2. The SOy,-torsor SOy,41 — Q,,, is Zariski locally trivial.

Proof. Since all schemes and groups in question are defined over Z, it suffices to prove the result in that
case and the results in the general case are deduced by base change. Thus, we assume k = 7Z in what
follows. By appeal to Proposition 2.2.1, if SOy, acts transitively on Q,,, after base-change to geometric
points of Z, then there is an induced isomorphism SO,, / Staby, = Q,,,, where Staby, is the stabilizer
group-scheme of the point xg in SOy, 1. Transitivity of the action at geometric points is Proposition 2.3.4
below.

Now, we identify the stabilizer explicitly. Since any element of the stabilizer fixes xo, it preserves & - xp.
An explicit computation shows that one has a sequence of inclusions SO,, C Stab,, C O,,. Suppose Stab,,
were all of O,,. In that case, the sequence of inclusions SOy, C O, C SO, would yield an fppf Z/2-
torsor of the form SOy, /SO, — Q,,. Since SOy, is connected, SOy, 1 /SOy, must be a connected
affine scheme, so this torsor is necessarily non-trivial. On the other hand, this torsor is necessarily étale
locally trivial since it is an associated fiber space for an Oy,-torsor, and Oy, is a smooth k-group scheme
(see [ , XVIL8.1] or [ , Remarques 11.8.2]). In that case, since this Z/2-torsor is trivial upon
base-change to the geometric generic point of SpecZ by appeal to Lemma 2.3.3 below, and since Z/2 is
a constant group scheme, it must have been trivial to begin. It follows that Stab,, must be isomorphic to
SO,, and thus Q,,, is isomorphic to SO, /SOy,.

For the third statement, recall that Witt cancellation holds for quadratic spaces over local rings. More
precisely, assume R is a local ring, and consider a morphism SpecR — SO»,+1 /SO,,. Such a morphism
corresponds to an SOy,-torsor on SpecR that becomes trivial when viewed as an SO, -torsor, i.e., a
stably hyperbolic quadratic form. By [ , Corollary II1.4.3], if q; is a stably hyperbolic quadratic
space over R, it follows that g; is actually hyperbolic, i.e., the morphism SpecR lifts to SOy, ;. It follows
that SOy,4+1 — Q,,, is Zariski locally trivial, since it has Zariski local sections. U

Lemma 2.3.3. Ifkis an algebraically closed field having characteristic not equal to 2, then for any integer
n >0, the variety Q,, has no non-trivial étale 7./2-torsors, i.e., H,(Qa,,Z/2) = 0.

Proof. Under the hypothesis on k, the Kummer sequence identifies Hét(Qz,l,Z /2) with the 2-torsion sub-
group of Pic(Q,,). A straightforward induction argument using the localization sequence and the fact that
Q,,, has an open subscheme isomorphic to A%~ x G,, with closed complement Q,,,_, x A! then identifies
Pic(Q,,) as Zif n =1 and 0 if n > 1. In either case, it follows that the 2-torsion subgroup is trivial. O

Proposition 2.3.4. Suppose k is an infinite field and n > 0 is an integer. The action of SOy,+1(k) on Q,, (k)
is transitive.

Remark 2.3.5. The case n = 0 is exceptional because Qg is a disconnected scheme isomorphic to the
disjoint union of two copies of Speck.
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Proof. If k has characteristic not equal to 2, then this fact is well-known, so let us assume that k has char-
acteristic 2. In that case, note that the map SO»,,11 (k) — O+ (k) is a bijection. Suppose x € Q,, (k) is an
arbitrary point not equal to xo. We will construct an element of SO, (k) that takes x to xo using explicit
reflections. For the remainder of this proof, we B for the bilinear form obtained by polarizing ¢,1, and ¢
for the associated trace function fp,4,.

Case 1. Suppose g2,12(x —x0) # 0. Since #(x —xp) = 1(x) —t(xo) = 0, it follows that x — x¢ lies in the
orthogonal complement of the linear space k- 1. In other words, the vector x — xy lies in the subspace
k27+1 In that case, the reflection 'r—x, sends x to xo (Lemma 2.2.4.1). Since k has characteristic 2, this
reflection has determinant 1 and thus lies in SOy, (k).

Case 2. Suppose g2,12(x —xp) = 0. We claim that we can choose a such that 7(a) = 0 and such that
qon+2(a) # 0, B(x,a) # 0 and B(xp,a) # 0.

The locus of points where ¢ = 0 corresponds to imposing the equation x,,+| = x4, which defines a
closed subscheme of Ai"” isomorphic to A,%"H. The restriction of ¢,4, to this subspace is ¢z,,+1. In
particular, the locus where ¢»,+1 # O is a principal open subset of Ai”‘“; this open subset is non-empty
since n > 1 (the point x; = x,42 = 1, x; = 0 otherwise works).

Since 1 € k¥2"*2 has trace zero, and since x and xq both lie on Q,,(k), we know that 1 = #(x) =
B(xp,1) = B(x,1) = t(x). In other words, the Zariski open subsets of the hypersurface r = 0 defined
by intersection with B(x,—) # 0 or B(xg,—) # 0 are themselves non-empty. Since k is infinite, their
intersection is non-empty and likewise the intersection with go,+1 # 0 is non-empty.

Setd’ = x—r,(xp). In that case,

) = 1(x) = t(ra(x0)) = q(a) "' Bla, )r(a) = 0

as well. Since a and d’ both lie in the orthogonal complement to 1, it follows that r, and r, both lie in
SO7,+1(k). Their composite r, o r, takes x to xy (by Lemma 2.2.4.2) as required. O

Over fields of positive characteristic there are alternative group-theoretic arguments for transitivity,
once the action above has been defined and the stabilizer computed. The following argument for transitivity
was suggested by R. Guralnick.

Proposition 2.3.6. Over any algebraically closed field k of positive characteristic, the action of SOy, (k)
on Q,, (k) is transitive.

Proof. To check transitivity over a given algebraically closed field, it suffices to check transitivity over
an algebraically closed subfield by [ , Proposition 1.1]. In that case we may assume that k is the
algebraic closure of a finite field. In that case, it suffices to check transitivity over any finite field, and we
do this by counting points. We can compute the number of points of Q,, over a finite field inductively.
Indeed, for every n > 1, the scheme Q,, has an open subscheme isomorphic to A>*~! x G,, with closed
complement Q,,_, xA!. Since Q) = SpeckLI Speck, one sees immediately that |Q,(F,)| = ¢*> +g. The
decomposition above gives the recursive formula

1Qu(F)l =¢"""(g—1)+q(| Q2 (Fy)),

and a straightforward induction argument allows one to conclude that | Q,,(F,)| = 7"+ q"

On the other hand, the formulas for the order of the special orthogonal group over a finite field [ ,
Theorem 25 on p. 77] allow one to compute that | SO2,+1(F,)/SO02,(F,)| = ¢** +¢" as well. It follows
immediately that the action of SO,1(FF,) on Q,,(F,) is transitive for every ¢ = p”, and thus transitivity
holds after passing to IFTq as well; the result follows. O
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3 Applications

In this section, we deduce a selection of consequences of Theorem 2.3.2. The results of this section assume
familiarity with motivic homotopy theory, in particular, the results of [ , , 1.

3.1 Affine representability

For the convenience of the reader, we recall that Smy is the category of smooth k-schemes, Srnzff is the
subcategory of Smy consisting of affine schemes, and sPre(Smy) is the category of simplicial presheaves
on Smg. If ¢ is a Grothendieck topology on Smy, then R; is a fibrant replacement functor for the injective

t-local model structure on sPre(Smy) (see [ , §3.1] for more details), while SingAI is the singular
construction (see [ , §4.1]). We write Ho(k) for the Morel-Voevodsky A'!-homotopy category as
discussed in [ » §5] and for X,Y € Smy, we write [X,Y],1 for Homy ) (X,Y). First, we establish

Theorem 2 about affine representability of Q,, over any field.

Corollary 3.1.1. Assume k is a field.
1. The simplicial presheaf RZarSingAle,l is Nisnevich local and A'-invariant.
2. IfX € szff, then the canonical map

. 1
o (Sing™ Qp, (X)) — [X, Qaylar
is an isomorphism.
Proof. Combine Theorem 2.3.2 and [ , Theorem 2.6]. |

Remark 3.1.2. In fact, it seems likely that Corollary 3.1.1 will extend to the case k = Z. Indeed, this would
follow immediately if one knew the Bass—Quillen conjecture for Nisnevich locally trivial SO,,,|-torsors
for smooth Z-algebras, i.e., if for any smooth Z-algebra A, and any integer i > 0, the map

Hys(SpecA,SO2,41) — Hys(SpecAlxi, ..., xi],S0241)

is an isomorphism.

3.2 Euler class groups and motivic stable cohomotopy

In this section, we establish Theorem 4 from the introduction and a further application to weak Euler class
groups.

Proof of Theorem 4. That the set [X,Q,,]1 has a functorial abelian group structure under the stated hy-

potheses on the dimension of X and k& is a consequence of [ , Proposition 1.2.1] replacing appeal to
[ , Theorem 1.1.1] by appeal to Corollary 3.1.1. The second statement then follows from [ ,
Theorem 1.3.4].

For the third statement, we appeal to [ , Theorem 3.1.13 and Remark 3.1.14]; the latter statement
explains exactly how characteristic hypotheses enter the story. The last statement then follows from [ ,
Theorem 3.2.1] O

Finally, we can also make some statements about weak Euler class groups. Assume k is an infinite
field, and X is a smooth affine k-scheme of dimension d > 2. Let Zy(X) be the group of zero cycles on X
and Cly(X) the subgroup generated by reduced complete intersection ideals in X. The quotient

Eo(X) 1= Zo(X)/Clp(X)
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is usually known as the weak Euler class group after the work of Bhatwadekar and Sridharan. There is a
well-defined surjective homomorphism

E()(X) — CH()(X)
by [ , Lemma 2.5].

Theorem 3.2.1 (Asok, Fasel). If k is an infinite field and X is a smooth affine k-scheme of dimension d > 2,
then the map
E()(X) — CH()(X)

is an isomorphism.

Proof. Repeat the proof of [ , Theorem 3.2.6] appealing to Theorem 4 instead of [ , Theorem
3.2.1]. O
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