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Abstract

The Winograd Schema (WS) has been pro-
posed as a test for measuring commonsense ca-
pabilities of models. Recently, pre-trained lan-
guage model-based approaches have boosted
performance on some WS benchmarks but the
source of improvement is still not clear. We
begin by showing that the current evaluation
method of WS is sub-optimal and propose a
modification that makes use of twin sentences
for evaluation. We also propose two new
baselines that indicate the existence of biases
in WS benchmarks. Finally, we propose a
method for evaluating WS-like sentences in a
zero-shot setting and observe that popular lan-
guage models perform randomly in this set-
ting. We conclude that much of the apparent
progress on WS may not necessarily reflect
progress in commonsense reasoning, but much
of it comes from supervised data, which is not
likely to account for all the required common-
sense reasoning skills and knowledge.

1 Introduction

The Winograd Schema (WS) (Levesque et al.,
2012) was proposed as an alternative to the Tur-
ing test, by virtue of evaluating progress on com-
monsense reasoning. The task is a multi-choice
question akin to coreference resolution. Given a
text snippet with two entities and a pronoun that
refers to one of the entities, select the entity re-
ferred to by the pronoun.1 Consider the following
example:

1. The trophy doesn’t fit in the brown suitcase
because it was too large.

The entities are marked in italics, the pronoun in
bold, and the special word2 is underlined. In this

1It can also be a possessive adjective, but for simplicity,
we refer these as pronouns.

2Words that change the answer. A detailed explanation is
provided later.

Example Answer Setup

Original
The trophy doesn’t fit in the
brown suitcase because it was too large. trophy twin-1

The trophy doesn’t fit in the
brown suitcase because it was too small.

suitcase twin-2

Baselines
doesn’t fit in because it was too large. ? no-cands
because it was too large. ? part-sent

Zero-shot
The trophy doesn’t fit in the brown suitcase
because the trophy was too [MASK].

large twin-1

The trophy doesn’t fit in the brown suitcase
because the brown suitcase was too [MASK].

small twin-2

Figure 1: Examples from the Winograd Schema Chal-
lenge (top), our proposed modification to these sen-
tences that we use as novel baselines (middle) and the
new formulation of the WS task which allows us to test
LMs in a zero-shot setting (bottom).

case, it refers to The trophy, since smaller objects
typically fit into larger objects.3

The success of Pretrained Language Models
(PLMs) seems to have advanced models’ common-
sense capabilities by boosting the performance on
WS via simple probability ranking (Trinh and Le,
2018; Brown et al., 2020; Zhou et al., 2020). An-
other advancement was the curation of a large,
crowdsourced dataset for WS, Winogrande (Sak-
aguchi et al., 2019). Models that train on this
dataset are close to human performance. But are we
any closer to achieving commonsense reasoning?

We provide three explanations for the perceived
progress on the WS task: (1) lax evaluation criteria;
(2) biases in the datasets that remain despite efforts
to remove them, and (3) knowledge and reasoning
leakage from large training data. After proposing
stricter evaluation criteria (§3) and exposing the
existence of superficial hints and quantifying their
magnitude using control baselines (§5), we pro-

3There has been some theoretical work that analyzed WS
sentences and proposed a framework, the “correlation cal-
culus,” arguing that resolving these problems involves a dis-
course coherence (Bailey et al., 2015; Michael, 2015).
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pose to evaluate the commonsense knowledge in
the PLMs directly, without exposing them to the
supervised training set (§6); we show that on all
the models we tested, the performance on the task
is random. Examples for WS, the proposed control
baselines, and zero-shot instances can be found in
Figure 1.

Our main premise in this work is that, from a
commonsense perspective, the generalization ca-
pabilities models can get from large training data
are limited. Due to the vast number of common-
sense facts (e.g. steel is a hard material, planets are
huge, etc.), it is infeasible to learn them all from
a limited-scale training set. However, this knowl-
edge can still be acquired in different ways, such
as self-supervision (Mitchell et al., 2015), Open
IE (Tandon et al., 2014), collecting statistics from
large text corpora (Elazar et al., 2019), PLMs Zhou
et al. (2020) and more (Bagherinezhad et al., 2016;
Forbes and Choi, 2017). Therefore, we claim that
the vast majority of commonsense knowledge a
model has should come from sources external to
the supervised dataset. The supervised training set
should mainly provide a means for learning the
format of the task but not as a source for common-
sense knowledge acquisition. We thus question
the approach, which has recently gained popularity
(Sakaguchi et al., 2019; Klein and Nabi, 2020), of
using models trained on large datasets for evaluat-
ing general commonsense reasoning capabilities,
like WS.

Contributions. (i) We begin by proposing a gen-
eral evaluation method that makes use of groups
that contain similar inputs, e.g. the twin sentences
in WS (§3). That is, instead of measuring accu-
racy by scoring each sentence separately, we sug-
gest scoring according to the worse score on both
inputs: giving a point only if both sentences are
predicted correctly. This evaluation reduces the
risk of successful prediction due to biased exam-
ples and better reflects the models’ commonsense
reasoning abilities. (ii) Next, we extend previ-
ous work (Trichelair et al., 2019) that found in
the Winograd Schema Challenge (WSC)—through
manual evaluation—biased examples that can be
solved using simple statistics. We propose two au-
tomatically constructed control baselines that dis-
tort the sentences to be nonsensical, on which a
score higher than majority suggests the presence of
biased examples (§5). We find that WSC (Levesque
et al., 2012) is highly biased, whereas the newly

suggested dataset, WinoGrande (Sakaguchi et al.,
2019), is less biased.4

(iii) Finally, to bypass the supervised training
step, we propose to directly evaluate PLMs on WS
in a zero-shot setup; this allows for assessing how
many commonsense reasoning capabilities were
acquired in the pretraining step. Specifically, this
evaluation disentangles the commonsense capabil-
ities of PLMs from the knowledge they acquire
from the training set. Combining our new evalua-
tion method and taking into account the biases in
the data with the zero-shot setting, we show that all
models we test perform randomly in the zero-shot
setting. We then demonstrate using learning curves
of models trained on increasing amounts of data,
that it takes huge amounts of training instances to
make small improvements in the test set, demon-
strating the ineffectiveness of large training sets
in acquiring commonsense reasoning skills. We
interpret these results as evidence that a lot of the
commonsense reasoning capabilities are learned
during fine-tuning, as opposed to the pre-training
step.

Based on our experiments, we conclude that
many of the claims of progress on WS in recent
years are unjustified, and stem from sub-optimal
evaluation, biases, and commonsense knowledge
learned from a supervised training set. Neverthe-
less, we suggest that the newly proposed Wino-
grande dataset (Sakaguchi et al., 2019) shouldn’t
be used for training, but it provides good data for
evaluation, and hope that our new evaluation meth-
ods will assist faithful tracking of commonsense
reasoning progress.

2 Background

2.1 WSC and the Twin Sentences

The Winograd Schema (Levesque et al., 2012) was
constructed to serve as a benchmark for common-
sense reasoning capabilities of models (similarly to
the way Textual Entailment was proposed to serve
as a benchmark for entailment capabilities of mod-
els (Dagan et al., 2005, 2013)). WSC contains a
small test set of 273 examples, created by experts,
and for several years models were struggling to
perform well on it. Each question involves four
key features: 1) two entities are mentioned in each
sentence, and they can be two males, two females,

4In Appendix D, we provide details on how AFLITE, the
algorithm that was used to filter examples from Winogrande
operates, and how it is different from our baselines.



two inanimate objects, or two groups of people or
objects; 2) a pronoun or a possessive adjective is
used in the example to refer to one of the entities;
3) the task is to determine which of the two entities
is referred to by the pronoun, and 4) each sentence
contains a special word which, when replaced, the
answer changes. There are no other limitations on
the sentences besides these constraints and, conse-
quently, this test is considered to be a general com-
monsense reasoning test, unlike other benchmarks,
which focus on specific commonsense capabilities
(Rashkin et al., 2018; Forbes et al., 2019; Sap et al.,
2019a,b; Bisk et al., 2020).

In order to fulfil the fourth feature, each exam-
ple was paired with an additional twin sentence,
which only slightly differs from its twin. (Similar
tests sets were recently proposed and referred to
as Counterfactual data (Kaushik et al., 2019) and
Contrast sets (Gardner et al., 2020)). For example,
the twin sentence of Example 1 is:

2. The trophy would not fit in the brown suitcase
because it was too small.

Notice that the special words in these sentences
are large and small, and in this sentence, it refers
to the brown suitcase (as opposed to the trophy in
Example 1). The special word is a key part of WS,
that makes the task hard to solve. These words were
chosen carefully to avoid statistical correlations
between the special word and the entities. In this
example, both trophy and suitcase can be small,
which makes the task hard to solve by machines;
and as Levesque et al. puts it: “This helps make
the test Google-proof: having access to a large
corpus of English text would likely not help much
(assuming, that answers to the questions have not
yet been posted on the Web, that is)!”

2.2 Progress on WSC
Since WSC was proposed as a benchmark for com-
monsense (Levesque et al., 2012), there were many
attempts to improve performance on this bench-
mark, that involved different approaches from web
queries (Rahman and Ng, 2012; Sharma et al.,
2015; Emami et al., 2018), using external knowl-
edge sources (Sharma, 2019), information extrac-
tion and reasoning (Isaak and Michael, 2016) and
more (Peng et al., 2015; Liu et al., 2017a,b; Fäh-
ndrich et al., 2018; Klein and Nabi, 2019; Zhang
et al., 2019, 2020a).

Newer approaches use LMs to assign a proba-
bility to a sentence by replacing the pronoun with

an entity, one at a time, and pick the more proba-
ble sentence (Trinh and Le, 2018; Opitz and Frank,
2018; Radford et al., 2019; Kocijan et al., 2019).
More recently, sequence to sequence models have
been employed to directly predict the referred en-
tity using training (Raffel et al., 2020), or in a zero-
shot or few-shot setting citebrown2020language.
The latest results of GPT-3 (Brown et al., 2020)
are rather impressive, and agree with the premise
of this paper, as the model sees none to a few
dozen examples to learn the format. It is worth
noting, though, that the training corpus of GPT-3
included some of the WSC questions, and therefore
these results should be taken with a grain of salt.
For a comprehensive review of the progress on ap-
proaches and related datasets of WS, see Kocijan
et al. (2020).

Zhou et al. (2020) probed multiple LMs for com-
monsense capabilities in different datasets among
WSC, by computing the probability the LM assigns
each alternative and choosing the more probable
one. The advantage of this method is its unsuper-
vised approach; it does not teach the model any
new knowledge. Notably, their evaluation protocol,
which computes the average log probability of each
masked word is problematic, since special words
that get tokenized into more than one word-piece
are still masked independently, thus priming the
model towards a certain answer. In this work, we
propose a new evaluation methodology and show
that these models’ performance is random. Finally,
Zhang et al. (2020b) provided an analysis of dif-
ferent types of commonsense knowledge needed
to solve the different WSC questions, including
properties, eventualities, and quantities.

3 A Robust Group Score Evaluation

Many works in recent years have shown that large
neural networks can achieve high performance on
different benchmarks while “being right for the
wrong reasons” (McCoy et al., 2019). These suc-
cesses arise from a variety of reasons such as biases
in datasets (Poliak et al., 2018; Tsuchiya, 2018; Gu-
rurangan et al., 2018; Kaushik and Lipton, 2018),
annotators biases (Geva et al., 2019), etc. Levesque
et al. (2012) proposed to alleviate some of these
issues by using the twin sentences along with the
special word. However, the proposed evaluation
of WSC still scored each twin separately. As
Trichelair et al. (2019) showed that some WSC
instances can be solved using simple correlations,



we argue that the independent scoring may result
in unjustifiably inflated scores. Here, we inspect a
new evaluation that accounts for some of these bi-
ases and provide a more robust evaluation for cases
where we have grouped instances (e.g. minimal
pairs).

3.1 Group Scoring
Recent studies proposed to augment test instances
with minimal pairs, that either change the original
answer (Kaushik et al., 2019; Gardner et al., 2020),
or keep it intact by using paraphrasing, synonyms,
etc. (Glockner et al., 2018; Shah et al., 2019). Typ-
ically, these works report the results separately on
a new test set.

We extend over previous work that proposes
to evaluate pairs (Abdou et al., 2020) or groups
(Elazar et al., 2021) of related instances and as-
sign a point only if all are correctly predicted by a
model. Our evaluation framework exploits groups
of minimal-distance instances and results in a more
robust evaluation. Specifically, for an arbitrary scor-
ing function f , and a group of minimal-distance
instances xi, score each of the examples xij in the
group and assign the group its worse-performing
score:5

groupScore(xi) = min
j

f(xij )

The motivation behind this new evaluation is
three-fold: (1) Predicting correctly all examples in
a group provides a more robust measurement, and
indicates a better understanding of the instances; (2)
The lowest scored example is the groups’ “Achilles
heel” and thus makes the success on other examples
suspicious; (3) It lowers the probability of random
predictions (especially in classification tasks), or
the use of shallow heuristics to solve examples. We
note that cases where all examples in a group can
be solved based on some bias will still lead to a
high score on this group. Therefore this evaluation
does not solve the problem of biased examples, but
it reduces the chance of scoring them as correct
in cases where not all the groups’ instances are
biased.6

In classification tasks, a consequence of this eval-
uation is the change in random performance. For
example, in the case of balanced binary classifica-
tion, the chance accuracy drops from 50% to 25%.

5The minimum in cases where higher scores indicate better
performance, and maximum otherwise.

6A similar evaluation was used by Zhou et al. (2019), with
the “Exact Match” metric for a multi-label classification task.

This generic evaluation can be applied not only
in classification tasks but also in other tasks that
use different evaluation metrics such as BLEU and
ROUGE in generation (Papineni et al., 2002; Lin,
2004). For WS, we use group scoring over the
twin sentences, with accuracy as the per-instance
scoring function. This yields the paired evaluation
that was recently proposed by Abdou et al. (2020)
for evaluating WSC.

3.2 Other Robust Evaluation Protocols

It is important to note that any WS test set is only
an approximation of the commonsense reasoning
skills required overall. The twin-sentences allow
to test for specific skills (such as the interchange
between small and large with ‘fit’ in Examples 1,
2), but other perturbations are possible which al-
low testing different skills. For instance, Abdou
et al. (2020) proposed several perturbations on the
original sentences that mostly do not change the an-
swer, such as synonyms entities substitution, tense
switch, gender switch, etc. These perturbations
are also reminiscent of the switched protocol of
Trichelair et al. (2019), where models are evaluated
on examples where the candidates can be switched
in the order (which mainly happens with proper
names, but also with inanimate objects), expecting
a consistent prediction from models since the label
does not depend on the entities order. Under the
group-scoring evaluation, we expect a model to
succeed on all perturbations from the same group.

4 Setup

Datasets We experiment with two English WS
datasets:

Winograd Schema Challenge (WSC) (Levesque
et al., 2012) contains 273 manually curated ex-
amples. We also report results on the debiased
(or, non-associative) examples that were filtered by
Trichelair et al. (2019), named WSC-na.

Winogrande (Sakaguchi et al., 2019) is a recent
crowdsourced dataset that contains WS questions.
Winogrande contains 40,938, 1,267, 1,767 exam-
ples for train, development, and test respectively.
Since the test labels were not published, we report
our results on the development set.

Modeling We follow the modeling of Sakaguchi
et al. (2019), which finetunes PLMs as a multiple-
choice problem on the Winogrande training set. In
this modeling, the pronoun is replaced with either



Dataset Setup Single Group

WSC
original 89.71 79.41
no-cands 60.72 40.35
part-sent 64.88 33.88

WSC-na
original 89.45 79.09
no-cands 58.06 34.41
part-sent 59.90 25.00

Winogrande
original 71.49 58.45
no-cands 53.07 31.05
part-sent 53.11 22.34

Table 1: Results of RoBERTa-large trained on Wino-
grande, evaluated on the different datasets in the regu-
lar condition (original) and the two bias-exposing base-
lines. Reporting results both on the original accuracy
(Single), and the group-scoring (Group). Random per-
formance on the single and group-scoring evaluations
are 50% and 25% respectively.

one of the entities, and the ‘[CLS]’ token represen-
tation is used for prediction. We also experiment
with another loss for WS, that was explored in Liu
et al. (2020) where instead of using a different clas-
sification head, uses the original MLM head for
predictions. We report these results in Appendix
G.

Pre-trained Models We experiment with multi-
ple PLMs: BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019) and ALBERT (Lan et al., 2019).

5 Biases-Detecting Baselines for WS

WSC was carefully designed by human experts
to minimize the creation of biased examples. For
instance, Example 3 is not considered as a good
WS example since a racecar is more likely to go
fast rather than a school bus.

3. The racecar zoomed by the school bus be-
cause it was going so fast.

However, such correlations are often easy to
miss. As evidence, Trichelair et al. (2019) found
37 sentences to be associative, or non Google-
proof.7 These examples were labeled manually us-
ing crowdsourcing, therefore these are still bound
to what non-experts can catch, and subtler cues may
be hard to catch. Other correlations may be harder
or impossible to be detected by humans since they

7Google-proof is an attribute introduced in Levesque et al.
(2012) that refers to the strength of a test, and the inability to
solve it by having access to a large text corpora.

are the result of spurious correlations. These fea-
tures, which can be learned during pretraining or
fine-tuning, may result in successful predictions
that do not reflect commonsense reasoning skills.

To account for these biases, we propose two
control baselines, which are likely to achieve ran-
dom performance with an unbiased model. A score
above random indicates the presence of biased ex-
amples.

No-Candidate Baseline This baseline (no-
cands) removes the two candidates (entities) from
the text. For instance, Example 1 will turn into:
“would not fit in because it was too large.”

Partial-Sentence Baseline In this baseline (part-
sent) we split the sentence into two parts, based on
punctuation and discourse markers8 and take only
the part containing the pronoun. For instance, Ex-
ample 1 will be transformed into the following:
“because it was too large.” A similar approach was
used by Trichelair et al. (2019), however, they em-
ployed annotators to manually indicate whether the
partial sentence containing the pronoun is associa-
tive to one of the candidates. Alternatively, we
use a trained model and inspect the overall score
on a controlled dataset. We note that these two
baselines create nonsensical sentences. Therefore,
we expect humans to not be able to properly solve
them. Thus, a model that achieves higher than ran-
dom performance on these baselines over a large
enough dataset is suspected to rely on spurious
correlations.

These baselines are reminiscent of previous
works that used part of the input (e.g. the hypothe-
sis only baseline in NLI), to reveal biases in multi-
ple NLI datasets (Poliak et al., 2018) and reading
comprehension (Kaushik and Lipton, 2018).

5.1 Results

We retrain the RoBERTa large model from Sak-
aguchi et al. (2019) that was trained on Winogrande
and report the results using the original and the new
group-based evaluations in Table 1. On WSC this
model achieves 89.71% and 79.41% accuracy, on
WSC-na it achieves 89.45% and 79.09%, and on
the dev set of Winogrande, it achieves 71.49% and
58.45% accuracy, respectively. To make these eval-
uations comparable, we filter sentences with no
twin sentences from Winogrande and the single

8‘so’, ‘but’, ‘and’, ‘because’, ‘although’, ‘though’, ‘due’,
‘since’, ‘.’, ‘,’, ‘;’, ‘?’



ID WSC Trichelair et al. no-cands part-sent

2 The trophy doesn’t fit into the brown suitcase because it is too large. 7 X X

8 The lawyer asked the witness a question, but he was reluctant to repeat it. 7 7 7

53 The painting in Mark’s living room shows an oak tree. it is to the right of a house. X 7 7

54 There is a gap in the wall. You can see the garden through it . X X X

Table 2: Instances from WSC, along with indication if the manual filtering by Trichelair et al. (2019) marked them
as associative, as well as our proposed baselines correctly predicted by group-scoring.

triplet sentence from WSC, remaining with 568
and 272 instances, respectively (or, 284 and 136
pairs). The resulting performance on the original
Winogrande development set is 78.3%.9 The single
accuracy score on sentences that have pairs is lower
by almost 8 points than the original set, which sug-
gests that the sentences with no pair are easier, and
may contain some biases. Next, we highlight the
performance difference between the original evalu-
ation and the paired, which dropped by 10.3, 10.36,
and 13 points for WSC, WSC-na, and Winogrande,
respectively. Finally, the results on our proposed
baselines achieve higher performance than the ran-
dom baseline, especially for WSC. The no-cands
baseline achieves 40.35%, 34.41%, and 31.05%
on WSC, WSC-na, and Winogrande respectively,
whereas the part-sent baseline achieves 33.88%,
25.00%, and 22.34% accuracy. These results in-
dicate that WSC is highly biased (over 15 points
above random performance), and even after the
manual filtering of Trichelair et al. (2019) some
statistical correlations remain. On Winogrande,
the no-cands baseline achieves more than 6 points
above random, but is less biased than WSC and
WSC-na, presumably due to the AFLITE algorithm.

5.2 Qualitative Analysis

In Table 2 we inspect some instances from WSC
and indicate if the manual filtering by Trichelair
et al. (2019) found them to be biased, as well as
successful predictions on the twin sentences by our
baselines. Although successful predictions may
result from chance (although the probability that
both baselines correctly predicted both pairs is rel-
atively low - 6.25%), we highlight some cases we
find interesting.

The first example from the table was pre-
dicted correctly by both our baselines, but not by
Trichelair et al. (2019). This may be a case of
memorization of this very popular example, by the

9Compared to 79.3%, reported by Sakaguchi et al. (2019).

pretrained RoBERTa model which was trained on
many webpages (Emami et al., 2020). We pro-
vide more compelling evidence for this example’s
memorization in Appendix F. Example ID 54 was
predicted correctly by our baselines, as well as by
Trichelair et al. (2019) since this example is asso-
ciative: it is likely to see something through a gap,
rather than through a wall.

6 Disentanglement of Commonsense
Reasoning and Learned Commonsense

In this section, we wish to disentangle the common-
sense reasoning skills acquired by PLMs, and what
they learn during fine-tuning on a WS dataset. We
propose a method that allows evaluating pretrained
Masked Language Models (MLM) in a zero-shot
setting on WS-like questions.

6.1 Zero Shot MLM Evaluation
Previous work proposed to evaluate MLMs in a
zero-shot setting by replacing the pronoun with
masked tokens, corresponding to the number of
tokens the entities are tokenized into. Then, by
inspecting each entity’s probability the more prob-
able entity is selected (Kocijan et al., 2019; Abdou
et al., 2020). However, this approach is problematic
when the entities are of different token lengths or
consist of more than a single token since the model
may be primed towards a certain answer. For in-
stance, consider Example 1’s entities, trophy and
suitcase, in the case they are tokenized into trophy
and suit, case. In this scenario, the MLM will see in
one of the cases a single mask (assigning the trophy
probability), and in the other case, it will see two
masks (assigning the suit and case probabilities).
Since the model has access to the number of tokens
it has to complete, the comparison between these
two options is flawed. Another approach, used by
Zhou et al. (2020) is to calculate a probability to
the entire sentence, by masking a single token at
a time. However, this method is also problematic
when the entities are tokenized into more than a sin-



Model
WSC WSC-na WinoGrande

Single Group Single Group Single Group

random 50.00 25.00 50.00 25.00 50.00 25.00

BERT-base 56.52 15.22 54.79 12.33 53.12 11.11
BERT-large 61.41 23.91 60.27 21.92 55.56 12.50
RoBERTa-base 63.04 27.17 60.27 21.92 56.25 14.58
RoBERTa-large 73.91 47.83 71.23 42.47 54.86 12.50
ALBERT-base 55.43 13.04 55.48 12.33 52.78 7.64
ALBERT-xxlarge 78.80 57.61 77.40 54.79 58.68 20.83

Table 3: Performance of different PLMs evaluated in the zero-shot setup of WS. Single refers to the standard
accuracy over the entire test set, Group refers to group-scoring.

gle token since unmasked-tokens are affecting the
prediction of the masked tokens. For instance, fol-
lowing the same example as before, where suitcase
is tokenized into suit and case, a model that sees
suit is more likely to assign a high probability to
case, therefore staining the probability distribution,
and causing a wrong comparison.

Since properly evaluating MLM on WS sen-
tences with more than a single word that differs be-
tween the sentences is challenging, we filter these
examples. Then, we mask this word, and compare
the probabilities of the two candidates, as was done
in previous work (Goldberg, 2019; Talmor et al.,
2019; Ettinger, 2020). The issue with this approach
is that typically, the candidates are constructed of
multiple words or named entities that are often tok-
enized into multiple word-pieces, which will result
in filtering a great portion of the data. Instead, we
propose to make use of the special word (the word
that is different between the twin sentences), mask
it, and replace the pronoun with the correct answer.
Then, the model has to decide which of the special
words refers to each entity. Occasionally, there is
more than one special word, or it gets tokenized
into multiple tokens, therefore we discard these
sentences.

An example of this transformation process on
Example 1 is the following:

4. The trophy would not fit in the brown suitcase
because the trophy was too [MASK].

where ‘[MASK]’ is the token that has to be pre-
dicted between the two original special words:
‘large’ or ‘small’. The twin sentence of this ex-
ample would accordingly be the same but with the
entity ‘the trophy’ replaced with ‘the brown suit-
case’, and the correct answer would change from
‘large’ to ‘small’.

One potential pitfall of this formulation is that
it is not faithful to the original WS, and tests a dif-
ferent mechanism. To test the difference between
these formulations, we train the RoBERTa large
model on Winogrande on our transformed data,
and compare it to the results of the same model,
trained on the original setup. We make sure to only
use sentences that can be transformed, assuring to
train both models on the same subset. The model’s
performance on the original setup achieves 66.10%
and 55.93% on the original and paired evaluation
development set, whereas the model trained on the
transformed setup achieves 70.06% and 64.97%.
The latter achieves higher performance, suggesting
that our transformation may be preferable in mod-
eling, or easier than the original setup. Since this
modeling is easier for the model, the results pro-
vide a higher bound of the original results, making
the results even more alarming.

We transform WSC, WSC-na, and the Wino-
grande dev set with the proposed method and re-
main with 226, 180, and 354 examples, respec-
tively. We then evaluate the pre-trained LMs
described in Section 4, and report the results
in Table 3. We note that the overall perfor-
mance is much lower compared to the finetuned
model, as expected. Next, the performance on the
group-scoring on WSC-na is relatively low, except
for RoBERTa-large and ALBERT-xxlarge, which
achieve 42.47 and 54.79, high above random per-
formance. On the other hand, the performance on
Winogrande, across all models is below random
performance (best result by ALBERT-xxlarge, of
20.83%), indicating poor commonsense capabili-
ties of these models. Since we found in the previ-
ous Section (§5) that WSC and WSC-na are highly
biased, we take the results on Winogrande to bet-
ter reflect commonsense reasoning skills. Recall



that the comparison between the two formulations
suggested that our new formulation should perform
better, a fact that makes the random predictions in
the zero-shot setup even more remarkable.

7 Progress in Commonsense Reasoning?

The large performance gap may not seem surpris-
ing. In most tasks in NLP, we do not expect a
PLM to do well on new tasks out of the box and
expect a supervised dataset to provide the required
skills. However, we claim that for commonsense
tasks, this argument does not hold. Since common-
sense reasoning skills and knowledge are huge, it
is not likely to acquire all that information through
supervision. Consider the following WS instances:

5. The large ball crashed right through the table
because it was made of steel.

6. I bought a steel property at the same time
as my wooden property. The _ property was
harder.

Examples 5 and 610 come from WSC and Wino-
grande training set, respectively. The fact that steel
is a strong material is part of the knowledge needed
to solve Example 5. However, a model that is
trained on Example 6 may pick up this fact. Will
this training instance also teach the model facts
about other materials, such as styrofoam?

To quantify the effect of training on the success
in solving WS questions, we re-split Winogrande
training set to leave enough data for testing (out of
the ‘unbiased’ subset) and use the rest for training.
From the remaining training set, we create multi-
ple training splits, increasing in size, to study the
effect of increasing amounts of data on the over-
all performance. We use the original development
set to pick the best models. We report learning
curves with the different models, where each point
is the average score of three runs, in Figure 2.11

We report the number of correct pairs predicted
correctly on the y-axis as a function of the train-
ing size. These curves indicate that the inspected
models obtained no commonsense reasoning ca-
pabilities in the pretraining step, and are slowly
improving their performance the more data they
are trained on. However, except for a sudden im-
provement with 500 examples for ALBERT, the

10Winogrande was collected with ‘_’ instead of pronouns.
11Full numeric results, along with standard deviations are

reported in Appendix C.
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Figure 2: Learning curves for the large versions of
BERT, RoBERTa, and ALBERT models, trained on
increasing amounts of data. This figure differs from
the Winogrande leaderboard. We explain the source of
these differences in Appendix E.

slope increases incredibly slowly and requires a
significant amount of additional training instances
for small improvements (BERT and RoBERTa’s
slopes are more moderate). We conclude that train-
ing data is mostly non-beneficial for commonsense
reasoning, and models should acquire it using other
methods.

We note that the initial fast increase in AL-
BERT’s performance is interesting, and may be
due to another explanation; that is commonsense
reasoning is composed of commonsense knowl-
edge (e.g. steel is hard), and reasoning (comparing
between objects sizes). Some of the knowledge
may be encoded in these models, and reasoning
can be taught. However, if that’s the case, datasets
should account for that, with careful splits. We
leave the answer to this question to future work.
Overall, this increase is nevertheless rather mod-
erate, and once a model passes this point (about
500 examples), the performance increases slowly,
which goes in line with our claims.

8 Conclusions

In this work, we begin by discussing the current
evaluation of WS and propose an additional evalua-
tion metric, group-scoring, that credits a model
with the worse performing instance of a group.
While in this work we focus solely on WS, we
propose to use the same evaluation also in other do-
mains, where minimal pairs are available (Kaushik
et al., 2019; Gardner et al., 2020; Warstadt et al.,
2020), as a more reliable evaluation metric. We
then propose two new control baselines that ac-
count for biases in WS data and show that WSC is



highly biased, while Winogrande shows much less
biased data.

Finally, we propose a method to evaluate MLMs
on WS sentences in a zero-shot setting. We show
that the performance of popular MLMs is random
and that models improve gradually the more train-
ing data they see. We conclude that the use of large
training sets is not always desirable, especially in
commonsense reasoning settings, and call future
work to find other methods to improve our models’
commonsense abilities.
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A Detailed Setup

Datasets We report our results on two datasets:
Winograd Schema Challenge (WSC) (Levesque

et al., 2012) contains 273 manually curated exam-
ples. Each example is paired with a twin-sentence,
meaning that there’s a special word that is changed
between the two sentences, that changes the core-
ferring entity. Trichelair et al. (2019) have labeled
the original WSC examples, and found 37 exam-
ples to be biased (or, associative Trichelair et al.
(2019)). We thus also use the ‘unbiased’ subset,
named non-associative which excludes the associa-
tive examples. We refer to this subset as WSC-na

Winogrande (Sakaguchi et al., 2019) is a recent
crowdsourced dataset that contains WS questions.
Winogrande is much larger than WSC and contains
9,248, 1,267, 1,767 examples for train, develop-
ment, and test respectively. Winogrande was fil-
tered from ‘biases’ using their proposed AFLITE

algorithm, which produced the mentioned challeng-
ing dataset. However, the authors also release and
use the ‘biased’ instances for training, making a
total of 40,938 training instances.

Pre-trained Models We experiments with multi-
ple pre-trained models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and ALBERT (Lan
et al., 2019). These models are large Transformer-
based architectures (Vaswani et al., 2017), that are
trained on the Masked Language Modeling task,
which is predicting the masked word in a given
context. These models are pretrained on huge
amounts of text such as Wikipedia, the book cor-
pus (Zhu et al., 2015), parts of CommonCrawl,
and more. Specifically, we conduct our experi-
ments with BERT-large-cased, RoBERT-Large, and
ALBERT-XXLarge-V2, which have 335M, 335M,
and 223M parameters, respectively.

B Implementation Details

We implemented the experiments with the hugging-
face package (Wolf et al., 2020). Following the
previous work (Sakaguchi et al., 2019), on all our
experiments, we set the learning rate to be 1e-5,
batch size to be 8, and trained the models for 8
epochs. Adam (Kingma and Ba, 2015) is used as
the optimizer. We trained our model with RTX
2080, and the training time is 13, 14, and 62 min-
utes per epoch on the largest training set Wino-
grande (10) for BERT-large, RoBERTa-large, and
Albert-XXL-v2, respectively. As the evaluation is

conducted on the dev set, we do not use it to select
the best model. Instead, we report the performance
with the final model, which is converged based on
our observation.

C Full Learning Curves Results

The full results from Figure 2, along with the stan-
dard deviations, are reported in Table 4.

D AFLITE Details

AFLITE (Sakaguchi et al., 2019), an algorithm pro-
posed for reducing datasets’ biases was used to
create Winogrande (Sakaguchi et al., 2019). It
works as follows: a RoBERTa model (Liu et al.,
2019) is finetuned on a random subset of the data
to train a ‘weak’ model of the task. Then, the rest
of the instances are encoded using the model’s en-
coder. Then, for multiple iterations, a set of weak
classifiers (linear) are trained on a subset of the
encoded data and predict the rest. If more than k
classifier predicted correctly an instance’s label, it
is discarded from the final dataset. This process
is repeated multiple times, until reaching a satisfy-
ing dataset size (which is controlled by predefined
hyperparameters).

Although this algorithm filter examples that are
‘easy’, as a set of linear models that were trained on
a medium quality representation managed to pre-
dict the correct answer, it is unclear how unbiased
the dataset is. In contrast, our proposed baseline
methods directly detect biases the classification
model may rely on, by presenting challenging per-
turbations on which a model is not likely to succeed
above random. Thus, our procedure is inherently
different than the general-purpose AFLITE filtering
algorithm.

E Comparison to Winogrande
Leaderboard

We note that Figure 2 differs from the Winogrande
leaderboard in multiple ways: first, we compare
different models than the ones that appear on the
leaderboard. Specifically, the to-date leading sub-
mission (accurate as of March 21st, 2021), UNI-
CORN, does not provide details about the model,
except it is a T5 based model, trained on a collec-
tion of datasets. Since the content of these datasets
is not publicly available, it is impossible to assess
the quality of this submission. For instance, if one
of these datasets contains other commonsense rea-
soning datasets, the model may have picked up

https://leaderboard.allenai.org/winogrande/submissions/public
https://leaderboard.allenai.org/winogrande/submissions/public


# Training
BERT RoBERTa ALBERT

Single Group Single Group Single Group

0 52.99 (0.00) 8.67 (0.00) 56.39 (0.00) 16.61 (0.00) 55.55 (0.00) 17.23 (0.00)
100 53.47 (0.75) 11.71 (0.75) 52.78 (0.75) 10.22 (4.48) 58.24 (1.49) 19.89 (2.74)
500 49.31 (1.87) 12.42 (1.74) 49.65 (0.50) 14.17 (1.99) 60.07 (0.50) 32.35 (1.27)

1,000 51.39 (0.99) 15.33 (0.75) 50.35 (0.37) 16.33 (0.50) 62.50 (0.62) 42.89 (0.25)
2,000 51.39 (0.87) 22.32 (3.49) 49.65 (0.25) 16.35 (1.49) 62.85 (2.36) 53.27 (3.24)
4,000 48.96 (2.61) 21.73 (2.49) 49.65 (0.50) 18.94 (1.24) 67.36 (1.12) 55.72 (2.49)
6,000 50.35 (0.50) 23.73 (0.50) 59.72 (1.86) 38.85 (2.99) 67.71 (2.86) 52.16 (3.73)
8,000 48.26 (1.24) 29.27 (0.75) 50.35 (1.37) 39.32 (1.99) 67.36 (0.50) 55.43 (0.25)

10,000 51.39 (1.12) 31.85 (1.99) 62.85 (0.12) 52.27 (0.99) 73.76 (1.76) 59.98 (1.94)
12,000 50.00 (1.62) 25.68 (1.49) 62.85 (0.50) 51.24 (0.50) 72.22 (1.33) 57.28 (0.54)
14,000 52.08 (0.50) 32.31 (3.24) 62.15 (1.49) 52.31 (0.75) 75.61 (0.63) 62.15 (2.24)
16,000 54.86 (0.75) 39.31 (1.99) 60.42 (2.11) 53.14 (3.24) 76.82 (1.15) 64.21 (1.42)

Table 4: Effect of the training data size on different models performance. We report results on BERT, RoBERTa
and ALBERT, all with their largest variants.

on commonsense reasoning skills which are also
tested for in Winogrande. Second, the leaderboard
uses the original evaluation, based on the accu-
racy of single instances. As we claim in Section 3,
this evaluation is sub-optimal and causes an over-
estimation of the actual performance of models.
Moreover, our analyses were done on the develop-
ment set, as opposed to the reported test set perfor-
mance, since the test set is not publicly available.
Finally, the leaderboard presents a learning curve
of 5 training sizes, as we report the results over 12
different training sizes.

F Elaborate Analysis

In Section 5.2 we showcase some examples from
WSC and provide possible explanations for which
our baselines (§5) are able to solve them. Here, we
provide additional evidence that supports our claim.
We do so for the example where both baselines pre-
dict the correct answer, but the manual inspection
from Trichelair et al. (2019) does not consider it to
be biased. We emphasize that this example is not bi-
ased per se, and thus the annotation from Trichelair
et al. (2019) was correct, but the pretrained model,
which was trained on the web, may have caught
up statistical cues that help it predict these exam-
ples correctly, even with partial information. For
completeness, we repeat the example here:

7. The trophy doesn’t fit into the brown suitcase
because it is too large.

Example 7 is a popular example that is often
given when describing the task in the media. As

evidence, we search for this sentence in Google
and found it in multiple websites:

• https://theness.com/neurologic
ablog/index.php/a-tougher-tu
ring-test/

• https://www.eitdigital.eu/ne
wsroom/blog/article/whats-too-
big-the-trophy-or-the-suitca
se/

• https://cmte.ieee.org/futuredi
rections/2014/08/20/whats-too-
big-the-trophy-or-the-suitca
se/

Next, we search for these websites in Common
Crawl12, the February 2019 version that was re-
ported to be part of RoBERTa’s training data (Liu
et al., 2019). We use an index server13 that al-
lows querying a specific index and look specific
websites. We find that the first two websites are
included in this index. Although we cannot guar-
antee that these websites were part of RoBERTa’s
training data since it was not published, the proba-
bility that several examples from WSC were part
of the large training data of RoBERTa (and later
models), with these websites, or other, is high.

https://theness.com/neurologicablog/index.php/a-tougher-turing-test/
https://theness.com/neurologicablog/index.php/a-tougher-turing-test/
https://theness.com/neurologicablog/index.php/a-tougher-turing-test/
https://www.eitdigital.eu/newsroom/blog/article/whats-too-big-the-trophy-or-the-suitcase/
https://www.eitdigital.eu/newsroom/blog/article/whats-too-big-the-trophy-or-the-suitcase/
https://www.eitdigital.eu/newsroom/blog/article/whats-too-big-the-trophy-or-the-suitcase/
https://www.eitdigital.eu/newsroom/blog/article/whats-too-big-the-trophy-or-the-suitcase/
https://cmte.ieee.org/futuredirections/2014/08/20/whats-too-big-the-trophy-or-the-suitcase/
https://cmte.ieee.org/futuredirections/2014/08/20/whats-too-big-the-trophy-or-the-suitcase/
https://cmte.ieee.org/futuredirections/2014/08/20/whats-too-big-the-trophy-or-the-suitcase/
https://cmte.ieee.org/futuredirections/2014/08/20/whats-too-big-the-trophy-or-the-suitcase/


Dataset Setup Single Group

WSC
original 89.71 80.88
no-cands 60.96 29.82
part-sent 59.09 22.31

WSC-na
original 90.00 81.82
no-cands 59.14 25.81
part-sent 56.77 16.67

Winogrande
original 70.95 54.23
no-cands 54.87 17.69
part-sent 54.43 14.18

Table 5: Results of RoBERTa-large trained on Wino-
grande, evaluated on the different datasets in the regu-
lar condition (original) and the two bias-exposing base-
lines using the MC-MLM loss (Liu et al., 2020). Re-
porting results both on the original accuracy (Single),
and the group-scoring (Group). Random performance
on the single and group-scoring evaluations are 50%
and 25% respectively.

G MLM results

Here we report the results for the MC-MLM loss
that was explored in Liu et al. (2020), where in-
stead of training a new head for the classification
task, it uses the original MLM head and scores the
different candidates instead of the pronoun. We run
all experiments including fine-tuning, and report
the results in this section.

First, the bias experiment results are detailed
in Table 5. Although the results on the standard
setting (original) are similar to the ones when using
a dedicated head (Table 1), this model appears to
be less biased: the no-cands baseline still perform
better than random on WSC, but the other baseline
and the other evaluations perform randomly.

Finally, we repeat the learning curves experiment
using the MC-MLM loss, on increasing amounts of
data, where for each training size we train 3 models
and report the mean and std, and report the results
in Table 6. Here, in contrast to the trends shown
in Liu et al. (2020), we observe generally worse
results using the MC-MLM loss. One source of dif-
ference is that Liu et al. (2020) repeated the exper-
iments much more times while performing a grid
search over different hyperparameters, while we
used the same default hyperparameters for all exper-
iments. Another source of difference is the differ-
ent training and evaluation splits used in our studies.

12https://commoncrawl.org/
13http://index.commoncrawl.org/CC-MAIN-

2019-09/

We conclude that nevertheless, the trends remain
the same, and the slopes of both methods are slow
to increase, and thus strengthens our claims about
the limited usefulness of training data for WS.

https://commoncrawl.org/
http://index.commoncrawl.org/CC-MAIN-2019-09/
http://index.commoncrawl.org/CC-MAIN-2019-09/


# Training
BERT RoBERTa ALBERT

Single Group Single Group Single Group

0 52.99 (0.00) 8.67 (0.00) 56.39 (0.00) 16.61 (0.00) 55.55 (0.00) 17.23 (0.00)
100 54.39 (1.59) 12.28 (2.39) 55.46 (0.18) 17.61 (1.46) 56.14 (1.12) 17.54 (3.73)
500 51.32 (0.37) 10.53 (2.14) 55.63 (1.67) 25.00 (3.27) 61.97 (1.37) 34.15 (1.74)

1,000 51.75 (0.63) 12.28 (0.89) 58.27 (2.03) 35.56 (3.27) 62.85 (0.12) 34.86 (0.25)
2,000 54.93 (0.37) 14.44 (1.33) 57.92 (1.09) 35.21 (3.16) 61.44 (0.75) 34.51 (0.50)
4,000 52.46 (0.71) 16.55 (2.00) 61.09 (1.84) 37.32 (2.67) 64.08 (2.49) 40.49 (2.32)
6,000 53.87 (1.57) 20.07 (1.53) 59.15 (0.62) 37.32 (1.51) 68.66 (1.12) 49.65 (0.75)
8,000 53.69 (1.17) 22.89 (1.08) 62.15 (0.98) 39.44 (1.27) 68.13 (2.74) 50.70 (3.73)

10,000 53.87 (0.51) 25.00 (1.61) 63.56 (1.24) 45.77 (2.21) 70.42 (1.49) 53.17 (0.50)
12,000 50.17 (1.50) 23.94 (2.46) 64.26 (1.07) 45.42 (3.27) 69.54 (0.51) 52.46 (0.50)
14,000 52.82 (2.00) 27.11 (3.86) 63.38 (1.25) 44.72 (2.99) 67.61 (0.97) 53.17 (1.81)
16,000 53.69 (0.67) 27.11 (0.89) 61.09 (0.57) 41.67 (1.77) 70.77 (0.75) 55.28 (1.23)

Table 6: Effect of the training data size on different models performance. We report results on BERT, RoBERTa
and ALBERT, all with their largest variants.


