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ORTHOGONAL DECOMPOSITIONS AND TWISTED ISOMETRIES

NARAYAN RAKSHIT, JAYDEB SARKAR, AND MANSI SURYAWANSHI

Abstract. Let n > 1. Let {Uij}1≤i<j≤n be
(
n

2

)
commuting unitaries on some Hilbert space

H, and suppose Un = {Uij}i6=j ⊆ B(H), where Uji := U∗
ij , 1 ≤ i < j ≤ n. An n-tuple of

isometries V = (V1, . . . , Vn) on H is called Un-twisted isometry if Vi’s are in the commutator
{Ust : s 6= t}′, and V ∗

i Vj = U∗
ijVjV

∗
i , i 6= j. We prove that each Un-twisted isometry admits

a von Neumann-Wold type orthogonal decomposition.
We prove that the universal C∗-algebra generated by Un-twisted isometry is nuclear. The
universal C∗-algebra generated by an n-tuple of Un-twisted unitaries is called the generalized
noncommutative n-torus. We exhibit concrete analytic models of Un-twisted isometries, and
establish connections between unitary equivalence classes of the irreducible representations
of the C∗-algebras generated by Un-twisted isometries and the unitary equivalence classes of
the non-zero irreducible representations of generalized noncommutative tori. Our motivation
stems from the classical rotation C∗-algebras, Heisenberg group C∗-algebras, and a recent
work of de Jeu and Pinto.
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1. Introduction

One of the most simple and fundamental of all the concepts studied in various branches of
linear analysis, mathematical physics, and its related fields is the notion of isometries. Let H
be a Hilbert space (all Hilbert spaces in this paper are separable and over C), and let B(H)
denote the C∗-algebra of all bounded linear operators on H. An operator V ∈ B(H) is called
isometry if V ∗V = IH, or, equivalently, ‖V h‖ = ‖h‖ for all h ∈ H.

2010 Mathematics Subject Classification. 46L65, 47A20, 46L05, 81S05, 30H10, 46J15.
Key words and phrases. Isometries, von Neumann and Wold decompositions, Heisenberg C∗-algebras,

rotation C∗-algebras, nuclear C∗-algebras, universal C∗-algebras, noncommutative tori, Hardy space.
1

http://arxiv.org/abs/2104.07628v1


2 NARAYAN RAKSHIT, JAYDEB SARKAR, AND MANSI SURYAWANSHI

The typical examples are unitary operators, and shift operators. Recall that an isometry
V ∈ B(H) is called shift if V ∗m → 0 in the strong operator topology (that is, ‖V ∗mh‖ → 0 as
m → ∞ for all h ∈ H). The classical von Neumann–Wold decomposition theorem says that
these are all examples of isometries:

Theorem 1.1 (J. von Neumann and H. Wold). Let V ∈ B(H) be an isometry. Then H =
H{1} ⊕H∅ for some V -reducing closed subspaces H{1} and H∅ such that V |H{1}

is a shift and

V |H∅
is a unitary operator.

This decomposition is canonical as well as unique in an appropriate sense. Although the
von Neumann–Wold decomposition plays a central role in the foundation of linear operators,
this and many of its variants are also studied in connection with C∗-algebras, ergodic theory,
stochastic process, time series analysis and prediction theory, mathematical physics, etc. For
instance, Theorem 1.1 plays a key role in classifying C∗-algebras generated by isometries [3].
Another motivation for the study of isometries on Hilbert spaces, which is also relevant to our
notion of twisted isometries, stems from the classical rotation algebras and Heisenberg group
C∗-algebras [7]. Also see [15, Section 4] in the context of universal C∗-algebras generated by
pairs of isometries V1 and V2 such that

V ∗
1 V2 = e2πiϑV2V

∗
1 (ϑ ∈ R).

In this paper also, along with a von Neumann–Wold type decomposition, we present a few
glimpses of applications of the above to C∗-algebras for a class of tuples of isometries (essen-
tially, we will replace e2πiϑ by a unitary U in the commutator {V1, V2}

′).
In view of Theorem 1.1, it is a natural question to ask whether an n-tuple, n > 1, of

isometries can be represented by tractable model operators as above. This is, on one hand,
of course, almost hopeless in general, where, on the other extreme, 2-tuples of commuting
isometries represents (in an appropriate sense) the set of all bounded linear operators on
Hilbert spaces. Nevertheless, Theorem 1.1 motivates one to formulate the following statement:

Statement (Orthogonal decomposition). Let (V1, . . . , Vn) be an n-tuple of isometries acting
on H. Then there exist 2n closed subspaces {HA}A⊆In of H (some of them may be trivial)
such that

(i) HA reduces Vi for all i = 1, . . . , n, and A ⊆ {1, . . . , n},
(ii) H =

⊕

A⊆{1,...,n}HA, and

(iii) for each A ⊆ {1, . . . , n}, Vi|HA
, i ∈ A, is a shift, and Vj|HA

, j ∈ Ac, is a unitary.

If this statement holds for an n-tuple of isometries V = (V1, . . . , Vn), then we say that V
admits a von Neumann–Wold decomposition (orthogonal decomposition in short).

We illustrate this with concrete examples [5]: Let zij ∈ T, 1 ≤ i, j ≤ n, and suppose
zij = z̄ji for all 1 ≤ i, j ≤ n, and i 6= j. An n-tuple of isometries (V1, . . . , Vn) on some Hilbert
space H is said to be doubly non-commuting isometries if V ∗

i Vj = z̄ijVjV
∗
i for all i 6= j. The

following comes from [5, Theorem 3.6]:

Theorem (de Jeu and Pinto). Each n-tuple of doubly non-commuting isometries admits an
orthogonal decomposition.



TWISTED ISOMETRIES 3

Note that if zij = 1, i 6= j, then doubly non-commuting isometries are simply doubly
commuting isometries. Therefore, the above theorem recovers orthogonal decompositions of
doubly commuting isometries [12, 13]. A question of obvious interest consists in enlarging the
above class of tuples of isometries that admit the orthogonal decomposition. To address this
question, we now introduce our primary object of study, twisted isometries on Hilbert spaces.

Let H be a Hilbert space, and let n > 1. Throughout this paper, by Un on a Hilbert space
H we mean an

(
n

2

)
-tuple of commuting unitaries {Uij}1≤i<j≤n on H. Given a Un on H, we

set Uji := U∗
ij , 1 ≤ i < j ≤ n, and simply write Un as {Uij}i 6=j . We must point out that the

commutativity assumption on Un is automatic for our purpose (See Remark 3.2).

Definition 1.2 (Un-twisted isometries). Let Un = {Uij}i 6=j ⊆ B(H) be a collection of unitaries
such that Uji = U∗

ij for all 1 ≤ i < j ≤ n. An n-tuple of isometries (V1, . . . , Vn) on H is called
Un-twisted isometry if

(1.1) ViUij = UijVi and V ∗
i Vj = U∗

ijVjV
∗
i (i 6= j).

Clearly, doubly non-commuting isometries are also a Un-twisted isometries with Uij = zijIH,
i 6= j. On the other hand, as we shall see in Section 2, Un-twisted isometries form a large class
of n-tuples of isometries which also includes a number of interesting examples. In fact, Section
2 is the central part of this paper. However, the central result of this paper is the following
generalization of de Jeu and Pinto’s orthogonal decomposition theorem to the Un-twisted
isometry case (see Theorem 3.6).

Theorem. Each Un-twisted isometry admits an orthogonal decomposition.

We wish to point out that our proof, even in this generality, is simpler than that of [5].
However, as in [5], our proof also requires as background the classical von Neumann–Wold
decomposition theorem.
Now we comment on the direct summands in the orthogonal decomposition of an isometry
V ∈ B(H) as in Theorem 1.1. One can easily prove [12] that H{1} and H∅ in Theorem 1.1
admits the following geometric representations

(1.2) H{1} = ⊕∞
j=0V

jW and H∅ = ∩∞
j=0V

jH,

where W = ker V ∗. Moreover, the orthogonal decomposition in Theorem 1.1 is unique in
the following sense: Suppose S1 and S2 are reducing subspaces for V . If V |S1 is a shift, then
S1 ⊆ Hs. And, if V |S2 is a unitary, then S2 ⊆ Hu. In particular, if S1⊕S2 = H, then S1 = Hs

and S2 = Hu.
In the setting of Un-twisted isometries, we prove a similar geometric representations of each of
2n direct summands of the corresponding orthogonal decomposition. This is linked together
with the existence of the orthogonal decompositions (see Theorem 3.6). Also we prove that
the orthogonal decomposition is unique (see Corollary 3.8). These results form the subject of
Section 3.

In Section 4, we present analytic models of Un-twisted isometries. Our model (following
de Jeu and Pinto) relies on two core concepts, namely, wandering subspaces and wandering
data. We prove that the list of examples in Section 2 plays a pivotal role in the structure
theory of Un-twisted isometries.
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Also, we intend with this paper to give a motivation for the study of generalized noncommu-
tative tori, which is an analog of the classical anticommutation relations with unitary twists.
However, here we will restrict ourselves to Un-twisted isometries. For instance, in Theorem
6.2, we prove that the universal C∗-algebra generated by a Un-twisted isometry, n ≥ 2, is
nuclear. This is the main content of Section 6.

In Section 7, we introduce the generalized noncommutative tori for Un-twisted isometries.
Theorem 7.2 states that the unitary equivalence classes of Un-twisted isometries are in bi-
jection with enumerations of 2n unitary equivalence classes of unital representations of the
generalized noncommutative tori. In Corollary 7.7, we prove that the unitary equivalence
classes of the non-zero irreducible representations of the C∗-algebras generated by Un-twisted
isometries are parameterized by the unitary equivalence classes of the non-zero irreducible
representations of generalized noncommutative 2n-tori.

Needless to say, the notion of Un-twisted isometries is inspired by the earlier work on the
classical rotation C∗-algebras and Heisenberg C∗-algebras at the level of unitaries [1, 7, 8].
Some of our results are also motivated by the one by de Jeu and Pinto [5]. However, on one
hand, our results are more general, and on the other, our approach, even in the particular
case of de Jeu and Pinto, is significantly different and appears to be somewhat more natural.

Throughout the paper we follow the standard definition of unitarily equivalence: Two n-
tuples V = (V1, . . . , Vn) and Ṽ = (Ṽ1, . . . , Ṽn) on Hilbert spaces H and H̃, respectively, are
said to be unitarily equivalent if there exists a unitary U : H → H̃ such that UVi = ṼiU for
all i = 1, . . . , n. Also we use standard notation such as Zn

+ = {k = (k1, . . . , kn) : ki ∈ Z+},

Cn = {z = (z1, . . . , zn) : zi ∈ C}, zk = zk11 · · · zknn and V k = V k1
1 · · ·V kn

n , whenever k ∈ Zn
+ and

V = (V1, . . . , Vn) on some Hilbert space.

2. Examples

This section introduces some basic concepts, and presents some (model) examples of Un-
twisted isometries. This also sets the stage for a more thorough treatment of Un-twisted
isometries in what follows. The present section is the central part of this paper.

Let H2(D) denote the Hardy space over the unit disc D = {z ∈ C : |z| < 1}. Denote by
Mz the multiplication operator by the coordinate function z on H2(D), that is, Mzf = zf
for all f ∈ H2(D). It is well known that Mz is a shift of multiplicity one (as kerM∗

z = C).
Now, let H2(D2) denote the Hardy space over the bidisc D2. Recall that H2(D2) is the
Hilbert space of all square summable analytic functions on D2. That is, an analytic function
f(z) =

∑

k∈Z2
+
αkz

k on D2 is in H2(D2) if and only if

‖f‖ :=
( ∑

k∈Z2
+

|ak|
2
) 1

2
< ∞.

One can easily identify H2(D2) with H2(D) ⊗ H2(D) in a natural way: define τ : H2(D) ×
H2(D) → H2(D2) by τ(zk1 ⊗ zk2) = zk11 zk22 , k ∈ Z

2
+. Then τ is a unitary operator, and

τ(Mz ⊗ IH2(D)) = Mz1τ and τ(IH2(D) ⊗Mz) = Mz2τ,
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where Mz1 and Mz2 are the multiplication operators by z1 and z2, respectively, on H2(D2).
This construction works equally well for H2(Dm), the Hardy space over Dm, m > 1.

We begin with some elementary (but motivational) examples of U2-twisted isometries. It
will be convenient to introduce a special class of diagonal operators parameterized by the
circle group T. For each λ ∈ T, define (cf. [15, proof of Lemma 1.2])

D[λ]zm = λmzm (m ∈ Z+).

Clearly, D[λ] is a unitary diagonal operator on H2(D) and D[λ]∗ = D[λ̄] = diag(1, λ̄, λ̄2, . . .).
It is easy to see that

(M∗
zD[λ])(zm) =

{

λmzm−1 if m > 0

0 if m = 0,

and

(D[λ]M∗
z )(z

m) =

{

λm−1zm−1 if m > 0

0 if m = 0,

and hence, M∗
zD[λ] = λD[λ]M∗

z . Now we fix λ ∈ T, and define S1 and S2 on H2(D2) by
setting

S1 = Mz ⊗ IH2(D) and S2 = D[λ]⊗Mz.

Therefore, (S1, S2) is a pair of isometries on H2(D2), and S∗
1S2 = M∗

zD[λ]⊗Mz, and S2S
∗
1 =

D[λ]M∗
z ⊗ Mz. Then, M∗

zD[λ] = λD[λ]M∗
z implies S∗

1S2 = λS2S
∗
1 . We now consider the

Hilbert space H = H2(D2)⊕H2(D2), and isometries V1 = diag(S1, S2) and V2 = diag(S2, S1)
on H. If we set U = diag(λIH2(D2), λ̄IH2(D2)), then

V ∗
1 V2 =

[
S∗
1S2 0
0 S∗

2S1

]

=

[
λS2S

∗
1 0

0 λ̄S1S
∗
2

]

=

[
λIH2(D2) 0

0 λ̄IH2(D2)

]

V2V
∗
1 ,

which implies that V ∗
1 V2 = UV2V

∗
1 . Since V1, V2 ∈ {U}′, it follows that the pair (V1, V2) is a

(reducible) U2-twisted isometry on H with U2 = {U}.
Note that for each λ ∈ T, the pairs (Mz, D[λ]) and (S1, S2), defined as above, are doubly

non-commuting isometries. This was considered and analyzed in the context of models of
doubly noncommuting isometries by de Jeu and Pinto [5]. However, the presentation of [5] is
somewhat different from ours.

We continue and extend the discussion of Hardy space over Dm, m > 1. For a Hilbert space
E , we denote H2

E(D
m) the E-valued Hardy space over Dm. Note that H2

E(D
m) is the Hilbert

space of all square summable analytic functions on Dm with coefficients in E . We simply set
H2(Dm) = H2

C
(Dm). In view of the natural identification

zkη ↔ zk1 ⊗ · · · ⊗ zkm ⊗ η ↔ zk ⊗ η (k ∈ Z
m
+ , η ∈ E),

up to unitary equivalence, we have

H2
E(D

m) = H2(D)⊗ · · · ⊗H2(D)
︸ ︷︷ ︸

m−times

⊗ E = H2(Dm)⊗ E .
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In this setting, for each fixed i = 1, . . . , m, we also have (again, up to unitary equivalence)

Mzi = (IH2(D) ⊗ · · · IH2(D) ⊗ Mz
︸︷︷︸

i−th

⊗IH2(D) ⊗ · · · ⊗ IH2(D))⊗ IE = Mzi ⊗ IE ,

where Mzif = zif for any f either in H2
E(D

m) or in H2(Dm) (whichever is the case should
be clear from the context). For simplicity, and whenever appropriate, we shall use the above
identification interchangeably. Moreover, the above tensor product representations of the
multiplication operators readily imply that (Mz1 , . . . ,Mzm) on H2

E(D
m) is doubly commuting,

that is, M∗
zi
Mzj = MzjM

∗
zi
for all i 6= j.

We need to define another important notion before we proceed.

Definition 2.1. Let j ∈ {1, . . . , m}. Given a Hilbert space E and a unitary U ∈ B(E), the
j-th diagonal operator with symbol U is the unitary operator Dj [U ] on H2

E(D
m) defined by

Dj [U ](zkη) = zk(Ukjη) (k ∈ Z
m
+ , η ∈ E).

In particular, if m = 1 and E = C, then U is given by U = λ for some λ ∈ T, and then, as
introduced earlier, D1[λ] is the diagonal operator diag(1, λ, λ2, . . .) on H2(D).

Lemma 2.2. Let E be a Hilbert space, and let U and Ũ be commuting unitaries in B(E).
Suppose i, j ∈ {1, . . . , n}. Then

(1) Dj[U ]∗ = Dj[U
∗] and Di[U ]Dj [Ũ ] = Dj [Ũ ]Di[U ].

(2) MziDj [U ] = Dj[U ]Mzi whenever i 6= j.
(3) M∗

zi
Di[U ] = (IH2(Dn) ⊗ U)Di[U ]M∗

zi
.

Proof. The first assertion follows from the definition of diagonal operators, and the commu-
tativity of U and Ũ . To prove (2), we assume that k ∈ Z

n
+ and η ∈ E . Suppose i 6= j. We

have on one hand (Dj[U ]Mzi)(z
kη) = Dj [U ](zk+eiη) = zk+ei(Ukjη), and on the other hand

(MziDj[U ])(zkη) = Mzi(z
k(Ukjη)) = zk+ei(Ukjη). Here we denote ei by the element in Zn

+

with 1 in the i-th slot and zero elsewhere. For part (3), we compute

(M∗
zi
Di[U ])(zkη) = M∗

zi
(zkUkiη) =

{

zk−ei(Ukiη) if ki 6= 0

0 if ki = 0.

On the other hand, since Di[U ](zk−eiη) = zk−ei(Uki−1η) for ki 6= 0, we have

(Di[U ]M∗
zi
)(zkη) =

{

zk−ei(Uki−1η) if ki 6= 0

0 if ki = 0,

which completes the proof of part (3). �

We now turn to more general examples of Un-twisted isometries. Let E be a Hilbert space,
and let Un = {Uij}i 6=j ⊆ B(E), where Uji := U∗

ij , 1 ≤ i < j ≤ n. Fix m ∈ {1, . . . , n}. Consider
(n−m) unitary operators {Um+1, . . . , Un} in B(E). Set M1 = Mz1 , and for each 2 ≤ i ≤ m,
define

Mi = Mzi

(

D1[Ui1]D2[Ui2] · · ·Di−1[Uii−1]
)

,
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and, for each m+ 1 ≤ j ≤ n, define

Mj =
(

D1[Uj1] · · ·Dm[Ujm]
)

(IH2(Dm) ⊗ Uj).

Then, by construction, M = (M1, . . . ,Mn) is an n-tuple of isometries on H2
E(D

m). Moreover,
M is a Un-twisted isometry, where Un = {IH2(Dm) ⊗ Uij}i 6=j. This can be proved by repeated
applications of Lemma 2.2. For instance, if 1 < i < j, then

M∗
i Mj = (IH2(Dm) ⊗ Uij)

∗MjM
∗
i ,

follows from the fact that M∗
zi
Mzj = MzjM

∗
zi
, and, notably, from part (2) of Lemma 2.2 that

M∗
zi
Di[Uji] = (IH2(Dm) ⊗ Uji)Di[Uji]M

∗
zi
. We summarize this with the following proposition:

Proposition 2.3. Let E be a Hilbert space, {Uij}i 6=j ⊆ B(E), where Uji := U∗
ij, 1 ≤ i < j ≤

n, and let {Um+1, . . . , Un} unitaries on E . Then (M1, . . . ,Mn) is a Un-twisted isometry on
H2

E(D
m), where M1 = Mz1 and

Mi =







Mzi

(

D1[Ui1]D2[Ui2] · · ·Di−1[Uii−1]
)

if 2 ≤ i ≤ m
(

D1[Ui1] · · ·Dm[Uim]
)(

IH2(Dm) ⊗ Ui

)

if m+ 1 ≤ i ≤ n,

such that M1, . . . ,Mm are shifts and Mm+1, . . . ,Mn are unitaries.

We will return to this in the context of analytic models and complete unitary invariants in
Sections 4 and 5, respectively.

3. Orthogonal decompositions

The principal goal of this section is to prove that Un-twisted isometries admit orthogonal
decomposition. We begin by fixing some notations (once again, we stress that n > 1).

(1) In = {1, . . . , n}. A = {i1, . . . , im} ⊆ In whenever A 6= ∅.
(2) If V = (V1, . . . , Vn), then VA = (Vi1 , . . . , Vim) whenever A = {i1, . . . , im} ⊆ In.
(3) V k

A = V k1
i1

· · ·V km
im

whenever k = (k1, . . . , km) ∈ Zm
+ and A = {i1, . . . , im} ⊆ In.

(4) WA =
⋂

i∈A ker V ∗
i for all non-empty A ⊆ In, W∅ := H, and |∅| := 0.

The following result essentially says that Un-twisted isometries are “twisted doubly com-
muting” (see [6, page 2671] and [5, Lemma 3.1] for the scalar case).

Lemma 3.1. Let U be a unitary on H, and let (V1, V2) be an pair of isometries on H. Suppose
V1, V2 ∈ {U}′. If V ∗

1 V2 = U∗V2V
∗
1 , then V1V2 = UV2V1.

Proof. If we denote X = V1V2 − UV2V1, then

X∗X = (V ∗
2 V

∗
1 − U∗V ∗

1 V
∗
2 )(V1V2 − UV2V1) = 2I − UV ∗

2 V
∗
1 V2V1 − U∗V ∗

1 V
∗
2 V1V2.

Using V ∗
1 V2 = U∗V2V

∗
1 , one easily verifies that UV ∗

2 V
∗
1 V2V1 = U∗V ∗

1 V
∗
2 V1V2 = I. This com-

pletes the proof that X∗X = 0 and hence V1V2 = UV2V1. �

In particular, if (V1, . . . , Vn) is a Un-twisted isometry, then ViVj = UijVjVi for all i 6= j.
Moreover, we note that the converse of the above lemma is not true [6].
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Remark 3.2. The commutativity assumption of Un = {Uij}i 6=j in the definition of Un-twisted
isometries (see Definition 1.2) is automatic in the following sense: Let {Uij}i 6=j be an

(
n

2

)
-

tuple of unitaries on H, and let (V1, . . . , Vn) be an n-tuple of isometries on H. Suppose
Vp ∈ {Ust : s 6= t}′ for all p = 1, . . . , n. Then UijUst = UstUij for all i 6= j and s 6= t. Indeed,
we first observe that V ∗

i Vj = U∗
ijVjV

∗
i and Vi, Vj ∈ {Ust : s 6= t}′ implies

(3.1) Uij = V ∗
i V

∗
j ViVj (i 6= j).

Hence we obtain UijUst = (V ∗
i V

∗
j ViVj)Ust = UstUij .

The following elementary lemmas will play an important role. Throughout these lemmas,
V = (V1, . . . , Vn) will be a Un-twisted isometry, and A ⊆ In. We begin with reducibility of
wandering subspaces.

Lemma 3.3. WA reduces Vj for all j ∈ Ac.

Proof. Suppose η ∈ WA, that is, V ∗
i η = 0 for all i ∈ A. Suppose j /∈ A. Since V ∗

i (Vjη) =
U∗
ijVjV

∗
i η = 0, we have VjWA ⊆ ker V ∗

i for all i ∈ A. Thus VjWA ⊆ WA. Also observe that
by Lemma 3.1 we have V ∗

i V
∗
j = UijV

∗
j V

∗
i , and hence, as before, V ∗

j WA ⊆ WA. �

In particular, Vj|WA
is an isometry on WA. It is now natural to examine ker(Vj|WA

)∗.
Evidently, ker(Vj|WA

)∗ = WA ⊖ VjWA.

Lemma 3.4. WA ⊖ VjWA = WA∪{j} for all j ∈ Ac.

Proof. The goal is to show that WA ⊖ VjWA = WA ∩Wj . Indeed, this follows from Lemma
3.3: WA reduces Vj , and hence Vj = diag(Vj|WA

, Vj|W⊥
A
) on H = WA ⊕W⊥

A . �

We now turn to the reducibility property of wandering subspaces of corresponding unitary
operators.

Lemma 3.5. WA reduces Uij, and UijWA = WA for all i 6= j.

Proof. The first assertion simply follows from (3.1) and Lemma 3.3. The latter part is trivial,
as Uij |WA

is a unitary. �

Now we are ready to prove the orthogonal decomposition theorem.

Theorem 3.6. Let V = (V1, . . . , Vn) be a Un-twisted isometry on H. Then V admits an
orthogonal decomposition H =

⊕

A⊆In

HA, where

HA =
⊕

k∈Z
|A|
+

V k
A

( ⋂

l∈Z
n−|A|
+

V l
In\AWA

)

(A ⊆ In).

Proof. We will prove this by induction. Suppose (V1, . . . , Vn) is a Un-twisted isometries on
H. Set V (m) = (V1, . . . , Vm), 2 ≤ m ≤ n. We shall first prove our assertion when m = 2.
Let us denote Wi = W{i}. Using Theorem 1.1 (also (1.2)) applied to V1 on H we find

H = (⊕k1∈Z+V
k1
1 W1) ⊕ (∩k1∈Z+V

k1
1 H). Note that, by Lemma 3.3, W1 reduces V2. Then, by

applying Theorem 1.1 to the isometry V2|W1 , we obtain the orthogonal decomposition W1 =
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(⊕k2∈Z+V
k2
2 (W1⊖V2W1))⊕∩k2∈Z+(V

k2
2 W1). Now by Lemma 3.4 we have W1⊖V2W1 = W{1,2},

and hence

(3.2) H =
[ ⊕

k1,k2∈Z+

V k1
1 V k2

2 W{1,2}

]⊕[ ⊕

k1∈Z+

V k1
1 (

⋂

k2∈Z+

V k2
2 W1)

]⊕[ ⋂

k1∈Z+

V k1
1 H

]

.

Note that the restrictions of V1 and V2 to the first and the second summands are shifts,
and shift and unitary, respectively, and the restriction of V1 to the third summand is a
unitary. Now, applying Theorem 1.1 (and (1.2)) to V2 on H, we obtainH = (⊕k2∈Z+V

k2
2 W2)⊕

(∩k2∈Z+V
k2
2 H). By Lemma 3.1 we have V k1

1 V k2
2 = Uk1+k2

12 V k2
2 V k1

1 for all k1, k2 > 0. Lemma

3.5 then implies that V k1
1 V k2

2 W2 = V k2
2 V k1

1 W2 for all k1, k2 > 0. This implies

V k1
1 H = (

⊕

k2∈Z+

V k1
1 V k2

2 W2)
⊕

(
⋂

k2∈Z+

V k1
1 V k2

2 H) = (
⊕

k2∈Z+

V k2
2 V k1

1 W2)
⊕

(
⋂

k2∈Z+

V k1
1 V k2

2 H),

for all k1 ∈ Z+, from which it follows that
⋂

k1∈Z+

V k1
1 H = (

⊕

k2∈Z+

V k2
2 (

⋂

k1∈Z+

V k1
1 W2))

⊕

(
⋂

k1,k2∈Z+

V k1
1 V k2

2 H).

We can then rewrite (3.2) as H = ⊕A⊆I2HA. This yields an orthogonal decomposition of
the pair V (2). Now suppose that V (m), m < n, admits the orthogonal decomposition H =
⊕A⊆ImHA, whereHA = ⊕

ka∈Z
|A|
+
V ka
A (∩

kc∈Z
m−|A|
+

V kc
Im\AWA). Recall that by convention, W∅ = H

and |∅| = 0. Since, by Lemma 3.3, Vm+1 reduces WA, by applying Theorem 1.1 to the isometry
Vm+1|WA

, and noting, by virtue of Lemma 3.4, that WA ∩ Wm+1 = WA∪{m+1}, we obtain

WA =
(
⊕

jm+1∈Z+
V

jm+1

m+1 WA∪{m+1}

)
⊕

(
⋂

jm+1∈Z+
V

jm+1

m+1 WA

)

. This implies that

HA =
⊕

ka∈Z
|A|
+

V ka
A

[ ⋂

kc∈Z
m−|A|
+

V kc
Im\A

( ⊕

jm+1∈Z+

V
jm+1

m+1 WA∪{m+1}

⊕ ⋂

jm+1∈Z+

V
jm+1

m+1 WA

)]

=
⊕

ka∈Z
|A|
+

V ka
A

[ ⋂

kc∈Z
m−|A|
+

V kc
Im\A

( ⊕

jm+1∈Z+

V
jm+1

m+1 WA∪{m+1}

)

⊕( ⋂

kc∈Z
m−|A|
+

jm+1∈Z+

V kc
Im\AV

jm+1

m+1 WA

)]

.

By Lemma 3.1, for each non-zero ka ∈ Z
|A|
+ and kc ∈ Z

m−|A|
+ , there exists a monomial Pka,kc ∈

C[z1, . . . , z(n2)
] such that V ka

A V kc
Im\A = Pka,kc(U)V kc

Im\AV
ka
A (evidently, Pka,kc(U) is a monomial

in {Uij}i 6=j). By Lemma 3.5, V ka
A V kc

Im\AWA∪{m+1} = V kc
Im\AV

ka
A WA∪{m+1} for all ka ∈ Z

|A|
+ and

kc ∈ Z
m−|A|
+ , and hence

V kc
Im\A

( ⊕

jm+1∈Z+

V
jm+1

m+1 WA∪{m+1}

)

=
⊕

jm+1∈Z+

V
jm+1

m+1

(

V kc
Im\AWA∪{m+1}

)

,
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for all kc ∈ Z
m−|A|
+ . Therefore

HA =
[ ⊕

ka∈Z
|A|
+

jm+1∈Z+

V ka
A V

jm+1

m+1

( ⋂

kc∈Z
m−|A|
+

V kc
Im\AWA∪{m+1}

)]

⊕[ ⊕

ka∈Z
|A|
+

V ka
A

( ⋂

kc∈Z
m−|A|
+

jm+1∈Z+

V kc
Im\AV

jm+1

m+1 WA

)]

,

and hence H = ⊕A⊆Im+1HA, that is, V (m + 1) admits the orthogonal decomposition. This
completes the proof. �

We will outline an alternate viewpoint of the above proof at the end of Section 4.
In the remainder of this section, we discuss the uniqueness of the above orthogonal de-

composition. Let V = (V1, . . . , Vn) be a Un-twisted isometry on H, A ⊆ In, and let a closed
subspace S ⊆ H reduces V . Suppose Vi|S , i ∈ A, is a shift, and Vj|S , j ∈ Ac, is a unitary.

Set Ṽi = Vi|S , i ∈ In. Now (3.1) implies that S reduces Uij, i 6= j. Then Ũji = Ũ∗
ij for all

1 ≤ i < j ≤ n, where Ũij = Uij |S , i 6= j. Evidently, Ṽ := (Ṽ1, . . . , Ṽn) on S is a Ũn-twisted

isometry where Ũn = {Ũij}i<j. Applying Theorem 3.6 to Ṽ , we obtain the orthogonal decom-

position of Ṽ as S = ⊕B⊆InHB. We claim that HB = {0} for all B 6= A, B ⊆ In. To see

this, we first write W̃B = ∩i∈B ker Ṽ ∗
i , B ⊆ In. Let i ∈ B \ A. Then Ṽi = Vi|S is a unitary,

and hence W̃B = {0}, which implies HB = {0}. Now assume that i ∈ A \B. Then Vi|HB
is a

unitary, where on the other hand, i ∈ A implies that Ṽi is a shift, and hence Vi|HB
is a shift.

This contradiction again shows that HB = {0}. Thus

S =
⊕

k∈Z
|A|
+

Ṽ k
A

( ⋂

l∈Z
n−|A|
+

Ṽ l
In\AW̃A

)

.

Again, by convention, we define W̃∅ = S, W∅ = H, and |∅| = 0. Now, on the other hand,

we have W̃A ⊆ WA. This simply follows from the fact that S reduces the tuple V , and
ker(Vi|S)

∗ = ker V ∗
i |S ⊆ ker V ∗

i for all i ∈ A. Lemma 3.3 then implies that W̃A reduces Vi,
i /∈ A, and hence ∩

l∈Z
n−|A|
+

Ṽ l
In\A

W̃A ⊆ ∩
l∈Z

n−|A|
+

V l
In\A

WA. Then

S =
⊕

k∈Z
|A|
+

Ṽ k
A

( ⋂

l∈Z
n−|A|
+

Ṽ l
In\AW̃A

)

⊆
⊕

k∈Z
|A|
+

V k
A

( ⋂

l∈Z
n−|A|
+

V l
In\AWA

)

= HA.

This proves the nontrivial implication of the following proposition.

Proposition 3.7. Let (V1, . . . , Vn) be a Un-twisted isometry on H, S be a closed subspace of
H, and let A ⊆ In. Let HA :=

⊕

k∈Z
|A|
+

V k
A(

⋂

l∈Z
n−|A|
+

V l
In\A

WA), and suppose S reduces V .

Then the following are equivalent.
(i) Vi|S is a shift and Vj|S is a unitary for each i ∈ A and j ∈ Ac, respectively.
(ii) S ⊆ HA.
(iii) PSPHA

= PS .
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Proof. (ii) ⇔ (iii) is a general fact. (i) ⇒ (ii) follows from the preceding computation, where
(ii) ⇒ (i) is straightforward. �

One may compare the above statement with the second part of [5, Theorem 3.4]. The
above proposition also yields the uniqueness part of the orthogonal decomposition.

Corollary 3.8. Let V = (V1, . . . , Vn) be an Un-twisted isometry on H, and set

HA :=
⊕

k∈Z
|A|
+

V k
A(

⋂

l∈Z
n−|A|
+

V l
In\AWA) (A ⊆ In).

Let SA, A ⊆ In, be V -reducing closed subspace of H. Let H =
⊕

A⊆In
SA, and suppose Vi|SA

is a shift and Vj|SA
is a unitary for each i ∈ A and j ∈ Ac, respectively. Then SA = HA for

all A ⊆ In.

Proof. This immediately follows from (i) ⇒ (ii) of Proposition 3.7. �

4. Analytic models and wandering data

In this section, we describe models of Un-twisted isometries. Actually, we prove that the
examples in Section 2 are the basic “building blocks” of Un-twisted isometries.

Recall that one of the most important components of the classical von Neumann-Wold
decomposition theorem is the separation of the shift part (if any) from a given isometry. One
of the main points, therefore, is to find a canonical method of separating shifts (if any) from
tuples of isometries. An additional benefit also arises here since a shift operator can be realized
as the multiplication operator by the coordinate function z on some (canonical) vector-valued
Hardy space over the disc D. This is also the basic theme in all other related orthogonal
decompositions of (tuples of) operators. For instance, suppose V ∈ B(H) is an isometry. By
(1.2), the orthogonal decomposition of the 1-tuple V = (V ) is given by H = H{1}⊕H∅, where
H{1} =

⊕∞
j=0 V

jW and H∅ =
⋂∞

j=0 V
jH, and W = ker V ∗. Define the canonical unitary

ΠV : H{1} → H2
W(D) by ΠV (V

mη) = zmη, m ∈ Z+, η ∈ W. Then

(4.1) (ΠV ⊕ IH∅
)(V |H{1}

⊕ V |H∅
) = (Mz ⊕ V |H∅

)(ΠV ⊕ IH∅
).

It then follows that V on H is unitarily equivalent to Mz ⊕ V |H∅
on H2

W(D) ⊕H∅. In other
words, the shift part of V admits an analytic representation in terms of the multiplication
operator Mz on the W-valued Hardy space over D. It is also worthwhile to recall that dimW
is the only unitary invariant of the shift Mz on H2

W(D).
With the above motivation in mind, we now return to Un-twisted isometries. First of all,

following [5, Definition 3.7], we introduce two core concepts:

Definition 4.1. For a Un-twisted isometry V = (V1, . . . , Vn) on a Hilbert space H, and for
each A ⊆ In, the A-wandering subspace of V is defined by

DA(V ) =
⋂

l∈Z
n−|A|
+

V l
In\AWA.
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Moreover, if Ac = {q1, . . . , qn−m}, then the (n−m+ 1)-tuple

wdV (A) =
(
1DA(V ), Vq1|DA(V ), . . . , Vqn−m

|DA(V )

)
,

on DA(V ) is called the A-wandering data of V .

We often denote DA(V ) as DA if V is clear from the context. Note that the following lemma
ensures that the A-wandering data wdV (A) is a well-defined (n−m+ 1)-tuple on DA.

Lemma 4.2. DA reduces Vj and Ust, and UstDA = DA for all j ∈ Ac and s 6= t.

Proof. Suppose A = ∅. Then WA = H, by convention, and hence DA = HA, by Theorem 3.6,
which reduces Vj for all j ∈ In. If A = In, then DA = WIn , and the statement is nothing but
Lemma 3.3 and Lemma 3.5. Suppose A = {p1, . . . , pm} for some 1 ≤ m < n, and suppose
j ∈ Ac. Observe that

(4.2) VpV
i
q = U i

pqV
i
q Vp,

for all p 6= q and i ∈ Z+. This essentially follows from Lemma 3.1 and the fact that Vp, Vq ∈

{Upq}
′. If Ac = {q1, . . . , qn−m} then VjV

l
In\A

WA = V l
In\A

Vj(U
l1
jq1

· · ·U ln−m

jqn−m
)WA for all l ∈ Z

n−m
+ .

By Lemma 3.5 and then by Lemma 3.3, it follows that

VjV
l
In\AWA = V l

In\AVjWA ⊆ V l
In\AWA,

and hence VjDA ⊆ DA. Similarly, we have V ∗
j DA ⊆ DA, and hence DA reduces Vj. The

remaining part simply follows from the first part and (3.1). �

Let V = (V1, . . . , Vn) be a Un-twisted isometry on a Hilbert space H. Theorem 3.6 then
implies that H =

⊕

A⊆In
HA, where HA =

⊕

k∈Z
|A|
+

V k
ADA, and Vi|HA

is a shift and Vj|HA
is

a unitary for each i ∈ A and j ∈ Ac, respectively, and A ⊆ In. In view of the discussion
preceding Definition 4.1, it is natural to investigate the possibility of carrying over the analytic
construction of shifts to the shift part of V restricted to HA, A ⊆ In. Of course, the restriction
of V to H∅ =

⋂

k∈Zn
+
V kH is a unitary tuple. We now examine the restriction of V to HA,

A 6= ∅.
Let A = {p1, . . . , pm} ⊆ In for some m ≥ 1, and suppose HA 6= {0} (or, equivalently,

DA 6= {0}). In view of the orthogonal decomposition HA =
⊕

k∈Zm
+
V k
ADA and (4.1), we have

the canonical unitary πA : HA → H2
DA

(Dm), where (note that m = |A| > 0)

(4.3) πA(V
k
Aη) = zkη (k ∈ Z

m
+ , η ∈ DA).

Suppose k ∈ Zm
+ and η ∈ DA. We then get

(πAVp1π
∗
A)(z

kη) = πA(Vp1V
k
Aη) = πA(V

k1+1
p1

V k2
p2

· · ·V km
pm

η) = z1(z
kη),

that is, πAVp1 = Mz1πA. Next, assume that 1 < i ≤ m. By (4.2), we know that

VpiV
k
A = Vpi(V

k1
p1

· · ·V km
pm

) = V k1
p1

· · ·V ki−1
pi−1

V ki+1
pi

V ki+1
pi+1

· · ·V km
pm

(Uk1
pip1

· · ·Uki−1
pipi−1

),

and Uk1
pip1

· · ·U
ki−1
pipi−1η ∈ DA, by Lemma 4.2. Hence

(πAVpiπ
∗
A)(z

kη) = πA(VpiV
k
Aη) = zi(z

k(Uk1
pip1

· · ·Uki−1
pipi−1

η)),
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which implies

πAVpiπ
∗
A = Mzi

(

D1[Upip1] · · ·Di−1[Upi,pi−1
]
)

.

Now suppose that qj ∈ Ac = {q1, . . . , qn−m}. Then (4.2) and (4.3) implies

(πAVqjπ
∗
A)(z

kη) = πAVqjV
k
Aη = πAV

k
A (U

k1
qjp1

· · ·Ukm
qjpm

Vqj |DA
η) = zk(Uk1

qjp1
· · ·Ukm

qjpm
Vqj |DA

η),

as, by Lemma 3.5, Uk1
qjp1

· · ·Ukm
qjpm

Vj |DA
η = Uk1

qjp1
· · ·Ukm

qjpm
Vjη ∈ DA. Hence

πAVqjπ
∗
A = (D1[Uqjp1] · · ·Dm[Uqjpm])(IH2(Dm) ⊗ Vqj |DA

) (j ∈ Ac).

Finally, we consider the n-tuple MA = (MA,1, . . . ,MA,n) on H2
DA

(Dm) formed by the m oper-

ators {πAVpiπ
∗
A}

m
i=1 and (n−m) operators {πAVqjπ

∗
A}

n−m
j=1 , where

(4.4)

MA,t =







Mz1 if t = p1

Mzi

(

D1[Upip1 ] · · ·Di−1[Upi,pi−1
]
)

if t = pi for some 1 < i ≤ m
(

D1[Uqjp1] · · ·Dm[Uqjpm]
)(

IH2(Dm) ⊗ Vqj |DA

)

if t = qj for some 1 ≤ j ≤ n−m,

and t ∈ {1, . . . , n}. Now the representation of A-wandering data of MA, denoted by wdMA
(A)

(see Definition 4.1), is essentially routine: Since kerM∗
A,pi

= πA(ker V
∗
pi
) for all i = 1, . . . , m,

it follows that
⋂

pi∈A
kerM∗

A,pi
= πA(WA). For each l ∈ Z

n−|A|
+ , we have

M l
A,In\A

( ⋂

pi∈A

kerM∗
A,pi

)

= (πAV
l
In\Aπ

∗
A)(πAWA) = πAV

l
In\AWA.

This implies that DA(MA) = πA(DA), and thus, by the definition πA in (4.3), we get
DA(MA) = DA. Note that we are identifying DA with the set of all DA-valued constant func-
tions in H2

DA
(Dm). Moreover, for each qj ∈ Ac and f ∈ DA, since π∗

Af = f and Vqjf ∈ DA, it
follows that

MA,qjf = πAVqjπ
∗
Af = πAVqjf = Vqjf,

and hence MA,qj |DA
= Vqj |DA

. We summarize this observation as a proposition.

Proposition 4.3. Let (V1, . . . , Vn) be a Un-twisted isometry on H, and let A ⊆ In. If DA 6=
{0}, then the tuple V |HA

is unitarily equivalent to MA = (MA,1, . . . ,MA,n) on H2
DA

(D|A|),
where MA,i’s are defined as in (4.4). Moreover, if Ac = {q1, . . . , qn−m}, then

wdMA
(A) = (IDA

, Vq1|DA
, . . . , Vqn−m

|DA
).

We call MA the model operator corresponding to A ⊆ In (or simply the model oper-
ator). Note that the model operator MA on H2

DA
(D|A|) is a Un-twisted isometry, where

Un = {πAUijπ
∗
A}i 6=j.

In particular, if A = {1, . . . , m} for some m ∈ {1, . . . , n}, then V |HA
on HA is unitarily

equivalent to MA = (M1, . . . ,Mn) on H2
DA

(Dm), where M1 = Mz1 and

Mi = Mzi

(

D1[Ui1]D2[Ui2] · · ·Di−1[Uii−1]
)

,
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for all i = 2, . . . , m, and

Mj =
(

D1[Uj1] · · ·Dm[Ujm]
)

(IH2(Dm) ⊗ Vj |DA
).

for all j = m+ 1, . . . , n, and wdMA
(A) = (IDA

, Vm+1|DA
, . . . , Vn|DA

).
Now we turn to analytic models of Un-twisted isometries. Let V = (V1, . . . , Vn) be an

Un-twisted isometry, and suppose H =
⊕

A⊆In
HA. To obtain the model of V , we will apply

the above proposition for each A ⊆ In and patch all the pieces together. Recall that, by
convention, H2

D∅
(D|∅|) = H∅, and M∅,t = Vt|H∅

for all t = 1, . . . , n. Proposition 4.3 now tells us

that the n-tuples V |HA
and MA are unitarily equivalent via the unitary πA : HA → H2

DA
(D|A|)

as defined in (4.3), where DA is the A-wandering subspace and A is a non-empty subset of
In. Since Vi =

⊕

A⊆In
Vi|HA

for all i = 1, . . . , n, it follows that

V = (V1, . . . , Vn) =
⊕

A⊆In

(V1|HA
, . . . , Vn|HA

).

We set MV,i =
⊕

A⊆In
MA,i ∈ B(

⊕

A⊆In
H2

DA
(D|A|)) for all i = 1, . . . , n, and define

MV = (MV,1, . . . ,MV,n).

Then the unitary ΠV :=
⊕

A⊆In
πA satisfies ΠV Vi = MV,iΠV for all i = 1, . . . , n. Thus, we

have proved:

Theorem 4.4. Let (V1, . . . , Vn) be a Un-twisted isometry on H. Then (V1, . . . , Vn) is unitarily
equivalent to (MV,1, . . . ,MV,n) on

⊕

A⊆In
H2

DA
(D|A|).

In the case of doubly noncommuting isometries (that is, in the case Uij = zijIH), this was
observed by de Jeu and Pinto [5, Theorem 4.6].

Note that the proof of the above theorem is a simple consequence of Proposition 4.3, where
the proof of the latter uses Theorem 3.6. In the following, we present a second and somewhat
more direct proof of Proposition 4.3. The techniques of this proof may be of independent
interest.
We begin with the case of single isometry. Suppose V ∈ B(H) is a shift, and suppose
WV = ker V ∗. Then we have the canonical unitary ΠV : H → H2(D) ⊗ WV such that
ΠV V = (Mz ⊗ IWV

)ΠV (see the discussion preceding Definition 4.1). Observe that

(4.5) Π∗
V (z

j ⊗ η) = V jη (j ∈ Z+, η ∈ WV ).

Now, let 1 ≤ m ≤ n, and let A = {p1, . . . , pm} ⊆ In. Let V = (V1, . . . , Vn) be a Un-twisted
isometry. Suppose Vi is a shift, and Vj is a unitary for each i ∈ A and j ∈ Ac, respectively.
Set Π1 := ΠVp1

. By Lemma 3.3, we know that W{p1} reduces Vp2. Therefore, Vp2|W{p1}
is a

shift in B(W{p1}). Lemma 3.4 tells us that ker(Vp2|W{p1}
)∗ = W{p1,p2}. Then the canonical

unitary

Π2 := ΠVp2 |W{p1}
: W{p1} → H2(D)⊗W{p1,p2},

corresponding to Vp2 |W{p1}
yields unitary IH2(D) ⊗ Π2 : H2

W{p1}
(D) → H2

W{p1,p2}
(D2). Here we

have once again used the identification H2
W{p1,p2}

(D2) = H2(D2)⊗W{p1,p2}. Continuing exactly
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in the same way, we find

0 → H
Π1−→ H2

W{p1}
(D)

I
H2(D)⊗Π2

−−−−−−→ H2
W{p1,p2}

(D2)
I
H2(D2)⊗Π3

−−−−−−−→

· · ·
I
H2(Dm−1)⊗Πm

−−−−−−−−−→ H2
WA

(Dm) → 0.

This gives us a unitary Π : H → H2
WA

(Dm) defined by

Π := (IH2(Dm−1) ⊗Πm)(IH2(Dm−2) ⊗Πm−1) · · · (IH2(D) ⊗ Π2)Π1.

Now, for each i = 2, . . . , m, use (4.5) to see that

(IH2(Di−1) ⊗Πi)(z
k1
1 · · · z

ki−1

i−1 ⊗ V ki
i |W{p1,...,pi−1}

η) = zk11 · · · z
ki−1

i−1 zkii η,

for all k = (k1, . . . , ki−1) ∈ Z
i−1
+ , and η ∈ W{p1,...,pi−1}. Applying the above repeatedly, we find

that Π(V k
Aη) = zkη, k ∈ Z

m
+ , η ∈ WA, which was obtained in (4.3). The remainder of the

proof of Proposition 4.3 now proceeds similarly.
We should mention that the above techniques can be readily adapted to prove (at the

expense of a more cumbersome computation) Theorem 4.4 in its full generality.

5. Invariants

The purpose of this section is to prove that wandering data are complete unitary invariants
for Un-twisted isometries. We start with a simple observation (also see [5, Lemma 5.1] for
the case of doubly non-commuting isometries). In what follows, we let H and H̃ be Hilbert

spaces, and Un = {Uij}i 6=j ⊆ B(H) and Ũn = {Ũij}i 6=j ⊆ B(H̃).

Lemma 5.1. Suppose V = (V1, . . . , Vn) and Ṽ = (Ṽ1, . . . , Ṽn) be Un and Ũn-twisted isometries

on H and H̃, respectively, and let Π : H → H̃ be a unitary operator. If ΠVi = ṼiΠ for all
i = 1, . . . , n, then ΠUst = ŨstΠ for all s 6= t.

Proof. The proof follows at once from the fact that Ust = V ∗
s V

∗
t VsVt for all s 6= t (see (3.1)). �

In particular, if V ∼= Ṽ , then the
(
n

2

)
-tuples Un = {Uij}i 6=j and Ũn = {Ũij}i 6=j are unitarily

equivalent under the same unitary map.
Let V = (V1, . . . , Vn) and Ṽ = (Ṽ1, . . . , Ṽn) be Un and Ũn-twisted isometries, respectively.

For A ⊆ In, we say that wdV (A) is twisted unitarily equivalent to wdṼ (A) (which we will
denote by wdV (A) ∼=U wdṼ (A)) if the (n− |A|+

(
n

2

)
+1)-tuples wdV (A)∪ {Uij |DA(V )}i 6=j and

wdṼ (A) ∪ {Ũij|DA(Ṽ )}i 6=j are unitarily equivalent.

We are now all set to prove that wdV (A) ∪ {Uij |DA(V )}i 6=j is a complete set of unitary
invariants of Un-twisted isometry V .

Theorem 5.2. Suppose V = (V1, . . . , Vn) and Ṽ = (Ṽ1, . . . , Ṽn) be Un and Ũn-twisted isome-
tries on H and H̃, respectively. Then the following statements are equivalent:

(1) V ∼= Ṽ .
(2) wdV (A) ∼=U wdṼ (A) for all A ⊆ In.



16 NARAYAN RAKSHIT, JAYDEB SARKAR, AND MANSI SURYAWANSHI

Proof. (1) ⇒ (2) Let π : H → H̃ be a unitary, and let πVi = Ṽiπ for all i = 1, . . . , n. Fix
A ⊆ In. Then (see the discussion preceding Proposition 4.3) πWA = W̃A, where W̃A =
⋂

i∈A ker Ṽ ∗
i . Recall that DA(V ) and DA(Ṽ ) denotes the A-wandering subspaces of V and Ṽ ,

respectively. Then

πDA(V ) =
⋂

l∈Z
n−|A|
+

πV l
In\Aπ

∗(πWA) =
⋂

l∈Z
n−|A|
+

Ṽ l
In\AW̃A = DA(Ṽ ),

and hence, π|DA(V ) : DA(V ) → DA(Ṽ ) is a unitary. Now fix j ∈ Ac, l ∈ Z
n−|A|
+ , and f ∈ WA.

Since, by Lemma 4.2, DA(V ) reduces Vj, it follows that

(π|DA(V )Vj)V
l
In\Af = (Ṽjπ)V

l
In\Af = (Ṽjπ|DA(V ))V

l
In\Af,

as V l
In\A

f ∈ DA(V ). Therefore, π|DA(V )Vj|DA(V ) = Ṽj|DA(V )π|DA(V ) for all j ∈ Ac. Finally,

π|DA(V )Uij |DA(V ) = Ũij |DA(V )π|DA(V ) follows from the fact that πUij = Ũijπ, i 6= j. This proves
that (1) ⇒ (2).

To prove (2) ⇒ (1), we first consider orthogonal decompositions H =
⊕

A⊆In
HA and H̃ =

⊕

A⊆In
H̃A. Suppose A = {p1, . . . , pm} ⊆ In. By assumption, there exists a unitary τA :

DA(V ) → DA(Ṽ ) such that τAVj|DA(V ) = Ṽj|DA(Ṽ )τA and τAUst|DA(V ) = Ũst|DA(Ṽ )τA for all

j ∈ Ac and s 6= t. We also know that HA =
⊕

k∈Z
|A|
+

V k
ADA(V ) and H̃A =

⊕

k∈Z
|A|
+

Ṽ k
ADA(Ṽ )

(see Theorem 3.6). Then the map πA(V
k
Aη) = Ṽ k

AτAη, for all k ∈ Z
|A|
+ and η ∈ DA(V ),

defines a unitary πA : HA → H̃A. Let k ∈ Z
|A|
+ and η ∈ DA(V ). For each pi ∈ A, we have

(πAVpi|HA
)(V k

Aη) = πAVpiV
k
Aη, and hence

(πAVpi|HA
)(V k

Aη) = πA(V
k+ei
A (Uk1

pip1
· · ·Uki−1

pipi−1
η)) = Ṽ k+ei

A (τAU
k1
pip1

· · ·Uki−1
pipi−1

η).

Since τAU
k1
pip1

· · ·U
ki−1
pipi−1 |DA(V ) = Ũk1

pip1
· · · Ũ

ki−1
pipi−1τA, reversing the roles of Vi’s and Ṽi’s in

the above equality, we obtain (πAVpi|HA
)(V k

Aη) = (Ṽpi|H̃A
πA)(V

k
Aη), and hence πAVpi|HA

=

Ṽpi|H̃A
πA for all pi ∈ A. The remaining equality πAVi|HA

= Ṽi|H̃A
πA for all i ∈ Ac is similar.

Now we consider the unitary π := ⊕A⊆InπA :
⊕

A⊆In
HA = H −→

⊕

A⊆In
H̃A = H̃. Since

Vj = ⊕A⊆InVj|HA
and Ṽj = ⊕A⊆In Ṽj|H̃A

, by the previous identity, we have πVj = Ṽjπ for all

j ∈ In. Finally, since Uij = V ∗
i V

∗
j ViVj and Ũij = Ṽ ∗

i Ṽ
∗
j ṼiṼj, it follows that

πUij = (⊕A⊆InπA)(⊕A⊆InUij |HA
) = (⊕A⊆InŨij |H̃A

)(⊕A⊆InπA) = Ũijπ,

and completes the proof of the theorem. �

6. Nuclear C∗-algebras

Our object in this section is to show that the universal C∗-algebra generated by a Un-twisted
isometry, n ≥ 2, is nuclear.

We begin by recalling the definition of a universal C∗-algebra (cf. [14, page 885]). Let
G = {gi : i ∈ Λ} be a set of generators and R be a set of relations. A unital C∗-algebra A is
said to be a universal C∗-algebra generated by the elements in G and satisfying the relation R
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if it satisfies the following property: If Ã is a unital C∗-algebra generated by G̃ = {g̃i : i ∈ Λ}
that satisfies the same relation set R, then there exists a unique ∗-epimorphism π : A → Ã
such that π(gi) = g̃i for all i ∈ Λ.

Given C∗-algebras A and B, we denote by A⊗B the algebraic tensor product of A and B.
A norm ‖ · ‖α on A ⊗ B is said to be a C∗-norm if ‖xy‖α ≤ ‖x‖α ‖y‖α and ‖x∗x‖α = ‖x‖2α
holds for all x and y in A⊗ B.

The minimal tensor norm ‖ · ‖min and the maximal tensor norm ‖ · ‖max are the extreme
examples of C∗-norms: If ‖ · ‖α is a C∗-norm on the algebraic tensor product A⊗ B, then

‖x‖min ≤ ‖x‖α ≤ ‖x‖max (x ∈ A⊗ B).

Finally, we recall that a C∗-algebra A is called nuclear [2, page 184] if for each C∗-algebra B
there is a unique C∗-norm on A⊗ B. It is well known that a C∗-algebra A is nuclear if and
only if ‖x‖min = ‖x‖max for all x ∈ A⊗B and all C∗-algebras B.

We now return to Un-twisted isometries. We denote by Tn, the universal C
∗-algebra gener-

ated by the set {Vi, Uij : 1 ≤ i 6= j ≤ n} consisting of n isometries {Vi : 1 ≤ i ≤ n} and
(
n

2

)

unitaries {Uij}1≤i 6=j≤n satisfying U∗
ij = Uji and the relations 1.1.

We wish to point out that Proskurin [10] and Weber [15] proved that the universal C∗-
algebra generated by a doubly non-commuting pair of isometries (that is, in the case of
Uij = zijIH, i 6= j) is nuclear. The main tool used in [10, 15] is a result of Rosenberg
[11, Theorem 3], which determines amenability of C∗-algebras generated by amenable C∗-
subalgebras (recall that all nuclear C∗-algebras are amenable [4]):

Theorem 6.1 (Rosenberg). Let A be a unital C∗-algebra generated by a nuclear C∗-subalgebra
B containing the unit of A and an isometry s ∈ A satisfying the condition sBs∗ ⊆ B. Then
A is nuclear.

We are now ready to prove that Tn is nuclear. Here also, the above result will play a key
role.

Theorem 6.2. Tn is nuclear for n ≥ 2.

Proof. We will prove this by induction on n. Suppose V1 and V2 are isometries on H, U ∈
{V1, V2}

′ a unitary, and assume that V ∗
1 V2 = U∗V2V

∗
1 . Denote by P, the C∗-algebra generated

by V k1
1 V k2

2 V ∗k2
2 V ∗k1

1 , k1, k2 ∈ Z+, that is

P = C∗({V k1
1 V k2

2 V ∗k2
2 V ∗k1

1 : k1, k2 ∈ Z+}).

We claim that P is a commutative C∗-subalgebra of T2. To show this, for each m ∈ Z+, we
set

Pi(m) = V m
i V ∗m

i (i = 1, 2).

Clearly, P1(m) and P2(m) are orthogonal projections for allm ∈ Z+. By repeated applications
of V ∗

1 V2 = U∗V2V
∗
1 and V1V2 = UV2V1, we obtain

V k1
1 V k2

2 V ∗k2
2 V ∗k1

1 = (V k1
1 V ∗k1

1 )(V k2
2 V ∗k2

2 ) = P1(k1)P2(k2),
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for all k1, k2 ∈ Z+. From here it follows that P = C∗({P1(k1)P2(k2) : k1, k2 ∈ Z+}). Now
repeat a version of the same argument to see that

P1(s)P2(t) = P2(t)P1(s) (s, t ∈ Z+),

from which the above claim becomes obvious. Since commutative C∗-algebras are nuclear, it
follows, in particular, that P is nuclear. Moreover, it is easy to see that V1PV ∗

1 ⊆ P, and
hence, Theorem 6.1 implies that B1 is nuclear, where

B1 := C∗(P, V1),

the C∗-algebra generated by P and V1. Clearly, UB1U
∗ = B1, and hence, applying Theorem

6.1 again to B1 with the unitary U , we find that

B2 := C∗(B1, U),

is nuclear. Using V ∗
1 V2 = U∗V2V

∗
1 again, we obtain that V2B2V

∗
2 ⊆ B2. Finally, since T2 =

C∗(B2, V2), by Theorem 6.1 again, T2 is nuclear.
Now suppose the statement is true for n = m(> 2). Since Tm is nuclear, and

Ui,m+1TmU
∗
i,m+1 = Tm,

for all i = 1, . . . , m, applying Theorem 6.1 repeatedly (m times), it follows that

Bm+1 = C∗({Tm, Ui,m+1 : i = 1, . . . , m}),

is nuclear. Since Tm+1 = C∗(Bm+1, Vm+1), applying Theorem 6.1 one more time to Bm+1

and to the isometry Vm+1, we infer that Tm+1 is nuclear. This completes the proof of the
theorem. �

The following observation, in particular, also, says that the C∗-algebra generated by a
U2-twisted isometry is not simple (see [2, Section II.5.4] on simple C∗-algebras).

Remark 6.3. Let K be the universal C∗-algebra of compact operators on a separable infinite
dimensional Hilbert space generated by elements Eij , where i, j ∈ N0 satisfying the relations
EijEkl = δjkEil and E∗

ij = Eji for all i, j, k, l ∈ Z+. Let (U, V ) be a pair of isometries acting
on H with U∗V = W ∗V U where W is a unitary. Consider the ideal 〈(1 − UU∗)(1 − V V ∗)〉
generated by (1− UU∗)(1− V V ∗) in C∗(U, V ). For p, q, r, s ∈ Z+, define

epq,sr := UpV q(1− UU∗)(1− V V ∗)(V ∗)r(U∗)s.

It is easy to check that,

e∗pq,sr = esr,pq and epq,sreij,lk = δs,iδr,jepq,lk.

for all a, b, c, d, i, j, k, l ∈ Z+, that is, {epq,sr}p,q,r,s∈Z+ is a self-adjoint system of matrix units.
Using the universal property of K and the fact that K is simple, we conclude that K is
isomorphic to the subalgebra of 〈(1−UU∗)(1−V V ∗)〉 spanned by {epq,sr}p,q,r,s∈Z+. Therefore
the proper ideal 〈(1− UU∗)(1− V V ∗)〉 in C∗(U, V ) contains a subalgebra isomorphic to K.
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7. Classifications

In this section, we classify Un-twisted isometries via representations of generalized noncom-
mutative tori.

We begin by recalling the definitions of rotation algebras or noncommutative tori and the
Heisenberg group C∗-algebras (see [1, 7, 8] for more details). For θ ∈ R, the rotation algebra
is defined as the universal C∗-algebra

Aθ := C∗({U, V : U, V are unitaries, UV = e2πiθV U}).

Rotation algebra is also called the noncommutative torus as for θ = 0, A0
∼= C(T2), where

T denotes the unit circle. When θ is irrational, Aθ is called the irrational rotation algebra
which is a simple C∗-algebra having the unique faithful trace τθ : Aθ → C defined by

τθ(U
lV m) =

{

1 if l = m = 0

0 otherwise ,

for l, m ∈ Z. Let A = C∗(H) be the group C∗-algebra of Heisenberg group

H :=











1 m p
0 1 n
0 0 1



 : m,n, p ∈ Z






.

We can view A as the universal C∗-algebra generated by three unitaries u, v, w satisfying

u, v ∈ {w}′ and uv = wvu.

We call A the generalised noncommutative torus. It is well known [8] that A has a central-
valued trace τ : A → C∗(w) defined by

τ(wkulvm) :=

{

wk if l = m = 0

0 otherwise,

for k, l,m ∈ Z where C∗(w) is the center of A. With this motivational background, we now
introduce the notion of generalized noncommutative tori.

Definition 7.1. For a given n ≥ 2, generalized noncommutative n-torus Tn is the universal
C∗-algebra generated by the set S := {Si, Spq : 1 ≤ i, p, q ≤ n, p 6= q} of unitaries satisfying
the relations

(7.1) Sji = S∗
ij , SiSij = SijSi, SiSj = SijSjSi for all i 6= j.

Recall that a representation of a C∗-algebra A is a pair (π,H), where H is a Hilbert
space and π : A → B(H) is a ∗-homomorphism. If A is unital, then π is assumed to
be unital. Let V = {Vi, Vpq : 1 ≤ i, p, q ≤ n, p 6= q} be a generating set of Tn, and let
S = {Si, Spq : 1 ≤ i, p, q ≤ n, p 6= q} ⊆ B(H) be a collection of unitaries satisfying (7.1).
Then, from the universal property of Tn, there is a unique ∗-homomorphism π : Tn → B(H)
such that π(Vi) = Si and π(Vij) = Sij for all i 6= j. Any pair (S,H), where S = {Si, Spq :
1 ≤ i, p, q ≤ n, p 6= q} ⊆ B(H) consists of unitaries satisfying (7.1) is called a representation
of Tn. Two representations (S,H) and (T,K) are said to be unitary equivalent if there is a
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unitary U : H → K such that USi = TiU for all i = 1, . . . , n. In this case, by Lemma 5.1, it
also follows that USij = TijU for all i 6= j.

Now let (V1, . . . , Vn) be a Un-twisted isometry onH, and let A ⊆ In. Suppose Un = {Uij}i 6=j.
Then

Ũi := Vi|HA
and Ũpq := Upq|HA

,

are unitary operators for all i /∈ A and p 6= q. The universal C∗-algebra generated by the set
of unitaries {Ũi, Ũpq : i, p, q /∈ A, p 6= q} satisfying (7.1) is denoted by TA.

Let A ⊆ In, W a Hilbert space, and let (V,W) = {Vt, Vij : t, i, j ∈ Ac, i 6= j} ⊆ B(W) be a
representation of TA. The goal is to extend the representation to a Un-twisted isometry such
that

(7.2) wdV (B) =

{

{IW , Vt : t ∈ Ac} if B = A

∅ if B 6= A.

This is an easy consequence of the construction of model operators in Sections 2 and 4. Indeed,
let A = {p1, . . . , pm} and Ac = {qm+1, . . . , qn}. Pick unitary operators

{Vij : pi < pj , pi, pj ∈ A} ∪ {Vij : pi < qj , pi ∈ A, qj ∈ Ac} ⊆ (V,W)′.

For instance, one may consider new Vij ’s simply as IW . Define Uij = IH2(Dm) ⊗ Vij for all
i 6= j. Then U∗

ij = Uji for all i 6= j, and Un := {Uij}i 6=j ⊆ B(H2
W(Dm)). Consequently,

MA := (MA,1, . . . ,MA,n) on H2
W(Dm) is a Un-twisted isometry, where MA,i’s are defined as

in (4.4). Moreover, by Proposition 4.3 we obtain the desired equality (7.2). This essentially
proves the following assertion:

• wdV (A) are in bijection with the unital representations of TA.
• Two such representations of TA are unitarily equivalent if and only if the corresponding
A-wandering data are unitarily equivalent.

More formally, we state the following:

Theorem 7.2. The unitary equivalence classes of Un-twisted isometries are in bijection with
enumerations of 2n unitary equivalence classes of unital representations of the generalized
noncommutative tori TA, with A ⊆ In.

Proof. Suppose V := (V1, . . . , Vn) is a Un-twisted isometry on a Hilbert space H. Then for
each A ⊆ In, the set

πV (A) := {Vt|HA
, Uij|HA

: t, i, j ∈ Ac, i 6= j},

is a representation of TA. Well-definedness and injectivity of the correspondence V ↔
{πV (A) : A ⊆ In} follow from Theorem 5.2. Surjectivity of this correspondence follows
from the discussion preceding the statement of this theorem. �

Before proceeding we need to clarify the issue of reducing subspaces of model operators.
First, given an m-tuple X = (X1, . . . , Xm) on a Hilbert space H, we define the defect operator
S−1
m (X,X∗) by

S
−1
m (X,X∗) =

∑

0≤i1<...<it≤m

(−1)tXi1 · · ·XitX
∗
it
· · ·X∗

i1
.
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It should be noted that the above (well known) notion is inspired by the so-called hereditary
functional calculus corresponding to the polynomial

S
−1
m (z, w) =

∑

0≤i1<...<it≤m

(−1)tzi1 · · · zitw̄it · · · w̄i1,

where Sm(z, w) =
∏m

i=1(1 − ziw̄i)
−1, z, w ∈ Dm, is the Szegö kernel of the polydisc Dm. In

fact, if we consider Mz := (Mz1 , . . . ,Mzm) on H2
E(D

m) for some Hilbert space E , then an easy
computation (for instance, action of S−1

m (Mz,M
∗
z ) on monomials) reveals that S−1

m (Mz,M
∗
z ) =

PC ⊗ IE , where PC denote the orthogonal projection of H2(Dm) onto the space of all constant
functions. Now, let (V1, . . . , Vn) be a Un-twisted isometry, and let A = {p1, . . . , pm} ⊆ In.
Consider the model operator MA = (MA,1, . . . ,MA,n) on H2

DA
(D|A|) (see Proposition 4.3). By

Lemma 2.2, we have

MA,piMzj = MzjMA,pi (pi < j).

Let us denote MA,z = (MA,p1, . . . ,MA,pm) for simplicity. For each pi ∈ A, Lemma 2.2 again
implies that MA,piM

∗
A,pi

= MziM
∗
zi
. Then the preceding equality yields

S
−1
m (MA,z,M

∗
A,z) = S

−1
m (Mz,M

∗
z ) = PC ⊗ IE .

Now assume that S ⊆ H2
DA

(Dm) is a closed subspace, and suppose that S reduces MA.
In particular, S reduces MA,z, and hence by the previous identity it follows that f(0) =
(PC ⊗ IE)f ∈ S for all f ∈ S. Therefore, S = H2

D(D
m), where D = span{f(0) : f ∈ S} is a

closed subspace of E . Finally, by the representation of MA,qj in (4.4), we have that D reduces
Vqj |DA

for all qj ∈ Ac. We summarize this (along with the trivial converse) as follows:

Proposition 7.3. Let (V1, . . . , Vn) be a Un-twisted isometry, and let A ⊆ In. Suppose S ⊆
H2

DA
(D|A|) is a closed subspace. Then S reduces MA if and only if there exists a closed subspace

D ⊆ DA such that D reduces Vj|DA
for all j ∈ Ac, and S = H2

D(D
m).

Given a Un-twisted isometry V = (V1, . . . , Vn), we denote C∗(V ) the C∗-algebra generated
by {Vi}

n
i=1. Evidently, C∗(V ) is unital. A subspace D ⊆ H is said to be invariant under

C∗(V ) if TD ⊆ D for all T ∈ C∗(V ). It is easy to check that D is invariant under C∗(V ) if
and only if D reduces T for all T ∈ C∗(V ) or, equivalently, D reduces Vi for all i ∈ In. We
refer the reader to (4.3) and Proposition 4.3 to recall the definitions of the canonical unitary
πA and the model operator tuple MA, respectively.

Theorem 7.4. Let V = (V1, . . . , Vn) be a Un-twisted isometry on H. The following are
equivalent.

(1) Only trivial subspaces of H are closed and invariant under C∗(V ).
(2) There exists A ⊆ In such that V ∼= MA and DA has only trivial subspaces that are

invariant under C∗(wdMA
(A)).

Proof. (1) ⇒ (2): Evidently, H = HA for some A ⊆ In, and hence V ∼= MA, where MA is a Un-
twisted isometry on H2

DA
(D|A|). Recall that if Ac = {q1, . . . , qn−m}, then the wandering data

is given by wdMA
(A) = (I|DA

,MA,q1|DA
, . . . ,MA,qn−m

|DA
) (see Proposition 4.3). Let D ⊆ DA
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is a nontrivial closed subspace, and suppose D reduces {Vqj |DA
}qj∈Ac . Note that

H2
D(D

|A|) = ⊕
ka∈Z

|A|
+
V ka
A D ⊆ H2

DA
(D|A|),

and hence π∗
A(H

2
D(D

|A|)) is invariant under C∗(V ). This is a contradiction. Finally, (2) ⇒ (1)
simply follows from Proposition 7.3. �

Corollary 7.5. Let (V1, . . . , Vn) be a Un-twisted isometry and A ⊆ In such that Vi are shifts
for i ∈ A and are unitaries for i ∈ Ac with

dim(
⋂

i∈A

ker V ∗
i ) = 1,

then C∗(V1, . . . , Vn) is irreducible. In particular, if (V1, . . . , Vn) are Un-twisted shifts with
dim(

⋂

i∈In

ker V ∗
i ) = 1, then C∗(V1, . . . , Vn) is irreducible.

Example 7.6. Multiplication operators (Mz1 , . . . ,Mzn) by the co-ordinate functions on the
Hardy space H2(Dn) with n ≥ 2 generates irreducible C∗-algebra.

Recall that a representation of a unital C∗-algebra is given by a pair (H, π), where H is a
Hilbert space and π : A → B(H) is a ∗-homomorphism. A closed subspace D ⊆ H reduces π if
D reduces π(a) for all a ∈ A. A representation (H, π) is called irreducible if trivial subspaces
are the only reducing subspaces of π. Clearly, if {si : i ∈ I} is a generating set of a C∗-algebra
A, then a closed subspace D ⊆ H reduces π if and only if it reduces π(si) for all i ∈ I. The
following is now an immediate consequence of Theorems 7.2 and 7.4.

Corollary 7.7. The unitary equivalence classes of the non-zero irreducible representations of
the C∗-algebras generated by Un-twisted isometries are parameterized by the unitary equiva-
lence classes of the non-zero irreducible representations of generalized noncommutative 2n-tori
TA, with A ⊆ In.

We finally remark that the examples in Section 2 are the basic building blocks of Un-twisted
isometries. The same construction can also be applied to produce more natural examples of
tuples of operators (for instance, replace the unitary U in D[U ] by some isometry V ). The
present findings suggest that our methodology deserves further consideration as a means of
providing concrete examples of C∗-algebras which might be used as a tool of the classification
problem for C∗-algebras. For instance, the following question arises naturally: Classify C∗-
algebras generated by tuples of isometries (V1, . . . , Vn) on H that satisfies ViVj = UijVjVi,
where {Uij}i 6=j ⊆ B(H) are unitaries. Moreover, in view of the usefulness and importance of
the classical rotation C∗-algebras [9], it is also natural to investigate the essential properties
of rotation C∗-algebras with rotations as unitary operators. We hope in the near future to be
able to present results in some of these natural directions.
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