arXiv:2104.07628v1l [math.OA] 15 Apr 2021

ORTHOGONAL DECOMPOSITIONS AND TWISTED ISOMETRIES
NARAYAN RAKSHIT, JAYDEB SARKAR, AND MANSI SURYAWANSHI

ABSTRACT. Let n > 1. Let {Uj;}1<icj<n be () commuting unitaries on some Hilbert space

H, and suppose U, = {Ui;j}iz; C B(H), where Uj; := U5, 1 <i < j < n. An n-tuple of
isometries V = (V4,...,V,,) on H is called U,,-twisted isometry if V;’s are in the commutator
{Ust : s # t}, and V'V = U5 V;V/*, i # j. We prove that each U,,-twisted isometry admits

a von Neumann-Wold type orthogonal decomposition.

We prove that the universal C*-algebra generated by U, -twisted isometry is nuclear. The
universal C*-algebra generated by an n-tuple of U,,-twisted unitaries is called the generalized
noncommutative n-torus. We exhibit concrete analytic models of U,,-twisted isometries, and
establish connections between unitary equivalence classes of the irreducible representations
of the C*-algebras generated by U, -twisted isometries and the unitary equivalence classes of
the non-zero irreducible representations of generalized noncommutative tori. Our motivation
stems from the classical rotation C*-algebras, Heisenberg group C*-algebras, and a recent
work of de Jeu and Pinto.
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1. INTRODUCTION

One of the most simple and fundamental of all the concepts studied in various branches of
linear analysis, mathematical physics, and its related fields is the notion of isometries. Let H
be a Hilbert space (all Hilbert spaces in this paper are separable and over C), and let B(H)
denote the C*-algebra of all bounded linear operators on H. An operator V € B(#H) is called
isometry if V*V = Iy, or, equivalently, ||Vh| = ||h| for all h € H.
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The typical examples are unitary operators, and shift operators. Recall that an isometry
V € B(H) is called shift if V*™ — 0 in the strong operator topology (that is, [|[V*™h| — 0 as
m — oo for all h € H). The classical von Neumann—Wold decomposition theorem says that
these are all examples of isometries:

Theorem 1.1 (J. von Neumann and H. Wold). Let V' € B(H) be an isometry. Then H =
Hiy @ Hy for some V-reducing closed subspaces Hyy and Hy such that V‘Hm is a shift and
V|, is a unitary operator.

This decomposition is canonical as well as unique in an appropriate sense. Although the
von Neumann—Wold decomposition plays a central role in the foundation of linear operators,
this and many of its variants are also studied in connection with C*-algebras, ergodic theory,
stochastic process, time series analysis and prediction theory, mathematical physics, etc. For
instance, Theorem [[1] plays a key role in classifying C*-algebras generated by isometries [3].
Another motivation for the study of isometries on Hilbert spaces, which is also relevant to our
notion of twisted isometries, stems from the classical rotation algebras and Heisenberg group
C*-algebras [7]. Also see [I5, Section 4] in the context of universal C*-algebras generated by
pairs of isometries V; and V5 such that

Vvl*vvz — 627ri19v'2‘/1* (19 e ]R)

In this paper also, along with a von Neumann—Wold type decomposition, we present a few
glimpses of applications of the above to C*-algebras for a class of tuples of isometries (essen-
tially, we will replace e?™ by a unitary U in the commutator {V;, V5}).

In view of Theorem [I.I], it is a natural question to ask whether an n-tuple, n > 1, of
isometries can be represented by tractable model operators as above. This is, on one hand,
of course, almost hopeless in general, where, on the other extreme, 2-tuples of commuting
isometries represents (in an appropriate sense) the set of all bounded linear operators on
Hilbert spaces. Nevertheless, Theorem [[LTlmotivates one to formulate the following statement:

Statement (Orthogonal decomposition). Let (Vi,...,V,) be an n-tuple of isometries acting
on H. Then there exist 2" closed subspaces {Ha}tacr, of H (some of them may be trivial)
such that

(i) Ha reduces V; for alli=1,...,n, and A C {1,...,n},

(1) H = Dacq,..ny Ha, and

(111) for each A C{1,...,n}, Vilu,, ¢ € A, is a shift, and V;|y,, j € A, is a unitary.

If this statement holds for an n-tuple of isometries V = (V4,...,V,,), then we say that V
admits a von Neumann—Wold decomposition (orthogonal decomposition in short).

We illustrate this with concrete examples [5]: Let z; € T, 1 < 4,5 < n, and suppose
zij = Zj; forall 1 < 4,5 <mn, and i # j. An n-tuple of isometries (V4,...,V},) on some Hilbert
space H is said to be doubly non-commuting isometries it V;*V; = z;;V;V;* for all i # j. The
following comes from [5, Theorem 3.6]:

Theorem (de Jeu and Pinto). Each n-tuple of doubly non-commuting isometries admits an
orthogonal decomposition.
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Note that if z;; = 1, ¢ # j, then doubly non-commuting isometries are simply doubly
commuting isometries. Therefore, the above theorem recovers orthogonal decompositions of
doubly commuting isometries [12, [13]. A question of obvious interest consists in enlarging the
above class of tuples of isometries that admit the orthogonal decomposition. To address this
question, we now introduce our primary object of study, twisted isometries on Hilbert spaces.

Let H be a Hilbert space, and let n > 1. Throughout this paper, by U,, on a Hilbert space
H we mean an (g)—tuple of commuting unitaries {U;;}1<i<j<n on H. Given a U,, on H, we
set Uj; := U, 1 <i < j <n, and simply write U, as {Uy;}iz;. We must point out that the
commutativity assumption on U, is automatic for our purpose (See Remark [3.2]).
Definition 1.2 (U,-twisted isometries). Let U, = {U;;}i; C B(#H) be a collection of unitaries
such that Uj; = Uy for all 1 < < j <n. An n-tuple of isometries (Vi,...,V,) on H is called
U,,-twisted isometry if

(1.1) Villij = UiV and V'V, = U5V;VE (0 # ).

YRR}

Clearly, doubly non-commuting isometries are also a U,,-twisted isometries with U;; = 2;; 1,
1 # 7. On the other hand, as we shall see in Section 2], U,,-twisted isometries form a large class
of n-tuples of isometries which also includes a number of interesting examples. In fact, Section
is the central part of this paper. However, the central result of this paper is the following
generalization of de Jeu and Pinto’s orthogonal decomposition theorem to the U,-twisted
isometry case (see Theorem [B.0)).

Theorem. FEach U, -twisted isometry admits an orthogonal decomposition.

We wish to point out that our proof, even in this generality, is simpler than that of [5].
However, as in [5], our proof also requires as background the classical von Neumann—Wold
decomposition theorem.

Now we comment on the direct summands in the orthogonal decomposition of an isometry
V € B(H) as in Theorem [Tl One can easily prove [12] that Hy and Hp in Theorem 1]
admits the following geometric representations

(1.2) Hyy = EB;?‘;OVjW and Hy = ﬂ‘;iOVjH,

where W = ker V*. Moreover, the orthogonal decomposition in Theorem [L.T] is unique in
the following sense: Suppose S; and S, are reducing subspaces for V. If Vs, is a shift, then
S1 € H,. And, if Vs, is a unitary, then Sy C H,,. In particular, if S; &Sy = H, then S§; = H,
and Sy = H,,.

In the setting of U, -twisted isometries, we prove a similar geometric representations of each of
2™ direct summands of the corresponding orthogonal decomposition. This is linked together
with the existence of the orthogonal decompositions (see Theorem B.6]). Also we prove that
the orthogonal decomposition is unique (see Corollary B.8]). These results form the subject of
Section [3]

In Section [ we present analytic models of U, -twisted isometries. Our model (following
de Jeu and Pinto) relies on two core concepts, namely, wandering subspaces and wandering
data. We prove that the list of examples in Section 2] plays a pivotal role in the structure
theory of U,,-twisted isometries.
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Also, we intend with this paper to give a motivation for the study of generalized noncommu-
tative tori, which is an analog of the classical anticommutation relations with unitary twists.
However, here we will restrict ourselves to U,,-twisted isometries. For instance, in Theorem
6.2 we prove that the universal C*-algebra generated by a U, -twisted isometry, n > 2, is
nuclear. This is the main content of Section

In Section [, we introduce the generalized noncommutative tori for U,,-twisted isometries.
Theorem states that the unitary equivalence classes of U, -twisted isometries are in bi-
jection with enumerations of 2" unitary equivalence classes of unital representations of the
generalized noncommutative tori. In Corollary [.7, we prove that the unitary equivalence
classes of the non-zero irreducible representations of the C*-algebras generated by U,,-twisted
isometries are parameterized by the unitary equivalence classes of the non-zero irreducible
representations of generalized noncommutative 2"-tori.

Needless to say, the notion of U,,-twisted isometries is inspired by the earlier work on the
classical rotation C*-algebras and Heisenberg C*-algebras at the level of unitaries [I] [7) [§].
Some of our results are also motivated by the one by de Jeu and Pinto [5]. However, on one
hand, our results are more general, and on the other, our approach, even in the particular
case of de Jeu and Pinto, is significantly different and appears to be somewhat more natural.

Throughout the paper we follow the standard definition of unitarily equivalence: Two n-
tuples V. = (V4,...,V,) and V = (V4,..., V) on Hilbert spaces H and H, respectively, are
said to be unitarily equivalent if there exists a unitary U : H — H such that UV; = V;U for
all i = 1,...,n. Also we use standard notation such as Z} = {k = (k1,...,k,) : k; € Z},
Cr={z=(21,...,2,) 1z €C}, 2F = z* ... 2Fm and VF = V"' ... VFn whenever k € Z7 and
V = (Vi,...,V,) on some Hilbert space.

2. EXAMPLES

This section introduces some basic concepts, and presents some (model) examples of U,,-
twisted isometries. This also sets the stage for a more thorough treatment of U,-twisted
isometries in what follows. The present section is the central part of this paper.

Let H?(D) denote the Hardy space over the unit disc D = {z € C : |z| < 1}. Denote by
M, the multiplication operator by the coordinate function z on H?*(D), that is, M.f = zf
for all f € H*(D). It is well known that M, is a shift of multiplicity one (as ker M} = C).
Now, let H?*(D?) denote the Hardy space over the bidisc D% Recall that H?*(D?) is the
Hilbert space of all square summable analytic functions on D?. That is, an analytic function
f(2) = Yrens a,2® on D? is in H?(D?) if and only if

171 (3 ) < o

2
keZ2

One can easily identify H?(D?) with H?(D) ® H*(D) in a natural way: define 7 : H*(D) x
H?*(D) — H*(D?) by 7(2" @ 272) = 2" 252, k € Z2. Then 7 is a unitary operator, and

T(M, ® Ig2my) = M, 7 and 7(Lp2my @ M) = M., T,
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where M., and M., are the multiplication operators by z; and zy, respectively, on H?(D?).
This construction works equally well for H%(D™), the Hardy space over D™, m > 1.

We begin with some elementary (but motivational) examples of Us-twisted isometries. It
will be convenient to introduce a special class of diagonal operators parameterized by the
circle group T. For each A € T, define (cf. [15 proof of Lemma 1.2])

D[Az™ = A" (meZy).

Clearly, D[)] is a unitary diagonal operator on H?(D) and D[A* = D[\] = diag(1, A\, A\?,...).
It is easy to see that

A7yl ifm >0

mgmmuﬂz{o o

and
Ao lym=l ifm>0

<DWMDM%={O P

and hence, M*D[\ = AD[AM;. Now we fix A\ € T, and define S; and S, on H?*(D?) by
setting

Sl = MZ ® IHZ(]D)) and 52 = D[)\] ® Mz.

Therefore, (S1,57) is a pair of isometries on H%(D?), and S;Sy = M} D[\ ® M,, and S,S; =
DINM; ® M,. Then, M:D[\ = AD[AM; implies S7Ss = AS5S;. We now consider the
Hilbert space H = H?*(D?) & H*(D?), and isometries V; = diag(S;, Ss) and V, = diag(Ss, S1)
on H. If we set U = diag(A p2(p2), X]Hz(Dz)), then

SiS 0 | _[A%SE 0 ] _ [Mmey 0 ] .
0 S35 0 AS1S; 0 Mpzpzy| 271

which implies that Vi*V, = UV,Vi*. Since V4, V5 € {UY}, it follows that the pair (V3,V3) is a
(reducible) Us-twisted isometry on H with Uy = {U}.

Note that for each A € T, the pairs (M., D[A]) and (S, S2), defined as above, are doubly
non-commuting isometries. This was considered and analyzed in the context of models of
doubly noncommuting isometries by de Jeu and Pinto [5]. However, the presentation of [5] is
somewhat different from ours.

We continue and extend the discussion of Hardy space over D™, m > 1. For a Hilbert space
&, we denote HZ(D™) the E-valued Hardy space over D™. Note that HZ(D™) is the Hilbert
space of all square summable analytic functions on D™ with coefficients in £. We simply set
H?(D™) = HZ(D™). In view of the natural identification

‘/1*‘/22{

dfnefre@lmene oy (keZneéf),
up to unitary equivalence, we have

H;D™)=H’D)®--- @ H*(D) ® £ = H*(D™) @ E.

g

m—times
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In this setting, for each fixed i = 1,...,m, we also have (again, up to unitary equivalence)
M., = (I ® - Iy @ M, @Ipem) @ -+ @ Igm)) @ Ie = M, ® I,
i—th

where M, f = zf for any f either in HZ(D™) or in H*(D™) (whichever is the case should
be clear from the context). For simplicity, and whenever appropriate, we shall use the above
identification interchangeably. Moreover, the above tensor product representations of the
multiplication operators readily imply that (M,,, ..., M, ) on HZ(D™) is doubly commuting,
that is, M7 M., = M. M for all i # j.

We need to define another important notion before we proceed.

Definition 2.1. Let j € {1,...,m}. Given a Hilbert space £ and a unitary U € B(£), the
j-th diagonal operator with symbol U is the unitary operator D;[U] on HZ(D™) defined by

D,[U)(*n) = 2 (U"n) (ke Zl,nek).

In particular, if m = 1 and £ = C, then U is given by U = X for some A € T, and then, as
introduced earlier, D;[)\] is the diagonal operator diag(1,\,\?,...) on H?(D).

Lemma 2.2. Let £ be a Hilbert space, and let U and U be commuting unitaries in B(E).
Suppose i,j € {1,...,n}. Then

(1) D;[U]" = D;[U] and D;[U]D;[U] = D;[U}D;[U].

(2) M., D;[U] = D;[U|M,, wheneveri # j.

(3) M: Di[U] = (Izmny @ U)D;[UIM, .
Proof. The first assertion follows from the definition of diagonal operators, and the commu-
tativity of U and U. To prove (2), we assume that k € Z" and n € £. Suppose ¢ # j. We
have on one hand (D;[U]M,,)(z*n) = D;[U](z**¢n) = zk*e(Ukip), and on the other hand
(M., D;|U))(z*n) = M., (z*(U*n)) = =¥ (U*n). Here we denote e; by the element in Z7
with 1 in the i-th slot and zero elsewhere. For part (3), we compute

Zk_ei(Uki’f]) if ]{52 §£ 0

(M2, Di[U])(z"n) = M, (2*U*n) = {0 if k; = 0.

On the other hand, since D;[U](z*~¢n) = 2F=¢i(U*~1p) for k; # 0, we have

Zk_ei(Uki_l’f]) if ]{?Z §£ 0

(Di[U]M;)(an) = {0 ifk: =0

which completes the proof of part (3). O

We now turn to more general examples of U,-twisted isometries. Let £ be a Hilbert space,
and let Uy, = {Uj;}iz; C B(E), where Uy, := U, 1 <i < j <n. Fixm € {1,...,n}. Consider
(n — m) unitary operators {U,,41,...,U,} in B(E). Set M; = M,,, and for each 2 < i < m,
define

M; = M, (Di[Un] Da[Uz] -+ Dica[Us 1] )
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and, for each m + 1 < j < n, define
Mj - (Dl[Ujl] ct Dm[UJm]) ([H2(]D)m) ® UJ)

Then, by construction, M = (M, ..., M,) is an n-tuple of isometries on H3(D™). Moreover,
M is a U,-twisted isometry, where U,, = {I H2(Dm) @ Uij}izj. This can be proved by repeated
applications of Lemma For instance, if 1 <1 < 7, then

follows from the fact that M} M., = M., M}, and, notably, from part (2) of Lemma 2.2] that
M D;[Uji] = (Ig2my ® Uyi) D;[Uy] M. We summarize this with the following proposition:

Proposition 2.3. Let & be a Hilbert space, {Ui;}iz; € B(E), where Uy := U, 1 <i < j <

n, and let {Uy11,...,Un} unitaries on £. Then (M, ..., M,) is a U,-twisted isometry on
HZ(D™), where My = M,, and

M., <D1[Ui1]D2[Ui2] = 'Di—l[Uii—l]) if2<i<m
(Dl[Uil] - 'Dm[Uim]> (IHZ(Dm) ® Ui) ifm+1<1<n,
such that My, ..., M,, are shifts and M,,1, ..., M, are unitaries.

Mi:

We will return to this in the context of analytic models and complete unitary invariants in
Sections [ and [, respectively.

3. ORTHOGONAL DECOMPOSITIONS

The principal goal of this section is to prove that U,-twisted isometries admit orthogonal
decomposition. We begin by fixing some notations (once again, we stress that n > 1).
(1) I, ={1,...,n}. A= {i1,...,im} C I, whenever A # (.
(2) UV =(Vi,...,V,), then Vy = (V;,,...,V; ) whenever A = {iy,... i,} C I,.
(3) VE=VM .. V'™ whenever k = (ki,...,ky) € Z7 and A = {i1,...,in} C I,
(4) Wa = ;cq ker V;* for all non-empty A C I,,, Wy :=H, and [0] := 0.
The following result essentially says that U,-twisted isometries are “twisted doubly com-
muting” (see [6l page 2671] and [5, Lemma 3.1] for the scalar case).

Lemma 3.1. Let U be a unitary on H, and let (Vi, Va) be an pair of isometries on H. Suppose
Vi, Vo e {U}Y. If Vi'Vo = U VRV, then ViV, = UV, V.

Proof. If we denote X = VjV, — UV,V;, then

Using V"V, = U*V,LV), one easily verifies that UV, V" VoV = U ViV Vi Vy = 1. This com-
pletes the proof that X*X = 0 and hence V;V, = UV, V. O

In particular, if (V4,...,V,) is a U,-twisted isometry, then V;V; = U;;V;V; for all i # j.
Moreover, we note that the converse of the above lemma is not true [6].
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Remark 3.2. The commutativity assumption of U, = {Uj; }i»; in the definition of U,,-twisted
isometries (see Definition [[2)) is automatic in the following sense: Let {Uj;};; be an (3)-
tuple of unitaries on H, and let (Vi,...,V,) be an n-tuple of isometries on H. Suppose
Vo€ {Uq:s#t} forall p=1,...,n. Then U;;Uy = UyU;; for all i # j and s # ¢. Indeed,
we first observe that V;*V; = U V;V;* and V;,V; € {Uy @ s # t}' implies
(3.1) Uiy = V;'VIViV; (i # 7).
Hence we obtain UUy = (V;*V;'V;V;) Uy = UgUs;.

The following elementary lemmas will play an important role. Throughout these lemmas,
V =(V,...,V,) will be a U,,-twisted isometry, and A C I,,. We begin with reducibility of
wandering subspaces.

Lemma 3.3. Wy reduces V; for all j € A°.
Proof. Suppose n € Wy, that is, V;*n = 0 for all ¢ € A. Suppose j ¢ A. Since V*(V;n) =
U:V;Virn = 0, we have VW4 C ker V;* for all i € A. Thus V;W4 C W,. Also observe that

ig v

by Lemma [3.1] we have Vive = U, VivyE, and hence, as before, ViWa € Wa. O

In particular, Vj|yy, is an isometry on Wy. It is now natural to examine ker(Vj|y,)*.
Evidently, ker(V;|w,)* = Wa © V;Wa4.

Lemma 3.4. Wy © V;W4 = Wayyjy for all j € A°.

Proof. The goal is to show that W4 © V;W4 = W4 N W;. Indeed, this follows from Lemma
B3 Wa reduces Vj, and hence V; = diag(Vjw,, Vi) on H = Wa @ Wi. O

We now turn to the reducibility property of wandering subspaces of corresponding unitary
operators.

Lemma 3.5. Wy reduces U;;, and U;jWa = Wy for all i # j.

Proof. The first assertion simply follows from ([BI]) and Lemma B3] The latter part is trivial,
as Ui;|w, is a unitary. O

Now we are ready to prove the orthogonal decomposition theorem.

Theorem 3.6. Let V = (Vi,...,V,) be a U,-twisted isometry on H. Then V admits an
orthogonal decomposition H = €@ Ha, where

Ag]’n
Ha= D VE( ) Viuwa)  (ACh).
kez! ez A

Proof. We will prove this by induction. Suppose (Vi,...,V,,) is a U,-twisted isometries on
H. Set V(m) = (Vi,..., Vi), 2 < m < n. We shall first prove our assertion when m = 2.
Let us denote W; = Wy;. Using Theorem [LI] (also (L2))) applied to V3 on H we find
H = (Bryez, VW) @ (Niyez, V' H). Note that, by Lemma B3, W, reduces Va. Then, by
applying Theorem [[I] to the isometry V5|yy,, we obtain the orthogonal decomposition W; =
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(@kzezg/jz(m@%m))@mk262+(1/'2’fzwl). Now by Lemma [3.4we have W, © VoW, = Wy 23,
and hence

32 H=| P vVEWL| D] D v N i) B[ N viw|.

k1,k2€Z k1€Z+ ko€Z 4 k1€Z+

Note that the restrictions of V; and V5 to the first and the second summands are shifts,
and shift and unitary, respectively, and the restriction of V; to the third summand is a
unitary. Now, applying Theorem [[.T] (and (L2)) to V3 on H, we obtain H = (@k2€Z+V Wh) @
(Miyez, Va?H). By Lemma B we have V" V32 = Ul V2VF for all ky, ky > 0. Lemma
then implies that V'V, Wy = V2 V" W), for all ky, ky > 0. This implies

VI = (D VIV ([ Vi H) = (6D Vi ViWn) D( (] VIV H),
ko€Z 4 ko€Z ko€Z ko€Z 4
for all k; € Z,, from which it follows that
() Vi"H=(P V*([) Vi'W)EP( [ ViViEH).
k1€Z4 ko€Z k1€Z4 k1,k2€Z 4

We can then rewrite (3.2) as H = @acp,Ha. This yields an orthogonal decomposition of

the pair V(2). Now suppose that V(m), m < n, admits the orthogonal decomposition H =

®acr,, Ha, where Hy = @, EZ\A\VX“(ﬂk eme\A\VIkC\AWA). Recall that by convention, Wy = H
a + c + m

and || = 0. Since, by Lemmal[3.3] V;,,1 reduces Wy, by applying Theorem [[I] to the isometry
Vint1lw,, and noting, by virtue of Lemma B4l that W4 N Wi,p1 = Waugms1y, We obtain

Wy = (@jm+1€Z+ V,q];”ﬁlWAU{erl}) &P (ﬂijem VéﬁTWA). This implies that

D VAa[ M Vf“\A( B Vit Wy @ ) V%ﬁlWA)]

kaezf‘ = Z”” [A] Jm+1€2Ly Jm+1€Z4
k jm+1
@ VA“[ ﬂ VIC\A< @ Vil WAU{m+1})
kol keezl 14! Jm+1€2+
ke ,7m+1

B( N VeV

kceziﬂf‘A‘

Jm+1€2L+

By Lemma [3.1], for each non-zero k, € Z'f‘ and k. € Zm—\AI’ there exists a monomial Py, ;. €
Clz,-- -, Z(';)] such that VA“VI’Z\A = Pka,kc(U)VIk‘\AVA“ (evidently, Py, x.(U) is a monomial

in {Ui;}iz;). By Lemma 3.5 VAGVI]Z\AWAU{mH} = VI,;\AV:(IWAU{m—H} for all k, € Z‘fl and
ke € Z7™ and hence
me\A< @ Véﬁ?wf\u{mﬂ}) @ Vrjﬁﬁl (‘Glf,f\AWAu{mH}),

Jm+1€Z4 Jm+1€Z4
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for all k. € ZT_‘A|. Therefore

HA:[ @ VA“‘%Tf( VII:\AWAU{”L'H})]
koezZ!?! keez 1A

Jm+1€L4

ka ke jm
D[ @ vi( N vhawvw)]
koez! keez A
Jm+1€Z4
and hence H = @acy,, ., Ha, that is, V(m + 1) admits the orthogonal decomposition. This
completes the proof. O

We will outline an alternate viewpoint of the above proof at the end of Section [l

In the remainder of this section, we discuss the uniqueness of the above orthogonal de-
composition. Let V = (V4,...,V,,) be a U,-twisted isometry on H, A C I,,, and let a closed
subspace S C H reduces V. Suppose Vi|s, ¢ € A, is a shift, and Vj|s, j € A, is a unitary.
Set Vi = Vils, @ € I,. Now (B) implies that S reduces U;;, ¢ # j. Then Ujl- = (7;; for all
1 <i < j <n, where (72-]- = Uijls, i # j. Evidently, Vo= (‘71, . ,f/n) on S is a U,-twisted
isometry where U, = { Uij}Kj. Applying Theorem 3.6 to V, we obtain the orthogonal decom-
position of V as & = ®pcr, Hp. We claim that Hp = {0} for all B # A, B C I,,. To see
this, we first write Wp = Njep ker f/;-*, B C I, Letie€ B\ A. Then Vi = Vils is a unitary,
and hence Wy = {0}, which implies Hp = {0}. Now assume that i € A\ B. Then Vj|», is a
unitary, where on the other hand, i € A implies that V; is a shift, and hence Vil is a shift.
This contradiction again shows that Hp = {0}. Thus

S=@ Vi( N Vi)
kez!? tez’ 14
Again, by convention, we define Wy = S, Wy = H, and |§] = 0. Now, on the other hand,
we have W4 C Wy. This simply follows from the fact that S reduces the tuple V, and
ker(Vi|s)* = ker V*|s C ker V;* for all i € A. Lemma B3 then implies that W, reduces V;,
i ¢ A, and hence ﬂzezi*‘A‘VIln\AWA - mlezf"“‘vlln\AWA' Then

S=@ vi( N Vi) @ vi( ) Viaaa) =Ha

[A]| n—|A| [A]| n—|A|
kez!! lez? kez!! lez?
This proves the nontrivial implication of the following proposition.

Proposition 3.7. Let (Vi,...,V,) be a U,-twisted isometry on H, S be a closed subspace of
H, and let A C I,. Let Hy := @kez‘f‘ Vj(mzeziﬁf‘*“‘ VIln\AWA), and suppose S reduces V.
Then the following are equivalent.

(i) Vils is a shift and V}|s is a unitary for each i € A and j € A°, respectively.

(ii) S C Ha.

(iii) PsPy, = Ps.
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Proof. (ii) < (iii) is a general fact. (i) = (ii) follows from the preceding computation, where
(ii) = (i) is straightforward. O

One may compare the above statement with the second part of [5, Theorem 3.4]. The
above proposition also yields the uniqueness part of the orthogonal decomposition.

Corollary 3.8. Let V = (V4,...,V,) be an U, -twisted isometry on H, and set
Ha= D VA( [) ViaaWa)  (ACL).

kez! 2 1z 14

Let Sy, A C I, be V-reducing closed subspace of H. Let H = @Agln Sa, and suppose Vi|s,
is a shift and Vj|s, is a unitary for each i € A and j € A°, respectively. Then Sy = Ha for
all AC I,.

Proof. This immediately follows from (i) = (ii) of Proposition B.17l O

4. ANALYTIC MODELS AND WANDERING DATA

In this section, we describe models of U, -twisted isometries. Actually, we prove that the
examples in Section 2 are the basic “building blocks” of U,,-twisted isometries.

Recall that one of the most important components of the classical von Neumann-Wold
decomposition theorem is the separation of the shift part (if any) from a given isometry. One
of the main points, therefore, is to find a canonical method of separating shifts (if any) from
tuples of isometries. An additional benefit also arises here since a shift operator can be realized
as the multiplication operator by the coordinate function z on some (canonical) vector-valued
Hardy space over the disc ID. This is also the basic theme in all other related orthogonal
decompositions of (tuples of) operators. For instance, suppose V' € B(#H) is an isometry. By
(L2), the orthogonal decomposition of the 1-tuple V' = (V') is given by H = H 1y ®Hy, where
Hay = @52, VW and Hy = ;2 V?H, and W = ker V*. Define the canonical unitary
Iy : Hyy — Hypy(D) by Iy (V™) = 2™y, m € Zy, n € W. Then

(4.1) Iy @ Iy ) (Vs gy @ V) = (M. @ Vipg) (v & Iy,).-

It then follows that V on H is unitarily equivalent to M, & V], on Hj,(D) & Hy. In other
words, the shift part of V' admits an analytic representation in terms of the multiplication
operator M, on the W-valued Hardy space over . It is also worthwhile to recall that dimW
is the only unitary invariant of the shift M, on H,(D).

With the above motivation in mind, we now return to U,,-twisted isometries. First of all,
following [5 Definition 3.7], we introduce two core concepts:

Definition 4.1. For a U, -twisted isometry V = (V4,...,V,,) on a Hilbert space H, and for
each A C I,,, the A-wandering subspace of V' is defined by

Da(V)= [\ ViuWa.

n—|A|
ezt
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Moreover, if A°={q,...,¢u—m}, then the (n —m + 1)-tuple
de(A) = (1DA(V)7 ‘/:11 |DA(V)7 R ‘/;]nfm|DA(V)) )
on D4(V) is called the A-wandering data of V.

We often denote D4 (V') as D4 if V is clear from the context. Note that the following lemma
ensures that the A-wandering data wdy (A) is a well-defined (n —m + 1)-tuple on D4.

Lemma 4.2. Dy reduces V; and Uy, and Uy Dy = Dy for all j € A° and s # t.

Proof. Suppose A = (). Then W4 = H, by convention, and hence Dy = H 4, by Theorem [3.6]
which reduces Vj for all j € I,,. If A= 1I,,, then Dy = W, and the statement is nothing but
Lemma and Lemma Suppose A = {p1,...,pm} for some 1 < m < n, and suppose
j € A°. Observe that

(42) ViV = UpViVi,
for all p # q and i € Z,. This essentially follows from Lemma [3.1] and the fact that V,,V, €
{Upg}- TEA° = {q1,. .., qu-m} then V;V] \ W = V] | [V;(UR: - U= YWy foralll € Z™.
By Lemma B35 and then by Lemma B.3], it follows that

Vjvlln\AWA = V}ln\AVjWA C VIln\AWAv
and hence V;Dy C Dy. Similarly, we have VJ-*DA C Dy, and hence Dy reduces V;. The
remaining part simply follows from the first part and (B.1]). O

Let V. = (V4,...,V,) be a U,-twisted isometry on a Hilbert space H. Theorem then
implies that H = @ 4; Ha, where Hy = GakeZ‘A‘ V¥Dy, and Vi|y, is a shift and V|, is
=in +

a unitary for each ¢ € A and j € A°, respectively, and A C [,,. In view of the discussion
preceding Definition[4.]], it is natural to investigate the possibility of carrying over the analytic
construction of shifts to the shift part of V' restricted to H 4, A C I,,. Of course, the restriction
of V to Hy = ﬂkem V¥*H is a unitary tuple. We now examine the restriction of V' to Hyu,

A #(.
Let A = {p1,...,pm} C I, for some m > 1, and suppose Ha # {0} (or, equivalently,
D4 # {0}). In view of the orthogonal decomposition H 4 = @keZT VEiD4 and ([@T), we have

the canonical unitary w4 : Ha — H3,(D™), where (note that m = [A| > 0)
(4.3) ma(Vin) = 2*n (k€ Z},n € Da).
Suppose k € ZT' and n € D4. We then get
(TaViu T (") = wa (Vi Vin) = ma(Vor V- Vi) = 21 (M),
that is, m4V,, = M,,m4. Next, assume that 1 < i <m. By (4.2), we know that
VoV = ViV Vi) = Vo VAV Vi, Ul

and U]I::zlpl T U]ﬁ?@iln € DA7 by Lemma . Hence
(maVom) (25) = A (Vo VEn) = 2(5(UES, - USs? ),

1—1
PpiP1 pipifllrl
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which implies
TV = My (Di[Upp ] -+ DicalUp ).
Now suppose that ¢; € A° = {q1,...,¢n—m}. Then [@2) and (£3) implies
(maVy ) (25n) = ma Ve, Vin = maVA(UR,, - Uy Vaslpan) = MU, - Uy, Vo, lpam),

q;P1 q;Pm q;P1 qjpm 95
k?l e k?m . o kl e km .
as, by Lemma B.5, U, ---Ugn Vilp,n=U/, ---Ujn Vin € Da. Hence

7TAV¢1j7TZ = (Dl [Uijl] o 'Dm[Uqg'Pm])(IHZ(Dm) ® ‘/;1j|DA) (] € Ac)'

Finally, we consider the n-tuple My = (M, ..., May) on Hf (D™) formed by the m oper-
ators {maV}, w4 112, and (n — m) operators {maV, 74 };2)", where
(4.4)
le ift = P1
My, = { M, (Dl[Upipl] . -Di_l[Upiva]) if t = p; for some 1 <i <m

<D1 [Ugjp] - -Dm[qupm]) <]H2(Dvn) ® ‘/;]j|DA> if t = ¢; for some 1 < j <n —m,

and t € {1,...,n}. Now the representation of A-wandering data of My, denoted by wdy;, (A)
(see Definition BLT)), is essentially routine: Since ker M} , = ma(ker V¥) for all i = 1,...,m,

it follows that (), ., ker M} , = m4(Wa). For each [ € Z’}:‘Al, we have

Mﬁ,zn\A< () ker MZ,pi) = (mAVi\ama) (TaWa) = waVi\ s Wa.
pi€A
This implies that Ds(M4) = ma(Da), and thus, by the definition 74 in ([A3]), we get
D4(Ma) = Dy. Note that we are identifying D4 with the set of all D 4-valued constant func-
tions in H3, (D™). Moreover, for each ¢; € A° and f € Dy, since wy f = f and V,, f € Dy, it
follows that
MA7qu = WA‘/;]jﬂ-j{f = 7Tz‘l‘/;]jf = ‘/Qj.fa

and hence My 4 lp, = Vi, |p,. We summarize this observation as a proposition.

Proposition 4.3. Let (V4,...,V,) be a U,-twisted isometry on H, and let A C I,,. If Dy #
{0}, then the tuple V|, is unitarily equivalent to My = (May, ..., May) on Hp (D),
where My ;’s are defined as in ([L4). Moreover, if A°={q,...,qn—m}, then

deA(A) = (IDA7 ‘/:11 |DA7 B ‘/;]nfm|DA)'

We call M4 the model operator corresponding to A C I, (or simply the model oper-
ator). Note that the model operator M4 on H%A(]D‘A') is a U,-twisted isometry, where
Un = {TaUim% bizs.

In particular, if A = {1,...,m} for some m € {1,...,n}, then Vi, on H, is unitarily
equivalent to My = (M, ..., M,) on H3 (D™), where M; = M., and

M; = M, (Di[Un] Da[Uz] -+ Dica[Us 1] )
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forall e =2,...,m, and
M; = (Dl[Uﬂ] = 'Dm[Uij(IHZ(DM) ® Vilpa)-

for all j =m+ 1, Lo, and deA(A) = (]DA, Vm—l—l‘DAa Cey Vn|DA>-

Now we turn to analytic models of U,,-twisted isometries. Let V' = (V4,...,V},) be an
U,-twisted isometry, and suppose H = @ , 1, Ha. To obtain the model of V', we will apply
the above proposition for each A C I, and patch all the pieces together. Recall that, by
convention, H%@ (D) = Hy, and My, = Vilu, forallt =1,...,n. Proposition Z3Inow tells us
that the n-tuples V|3, and M are unitarily equivalent via the unitary m4 : Ha — Hp (DA
as defined in (4.3]), where D4 is the A-wandering subspace and A is a non-empty subset of
I,. Since V; = @ 4, Vilu, foralli=1,... n, it follows that

V= (Vlaavn) = @(‘/1|HAa"'>VN|HA)'

ACI,
We set My,; = @ ac;, Mai € B(@ac;, Hp, (DY) for all i = 1,...,n, and define
MV = (MV,1> RN MV,n)~

Then the unitary ITy, := @AU” 74 satisfies IIyV; = My Ily for all 7 = 1,...,n. Thus, we
have proved: -

Theorem 4.4. Let (V1,...,V,) be a Uy, -twisted isometry on H. Then (Vi,...,V,,) is unitarily
equivalent to (My,, ..., My,,) on @ 4, Hz (D).

In the case of doubly noncommuting isometries (that is, in the case U;; = 213, this was
observed by de Jeu and Pinto [5, Theorem 4.6].

Note that the proof of the above theorem is a simple consequence of Proposition [4.3] where
the proof of the latter uses Theorem In the following, we present a second and somewhat
more direct proof of Proposition 1.3l The techniques of this proof may be of independent
interest.

We begin with the case of single isometry. Suppose V € B(H) is a shift, and suppose
Wy = ker V*. Then we have the canonical unitary Iy : H — H?*(D) ® Wy such that
I,V = (M, ® I, )Ily (see the discussion preceding Definition [4.1]). Observe that

(45) M @n) = Vin (€ ZsneWy).

Now, let 1 <m < n, and let A = {p1,...,pn} C I,. Let V = (V4,...,V,) be a U,-twisted
isometry. Suppose V; is a shift, and Vj is a unitary for each i € A and j € A°, respectively.
Set II; := Ily, . By Lemma 33, we know that Wy} reduces V,,. Therefore, V[, , is a
shift in B(Wy,,3). Lemma 3.4 tells us that ker(Vj,|w,, )" = Wiy, p,}. Then the canonical
unitary

II, = Hsz Wiy — Hz(D) ® Wips 2}

Wipy
corresponding to Vp, |w,, , vields unitary Ip2mp) ® Il : H%V{pl}(]D)) — H&V{pl m(]]))?)_ Here we
have once again used the identification H3, ioLra) (D?) = H*(D*)®@Wyp, p»}- Continuing exactly
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in the same way, we find

IH2 (D) ®H2 2

II1
0—=H = Hgv{m} (D) - HW{prz}(]Dz)

IHQ (]D)Q)@HS
—

I m— ®Hm
LD |2, (D) — 0.

This gives us a unitary IT: % — Hy, (D™) defined by
II:= ([HQ(]D)mfl) (%9 Hm)([HQ(Dm—Q) (%9 Hm—l) . ([HQ(]D)) (%9 Hg)Hl.
Now, for each i = 2,...,m, use (IZEI) to see that

(T2 @ TL) (2" - 277 @ Vi o P

o) =21 ),

,,,,,

forall k = (ky,..., ki) € Zf[l, and 1 € Wyp,,...pi_13- Applying the above repeatedly, we find
that II(Vin) = 2Fn, k € Z7, n € Wa, which was obtained in (Z3)). The remainder of the
proof of Proposition now proceeds similarly.

We should mention that the above techniques can be readily adapted to prove (at the
expense of a more cumbersome computation) Theorem [£4] in its full generality.

5. INVARIANTS

The purpose of this section is to prove that wandering data are complete unitary invariants
for U,,-twisted isometries. We start with a simple observation (also see [5, Lemma 5.1] for
the case of doubly non-commuting isometries). In what follows, we let H and H be Hilbert
spaces, and U, = {U;; }ie; € B(H) and U, = {U;;}ie; € B(H).

Lemma 5.1. Suppose V = (Vi,.... V) andV = (V4,...,V,) be U, and U,-twisted isometries
on H and H, respectively, and let 11 : H — H be a unitary operator. If IIV; = ViII for all
1=1,...,n, then llUy = Uull for all s # t.

Proof. The proof follows at once from the fact that Uy, = V¥*V*VV, for all s # ¢ (see (31). O

In particular, if V 22V, then the (”) -tuples U, = {U;;}iz; and U, = {ﬁi]—}#j are unitarily
equivalent under the same unitary map. .

Let V.= (Vi,...,V,) and V = (Vl, ..., V) be U, and U,-twisted isometries, respectively.
For A C I,,, we say that wdy(A) is twisted unitarily equivalent to wdy(A) (which we will
denote by wdy (A) = wdy(A)) if the (n —|A| + (5) + 1)-tuples wdy (A) U{Ujj|p ) }irzj and
wdy(A) U {UU|DA ) }izj are unitarily equivalent.

We are now all set to prove that wdy (A) U {Uij|p,v)}iz; is a complete set of unitary
invariants of U,,-twisted isometry V.

Theorem 5.2. Suppose V = (V1,...,V,) and V=Wi,...,V,) belU, and U,-twisted isome-
tries on H and H, respectively. Then the following statements are equivalent:

(1) V=V,

(2) wdy(A) =y wdy(A) for all AC I,.
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Proof. (1) = (2) Let © : H — H be a unitary, and let 7V; = Vir for all 4 = 1,...,n. Fix
A C I,. Then (see the discussion preceding Proposition [1.3)) 7W4 = WA, where WA =
Mica ker V. Recall that D4(V) and Da(V) denotes the A-wandering subspaces of V and V,
respectively. Then

TDA(V) = ﬂ TVEaaT (TWa) = ﬂ Vi aWa =Da(V),

n—|4| 4|
lez” ez

and hence, 7|p, ) : Da(V) — DA(V) is a unitary. Now fix j € A, [ € ZT'A‘, and f € Wa.
Since, by Lemma 2] D4 (V') reduces V;, it follows that

(Tlpan Vi)Vinaf = Vim\Viaf = (Vimtlp,0n)Viaal,
as V}n\Af € Da(V). Therefore, 7|p,v)Vjlp,v) = Vj|DA(V)7r|DA(V) for all 7 € A°. Finally,

T, 01 Uijlpac) = UijlpavyTlpa vy follows from the fact that 7Us; = Uy, i # j. This proves
that (1) = (2).

To prove (2) = (1), we first consider orthogonal decompositions H = @ 4; Ha and H =
Dacs, Ha. Suppose A = {p1,---,pm} € I,. By assumption, there exists a unitary 74 :
Da(V) = Da(V) such that 74Vj|p, vy = V\DA(V T4 and TAUst|DA(V = St‘DA \TA for all
j € A° and s # t. We also know that H4 = @kez‘f‘ VED (V) and Hy = @kez‘f‘ VADA(V)

(see Theorem B8). Then the map 74 (VEn) = Virun, for all k € Z'f‘ and n € Dy(V),

defines a unitary 74 : Ha — Ha. Let k € Z‘f' and n € Da(V). For each p; € A, we have
(TaVyi 1) (VEn) = w4V, VEn, and hence

( J(Vin) = ma (VAT (UL, - Upi m) = VAT (7allfs, - Upiy ).

pip1 Pibi— pip1 PiPi—
ki
Since TAUl’flpl- Upipis | Davy = Up oy Uplpl T4, reversing the roles of V;’s and Vj’s in

) (VE) = (VL ma)(VEn)
47,Ta for all p; € A. The remaining equality TaAVilu, = ‘/;|7:LA7TA for all i € A€ is similar.

the above equality, we obtain (m4V),
Vo,
Now we consider the unitary 7 := ©acr, 74 : @uc;, Ha = H — Dacy, Ha = H. Since
V; = ®acr,Viln, and V; = @Agnf/jb:u, by the pre_vious identity, we have 7V, = Vjr for all
J € I,. Finally, since U;; = V'V *V;V; and Uy; = V;*V'V;V}, it follows that

wUs; = (@acr,ma)(@act,Uila,) = (@acrUijla, ) (@acr,ma) = Uy,
and completes the proof of the theorem. ([l

6. NUCLEAR C*-ALGEBRAS

Our object in this section is to show that the universal C*-algebra generated by a U,,-twisted
isometry, n > 2, is nuclear.

We begin by recalling the definition of a universal C*-algebra (cf. [14, page 885]). Let
G ={g; :i € A} be a set of generators and R be a set of relations. A unital C*-algebra A is
said to be a universal C*-algebra generated by the elements in G and satisfying the relation R
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if it satisfies the following property: If A is a unital C*-algebra generated by G = {gi 1 € A}
that satisfies the same relation set R, then there exists a unique *-epimorphism 7 : A — A
such that m(g;) = g; for all € A.

Given C*-algebras A and B, we denote by A® B the algebraic tensor product of A and B.
A norm || - ||, on A® B is said to be a C*-norm if ||zy||, < ||z|, |vll, and ||z*z||, = ||:)3||i
holds for all x and y in A ® B.

The minimal tensor norm || - ||nin and the maximal tensor norm || - ||;q, are the extreme
examples of C*-norms: If || - ||, is a C*-norm on the algebraic tensor product A ® B, then

[2llmin < l|2lla < [[2Zllmae (v € A® B).

Finally, we recall that a C*-algebra A is called nuclear [2 page 184] if for each C*-algebra B
there is a unique C*-norm on A ® B. It is well known that a C*-algebra A is nuclear if and
only if |z||min = ||%]|mae for all z € A ® B and all C*-algebras B.

We now return to U,,-twisted isometries. We denote by 7,, the universal C*-algebra gener-
ated by the set {V;,U;; : 1 <i # j < n} consisting of n isometries {V; : 1 <i < n} and (Z)
unitaries {Us; }1<izj<n satisfying U, = Uj; and the relations [LTl

We wish to point out that Proskurin [10] and Weber [I5] proved that the universal C*-
algebra generated by a doubly non-commuting pair of isometries (that is, in the case of
Uij = zijIy, i # j) is nuclear. The main tool used in [10, 15] is a result of Rosenberg
[T, Theorem 3], which determines amenability of C*-algebras generated by amenable C*-
subalgebras (recall that all nuclear C*-algebras are amenable [4]):

Theorem 6.1 (Rosenberg). Let A be a unital C*-algebra generated by a nuclear C*-subalgebra
B containing the unit of A and an isometry s € A satisfying the condition sBs* C B. Then
A is nuclear.

We are now ready to prove that 7, is nuclear. Here also, the above result will play a key
role.

Theorem 6.2. 7, is nuclear for n > 2.

Proof. We will prove this by induction on n. Suppose V; and V, are isometries on H, U €
{V1,V2}' a unitary, and assume that V;*Vo = U*V2V}". Denote by P, the C*-algebra generated
by ‘/1k1 ‘/'2k2v'2*k2‘/1*k1’ kl, ]{52 c Z+, that is

P = C (VP VEV;R VM <k € 2,)).

We claim that P is a commutative C*-subalgebra of 75. To show this, for each m € Z,, we
set

Bi(m) = V"V (i=1,2).

Clearly, Pi(m) and P»(m) are orthogonal projections for all m € Z, . By repeated applications
of Vi*Vo = U*V,LV* and V4 Vy = UV,LV;, we obtain

VIV v = (VR V) (V21" = Pr(ky) Pa(ke),
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for all k1, ks € Z;. From here it follows that P = C*({Pi(k1)Pa(k2) : ki, ko € Z4}). Now
repeat a version of the same argument to see that

Pi(s)Py(t) = Pa(t) Pu(s)  (s,t € Zy),

from which the above claim becomes obvious. Since commutative C*-algebras are nuclear, it
follows, in particular, that P is nuclear. Moreover, it is easy to see that V;PV" C P, and
hence, Theorem implies that B is nuclear, where

B, == C*(P,VA),

the C*-algebra generated by P and V;. Clearly, UB,U* = By, and hence, applying Theorem
again to By with the unitary U, we find that

Bg = C*(Bl, U),

is nuclear. Using V"V, = U*VLV}" again, we obtain that V4B,V," C B,. Finally, since T3 =
C*(Bs, V3), by Theorem again, 7T is nuclear.
Now suppose the statement is true for n = m(> 2). Since 7, is nuclear, and

Ui,m—l—leU;:m+1 = Tma
for all i = 1,...,m, applying Theorem repeatedly (m times), it follows that
Bm+l = C*({Tm, Ui,m+l . Z = 1, Ceey m}),

is nuclear. Since Tpy1 = C*(Bnat, Vinae1), applying Theorem one more time to B,,11
and to the isometry V,,.1, we infer that 7,,,; is nuclear. This completes the proof of the
theorem. 0

The following observation, in particular, also, says that the C*-algebra generated by a
Us-twisted isometry is not simple (see |2, Section I1.5.4] on simple C*-algebras).

Remark 6.3. Let K be the universal C*-algebra of compact operators on a separable infinite
dimensional Hilbert space generated by elements E;;, where 7, j € Ny satisfying the relations
EijEy = 6By and Ef; = Ej; for all 4,5, k,1 € Zy. Let (U,V) be a pair of isometries acting
on ‘H with U*V = W*VU where W is a unitary. Consider the ideal ((1 — UU*)(1 — VV™))
generated by (1 —UU*)(1 — VV*)in C*(U,V). For p,q,r,s € Z,, define

epq.sr = UPVI1 =UU)(1 = VV*)(VH(U")*.
It is easy to check that,

e;%sr = Csr,pq and €pq,sr€ijlk = 5s,i5r,jepq,lk-

for all a,b,¢,d,4,j,k,1 € Zy, that is, {€pger}p.grscz, is a self-adjoint system of matrix units.
Using the universal property of K and the fact that I is simple, we conclude that IC is
isomorphic to the subalgebra of ((1—-UU*)(1—VV™)) spanned by {epq s }pgrscz,. Therefore
the proper ideal ((1 —UU*)(1 — VV*)) in C*(U, V') contains a subalgebra isomorphic to /.
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7. CLASSIFICATIONS

In this section, we classify U, -twisted isometries via representations of generalized noncom-
mutative tori.

We begin by recalling the definitions of rotation algebras or noncommutative tori and the
Heisenberg group C*-algebras (see [, [7, [§] for more details). For 6 € R, the rotation algebra
is defined as the universal C*-algebra

Ay := C*({U,V : U, Vare unitaries, UV = eV U}).

Rotation algebra is also called the noncommutative torus as for 6 = 0, Ay = C(T?), where
T denotes the unit circle. When 6 is irrational, Ay is called the irrational rotation algebra
which is a simple C*-algebra having the unique faithful trace 75 : Ay — C defined by

Te(Ule):{1 ifl=m=0

0 otherwise ,
for I;m € Z. Let A = C*(H) be the group C*-algebra of Heisenberg group

1 m p
H = 0 1 n|:mmnpeZ
0 0 1

We can view A as the universal C*-algebra generated by three unitaries u, v, w satisfying
u,v € {w} and uv = wou.

We call A the generalised noncommutative torus. It is well known [8] that A has a central-
valued trace 7 : A — C*(w) defined by

T(whulv™) = wh i =m =0
" 10 otherwise,

for k,l,m € Z where C*(w) is the center of A. With this motivational background, we now
introduce the notion of generalized noncommutative tori.

Definition 7.1. For a given n > 2, generalized noncommutative n-torus T,, is the universal
C*-algebra generated by the set S := {S;, 5, : 1 <i,p,q < n,p # q} of unitaries satisfying
the relations

(71) Sj,’ =S SZSZ] = SijSi> SZSJ = SUSJSZ for all 7 7& ]
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Recall that a representation of a C*-algebra A is a pair (m,H), where H is a Hilbert
space and m : A — B(H) is a x-homomorphism. If A is unital, then 7 is assumed to
be unital. Let V = {V;,V,, : 1 < i,p,q¢ < n,p # q} be a generating set of T,, and let
S ={Si,Sp 1 <i,p,qg < n,p# q} C B(H) be a collection of unitaries satisfying (7.1]).
Then, from the universal property of T,,, there is a unique *-homomorphism = : T,, — B(H)
such that 7(V;) = S; and w(V;;) = S;; for all ¢ # j. Any pair (S,H), where S = {S;, S, :
1<4,p,g<n,p+#q} C B(H) consists of unitaries satisfying (7.1]) is called a representation
of T,,. Two representations (S,H) and (T, K) are said to be unitary equivalent if there is a
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unitary U : H — IC such that US; = T;U for all i = 1,...,n. In this case, by Lemma [5.1] it
also follows that US;; = T;,;U for all i # j.

Now let (V4,...,V,) be ald,-twisted isometry on #H, and let A C I,,. Suppose U, = {U;; }ix;.
Then

Ui := Viln, and Upg = PQ|HA’

are unitary operators for all i ¢ A and p # ¢. The universal C*-algebra generated by the set
of unitaries {U;, Uy, : i,p,q ¢ A, p # q} satistying (I)) is denoted by T 4.

Let A C I,,, W a Hilbert space, and let (V, W) ={V,,V}; : t,i,5 € A°,i # j} C B(W) be a
representation of T 4. The goal is to extend the representation to a U,,-twisted isometry such
that

{Iw,V,:te A} itB=A
7.2 wdy(B) =
(72) v(5) {(2) if B# A
This is an easy consequence of the construction of model operators in Sections2and[4. Indeed,
let A={p1,...,pm} and A° = {qgm+1,--.,qn} Pick unitary operators

{Vij i <pjypip; € Ay U{Viy i < gjopi € A g5 € A} C(V, V).

For instance, one may consider new Vj;’s simply as Iyy. Define U; = Ig2pmy ® Vi, for all
i # j. Then U = Uy for all i # j, and U, := {Uj;}iz; © B(Hy,(D™)). Consequently,
My = (May,...,Ma,) on HZ,(D™) is a Uy,-twisted isometry, where My ,’s are defined as
in (44). Moreover, by Proposition we obtain the desired equality (7.2). This essentially
proves the following assertion:

e wdy(A) are in bijection with the unital representations of T 4.
e Two such representations of T 4 are unitarily equivalent if and only if the corresponding
A-wandering data are unitarily equivalent.

More formally, we state the following:

Theorem 7.2. The unitary equivalence classes of U, -twisted isometries are in bijection with
enumerations of 2" unitary equivalence classes of unital representations of the generalized
noncommutative tori T 4, with A C I,,.

Proof. Suppose V' := (V4,...,V,,) is a U,-twisted isometry on a Hilbert space H. Then for
each A C I,,, the set

7T-V(jél) = {‘/If|7‘lA7Uij|'HA : tviaj € Acvi ;é j}7
is a representation of T,. Well-definedness and injectivity of the correspondence V <

{mv(A) : A C I,} follow from Theorem Surjectivity of this correspondence follows
from the discussion preceding the statement of this theorem. O

Before proceeding we need to clarify the issue of reducing subspaces of model operators.
First, given an m-tuple X = (X3,..., X,,) on a Hilbert space H, we define the defect operator
S, (X, X*) by

S X)) = ) (D)X X X X

0<ir<...<it<m
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It should be noted that the above (well known) notion is inspired by the so-called hereditary
functional calculus corresponding to the polynomial

Spl(zow) = Y (=)', e 2wy, ey,

0<ii<...<it<m

where S, (z,w) = [T~ (1 — zw;) ™!, z,w € D™, is the Szego kernel of the polydisc D™. In
fact, if we consider M, := (M,,,..., M, ) on H(D™) for some Hilbert space £, then an easy
computation (for instance, action of S_!(M,, M*) on monomials) reveals that S_1(M,, M) =
Pc @ I, where Pc denote the orthogonal projection of H?(ID™) onto the space of all constant
functions. Now, let (V1,...,V,) be a U,-twisted isometry, and let A = {p1,...,pm} C I,.
Consider the model operator My = (May,...,Ma,) on H3 (D) (see Proposition E3). By
Lemma [2.2], we have
MA,piMzJ- = MZjMA,pi (pl < ])

Let us denote My, = (Mayp,, ..., Ma,,, ) for simplicity. For each p; € A, Lemma [2.2] again
implies that M4, M} , = M. M . Then the preceding equality yields

Sp (M, M} ) =S, (M., M}) = Pc ® I.

Now assume that S C H3 ,(D™) is a closed subspace, and suppose that S reduces M.
In particular, S reduces My ., and hence by the previous identity it follows that f(0) =
(Pc@Ig)f € S for all f €S. Therefore, S = HA(D™), where D = span{f(0): f € S} is a
closed subspace of £. Finally, by the representation of My, in (.4]), we have that D reduces
VI, for all ¢; € A°. We summarize this (along with the trivial converse) as follows:

Proposition 7.3. Let (Vi,...,V,) be a U,-twisted isometry, and let A C I,,. Suppose S C
H3, (DA is a closed subspace. Then S reduces My if and only if there exists a closed subspace
D C Dy such that D reduces Vj|p, for all j € A¢, and S = HA(D™).

Given a U,-twisted isometry V = (V1,...,V,,), we denote C*(V') the C*-algebra generated
by {V;},. Evidently, C*(V') is unital. A subspace D C H is said to be invariant under
C*(V)it TD C D forall T € C*(V). It is easy to check that D is invariant under C*(V') if
and only if D reduces T for all T € C*(V) or, equivalently, D reduces V; for all 7 € I,,. We
refer the reader to (£3) and Proposition [4.3] to recall the definitions of the canonical unitary
74 and the model operator tuple My, respectively.

Theorem 7.4. Let V. = (Vi,...,V,) be a U,-twisted isometry on H. The following are
equivalent.

(1) Only trivial subspaces of H are closed and invariant under C*(V').
(2) There exists A C I, such that V= My and D has only trivial subspaces that are
invariant under C*(wdyr, (A)).

Proof. (1) = (2): Evidently, H = H 4 for some A C I,,, and hence V' = My, where M, is a U,,-
twisted isometry on Hp (D). Recall that if A°={g,...,¢u—m}, then the wandering data
is given by wdn,(A) = (Lp,ys Mag|Dys---s Mag, ..|p,) (see Proposition [4.3). Let D C Dy
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is a nontrivial closed subspace, and suppose D reduces {Vy,|p, }4eac. Note that
H%(]DIA‘) = @kaez‘f‘vAGD g H%A (]DIA‘%

and hence 7% (H2(D ) is invariant under C*(V). This is a contradiction. Finally, (2) = (1)
simply follows from Proposition O

Corollary 7.5. Let (Vi,...,V,) be a U, -twisted isometry and A C I,, such that V; are shifts
fori € A and are unitaries for i € A¢ with

dim(m ker V.*) =1,
icA
then C*(V4,...,Vy) is irreducible. In particular, if (Vi,...,V,) are U,-twisted shifts with
dim( () ker V;*) =1, then C*(V4,..., V) is irreducible.
i€ly,
Example 7.6. Multiplication operators (M.,,,..., M, ) by the co-ordinate functions on the
Hardy space H?(D") with n > 2 generates irreducible C*-algebra.

Recall that a representation of a unital C*-algebra is given by a pair (H, 7), where H is a
Hilbert space and w : A — B(H) is a x-homomorphism. A closed subspace D C H reduces  if
D reduces m(a) for all @ € A. A representation (#H, ) is called irreducible if trivial subspaces
are the only reducing subspaces of m. Clearly, if {s; : i € I} is a generating set of a C*-algebra
A, then a closed subspace D C H reduces 7 if and only if it reduces 7(s;) for all i € I. The
following is now an immediate consequence of Theorems and [7.4]

Corollary 7.7. The unitary equivalence classes of the non-zero irreducible representations of
the C*-algebras generated by U, -twisted isometries are parameterized by the unitary equiva-
lence classes of the non-zero irreducible representations of generalized noncommutative 2"™-tori

T, with A C I,,.

We finally remark that the examples in Section 2l are the basic building blocks of U,,-twisted
isometries. The same construction can also be applied to produce more natural examples of
tuples of operators (for instance, replace the unitary U in D[U] by some isometry V). The
present findings suggest that our methodology deserves further consideration as a means of
providing concrete examples of C*-algebras which might be used as a tool of the classification
problem for C*-algebras. For instance, the following question arises naturally: Classify C*-
algebras generated by tuples of isometries (V1,...,V,) on H that satisfies V;V; = U;;V;V;,
where {U;;}iz; € B(H) are unitaries. Moreover, in view of the usefulness and importance of
the classical rotation C*-algebras [9], it is also natural to investigate the essential properties
of rotation C*-algebras with rotations as unitary operators. We hope in the near future to be
able to present results in some of these natural directions.
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