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Abstract

Recent advances in quantum computing have drawn considerable attention to building realistic
application for and using quantum computers. However, designing a suitable quantum circuit
architecture requires expert knowledge. For example, it is non-trivial to design a quantum gate
sequence for generating a particular quantum state with as fewer gates as possible. We propose a
quantum architecture search framework with the power of deep reinforcement learning (DRL) to
address this challenge. In the proposed framework, the DRL agent can only access the Pauli-X, Y,
Z expectation values and a predefined set of quantum operations for learning the target quantum
state, and is optimized by the advantage actor-critic (A2C) and proximal policy optimization
(PPO) algorithms. We demonstrate a successful generation of quantum gate sequences for multi-
qubit GHZ states without encoding any knowledge of quantum physics in the agent. The design of
our framework is rather general and can be employed with other DRL architectures or optimization

methods to study gate synthesis and compilation for many quantum states.
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I. INTRODUCTION

Recently, reinforcement learning (RL) [I] has found tremendous success and demonstrated
a human- or superhuman- level of capabilities in a wide range of tasks, such as mastering
video games [2H5] and even the game of Go [6, [7]. With such success, it is natural to consider
applying such techniques to scientific areas that require sophisticated control capabilities.
Indeed, RL has been used to study quantum control [8HI4], quantum error correction [15-19]

and the optimization of variational quantum algorithms [20H23].

RL has also been applied to automatically building a deep learning architecture for a
given task. This is the so-called neural architecture search [24] and has been proven pos-
sible in a wide variety of machine learning (ML) tasks [25H31]. The core idea is to train
an RL agent to sequentially put in different deep learning components (e.g., convolutional
operations, residual connections, pooling and so on) and then evaluate the model perfor-
mance. Although the concept is simple, several recent studies have reported reaching a

state-of-the-art performance [32] and beating the best human-crafted DL models.

Quantum computing has promised exponential speedups for several hard computational
problems otherwise intractable on a classical computer [33, [34], such as factorizing large
integers [35] and unstructured database search [36]. Recent studies in variational quantum
algorithms (VQA) have applied quantum computing to many scientific domains, including
molecular dynamical studies [37], quantum optimization [38, [39] and various quantum ma-
chine learning (QML) applications such as regression [40-42], classification [41) 43H57], gen-
erative modeling [58H62], deep reinforcement learning [63H69], sequence modeling [40] [70, [71],
speech recognition [72], metric and embedding learning [73| [74], transfer learning [47] and
federated learning [75]. However, designing a quantum circuit to solve a specific task is

non-trivial, as it demands domain knowledge and sometimes extraordinary insights.

In this study, we investigate the potential of training an RL agent to search for a quantum
circuit architecture for generating a desired quantum state. In this work, we present a new
quantum architecture search framework powered by deep reinforcement learning (DRL). As
shown in Figure[l] the proposed framework includes an RL agent interacting with a quantum
computer or quantum simulator. The RL agent will sequentially generate an output action,
which is a candidate of the quantum gate or operation placed on the circuit. The built circuit

is evaluated against certain metrics, such as the fidelity, to check if it actually reaches the



goal. The reward is calculated based on the fidelity and sent back to the RL agent. The
procedure is carried out iteratively to train the RL agent.

Our contributions are the following:
e Provide a framework for the study of quantum architecture search.

e Demonstrate building a quantum circuit step-by-step via deep reinforcement learning

without any knowledge in physics.

The paper is organized as follows. In Section [T we introduce the RL background knowledge
used in this work. In Section we introduce the quantum architectures that our agent
will search. In Section we describe the experimental procedures and results in details.

Finally we discuss the results in Section [V] and conclude in Section [VI]
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FIG. 1: Overview of DRL for our quantum architecture search framework. The
proposed quantum architecture search framework consists of two major components. First
is a quantum computer or quantum simulator. In this work, we use a quantum simulator
with and without noise. Second is an RL agent interacting with the quantum computer. In
each time step, the RL agent will generate an action for the quantum computer. The
action specifies a quantum operation to be added to the system. Then the fidelity of the
quantum circuit is evaluated to determine the reward to be sent back to the agent. In
addition, Pauli-X, Y and Z expectation values are also fed back to the agent. The RL

agent will then be updated based on these information.



II. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a machine learning paradigm in which an agent learns
how to make decisions via interacting with the environments [I]. Concretely speaking, the
agent interacts with an environment £ over a number of discrete time steps. At each time
step t, the agent receives a state or observation s; from the environment £ and then chooses
an action a; from a set of possible actions A according to its policy w. The policy 7 is a
function which maps the state or observation s; to action a;. In general, the policy can be
stochastic, meaning that given a state s, the action output can be a probability distribution
m(as|sy) conditioned on s;. After executing the action a;, the agent receives the state of the
next time step s;y1 and a scalar reward r;. The process continues until the agent reaches
the terminal state or a pre-defined stopping criteria (e.g. the maximum steps allowed). An
episode is defined as an agent starting from a randomly selected initial state and following
the aforementioned process all the way through the terminal state or reaching a stopping

criteria.

We define the total discounted return from time step ¢t as R, = ZtT,:t ' ~try, where v
is the discount factor that lies in (0,1]. In principle, v is provided by the investigator to
control how future rewards are weighted to the decision making function. When a large v
is considered, the agent weighs the future reward more heavily. On the other hand, with a
small ~, future rewards are quickly ignored and immediate reward will be weighted more.
The goal of the agent is to maximize the expected return from each state s; in the training
process. The action-value function or Q-value function Q™(s,a) = E[Ri|s; = s,a] is the
expected return for selecting an action a in state s based on policy 7. The optimal action
value function Q*(s,a) = max, Q7(s,a) gives a maximal action-value across all possible
policies. The value of state s under policy 7, V7 (s) = E[R;|s; = s], is the agent’s expected
return by following policy 7 from the state s. Various RL algorithms are designed to find
the policy which can maximize the value function. The RL algorithms which maximize the

value function are called value-based RL.



A. Policy Gradient

In contrast to the walue-based RL, which learns the value function and use it as the
reference to generate the decision on each time-step, there is another kind of RL method
called policy gradient. In this method, the policy function 7 (a|s;#) is parameterized with
the parameters 6. The 0 will then be subject to the optimization procedure which is gradient
ascent on the expected total return E[R;]. One of the classic examples of policy gradient
algorithm is the REINFORCE algorithm [76]. In the standard REINFORCE algorithm, the
parameters f are updated along the direction Vglogm (a;|ss;0) Ry, which is the unbiased
estimate of VyE [R;]. However, the policy gradient method suffers from large variance of the
VyE [R;], making the training very hard. To reduce the variance of this estimate and keep
it unbiased, one can subtract a learned function of the state b;(s;), which is known as the

baseline, from the return. The result is therefore Vylog m (as|s:; 0) (R — by (s¢)).

B. Advantage Actor-Critic (A2C)

A learned estimate of the value function is a common choice for the baseline b;(s;) =
V7™ (s;). This choice usually leads to a much lower variance estimate of the policy gradient.
When one uses the approximate value function as the baseline, the quantity R; — b, =
Q(s¢,a;) — V(sy) can be seen as the advantage A(s;,a;) of the action a; at the state s;.
Intuitively, one can see this advantage as “how good or bad the action a; compared to the
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average value at this state V(s;).” For example, if the Q(s;,a;) equals to 10 at a given
time-step t, it is not clear whether a; is a good action or not. However, if we also know that
the V(s;) equals to, say 2 here, then we can imply that a; may not be bad. Conversely, if
the V(s;) equals to 15, then the advantage is 10 — 15 = —5, meaning that the ) value for
this action a, is well below the average V' (s;) and therefore that action is not good. This

approach is called advantage actor-critic (A2C) method where the policy 7 is the actor and

the baseline which is the value function V' is the critic [1].

C. Proximal Policy Optimization (PPO)

In the policy gradients method, we optimize the policy according to the policy loss

Loticy(0) = Ei[—log 7 (a; | st; )] via gradient descent. However, the training itself may suf-
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fer from instabilities. If the step size of policy update is too small, the training process would
be too slow. On the other hand, if the step size is too high, there will be a high variance in
the training. The proximal policy optimization (PPO) [77] fixes this problem by limiting the
policy update step size at each training step. The PPO introduces the loss function called
clipped surrogate loss function that will constraint the policy change a a small range with the
help of a clip. Consider the ratio between the probability of action a; under current policy
7 (at]s4560)

and the probability under previous policy ¢, (6) = (

m(at]st;001a)

If ¢;(#) > 1, it means the action
a; is with higher probability in the current policy than in the old one. And if 0 < ¢,(0) < 1,
it means that the action a; is less probable in the current policy than in the old one. Our
new loss function can then be defined as Lyojicy (6) = Ei[q:(0)Ar] = Et[%flt], where
Ay = R, — V(sy;0) is the advantage function. However, if the action under current policy is
much more probable than in the previous policy, the ratio ¢; may be large, leading to a large
policy update step. To circumvent this problem, the original PPO algorithm [77] adds a con-
straint on the ratio, which can only be in the range 0.8 to 1.2. The modified loss function is
now Lyolicy(0) = Ei[—min(q Ay, clip(q:, 1 —C, 14+C) A;)] where the C'is the clip hyperparame-
ter (common choice is 0.2). Finally, the value loss and entropy bonus are added into the total
loss function as usual: L(0) = Lpelicy + €1 Lvalue — C2H where Lyaue = Eif|| Ry — V(4 9)H2
the value loss and H = E,[H,;] = E,[— >, 7 (a; | s;0)log(m (a; | s;0))] is the entropy bonus

| is

which is to encourage exploration.

III. PROBLEM SETUP

Below we describe in detail the problem we aim to solve using DRL. Given an initial state
|0---0) and the target state, the goal is to produce a quantum circuit which transforms the
initial state to the target state within certain error tolerance. We use the Pauli measurements
as observations, a natural choice in quantum mechanics. We then use various RL algorithms
to achieve our goal. The overall scheme is shown in Figure[l] Specifically, the environment £
is the quantum computer or quantum simulator. In this work, we use a quantum simulator
since currently it is not yet practical to train tens of thousands of episodes on a cloud-
based quantum device. The RL agent, hosted on a classical computer, interacts with the
environment £. In each time step, the RL agent chooses an action a from the possible set

of actions A, which consists of different quantum operations (one- and two- qubit gates).
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After the RL agent updates the quantum circuit with the chosen action, the environment &
executes the new circuit and calculates the fidelity to the given target state. If the fidelity
reaches a pre-defined threshold, the episode ends and a large positive reward is given to
the RL agent. Otherwise, the RL agent receives a small negative reward. The states or
observations which the environment £ returns to the RL agent are Pauli measurements on
each qubit, so for an n-qubit system the dimension of the observations is 3n. The procedure
continues until the agent reaches either the desired threshold or the maximum allowed steps.
RL algorithms like A2C and PPO are employed to optimize the agent. Next, we discuss in

detail the mathematical setting of our problem.

A. Mathematical formulation of the problem

Suppose we are given the number of qubits n € N, the initial quantum state [0)®", the
target state |¢), the tolerance error ¢ > 0, and a set of gates G. Our goal is to find a

quantum circuit C : [0)®" — |1b) so that our DRL architecture serves as a function F:
F (100, [¥),e,G) = C (1)

such that 1 > D(|¥),C(]0)®")) > 1 — ¢, where C is composed of gates g € G and D is a
distance metric between two quantum states (larger is better). In this paper, we use the

fidelity [78] to be our distance D. Given two density operators p and o (see also Sec. [IV A 3)),
2
the fidelity is generally defined as the quantity F'(p, o) = {tr \/ \/ﬁa\/ﬁ] . In the special case

where p and ¢ represent pure quantum states, namely, p = |¢,X¢,| and o = [, )15, the

definition becomes the inner product of two states: F(p, o) = [(¢,|¢o)|>.

B. Multi-qubit entangled states as target

To validate that the proposed DRL pipeline can be applied to quantum architecture
search, it is best to check if multi-qubit entanglement can be generated as expected. To
this end, we target the generation of two kinds of quantum states: Bell state and Green-
berger-Horne—Zeilinger (GHZ) state.

A Bell state reaches maximal two-qubit entanglement,

_ o)+ 1) Jo0) +]11)
V2 V2o
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To generate a Bell state, we pick the observation to be the expectation values of Pauli

matrices on each qubits {(o%) |i € {0,1},j € {,y,2}}. The action set G is

n

G = | J{Ui(/4) . X;,Y:, Zi, H;, CNOT, (i11)(moa2) } (3)

i=1
where n = 2 (for two qubits), U;(0) = ((1] exp%w)) is the single qubit rotation about the
Z-axis applied to qubit i, X; = ¢’ is the Pauli-X gate and likewise for Y; and Z;, H; is the
Hadamard gate, and CNOT;; is the CNOT gate with the i-th qubit as control and j-th
qubit as target, so we have 12 actions in total. A textbook example for creating a Bell state

is shown in Fig. [2|

|O> D—
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N

FIG. 2: Quantum circuit for the Bell state.

A GHZ state is a multi-qubit generalization of the Bell state, in which an equal superpo-
sition between the lowest and the highest energy states is created. For 3 qubits it is given
by
0)** +11)** _ |000) + [111) n

V2 V2

To generate the 3-qubit GHZ state, we again use the expectation values of individual qubit’s

IGHZ) =

Pauli matrices, leading to 9 observables in total. For the actions, we pick the same single-
qubit gates as in Eq. , and six CNOT gates as two-qubit gates, so total we have 21
actions. In this fashion, for general n-qubit cases there will be 5n + n(n — 1) = Q(n?)
actions, increasing only quadratically instead of exponentially in n. An example for creating

a 3-qubit GHZ state is shown in Fig. 3]
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FIG. 3: Quantum circuit for the GHZ state.



IV. EXPERIMENTS AND RESULTS
A. Experimental Settings
1. Optimizer

We apply the gradient-descent method to optimize the RL policy. There are a wide variety
of gradient-descent methods which are demonstrated highly successful [79-81]. In this work,
we use the Adam [81] optimizer for training the RL agent in both the A2C and PPO cases.
Adam is one of the gradient-descent methods which computes the adaptive learning rates
for each parameter. In addition, Adam stores both the exponentially decaying average of

gradients g; and its square gZ,

my = By + (1 — B1) g4 (5a)
vy = Bover + (1= B2) g7 (5b)

where 31 and (5 are hyperparameters. We use 1 = 0.9 and f5 = 0.999 in this work. The

m, and v; are adjusted according to the following formula to counteract the biases towards

0,

A~ Ty
e =T G (6a)
. Ut
-t b
R 7 (60)

The parameters 0; in the RL model in the time step ¢ are then updated according to the

following formula,
N
Vo + e

We use the Adam optimizer provided in the Python package PYTORCH [82] to perform the

0t+1 - gt - mt (7)

optimization procedures.

2. Quantum Noise in Quantum Simulator

Here we introduce the error schemes we use in this study. We consider two forms of
errors, gate errors and measurement errors. The gate error refers to the imperfection in

any quantum operation we perform, whereas the measurement error refers to the error



that occurs during quantum measurement. For the gate error, we consider the depolarizing
noise which replaces the state of any qubit with a random state of probability pge.. For
the measurement error, we consider a random flip between 0 and 1 with probability pcqs
immediately before the actual measurement. We use the following noise configuration in the

simulation software to test our deep RL agents:
e crror rate (both pyate and pieqs) = 0.001
e error rate (both pyue and preqs) = 0.005

For the simulation of quantum circuits in both noise-free and noisy environments, we use

the software package Qiskit from IBM [83].

3. Density Matriz of Quantum States

The general form of a density matriz p of a quantum state under the basis {|1;)} is,
p="> pjl;) (W] (8)
J

where p; represents the probability that the quantum system is in the pure state [¢;) such
that > ;pj = 1. For example, the density matrix of the Bell state considered in this study
is |Bell) = (]00) + |11)) /v/2. Tts corresponding density matrix p is then given by

|Bell) (Bell| = = (|00) (00| + [00) (11| + [11) (00[ 4 |11) (11]) (9)

N —

The density matrix is used in calculating the state fidelity F' as mentioned earlier.

4. Quantum State Tomography

Quantum state tomography is a procedure to reconstruct the density matrix associated
with a quantum state from a set of complete measurements. Expanding the density matrix

in the Pauli basis of N qubits,

3
1
p= 2_N Z Pis o inTin @ 1 & Oy, (1())

i1, ,in=0
it can be seen that to fully determine p requires 4" — 1 measurement operations (minus

one due to the conservation of probability, Tr(p) = 1). More generally, measurements with
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4N —1 linearly independent projective operators can uniquely determine the density matrix,
for which Eq. is a special case with the projectors being the Pauli operators. As a
result, the number of measurements grows exponentially in the qubit number N, posing a
significant challenge in verifying multi-qubit quantum states in any experiments, and with
a finite number of shots the expectation values for {p;, ... ;, } can only be measured within
certain accuracy. For the purpose of this work, however, we perform the quantum state

tomography simulations using IBM’s Qiskit software package [83].

5. Customized OpenAl Gym Environment

We build a customized OpenAl Gym [84] environment to facilitate the development and
testing of this work. In this package, users can set the target quantum state, threshold of
fidelity and the quantum computing backend (real device or simulator software). In addition,
it is also possible to customize the noise pattern. We construct the testing environments

with the following settings:

e Observation: As mentioned the agent receives Pauli-X, Y Z expectation values on

each qubit. For general n-qubit systems, the number of observations will be 3 x n.

e Action: The RL agent is expected to select a quantum gate operating on the specific

qubit as given in Eq. (3)).

e Reward: For each step before successfully reaching the goal, the agent will receive a
—0.01 reward to encourage the shortest path. When reaching the goal, the agent will

receive a reward of value (£ — 0.01).

6. Hyperparameters

In this work, we employ the neural network models (shown in Table as our DRL agents:

We consider two DRL algorithms in this work, their hyperparameters are:
e A2C: learning rate n = 10~*, discount factor v = 0.99
e PPO: learning rate n = 0.002, discount factor v = 0.99, epsilon clip parameter C' = 0.2,

update epoch number K =4

11



Linear Tanh|Linear| Tanh|Linear

Input |state dim 64 64

Output |64 64 action dim (actor) or 1 (critic)

TABLE I: The neural network for A2C and PPO. The structure is the same for both the
actor and critic. The only difference is that in the actor, there is a softmax at the end of

the network.

B. Results: Noise-Free Environments
1. 2-qubit Bell state

Here we consider the application of DRL to generate the 2-qubit Bell state from scratch
under the noise-free environment. The result is in the Figure[f] We can observe that both
A2C and PPO methods can successfully train the DRL agent to synthesize the Bell state. It
is demonstrated that, with the same neural network architecture, the PPO method reaches
optimal results faster and the result is more stable compared to the A2C method. In Figuref]
we provide the quantum circuit for Bell state generated by the DRL agent.

0) D

|0) b—

FIG. 4: Quantum circuit for the Bell state generated by the DRL(PPO) agent.

2. 3-qubit GHZ state

Here we consider the application of DRL to generate the 3-qubit GHZ state from scratch
under the noise-free environment. The result is in the Figure[7l We can observe that both
A2C and PPO methods can successfully train the DRL agent to synthesize the GHZ state. It
is demonstrated that, with the same neural network architecture, the PPO method reaches
optimal results faster and the result is more stable compared to the A2C method. Notably,
the advantage of PPO over A2C is much more significant compared to the 2-qubit case. In

Figure[6] we provide the quantum circuit for GHZ state generated by the DRL agent.
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(b) PPO for noise-free two-qubit system.

FIG. 5: Deep Reinforcement Learning for Two-Qubit system. In the synthesis of

the Bell state with noise-free simulation environment, we set the total number of training
episodes to be 5000. The left panels of the figure show the raw scores of the DRL agents.

The gray area in the right panels of the figure represents the standard deviation of reward
in each training episode. We observe that, given the same neural network architecture,

PPO performs better than the A2C in terms of the convergence speed and the stability.

C. Results: Noisy Environments

In the previous section, we observe that the RL training based on PPO algorithm con-

verges faster. In the noisy scenario, we only use the PPO and not the vanilla A2C since
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FIG. 6: Quantum circuit for the GHZ state generated by the DRL(PPO) agent.
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(a) A2C for noise-free three-qubit system.
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(b) PPO for noise-free three-qubit system.

FIG. 7: Deep Reinforcement Learning for Three-Qubit system. In the synthesis of

the GHZ state with noise-free simulation environment, we set the total number of training

episodes to be 10000. We observe that, given the same neural network architecture, PPO

performs significantly better than the A2C in terms of the convergence speed and the

stability. The result is consistent with the 2-qubit case.
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that the noisy environment is considered harder than the noise-free one. Here we study the
case of applying DRL agent to synthesize the 2-qubit Bell state under noisy environment.
The first case we consider is with single-qubit error rate = 0.001 and the fidelity threshold
= 0.95. Similar to the previous noise-free 2-qubit experiments, the agent gets a negative
reward —0.01 at each step to encourage the shortest path. The maximum steps an agent can
try in an episode is still 20. If the agent can reach fidelity beyond the threshold 0.95, then
the agent will receive a positive reward (fidelity—0.01). Otherwise it will only receive reward
= —0.01 when the episode ends. The result is shown in Figure[8al Compared to the setting
with the same single-qubit error rate and fidelity threshold = 0.99 (shown in Figure, we
observe that the one with fidelity threshold = 0.95 performs better, with much more stable
score (smaller standard deviation).

Here we need to point out that the fidelity threshold is to define whether the agent
reaches a minimum goal. The agent is still trained to maximize the overall return, and
the final fidelity which the agent can achieve is not limited to this threshold. A potential
explanation is that, under the setting of fidelity threshold = 0.95, the agent would receive
more guidance in the training phase. If the threshold is high, say 0.99, then the agent will
stop after the maximum attempts and get no information about the fidelity in many of the
training episodes. On the other hand, if the fidelity threshold is lower, the agent would
receive positive reward in more training episode, which will in turn help the agent to adjust
its model parameters.

Finally we compare the performance between single-qubit error rate = 0.001 and 0.005,
both with the fidelity threshold = 0.95. We observe that both cases (shown in Figure[8a and
Figure converge quickly. However, the final converged fidelity in the case with higher

error rate is a bit lower.

V. DISCUSSION

A. Relevant Works

Deep reinforcement learning techniques have been applied in the investigation of quan-
tum computing technologies. There are three main categories: quantum error correction,

quantum optimal control and quantum architecture search. Early works on the quantum
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FIG. 8: Deep Reinforcement for Noisy Two-Qubit system. Synthesis of the Bell

state.
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architecture search based on the heuristic search methods [85]. Recent works focus on the
application of machine learning techniques [86H90]. Our methods differ from these. For
example, in the work [87, [R9], the authors proposed frameworks to optimize the existing
quantum circuit, reducing the number of quantum gates. In our method, there is no exist-
ing quantum circuit to be optimized. The quantum circuit is to be generated from scratch.
Our method is also different from [88] as we do not directly sample from a distribution of
quantum circuits. Our method is also different from [86] as we are not to generate a batch
of circuits in each time step nor using random search, instead, we would let the circuit grow
incrementally. Recent work on optimizing parameterized quantum structures [91] indicates
potential direction of extending AI/ML method to a more general setting (e.g. optimizing

the quantum circuit architecture and its parameters simultaneously).

B. More Complex Problems

One may wonder how efficient this approach can be extended to large quantum circuits.
In general, this should be very difficult and the complexity scales exponentially in N, the
number of qubits. However, given a universal set of one and two-qubit quantum gates,
in principle to approximate any quantum state (up to an error tolerance) it only requires
a finite number of gates. So our approach is still valid for arbitrary large qubit size but
computationally hard. There is no free lunch we can get. But our method is still useful to
construct the general density matrix. It is interesting to see the difficulty in the training
related to the complexity of the target density matrix. There are various ways to define the

complexity of the density matrices [92], 93], the connection to which we leave as future work.

C. Noisy Environments

In this work we investigate the potential of applying deep reinforcement learning in the
quantum gate search under simple noisy configurations. Our proposed software toolkit and
framework is possible to be extended into other more complex noise models. Therefore, the
results of this work is a good choice of testbed for a variety of future studies concerning
different noise or error schemes. For example, recent works suggest that ML models can be

used to learn the quantum circuit architecture under the noise effects [94]. We expect our
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framework can be incorporated with such techniques. In addition, real quantum computers
have different hardware topologies and these indeed have influences on the circuit design,

we leave these topology-aware quantum architecture search as future work.

D. Real Quantum Computers

It is interesting to ask whether one can use real quantum computers to realize our algo-
rithms. Our platform is based on Qiskit. Therefore, one can easily connect our module by
connecting the real IBM quantum computer. Thousand of training episodes are required in
our experiment, however, real quantum computers do not have so much resource to do. So
it is interesting to investigate this problem when quantum computing resources are more

accessible. We leave it as future work.

E. Other Quantum States

In this work, we consider the cases of two-qubit Bell state and three-qubit GHZ state
for demonstration. However, the framework of the testing environment and RL agents are
rather general. It is possible to investigate the quantum architecture search problem with
other target quantum states and different noise configurations. In addition, it is also very
convenient to test the performance of different reinforcement learning algorithms on quantum

architecture search via the standard OpenAl Gym interface.

F. Extension of the Environment

In this work, we pre-defined a set of gates or operations which can be used to generate a
desired quantum state. This is not a limitation of our framework. The testing environment
itself can be extended or modified to fit the quantum computing devices that are of inter-
est. For example, it is interesting to build customized training environments with available

operations from a specific quantum hardware.
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G. Circuit Optimization

One relevant question is that once we give a circuit C' to produce a particular quantum
state. Can one optimize this circuit getting a new circuit C’ by reducing its depth and circuit
complexity? The answer is yes, recently, there is a paper using reinforcement learning for
given a circuit representation [95] and optimize the circuit depth. So [95] can be viewed
as the next step or the useful tool to optimize our circuits. However, we are building
quantum circuit from scratch. So our goal is different from theirs. One can easily see from
the complexity point of view, solving our task efficiently does not imply solving their task
efficiently and vice versa. Omne can indeed combine our work and their work to form a
pipeline to solve the following: given a target state ¢) and then try to find an efficient circuit
C' such that using C to create the target state. There is another related paper [96] using

reinforcement learning and variational quantum circuit to find the ground state.

VI. CONCLUSION

In this work, we demonstrate the application of deep reinforcement learning (DRL) to
automatically generate the quantum gates sequence from the density matrix only. Our
results suggest that with the currently available deep reinforcement learning algorithms, it
is possible to discover the near-optimal quantum gate sequence with very limited physics
knowledge encoded into the RL agents. We also present the customized OpenAl Gym
environment for the experiments, which is a valuable tool for exploring other related quantum

computing problems.
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Appendix A: RL Algorithms

Here we provide the details of the RL algorithms used in this work.
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Algorithm 1 Advantage Actor-Critic (A2C) for quantum architecture search

Define the number of total episode M
Define the maximum steps in a single episode S
for episode =1,2,..., M do
Reset the testing environment and initialise state s;
Initialise trajectory buffer 7
Initialise the counter ¢
Initialise episode reward Rg = 0
for step =1,2,...,5 do
Select the action a; from the policy 7 (a; | s¢; 0r)
Execute action a; in emulator and observe reward r; and next state s;11
Record the transition (s¢, at, 1, ¢41) in T
Episode reward R < Rp + 1
if reaching terminal state or reaching maximum steps M then
Calculate the value targets R; for each state s; in the trajectory buffer 7
Calculate the values V (s, 6,) of each state s; from the model V (s, 6,)
Calculate the value loss Lyaue = E¢ ||V (8¢, 6,) — Rt||2
Calculate the entropy term H =, Hy =, | = >_; 7 (a; | s150r) log(m (a; | si; GW))}
Calculate the advantage Ay = Ry — V(s¢, 6,)
Calculate the policy loss Lyolicy = E¢ [—logm (as | s¢;0x) Ay
Total loss L = Lyaiue + Lpolicy — 0.001 x H
Update the agent policy parameters 6, and 6, with gradient descent on the loss L
end if
end for

end for
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Algorithm 2 PPO for quantum architecture search

Define the number of total episode M
Define the maximum steps in a single episode S
Define the update timestep U
Define the update epoch number K
Define the epsilon clip C'
Initialise trajectory buffer 7
Initialise timestep counter ¢
Initialize two sets of model parameters 6 and 6,4
for episode = 1,2,...,M do
Reset the testing environment and initialise state s;
for step =1,2,...,5 do
Update the timestep t =t + 1
Select the action a; from the policy 7 (a; | s¢;001d)
Execute action a; in emulator and observe reward r; and next state s;11
Record the transition (s, a;,logm (at | $¢;6001a) ,7¢) in T
if t =U then
Calculate the discounted rewards R; for each state s; in the trajectory buffer 7
for k=1,2,...,K do
Calculate the log probability log 7 (a; | s¢;0), state values V (s, 0) and entropy H.
Calculate the ratio ¢; = exp (log 7 (at | s¢;0) — log 7 (ar | St5601d))
Calculate the advantage A, = Ry — V (s, 0)
Calculate the surr; = g x Az
Calculate the surry = clip(q;, 1 — C, 14+ C) x Ay
Calculate the loss L = Ey[—min(surri, surry) 4+ 0.5 ||V (s¢, 0) — Re||> — 0.01H,]
Update the agent policy parameters § with gradient descent on the loss L
end for
Update the 644 to 6
Reset the trajectory buffer T
Reset the timestep counter ¢t = 0
end if
end for

end for
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Appendix B: Code samples

Consider the case of noise-free two-qubit system, the OpenAl Gym environment setting

is as follows,

import gym
import gym_twoqubit
target = np.asarray([0.70710678+0.3j,0. +0.3,0. +0.j, 0.70710678+0.3]1)

env = gym.make('BasicTwoQubit-v0', target = target)

where we import relevant packages and set the target of the quantum state that we want
the RL agent to learn. The target is used to initialize the gym environment. Consider the

case of noisy two-qubit system, the OpenAl Gym environment setting is as follows,

import gym
import gym_twoqubit
from giskit.providers.aer.noise import NoiseModel

from giskit.providers.aer.noise.errors import pauli_error, depolarizing_error

def get_noise(p_meas,p_gate):

error_meas = pauli_error([('X',p_meas), ('I', 1 - p_meas)])

error_gatel = depolarizing_error(p_gate, 1)

error_gate2 = error_gatel.tensor(error_gatel)

noise_model = NoiseModel()

# measurement error is applied to measurements
noise_model.add_all_qubit_quantum_error(error_meas, "measure')
# single qubit gate error is applied to x gates
noise_model.add_all_qubit_quantum_error(error_gatel, ["x"])

# two qubit gate error is applied to cx gates

noise_model.add_all_qubit_quantum_error(error_gate2, ["cx"])
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return noise_model

def generate_backend_noise_info(backend):

device_backend = backend

coupling map = device_backend.configuration().coupling_map

noise_model = NoiseModel.from_backend(device_backend)

basis_gates = noise_model.basis_gates

backend_noise_info = {
"noise_model": noise_model,
"coupling_map": coupling_map,
"basis_gates": basis_gates,

3

return backend_noise_info

noise_model = get_noise(0.001,0.001)
backend_noise_info = backend_noise_info = {
"noise_model": noise_model,

"coupling_map": None,

"basis_gates": None,

}

target = np.asarray([0.70710678+0.j,0. +0.3,0.

env = gym.make ('NoisyTwoQubit-vO0',

target = target,

backend_noise_info = backend_noise_info,
verbose = True,

0.99)

fidelity_threshold

+0.j, 0.70710678+0.31)

where we import relevant packages and set the target of the quantum state that we want
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the RL agent to learn. In addition, we use functions from Qiskit package to define the noise

model and the quantum simulation backend. The target and backend setting are then used

to initialize the gym environment. We adopt the code for generating noise model from IBM

qiskit textbook [97].
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