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In this article, we introduce a framework for entanglement detection of photon pairs represented
by two-qubit Werner states. The measurement scheme is based on the symmetric informationally
complete POVM. To make the framework realistic, we impose the Poisson noise on the measured
two-photon coincidences. For various settings, numerical simulations were performed to evaluate
the efficiency of the framework.
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I. INTRODUCTION

Quantum systems can feature non-classical correla-
tions which have become an intrinsic part of quantum
physics [1]. In particular, entanglement has been a sub-
ject of intensive research [2, 3]. In general, a multipartite
system is entangled if it cannot be written as a convex
combination of product states. For many applications,
two-qubit quantum states are considered a key resource
[4, 5].

In the case of photons, entanglement can be detected
between various degrees of freedom, for example po-
larization, spatial or temporal. Polarization-entangled
photons have been implemented in quantum informa-
tion protocols, such as quantum key distribution (QKD)
[6], superdense coding [7], quantum teleportation [8],
quantum computing [9], quantum interferometric opti-
cal lithography [10], etc. There are many ways to gener-
ate polarization-entangled photon pairs, like spontaneous
parametric down-conversion (SPDC) [11] or spontaneous
four-wave mixing (SFWM) [12].

Quantum state tomography (QST) is inherent to the
development of quantum information theory. Any pro-
tocol requires well-characterized quantum states and, for
this reason, in many applications the ability to deter-
mine an accurate mathematical representation of a phys-
ical system plays a central role [13–16]. In particular,
photonic tomography has attracted much attention due
to vast potential of experiments involving single photons
[17]. Therefore, in the present work, we consider state
tomography and entanglement detection of photon pairs
which can be described by two-qubit Werner states.

In our framework, we postulate that the source can re-
peatedly perform the same procedure of preparing pho-
ton pairs in an unknown quantum state. Thus, we have
access to a relatively large number of identical quan-
tum systems. We can assume that each copy from the
ensemble is measured only once. For this reason, the
post-measurement state of the system is of little interest,
whereas all attention is paid to the probabilities of the
respective measurement outcomes. Therefore, we follow
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the Positive Operator-Valued Measure (POVM) formal-
ism [18].

According to postulates of quantum mechanics, mea-
surements are described by a collection {Mk} of positive
semi-definite measurement operators, acting on a finite-
dimensional Hilbert space H, i.e. dimH = d < ∞. We
assume to operate in the standard basis. The index k
refers to the results of measurement that may occur in
the experiment. The set of measurement operators {Mk}
is called a POVM if ∑

k

Mk = Id, (1)

where Id denotes the identity operator.
The set of measurement operators {Mk} can be used

to calculate the probabilities of the possible measurement
outcomes which are obtained according to the Born’s rule
[19]:

p(k) = Tr(Mkρ), (2)

where ρ denotes a density matrix of the system in ques-
tion. Note that the probabilities have to sum up to one,
i.e.

∑
k p(k) =

∑
k Tr(Mkρ) = 1, which is equivalent to

the condition Eq. 1 since Trρ = 1.
The goal of QST is to estimate the state by using the

results of measurement. In the case of a POVM, if a
measurement scheme provides complete knowledge about
the state of the system, it is said to be an informationally
complete POVM (IC-POVM) [20–22]. For a given system
there might be various different sets of operators which
lead to complete state characterization.

Usually, special attention is paid to a particular case
of POVMs which is called a symmetric, information-
ally complete, positive operator-valued measure (SIC-
POVM) [24]. Originally, SIC-POVMs are constructed
from rank-one projectors, but their general properties
have also been studied [25].

Let us assume there is a set of d2 normalized vectors
|ξk〉 ∈ H such that

| 〈ξi|ξj〉 |2 =
1

d+ 1
for i 6= j. (3)

Then, the set of rank-one projectors {Pk} defined as

Pk :=
1

d
|ξk〉〈ξk| for k = 1, . . . , d2 (4)
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constitutes a symmetric, informationally complete, pos-
itive operator-valued measure (SIC-POVM). The mea-
surement scheme implemented in this work is based on
the SIC-POVM for 2−dimensional Hilbert space. Other
common approach to two-qubit tomography involve mea-
surement schemes connected with mutually unbiased
bases (MUBs) which can be considered overcomplete [26–
28].

In Sec. II, we introduce the framework for state re-
construction and entanglement detection of photon pairs
characterized by two-qubit Werner states. To make the
framework realistic, we impose the Poisson noise on the
measured photon counts. Then, the framework is tested
for different average numbers of photon pairs. In Sec. III,
the main results are presented. First, in III A, polariza-
tion entanglement analysis is provided by means of two-
photon coincidences. Next, in III B, the figures of merit,
selected to quantify the performance of the framework,
are displayed on graphs and discussed.

II. FRAMEWORK FOR ENTANGLEMENT
DETECTION

A. Two-qubit Werner states

In 1989, R. Werner introduced mixed quantum states
which feature non-classical correlations [29]. This class of
states can be represented by means of the flip operator,
F, which acts as F(|ψ1〉 ⊗ |ψ2〉) = |ψ2〉 ⊗ |ψ1〉 and takes
the form:

F =

d∑
i,j=1

|i〉〈j| ⊗ |j〉〈i| , (5)

where {|i〉 ⊗ |j〉} denotes the standard basis in H ⊗ H.
Then, the Werner states can be expressed as

ρW = η F + ζ Id2 , (6)

where out of the two parameters only one is independent
due to the normalization constraint, i.e. TrρW = 1.

In this work, we are particularly interested in two-qubit
Werner states (i.e. d = 2):

ρ2qW (η) = η |Ψ−〉〈Ψ−|+ 1− η
4

I4, (7)

where |Ψ−〉 = (|01〉 − |10〉)/
√

2 is one of the Bell states
and 0 ≤ η ≤ 1. We use {|00〉 , |01〉 , |10〉 , |11〉} to de-
note the standard basis in the two-qubit Hilbert space.
The states ρ2qW (η) feature entanglement for any η > 1/3.
The class of two-qubit Werner states can realized by
polarization-entangled photon pairs [30].

B. Measurements

To extract information necessary for entanglement de-
tection, we utilize a measurement scheme based on the

SIC-POVM. When dimH = 2, the SIC-POVM is defined
by means of four vectors:

|φ1〉 = |0〉 |φ2〉 =
1√
3
|0〉+

√
2

3
|1〉

|φ3〉 =
1√
3
|0〉+

√
2

3
ei

2π
3 |1〉 |φ4〉 =

1√
3
|0〉+

√
2

3
ei

4π
3 |1〉 ,

(8)

where {|0〉 , |1〉} denotes the standard basis in H. Then,
the measurement operators are defined as rank−1 pro-
jectors:

Mi :=
1

2
|φi〉〈φi| , (9)

which satisfy
∑4
i=1Mi = I2. These four measurement op-

erators are sufficient to perform single-qubit tomography
[31]. The measurement scheme based on the SIC-POVM
can be realized on photons in order to characterize the
polarization state of light. This scheme is minimal, but
at the same time it allows for efficient and reliable single-
qubit tomography.

As for two-qubit Werner states, we assume that the
source can produce photons pairs which can be charac-
terized by Eq. 7. Each photon travels in a separate arm
of the experimental setup and is measured individually.
Therefore, to determine the quantum state of a pair of
photons, we introduce two-qubit measurement operators:

M2q
α := Mi ⊗Mj , (10)

where i, j = 1, . . . , 4 and for simplicity we denoted the
two-qubit operators with one index, i.e. α ≡ (i, j). From
the definition Eq. 10 we see that there are 16 two-qubit
measurement operators.

C. Methods of state reconstruction

We investigate the efficiency of the measurement
scheme based on the SIC-POVM under conditions which
include the Poisson noise, which is a typical source of
error in single-photon counting [32–34]. In the two-
qubit framework, we assume that the source provides
N polarization-entangled photon pairs per measurement.
Each photon travels in a separate arm of the setup and
undergoes a measurement described by one of the oper-
ators from the SIC-POVM. Then, the detectors receive
coincidence counts, n2qα , which can be modeled numeri-
cally as:

n2qα = Ñα Tr
(
M2q
α ρ2qW (η)

)
, (11)

where Ñα ∈ Pois(N ), i.e. the number of photon pairs for
each act of measurement is selected randomly from the
Poisson distribution characterized by the mean value N .
Therefore, the measured counts are statistically indepen-
dent Poissonian random variables [35]. Based on Eq. 11
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we can numerically generate noisy data for any two-qubit
Werner state ρ2qW (η).

However, when we perform QST, we assume to know
nothing about the state in question. For this reason, the
expected photon counts are given as

c2qα = N Tr
(
M2q
α σ2q

)
, (12)

where σ2q represents a general 4×4 density matrix which
can be factorized according to the Cholesky decomposi-
tion:

σ2q =
T †T

Tr(T †T )
(13)

and T stands for a lower-triangular matrix which depends
on 16 real parameters: t1, . . . , t16. The Cholesky decom-
position is commonly implemented in QST frameworks
since it guarantees that the result of estimation is phys-
ical, i.e. σ2q is Hermitian, positive semi-defnite, of trace
one [36? ].

The problem of quantum state estimation reduces
to determining the parameters which characterize T .
To find out the values of the parameters which opti-
mally fit to the noisy measurements, we implement the
χ2−estimation, see, e.g., Ref. [38]. Thus, we search for
the minimum value of the following function:

χ2(t1, . . . , t16) =

16∑
α=1

(n2qα − c2qα )2

c2qα
. (14)

This procedure allows one to simulate experimental
scenario for any input state ρ2qW (η) – first we generate
noisy photon counts Eq. 11 and then we can recover the
state by finding the parameters t1, . . . , t16 for which the
χ2 function reaches its minimum.

D. Performance analysis

Three figures of merit are introduced to investigate the
performance of the measurement scheme on two-qubit
Werner states. First, every input Werner state ρ2qW (η)
is compared with the result of χ2−estimation, σ2q, by
computing the quantum fidelity [39–41]:

F(σ2q, ρ2qW (η)) :=

(
Tr

√√
σ2q ρ2qW (η)

√
σ2q

)2

. (15)

This figure is commonly used to assess the accuracy of
QST framework, in particular, under imperfect measure-
ment settings, see, e.g., Ref. [42–44]. In our scenario, the
quantum fidelity is treated as a function of η to track the
precision of the framework along the domain of Werner
states.

Next, we analyze how much the states are mixed.
Thus, we follow the standard formula for the purity [18],
which implies that we compute γ ≡ Tr(ρ2), where ρ de-
notes a density matrix. The purity of the states resulting

from the QST framework σ2q is calculated and compared
with the input states ρ2qW (η).

Since the main goal of this work is to quantify the
amount of entanglement which can be detected through
the noisy measurement scheme based on the SIC-POVM,
we implement an entanglement measure. For two-qubit
Werner states, we compute the concurrence, C[ρ], which
quantifies the amount of entanglement in the system de-
scribed by the density matrix ρ [45, 46]. This figure is
directly related to another measure, i.e. entanglement
of formation [47], but the concurrence can be used as
an independent indicator because it is an entanglement
monotone. Since there is a straightforward formula to
calculate concurrence for any 4 × 4 density matrix, it is
commonly applied to quantify the amount of entangle-
ment detected by imperfect measurement schemes, see,
e.g., Ref. [48–50]. For two-qubit Werner states, ρ2qW (η),
the concurrence is a linear function of η [51]. This the-
oretical value can be compared with the concurrence of
the corresponding estimates σ2q in different measurement
settings.

III. RESULTS AND ANALYSIS

We consider three measurement scenarios which differ
in the number of photon pairs provided by the source
per measurement. To be more specific, we assume that
N = 10, N = 100, and N = 1 000. This allows us to
investigate the performance of the framework versus the
amount of Poisson noise which is strictly connected with
the average number of systems involved in one measure-
ment.

A. Polarization entanglement analysis

First, the simulations were performed to display quan-
tum correlations of two-qubit Werner states. We consider
two specific cases, i.e. η = 0.5 and η = 1, such that the
states of the form Eq. 7 feature entanglement. Three
series of polarization measurements were generated and
the results are presented in Fig. 1. The measurement
scheme was realized by assuming that the polarizer in
one arm is fixed at horizontal (H) orientation whereas
the other polarizer rotates to make many linear polariza-
tion measurements (zero angle corresponds to the vertical
(V) orientation in the other polarizer). This technique
allows one to count two-photon coincidences which in-
dicate non-classical correlations of the quantum system,
see, e.g., Ref. [52–54].

In Fig. 1, the continuous lines present expected mea-
surement results according to the theoretical model with-
out noise. The simulated measurement results burdened
with the Poisson noise are given by dots (for η = 0.5) or
by squares (for η = 1). For different numbers of photon
pairs, the plots demonstrate how the measurements de-
viate from the expected course. In particular, in Fig. 1c,
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(a) N = 1 000
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(b) N = 100
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(c) N = 10
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FIG. 1: Entanglement analysis by simulated
polarization measurements. The polarizer in one arm

was fixed at horizontal orientation while the other made
many linear polarization measurements.

we notice a significant amount of deviation. These results
confirm the hypothesis that the Poisson noise is more
detrimental if we utilize fewer photon pairs per measure-
ment.

B. Entanglement detection

For two-qubit Werner states, we first evaluate the ac-
curacy of state reconstruction by quantum fidelity. In
Fig. 2, one can observe the plots for three different num-
bers of photon pairs produced by the source per measure-
ment. The simulations were performed along the whole
domain of η.
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)

FIG. 2: Plots present the quantum fidelity, F(η), in
QST of two-qubit Werner states for three different

numbers of photon pairs per measurement.

The results demonstrate that N = 1 000 is sufficient
for a precise state reconstruction since the plot corre-
sponding to this number resembles a constant function
with value ≈ 1. Then, we notice that if the number of
photon pairs is decreased to N = 100, we obtain some
deviations from the desirable value of quantum fidelity.
However, it is worth noting that in this case F(η) > 0.9
for all η.

Finally, when we reduce the number of photon pair to
N = 10, we notice a detrimental impact of the Poisson
noise on the accuracy of state reconstruction. We observe
that the function of quantum fidelity is irregular, which
can be attributed to the randomness of noise. In this
scenario, we have F(η) > 0.6 for all η. Nonetheless, the
quantum fidelity improves as we increase η. In fact, for
η = 1 all three plots converge. This suggests that the
single-photon scenario is efficient in QST of pure Werner
states.

In the next step, we study the purity of reconstructed
states and compare it with the purity for the actual two-
qubit Werner states. In Fig. 3, one can observe that the
plot for N = 1 000 overlaps with the theoretical value
whereas for N = 100 we witness minor deteriorations.
For N = 10, we note significant discrepancies between
the estimated and the actual purity. Interestingly, in
most cases, the Poisson noise distorts the purity in such
a way that it is greater than the actual value.

Finally, we examine entanglement detection through
noisy measurements. In Fig. 4, we observe concurrence
of the estimates for three numbers of photon pairs. The
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FIG. 3: Plots present the purity, γ(η), in QST of
two-qubit Werner states for three different numbers of

photon pairs per measurement.
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FIG. 4: Plots present the concurrence, C(η), in QST of
two-qubit Werner states for three different numbers of

photon pairs per measurement.

results can be compared with the theoretical value of con-
currence of the two-qubit Werner states. Again, we dis-
cover a perfect consistency between the theoretical value
and the results for N = 1 000. For the middle num-
ber of photon pairs, we identify minor inaccuracies. For
N = 10, the concurrence of the estimated states departs
significantly from the actual value. It is worth noting
that often the estimated concurrence is greater than the
actual value. This might lead to a misleading impression
that the single-photon scenario performs better at entan-
glement detection, which is not the case since we cannot

measure more entanglement than the input states fea-
ture. Especially, if we consider η ≤ 1/3, the input states

ρ2qW (η) are separable whereas the some estimates feature
entanglement, which should be understood as an error
due to the substantial impact of the Poisson noise in the
single-photon scenario.

To conclude, we find the all the plots in Fig. 2-4
converge, which implies that for pure (or almost pure)
Werner states the QST framework is equally efficient, ir-
respective of the number of photon pairs involved in each
measurement. This results appears unanticipated since
in Fig. 1 it was demonstrated that the measurements for
N = 10 feature the greatest amount of noise.

IV. DISCUSSION AND SUMMARY

In the article, we introduced a framework for entan-
glement detection of two-qubit Werner states which are
realized by means of photon pairs. The efficiency of the
framework was investigated for three average numbers
of photon pairs: 10, 102, 103. The results have revealed
that if we utilize 103 photon pairs per measurement the
framework is robust against the Poisson noise. On this
assumption, the two-photon coincidences and concur-
rence precisely fit to the theoretical expectations.

If the average number of photon pairs was reduced to
10, we observed severe inaccuracies in the two-photon co-
incidences. Furthermore, in the single-photon scenario,
the framework appeared unreliable at entanglement de-
tection of mixed two-qubit Werner states. We discovered
a deceptive effect which suggested that the single-photons
scenario could have measured more entanglement, which
was only a result of the Poisson noise.

To conclude, it was found out that all figures of merit
converge at η = 1, which implies that for almost pure
two-qubit Werner states the framework is equally efficient
irrespective of the number of photon pairs involved in
each measurement. One can conclude that the single-
photon scenario is advisable only if we are certain that
the state in question is close to pure.
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