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ABSTRACT. This paper is interested in independent sets (or equivalently, cliques) in uniform
random cographs. We also study their permutation analogs, namely, increasing subsequences in
uniform random separable permutations.

First, we prove that, with high probability as n gets large, the largest independent set in a uni-
form random cograph with n vertices has size o(n). This answers a question of Kang, McDiarmid,
Reed and Scott. Using the connection between graphs and permutations via inversion graphs, we
also give a similar result for the longest increasing subsequence in separable permutations. These
results are proved using the self-similarity of the Brownian limits of random cographs and random
separable permutations, and actually apply more generally to all families of graphs and permuta-
tions with the same limit.

Second, and unexpectedly given the above results, we show that for β > 0 sufficiently small,
the expected number of independent sets of size βn in a uniform random cograph with n vertices
grows exponentially fast with n. We also prove a permutation analog of this result. This time the
proofs rely on singularity analysis of the associated bivariate generating functions.

1. INTRODUCTION

Our paper present both results for graph and permutation models (connected through the map-
ping associating with a permutation its inversion graph); for simplicity we present these results
and the related backgrounds separately.

1.1. Independent sets in random cographs. Cographs were introduced in the seventies by
several authors independently (under various names), see e.g. [Sei74] and further references on
their Wikipedia page [Wiki]. They enjoy several equivalent characterizations. Among others,
cographs are

• the graphs avoiding P4 (the path with four vertices) as an induced subgraph;
• the graphs whose modular decomposition does not involve any prime graph;
• the inversion graphs of separable permutations;
• the graphs which can be constructed from graphs with one vertex by taking disjoint

unions and joins.
The latter characterization is the most useful for our purpose, let us introduce the terminology.
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All graphs considered in this paper are simple (i.e. without multiple edges, nor loops) and not
directed. Two labeled graphs (V,E) and (V ′, E ′) are isomorphic if there exists a bijection from
V to V ′ which maps E to E ′. Equivalence classes of labeled graphs for the above relation are
unlabeled graphs. Throughout this paper, the size of a graph is its number of vertices, and we
denote by VG the set of vertices of any graph G.

Let G = (V,E) and G′ = (V ′, E ′) be labeled graphs with disjoint vertex sets. We define their
disjoint union as the graph (V ] V ′, E ] E ′) (the symbol ] denoting as usual the disjoint union
of two sets). We also define their join as the graph (V ] V ′, E ] E ′ ] (V × V ′)): namely, we
take copies of G and G′, and add all edges from a vertex of G to a vertex of G′. (Both definitions
readily extend to more than two graphs, adding edges between any two vertices originating from
different graphs in the case of the join operation).

Definition 1.1. A labeled cograph is a labeled graph that can be generated from single-vertex
graphs applying join and disjoint union operations. An unlabeled cograph is the underlying
unlabeled graph of a labeled cograph.

Recall that, for a given graph G, an independent set is a subset of vertices in G no two of
which are adjacent, while a clique is a subset of vertices in G such that every two vertices are
adjacent.

The main motivation for studying independent sets in random cographs comes from the series
of papers [LRSTT10, KMRS14] on the probabilistic version of the Erdős-Hajnal conjecture.

For a graph G, a subset of its vertices is called homogeneous if it is either a clique or an
independent set. It is well-known that every graph of size n has a homogeneous set of size at
least logarithmic in n, and that this is optimal up to a constant (much work is devoted to get
the precise asymptotics; this is equivalent to the computation of diagonal Ramsey numbers, see
[Spe75, Con09] for the better bounds up to date). The conjecture of Erdős and Hajnal states
that, assuming that the graphs avoid any given subgraph (as induced subgraph), homogeneous
sets of polynomial size necessarily exist. More precisely, for any H , there exists a constant
ε = ε(H) > 0 such that every H-free graph has a homogeneous set of size nε.

Despite much effort, the Erdős-Hajnal conjecture is still widely open; see for example the
survey [Chu14]. A natural relaxation of the conjecture consists in replacing "everyH-free graph"
in the statement above by "almost all H-free graphs". This weaker version has been established
in [LRSTT10]. For a large family of constraints H , this result was further improved by Kang,
McDiarmid, Reed and Scott in [KMRS14]: for those H , a uniform random H-free graph has
with high probability a homogeneous set of linear size. When this holds, the graph H is said
to have the asymptotic linear Erdős-Hajnal property (see [KMRS14] for a formal definition).
Kang, McDiarmid, Reed and Scott ask whether H = P4 has the asymptotic linear Erdős-Hajnal
property, i.e. whether a uniform random cograph with n vertices has a homogeneous set of linear
size [KMRS14, Section 5].

Our first result answers this question in the negative. In the following, for a graph G, we
denote α(G) the maximal size of an independent set in G, also called the independence number
of G.
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Theorem 1.2. Let Gn be a uniform random cograph (either labeled or unlabeled) of size n.
The maximal size of an independent set in Gn is sublinear in n, namely α(Gn)

n
converges to 0 in

probability.

We recall the standard notation for comparison of random variables: Xn = oP (Yn) ifXn/Yn
tends to 0 in probability. The above theorem says that α(Gn) is oP (n). By symmetry (see the
identity (17) p.19) it also holds that the size of the largest clique in Gn is oP (n). Consequently,
the size of the largest homogeneous set is also oP (n), answering negatively the question of Kang,
McDiarmid, Reed and Scott [KMRS14, Section 5]: P4 does not have the asymptotic linear Erdős-
Hajnal property.

A different approach to study independent sets of linear size in random cographs is the follow-
ing. Let Xk(G) be the number of independent sets of size k in a graph G. From Theorem 1.2, if
Gn is a uniform random (labeled) cograph, then the random variable Xn,k := Xk(Gn) tends to
0 in probability if k ∼ βn for some β > 0 as n tends to infinity. We show that nonetheless, its
expectation grows exponentially fast for β small enough (in particular, this indicates that Theo-
rem 1.2 cannot be proved by a naive use of the first moment method). More precisely, we have
the following result.

Theorem 1.3. For each n ≥ 1, let Gn be a uniform random labeled cograph of size n, and
let Xn,k be the number of independent sets of size k in Gn. Then there exist some computable
functions Bβ > 0, Cβ > 0 (0 < β < 1) with the following property. For every fixed closed
interval [a, b] ⊆ (0, 1), we have

(1) E[Xn,k] ∼ Bk/n n
−1/2(Ck/n)n

uniformly for an ≤ k ≤ bn. Furthermore,
i) there exists β0 > 0 such that Cβ > 1 for every β ∈ (0, β0) ; numerically, we can estimate

β0 ≈ 0.522677 . . .

ii) When β → 0, we have Cβ = 1 + β| log(β)|+ o(β log(β)).

There is no explicit formula for the growth constant Cβ but it can be computed numerically
with arbitrary precision: see Eq. (34) p.24. To get an idea of how fast Xn,k can grow if k ∼ βn,
we mention that the function β 7→ Cβ seems to have a unique maximum on (0, 1) (see a plot in
Fig. 1 p.6); denoting β? its location, we have the following numerical estimates:

β? ≈ 0.229285 . . . ; Cβ? ≈ 1.366306 . . .

As additional motivation for Theorem 1.3, let us also mention the work of Drmota, Ramos,
Requile and Rue [DRRR20]: they prove (among other things; see their Corollary 2) the expo-
nential growth of the expected number of maximal independent sets in some subcritical graph
classes (trees, cacti, series-parallel graphs, . . . ). It could be interesting to adapt our arguments to
consider maximal independent sets in cographs instead of independent sets of fixed size.
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Remark 1.4. There are two different ways to pick a uniform random cograph with n vertices:
taking it uniformly at random among labeled or among unlabeled cographs. Even if the sizes of
independent sets are independent from the labelings, this gives two different probability distribu-
tions, since some unlabeled cographs have more symmetries and hence fewer distinct labelings
than others.

The reader may have noticed that in Theorem 1.2, we consider either labeled or unlabeled
uniform random cographs, while Theorem 1.3 only considers the labeled setting. The reason of
this choice is given in Section 1.3 when discussing proof methods.

Remark 1.5. We leave open the question of the order of magnitude of α(Gn). In fact, we have
not found a better lower bound than the naive

√
n one, which can be derived as follows.

Since cographs are perfect graphs, for any cograph G, we have (see [Chu14, Theorem 1.4])

(2) max(α(G), ω(G)) ≥
√
n

where ω(G) is the size of the largest clique of G. By symmetry we have that α(Gn)
(d)
= ω(Gn) if

Gn is a uniform (labeled or unlabeled) cograph. Hence:

1 = P
(

max(α(Gn), ω(Gn)) ≥
√
n
)

≤ P
(
α(Gn) ≥

√
n
)

+ P
(
ω(Gn) ≥

√
n
)

= 2P
(
α(Gn) ≥

√
n
)
,

which means that α(Gn) is not oP (
√
n).

1.2. Increasing subsequence in random separable permutations. The asymptotic behavior
of the longest increasing subsequence LIS(sn) in a uniform random permutation sn of size n
is an old and famous problem that led to surprising and deep connections with various areas
of pure mathematics (representation theory, combinatorics, linear algebra and operator theory,
random matrices,. . . ). In particular, it is well-known that LIS(sn) is typically of length 2

√
n

and has Tracy-Widom fluctuations of order n1/6. We refer to [Rom15] for a nice and modern
introduction to this topic.

Longest increasing subsequences in random permutations in permutation classes are a much
newer topic: see [MRRY20] and references therein. The methods of the present paper allow to
prove the sublinear behavior of the length of the longest increasing subsequence in a uniform
random separable permutation. Let us introduce terminology.

Given a permutation σ of size n (i.e. a sequence σ(1) . . . σ(n) containing exactly once each
integer from 1 to n), and given a subset I = {i1 < · · · < ik} of {1, . . . , n}, the pattern of σ
induced by I is the permutation π of size k such that π(`) < π(m) if and only if σ(i`) < σ(im).
The study of patterns in permutations is an active research topic, particularly in enumerative
combinatorics, see e.g. [Vat16, Kit11] and references therein. The relation “is a pattern of” is
a partial order on the set of all permutations (of all finite sizes), and permutation classes are
downsets for this order. Equivalently, permutation classes can be defined as sets of permutations
characterized by the avoidance of a (finite or infinite) set of patterns.

Definition 1.6. A separable permutation is a permutation which avoids the patterns 2413 and
3142.
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Separable permutations enjoy many other characterizations, including the following (the re-
lated terminology is defined later in this paper if needed, or e.g. in [Vat16]):

• they are the permutations whose inversion graph is a cograph;
• they can be obtained from permutations of size 1 by performing sums and skew-sums;
• no simple permutation appears in their substitution decomposition.

The class of separable permutations is natural, well-studied, and displays many nice properties;
we refer the reader to [BBF+18, end of Section 1.1] for a presentation of these properties and a
review of literature. We shall also review some of them in Section 5.

We can now state our analog of Theorem 1.2 for separable permutations.

Theorem 1.7. For each n ≥ 1, let σn be a uniform random separable permutation of size n.
Then, the maximal length of an increasing subsequence in σn is sublinear in n, namely LIS(σn)

n
converges to 0 in probability.

Two remarks about this statement. First, the above sublinearity result does not only apply
to separable permutations, but also to any permutation class with the same permuton limit –
see Section 1.3. Second, as for cographs, we unfortunately did not find a better lower bound
for LIS(σn) than the trivial

√
n one (same argument as above where (2) is replaced by Erdös-

Szekeres’s Lemma).
We make a further remark about the relation between Theorems 1.2 and 1.7. Recall that for

any permutation σ of size n, its inversion graph (denoted inv(σ)) is the unlabeled version of the
graph with vertex set {1, . . . , n} where there is an edge between i and j if and only if i and j
form an inversion in σ, that is (i− j)(σ(i)−σ(j)) < 0. Clearly, through this correspondence, an
increasing sequence in σ is mapped to an independent set in inv(σ). Nevertheless, Theorem 1.7
is not simply the translation of Theorem 1.2 from the graph setting to the permutation setting.
Indeed, since the inversion graph correspondence is not one-to-one, for σn a uniform random
separable permutation, inv(σn) is not a uniform random unlabeled cograph. (We further note
that defining inv(σ) as a labeled cograph in the obvious manner, inv(σn) would also not be a
uniform random labeled cograph.)

We also establish a counterpart of Theorem 1.3 for increasing subsequences in separable per-
mutations. For a permutation σ, we denote by Zk(σ) the number of increasing subsequences of
length k in σ.

Theorem 1.8. For each n ≥ 1, let σn be a uniform random separable permutation of size n,
and let Zn,k := Zk(σn) be the number of increasing subsequences of length k in σn. Then there
exist some computable functions Dβ > 0, Eβ > 0 (0 < β < 1) with the following property. For
every fixed closed interval [a, b] ⊆ (0, 1), we have

(3) E[Zn,k] ∼ Dk/n n
−1/2(Ek/n)n

uniformly for an ≤ k ≤ bn. Furthermore there exists β1 > 0 such that for every β < β1 we have
Eβ > 1.

Numerically we observe the same qualitative behavior than for (1): Eβ also seems to have
a unique maximum (numerically estimated at β ≈ 0.2503 . . . ), and Eβ is larger than 1 up to
β1 ≈ 0.5827. We observe numerically that Eβ > Cβ for every β ∈ (0, 1) (see Fig. 1).
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FIGURE 1. Plots of β 7→ Cβ and β 7→ Eβ .

1.3. Proof methods and universality. Our sublinearity results are based on limit theorems for
uniform random cographs and uniform random separable permutations. We first discuss the
graph setting.

It is proved in [BBF+19] that a uniform random (labeled or unlabeled) cograph of size n con-
verges in the sense of graphons to a limitW 1/2, called the Brownian cographon of parameter 1/2
(see also the independent work of Stufler [Stu19]). We refer to Section 2.2 for details. Moreover,
the notion of independence number of a graph has been extended to graphons by Hladkỳ and
Rocha [HR17], who proved a semicontinuity property for it (see Section 2.3). Combining these
two elements, Theorem 1.2 will follow from the fact that the independence number α̃(W 1/2) of
the Brownian cographon is 0 a.s (see Section 3.3). To prove the latter, we use the explicit con-
struction of the Brownian cographon from a Brownian excursion and some self-similarity prop-
erty of the Brownian excursion (namely Aldous’ decomposition of a Brownian excursion with
two independent points into three independent Brownian excursions of random sizes [Ald94]);
we then deduce from it an inequation in distribution for α̃(W 1/2) (Section 3.1) and we conclude
by a fixed point argument (Section 3.2).

An interesting aspect of the proof sketched above is that it relies solely on the fact that uniform
random cographs tend to the Brownian cographon; moreover the value p = 1/2 of the parameter
of the limit is irrelevant in the proof. Convergence to the Brownian cographon was proved
in [BBF+19, Stu19] both in the labeled and unlabeled settings, so that Theorem 1.2 is proved
simultaneously in both settings. In fact, Theorem 1.2 is proved as a special case of the following
theorem.

Theorem 1.9. LetGn be a sequence of random graphs tending to the Brownian cographonW p

for p ∈ [0, 1). Then the maximal size of an independent set inGn is sublinear in n, namely α(Gn)
n

converges to 0 in probability.

By analogy with the realm of permutations (see below), we expect that uniform random graphs
in many graph classes (well-behaved for the modular decomposition) tend toW p, and hence have
a sublinear independence number.
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Let us now discuss Theorem 1.7, i.e. the sublinearity of the length of the longest increasing
subsequence in a random separable permutation σn. It is known that σn tends in the permu-
ton topology to a limit µ1/2, called the Brownian separable permuton of parameter 1/2, see
[BBF+18] for the original reference.

As discussed earlier, an increasing subsequence of a permutation corresponds to an indepen-
dent set of its inversion graph. We remark in Section 2.4 that if a sequence of permutations
converges in distribution to the Brownian separable permuton of parameter p, then the corre-
sponding inversion graphs converge in distribution to the Brownian cographonW p.

Hence Theorem 1.9 implies the following general result, of which Theorem 1.7 is a particular
case (see Section 3.3 for details).

Theorem 1.10. Letσn be a sequence of random permutations tending to the Brownian separable
permuton µp for p ∈ [0, 1). Then the maximal length of an increasing subsequence in σn is
sublinear in n, namely LIS(σn)

n
converges to 0 in probability.

We note that the Brownian separable permuton µp has been proved to be a universal limit
for uniform random permutations in many permutation classes (well-behaved with respect to the
substitution decomposition) [BBF+20, BBF+19b, BBFS19], so that Theorem 1.10 applies to all
these classes.

The technique to prove Theorems 1.3 and 1.8 is completely different. Indeed, the expecta-
tion of Xn,k (resp. Zn,k) for k ∼ βn for some β > 0 is driven by a set of cographs (resp.
separable permutations) of small probability and can therefore not be inferred from their limit
in distribution. In this case, we use the representation of cographs as cotrees, and its analogue
for separable permutations through substitution decomposition trees. These tree representations
are useful tools in algorithmics both for graphs and permutations (see e.g. [HP05, BCH+08] for
graphs and [BBL98] for permutations); in the case of permutations, substitution decomposition
trees have also been widely used in recent years for enumeration problems (see [Vat16, Section
3.2] and references therein). The tree encoding allows us to write a system of equations for the
bivariate generating function of cographs with a marked independent set (resp. separable permu-
tations with a marked increasing subsequence). We then obtain our results through singularity
analysis.

Unlike for Theorems 1.2 and 1.7, the results we prove are specific to either labeled cographs
or separable permutations and do not rely on their Brownian limits. However, our approach
should extend to other families of graphs and permutations well-encoded by their (modular or
substitution) decomposition trees, but we did not pursue this direction. One such model would be
unlabeled cographs: in this model, the analytic equations involve the so-called Pólya operators,
making the analysis more technical but we do not expect qualitative differences in the result.

1.4. Organization of the paper. The proofs of our two sets of results can be read independently.

• Section 2 provides the necessary background regarding graphons and permutons. Then
we prove Theorems 1.9 and 1.10 in Section 3.
• The proofs of Theorems 1.3 and 1.8 are given in Section 4 and Section 5, respectively.
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2. PRELIMINARIES: GRAPHONS, PERMUTONS,
INDEPENDENCE NUMBER AND INCREASING SUBSEQUENCES

We first recall some general material from the theory of graphons (Section 2.1). We present
here the strict minimum needed for this paper; an extensive presentation can be found in [Lov12,
Chapters 7-16]. Then in Sections 2.2 to 2.4 we review recent material from the literature, used
for our proof of Theorems 1.9 and 1.10:

• the convergence of uniform random cographs to the Brownian cographon;
• the notion of independence number of graphons;
• a connection between graphons and the analogue theory for permutations, that of permu-

tons.

2.1. Basics on graphons. A graphon (contraction for graph function) is a symmetric func-
tion from [0, 1]2 to [0, 1]. Intuitively, we can think of it as the adjacency matrix of an infinite
(weighted) graph with vertex set [0, 1]. A finite graph G with vertex set {1, . . . , n} can be seen
as a graphon WG as follows: WG(x, y) = 1 if the vertices with labels dxne and dyne are con-
nected in G (dze being the nearest integer above z, with the unusual convention d0e = 1) and
WG(x, y) = 0 otherwise.

Sampling. Let W be a graphon and k a positive extended integer (i.e. k ∈ Z>0 ∪ {+∞}).
We consider two independent families (Ui)1≤i≤k and (Xi,j)1≤i<j≤k of i.i.d. uniform random
variables in [0, 1]. Given this, we define a random graph Samplek(W ) as follows1: its vertex set
is [k] := {1, . . . , k} and for every i, j, vertices i and j are connected iff Xi,j ≤ W (Ui,Uj). In
other words vertices i and j are connected with probability W (Ui,Uj), independently of each
other conditionally on the sequence (Ui)1≤i≤k.

We note that, for k′ > k, the restriction Samplek′(W )[k] of Samplek′(W ) to the vertex set
[k] has the same distribution as Samplek(W ). In particular, the random graph Sample∞(W )
induces a realization of all Samplek(W ) in the same probability space.

Convergence. By definition, a sequence of graphons (Wn) converges to a graphon W if, for
all k, Samplek(Wn) converges in distribution to Samplek(W ). It can be shown that this is
equivalent to the convergence for the so-called cut-distance; see [Lov12, Theorem 11.5]. We
note that the graphon limit is unique only up to some equivalence relation, called weak equiv-
alence [Lov12, Sections 7.3, 10.7, 13.2]. Moreover, the quotient of the set of graphons by the
weak equivalence relation, equipped with the cut-distance metric, is a compact metric space,
that we shall call from now on the space of graphons. Finally, we say that a sequence of graphs
(Gn)n≥1 converges to a graphonW if the associated graphons (WGn) converge toW in the space
of graphons, and that a sequence of random graphs (Gn)n≥1 converges in distribution to a ran-
dom graphon W , if WGn converges to W in distribution, as random elements of the space of
graphons.

2.2. Convergence to the Brownian cographon. Let e : [0, 1] → R denote a Brownian excur-
sion of length one. We recall that, a.s., e has a countable set of local minima, which are all strict

1In [Lov12], Samplek(W ) is denoted G(k,W ).
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and have distinct values2. Let us denote {bi(e), i ≥ 1} an enumeration of the positions of these
local minima. It is possible to choose this enumeration in such a way that the bi’s and the sub-
sequent functions defined in this section are measurable; we refer to [Maa19, Lemma 2.3] and
[BBF+19, Section 4] for details.

We now choose i.i.d. Bernoulli variables si with P(si = 0) = p, independent from the
foregoing, and write Sp = (si)i≥1. We call (e,Sp) a decorated Brownian excursion, thinking of
the variable si as a decoration attached to the local minimum bi(e).

For x, y ∈ [0, 1], we define Dec(x, y; e,Sp) to be the decoration of the minimum of e on the
interval [x, y] (or [y, x] if y ≤ x; we shall not repeat this precision below). If this minimum is
not unique or attained in x or y and therefore not a local minimum, Dec(x, y; e,Sp) is ill-defined
and we take the convention Dec(x, y; e,Sp) = 0. Note however that, for uniform random x
and y, this happens with probability 0, so that the object constructed in Definition 2.1 below is
independent from this convention.

Definition 2.1. The Brownian cographonW p of parameter p is the random function

W p : [0, 1]2 → {0, 1};
(x, y) 7→ Dec(x, y; e,Sp).

The following was proved independently in [Stu19] and [BBF+19].

Theorem 2.2. Uniform random cographs (either labeled or unlabeled) converge in distribution
to the Brownian cographon of parameter 1/2, in the space of graphons.

2.3. Independence number of a graphon and semi-continuity. Let W be a (deterministic)
graphon. Following Hladkỳ and Rocha [HR17], we define an independent set I of a graphon
W as a measurable subset of [0, 1] such that W (x, y) = 0 for almost every (x, y) in I × I . The
independence number α̃(W ) of a graphon W is then

(4) α̃(W ) = sup
I⊂[0,1]

I independent set of W

Leb(I).

Clearly, for a graph G we have

(5) α̃(WG) = α(G)/|VG|,

where α(G) is the maximal size of an independent set in G.
Of crucial interest for this paper is the lower semi-continuity of the function α̃ on the space of

graphons [HR17, Corollary 7]. Concretely, this says the following.

Proposition 2.3. Suppose that (Wn)n≥1 is a sequence of graphons that converges to some W in
the space of graphons. Then lim sup α̃(Wn) ≤ α̃(W ).

Remark 2.4. As a consequence, the map α̃ is measurable on the space of graphons, and it makes
sense to consider the random variable α̃(W ) whenW is a random graphon.

2That e has a.s. only strict local minima with distinct values is folklore – the interested reader may find a proof
in [BBF+18, Appendix A]. This implies readily that the set of local minima is a.s. countable.
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In the rest of this subsection, we give an alternative definition for α̃(W ). This definition is
not needed in the rest of the paper (and therefore can be safely skipped); however, it answers a
question raised by Hladkỳ and Rocha [HR17, Section 3.2], who asked for a connection between
the statistics α̃(W ) and subgraph densities (or equivalently, samples) of W .

For a graphon W , we set

(6) α̃2(W ) = lim inf
k→∞

1

k
α(Sample∞(W )[k]).

Since Sample∞(W ) is a random graph, the right-hand side is a priori a random variable. We
recall that Sample∞(W ) is constructed from i.i.d. random variables {Ui,Xi,j, 1 ≤ i < j}. We
denote Gn the σ-algebra generated by {Ui,Xi,j, n < i < j}. It is a simple exercise to see that
α̃2(W ) is measurable with respect to the tail σ-algebra

⋂
n≥1 Gn. By Kolmogorov’s 0 − 1 law

(easily adapted to our situation with bi-indexed i.i.d. random variables), α̃2(W ) is almost surely
equal to a constant.

Lemma 2.5. For any graphon W , we have α̃2(W ) = α̃(W ) almost surely, and the lim inf
defining α̃2(W ) is almost surely an actual limit.

Remark 2.6. The previous result holds also if W is replaced by a random graphonW , as long as
in the construction of Sample∞(W ), the random data {Ui,Xi,j, 1 ≤ i < j} is taken indepen-
dently fromW .

Proof. We first prove α̃2(W ) ≥ α̃(W ) almost surely. Let I be an independent set of W . For
any k ≥ 1, we observe that the set Jk := {j ≤ k : Uj ∈ I} is a.s. an independent set of
Sample∞(W )[k].

Hence, a.s.
1

k
α(Sample∞(W )[k]) ≥ 1

k
|Jk|.

As k tends to infinity, the law of large numbers asserts that |Jk|/k tends a.s. to Leb(I). Therefore
we have a.s. α̃2(W ) ≥ Leb(I). Since this holds for any independent set I of W , we can
consider a sequence (In)n≥1 of independent sets such that Leb(In) ≥ α̃(W ) − 2−n, proving
α̃2(W ) ≥ α̃(W ) a.s..

Let us prove the converse inequality. It is known that (Sample∞(W )[k]) converges a.s. to
W in the space of graphons (e.g. as a consequence of [Lov12, Lemma 10.16]). Using (5) and
Proposition 2.3 this implies that, a.s.,

α̃2(W ) ≤ lim sup
k→∞

1

k
α(Sample∞(W )[k]) = lim sup

k→∞
α̃(Sample∞(W )[k]) ≤ α̃(W ).

Together with α̃(W ) ≤ α̃2(W ) = lim infk→∞
1
k
α(Sample∞(W )[k]), this concludes the proof

that almost surely α̃2(W ) = α̃(W ), with the lim inf being an actual limit. �

2.4. The Brownian separable permuton and its relation to the Brownian cographon. The
theory of permutons (see [GGKK15, HKMRS13]) plays the same role for limits of permutations
as the theory of graphons does for dense graphs. A permuton is a probability measure on the unit
square with uniform marginals, and the space of permutons equipped with the weak convergence
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of measures is a compact metric space. We attach to each permutation σ of size n ≥ 1 the
measure µσ on the unit square with density (x, y) 7→ n1σ(dnxe)=dnye, which is a permuton. This
defines a dense embedding of the set of permutations into the space of permutons.

Recall that inv(σ) denotes the (unlabeled) inversion graph of a permutation σ.

Proposition 2.7. Let (σn)n be a sequence of random permutations such that µσn

d−−−→
n→∞

µp,
where µp is the Brownian separable permuton of parameter p defined in [BBF+19b, Definition
3.5]. Let Gn = inv(σn). Then we have the convergence in distribution WGn

d−−−→
n→∞

W p in the
space of graphons, whereW p is the Brownian cographon of parameter p.

Remark 2.8. It was observed in [GGKK15, End of Section 2] that inv possesses an extension
which is a continuous map ĩnv from the space of permutons to the space of graphons. The above
proposition simply means that the image of µp by ĩnv isW p.

Proof. For every k ≥ 1, denote bk,p a uniform random plane binary tree with k (unlabeled)
leaves, whose internal vertices are decorated with independent signs {⊕,	} such that P(⊕) = p.
Before entering the actual proof, we present a useful link between a separable permutation and
an unlabeled cograph constructed from bk,p.

Following [BBF+19b, Definition 2.3], we may associate with bk,p a separable permutation,
denoted perm(bk,p). We do not recall this construction here (for details, see the above reference
or the beginning of Section 5), but indicate an important property it enjoys: for 1 ≤ i < j ≤ k,
we have perm(bk,p)(i) > perm(bk,p)(j) if and only if the youngest common ancestor of the i-th
and j-th leaves (in the left-to-right order) of bk,p carries a 	 sign.

Similarly, we may also associate with bk,p an unlabeled cograph. We first replace 	 by 1

and ⊕ by 0 in all internal nodes and then we forget the plane embedding. We denote by b̃k,p
the resulting non-plane and unlabeled decorated tree. With this tree, we associate an unlabeled
cograph Cograph(b̃k,p) as follows: its vertices correspond to the leaves of b̃k,p, and there is an
egde between the vertices corresponding to leaves ` and `′ if and only if the youngest common
ancestor of ` and `′ carries the decoration 1. An alternative recursive presentation of this con-
struction, making it clear that the constructed graph is indeed a cograph, is given at the beginning
of Section 4.

By construction, the equality inv(perm(bk,p)) = Cograph(b̃k,p) of unlabeled graphs holds.

Denote σn,k a uniform random pattern of size k in σn. Theorem 3.1 and Definition 3.5
in [BBF+19b] imply that σn,k converges in distribution to the random separable permutation
perm(bk,p). As this is a convergence in distribution in the discrete space consisting of all per-
mutations of size k, the map inv is continuous, and we obtain the following convergence of
unlabeled graphs:

(7) inv(σn,k)
d−−−→

n→∞
inv(perm(bk,p)).

It is easy to check that the actions of taking patterns (resp. induced subgraphs) and of com-
puting inversion graphs commute. Namely, for a permutation σ and a subset I of its indices,
the inversion graph of the pattern of σ induced by I is the subgraph of the inversion graph of σ
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induced by the vertices corresponding to I . Therefore, inv(σn,k) – which appears on the left-
hand-side of Eq. (7) – has the same distribution as the subgraph induced by a uniform random
subset of k distinct vertices ofGn.

On the right-hand side of Eq. (7), we have already identified inv(perm(bk,p)) as Cograph(b̃k,p).
We recall that b̃k,p is the non-plane version of a uniform random (unlabeled) plane binary tree
with independent decorations on its internal nodes. We claim that this has the same distribution as
the unlabeled version of a uniform random labeled non-plane binary tree, with the same rule for
decorations of the internal nodes (which we denote b6P,Lk,p ). Admitting this claim for the moment,
and comparing with [BBF+19, Proposition 4.3], we get that the right-hand side of Eq. (7) is
distributed as Samplek(W

p).
With these considerations in hand, we can use [BBF+19, Theorem 3.8] (more precisely the

implication (d) ⇒ (a) and Eq. (4) following this theorem) and conclude from Eq. (7) that
WGn

d−−−→
n→∞

W p. This ends the proof of the proposition, up to the above claim.

It remains to prove that b̃k,p
d
= b6P,Lk,p , as non-plane unlabeled trees. Since the rule for the random

decorations are the same on both sides, we disregard decorations, and denote the underlying
undecorated random trees b̃k and b6P,Lk respectively. To prove that b̃k

d
= b6P,Lk , we compare both

distributions with that of a uniform labeled plane binary tree with k leaves bP,Lk . Since every
non-plane labeled binary tree with k leaves can be embedded in the plane in 2k−1 ways, we
have b 6P,Lk

d
= bP,Lk as non-plane unlabeled trees (there are no symmetry problems, since trees are

labeled). On the other hand, since every plane unlabeled binary tree with k leaves can be labeled
in k! ways, we have b̃k

d
= bP,Lk as non-plane unlabeled trees (again, there are no symmetry

problems, since trees are plane). We conclude that b̃k,p
d
= b 6P,Lk,p , as wanted. �

3. PROOF OF THE SUBLINEARITY RESULTS THROUGH SELF-SIMILARITY

The main part of the proof of our sublinearity results (Theorems 1.9 and 1.10) is done in the
continuous world, proving that the independence number α̃(W p) of the Brownian cographon is
almost surely equal to 0. To this end, we first show that the distribution of α̃(W p) is solution of a
specific inequation – this is Proposition 3.1. Next, we prove that the only solution of this inequa-
tion is the Dirac distribution δ0 – this is Proposition 3.2. All results are gathered in Section 3.3,
completing the proofs of Theorems 1.9 and 1.10.

3.1. An inequation in distribution. We use the standard stochastic domination order between
real distributions µ and ν. Namely, we write µ ≤d ν if µ([x,+∞)) ≤ ν([x,+∞)) for every real
x. By Strassen’s Theorem, this is equivalent to the fact that we can findZ1 andZ2 defined on the
same probability space with distributions µ and ν respectively, such that Z1 ≤ Z2 almost surely.

Our goal is now to show that the distribution of the random variable α̃(W p) is stochastically
dominated by another distribution, involving some independent copies of α̃(W p) (we refer to
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such a relation as an inequation in distribution3). To this end, we use Aldous’ decomposition
of a Brownian excursion into three independent excursions (see Fig. 2). This decomposition
has an immediate counterpart, where we decompose a Brownian cographon into three indepen-
dent Brownian cographons. We then look closely at the behavior of the functional α̃ along this
decomposition.

We introduce the notation needed to state this inequation in distribution. For a random variable
Y , let us denote by Law(Y ) its distribution. Recall that, for positive real numbers α1, . . . , αk, the
Dirichlet distribution Dirichlet(α1, . . . , αk) is a probability measure on the simplex {(x1, · · · , xk) :
x1 + · · · + xk = 1, xi ≥ 0 for all i}: by definition it has density proportional to

∏
i≤k x

αi
i with

respect to the Lebesgue measure.
Let µ be a probability distribution and p a parameter in [0, 1]. We define the following random

variables:
• (∆0,∆1,∆2) is a random vector in [0, 1]3 with distribution Dirichlet(1/2, 1/2, 1/2);
• Xµ

0 ,Xµ
1 andXµ

2 are three independent random variables of distribution µ, and indepen-
dent from (∆0,∆1,∆2);
• B is a Bernoulli(1−p) random variable, independent from (∆0,∆1,∆2,X

µ
0 ,X

µ
1 ,X

µ
2 );

• finally, we set

Y µ
0 = ∆0X

µ
0 + ∆1X

µ
1 + ∆2X

µ
2

Y µ
1 = ∆0X

µ
0 + max(∆1X

µ
1 ,∆2X

µ
2 )

Y µ
(p) = BY µ

1 + (1−B)Y µ
0(8)

Φp(µ) = Law(Y µ
(p))

Then the inequation we are interested in is

(9) µ ≤d Φp(µ).

Proposition 3.1. For p ∈ [0, 1], the distribution µ of α̃(W p) satisfies the inequation (9).

Proof. Fix p ∈ [0, 1] and let (e,Sp) be a decorated Brownian excursion. Let U1 < U2 be
a reordered pair of independent and uniform random variables on [0, 1], chosen independently
from (e,Sp). Almost surely, the function e reaches its minimum on [U1,U2] exactly once, and at
a local minimum. Let us denote by s the sign of this local minimum in Sp. Let b be the position
where this local minimum is reached (see Fig. 2). Let also

a = max{t ≤ U1, e(t) = e(b)}, c = min{t ≥ U2, e(t) = e(b)}.

Set

(10) ∆0 = 1− c+ a, ∆1 = b− a, ∆2 = c− b, X0 =
a

∆0

, B = s.

We may now cut the excursion e into three excursions, in the manner prescribed by Aldous
[Ald94].

3We use the term inequation and not inequality, because the upper bound also involves the distribution of α̃(W p).
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0 11U1 U2baa c

∆1

∆2

∆0

FIGURE 2. A stylized version of a Brownian excursion and the corresponding
a, b, c,∆0,∆1,∆2.

(11)

η0(x) = ∆0 x+ (1−∆0)1[x>X0], x ∈ [0, 1], e0 =
1√
∆0

e ◦ η0

η1(x) = a+ ∆1 x, x ∈ [0, 1], e1 =
1√
∆1

(e ◦ η1 − e(b))

η2(x) = b+ ∆2 x, x ∈ [0, 1], e2 =
1√
∆2

(e ◦ η2 − e(b))

Then [Ald94, Corollary 3] states that the random functions e0, e1, e2 are three independent Brow-
nian excursions, independent from the vector (∆0,∆1,∆2); moreover, the latter has distribution
Dirichlet(1/2, 1/2, 1/2).

In addition the piecewise affine maps (ηi)0≤i≤2 naturally put the local minima of e (except the
one at t = b) in bijection with the disjoint union of the local minima of e0, e1 and e2. (Indeed,
almost surely, e does not have a local minimum at t = a nor at t = c.) In particular, this implies
(as shown in the proof of Theorem 1.6 in [Maa19], see in particular Observations 5.2 and 5.3
there) that

• B is a Bernoulli(1− p) random variable,
• there exist three independent i.i.d. sequences of Bernoulli(1 − p) random variables
Sp0 ,S

p
1 ,S

p
2 such that for 0 ≤ x < y ≤ 1 and k ∈ {0, 1, 2},

(12) Dec(x, y; ek,S
p
k) = Dec(ηk(x), ηk(y); e,Sp),

• the random variables e0, e1, e2, (∆0,∆1,∆2),B and the sequences Sp0 ,S
p
1 ,S

p
2 are all

independent.

Now, letW p be the Brownian cographon (of parameter p) associated with (e,Sp) (see Defini-
tion 2.1). Similarly, for k ∈ {0, 1, 2}, consider W p

k the Brownian cographon (also of parameter
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p) constructed from (ek,S
p
k), i.e.

W p
k : [0, 1]2 → {0, 1}

(x, y) 7→ Dec(x, y; ek,S
p
k).

These three random graphons form a triple of i.i.d. random graphons, independent from the
random variablesB and (∆0,∆1,∆2).

Let I be an independent set of W p. For each k = 0, 1, 2, denote by Ak the image of [0, 1] by
ηk, namely,A0 = [0,a] ∪ [c, 1],A1 = [a, b] andA2 = [b, c]. Define Ik as follows:

Ik = η−1k (I ∩Ak) , k ∈ {0, 1, 2}.
Since the images of the affine injective maps (ηk)k∈{0,1,2} partition [0, 1] up to measure-negligible
overlaps,

(13) Leb(I) = ∆0Leb(I0) + ∆1Leb(I1) + ∆2Leb(I2).

Since I is an independent set of W p, Eq. (12) implies that Ik is an independent set of W p
k for

every k ∈ {0, 1, 2}. In particular, Leb(Ik) ≤ α̃(W p
k ). Moreover, we notice that if B = 1, then

either Leb(I1) = 0 or Leb(I2) = 0 (by definition of independent set in a graphon). Together with
Eq. (13), we deduce

Leb(I) ≤∆0α̃(W p
0 )+Bmax

(
∆1α̃(W p

1 ),∆2α̃(W p
2 )
)

+(1−B)
(
∆1α̃(W p

1 )+∆2α̃(W p
2 )
)
.

From Eq. (4) p.9, taking the supremum over independent sets I of α̃(W p), one obtains the
following a.s. inequality

α̃(W p) ≤∆0α̃(W p
0 )+Bmax

(
∆1α̃(W p

1 ),∆2α̃(W p
2 )
)

+(1−B)
(
∆1α̃(W p

1 )+∆2α̃(W p
2 )
)
.

Since α̃(W p
k ) has the same distribution as α̃(W p) for k ∈ {0, 1, 2}, and the three are in-

dependent, the right-hand-side is a random variable distributed as Y Law(α̃(W p))
(p) , proving that

Law(α̃(W p)) satisfies Eq. (9). �

3.2. Solving the inequation.

Proposition 3.2. For p in [0, 1), the Dirac distribution µ = δ0 is the only probability distribution
on [0, 1] solution of the inequation (9).

We start by stating and proving a key lemma. Recall the definition of Φp(µ) from (9). The
map Φp is a functional from the spaceM1([0, 1]) of probability distributions on [0, 1]. The space
M1([0, 1]) can be endowed with the so-called Wasserstein distance (also called optimal cost
distance, or Kantorovich-Rubinstein distance):

dW (ν, ν ′) = inf
X,X′:X∼ν,X′∼ν′

E[|X −X ′|],

where the infimum is taken over all pairs (X,X ′) of random variables defined on the same
probability space with distributions ν and ν ′, respectively. We will use below the fact that this
infimum is reached (for an explicit expression of the minimizing coupling see e.g. Remark 2.30
in [PC19]).
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Furthermore since we are working on a compact space, convergence for dW is equivalent to
weak convergence of measures (see [Vil08, Sec.6]).

Lemma 3.3. For p ∈ [0, 1), the map Φp is a weak contraction for dW , i.e. for measures µ and ν
inM1([0, 1]) with µ 6= ν, we have dW (Φp(µ),Φp(ν)) < dW (µ, ν).

Proof. Let µ and ν be probability distributions on [0, 1]. We choose a pair (Xµ
0 ,X

ν
0 ) of ran-

dom variables of distribution µ and ν respectively such that E[|Xµ
0 − Xν

0 |] = dW (µ, ν) (as
mentioned above, such a coupling always exists). We then let (Xµ

1 ,X
ν
1 ) and (Xµ

2 ,X
ν
2 ) be inde-

pendent copies of (Xµ
0 ,X

ν
0 ). Finally, we let (∆0,∆1,∆2) be a random vector with distribution

Dirichlet(1/2, 1/2, 1/2) independent from (Xµ
i ,X

ν
i )i≥2, andB a Bernoulli(1−p) random vari-

able, independent from (∆0,∆1,∆2, (X
µ
i ,X

ν
i )i≥2).

As in (8), we define Y µ
(p) and Y ν

(p) on the same probability space and coupled in a non-trivial
way: we use the same vector (∆0,∆1,∆2) and Bernoulli variableB for both Y µ

(p) and Y ν
(p).

Then we have

(14) E
[
|Y µ

0 − Y ν
0 |
]
≤

2∑
i=0

E
[
∆i

]
E
[
|Xµ

i −Xν
i |
]

=

(
2∑
i=0

E
[
∆i

])
dW (µ, ν) = dW (µ, ν),

where we used successively the fact that ∆i is independent from (Xµ
i ,X

ν
i ), the fact that the

coupling Xµ
i ,X

ν
i minimizes their L1 distance and the fact that

∑2
i=0 ∆i = 1 almost surely. We

also have
(15)
E
[
|Y µ

1 −Y ν
1 |
]
≤ E

[
∆0

]
E
[
|Xµ

0 −Xν
0 |
]
+E
[∣∣max(∆1X

µ
1 ,∆2X

µ
2 )−max(∆1X

ν
1 ,∆2X

ν
2 )
∣∣].

We recall the trivial inequality |max(a, b)−max(c, d)| ≤ max(|a−c|, |b−d|) ≤ |a−c|+ |b−d|.
Besides, the second inequality is strict as soon as a 6= c and b 6= d. Taking

a = ∆1X
µ
1 , b = ∆2X

µ
2 , c = ∆1X

ν
1 , d = ∆2X

ν
2 ,

we obtain that, almost surely,∣∣max(∆1X
µ
1 ,∆2X

µ
2 )−max(∆1X

ν
1 ,∆2X

ν
2 )
∣∣ ≤∆1|Xµ

1 −Xν
1 |+ ∆2|Xµ

2 −Xν
2 |.

Moreover, since µ 6= ν, we have that Xµ
1 6= Xν

1 with positive probability. The same holds for
Xµ

2 6= Xν
2 , and, by independence, both inequalities occur simultaneously with positive proba-

bility. Since ∆1 and ∆2 are positive almost surely, we have that a 6= c and b 6= d simultaneously
with positive probability. We conclude that the above inequality is strict with positive probability.
Taking expectation and using Eq. (15), we get

(16) E
[
|Y µ

1 − Y ν
1 |
]
<

2∑
i=0

E
[
∆i

]
E
[
|Xµ

i −Xν
i |
]

= dW (µ, ν),
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where the last equality is taken from (14). Finally,

dW (Φp(µ),Φp(ν)) ≤ E[|Y µ
(p) − Y

ν
(p)|]

= P(B = 1)E
[
|Y µ

(p) − Y
ν
(p)| | B = 1

]
+ P(B = 0)E

[
|Y µ

(p) − Y
ν
(p)| | B = 0

]
= (1− p)E

[
|Y µ

1 − Y ν
1 |
]

+ pE
[
|Y µ

0 − Y ν
0 |
]
.

The lemma thus follows from Eqs. (14) and (16) and the fact that p 6= 1. �

Proof of Proposition 3.2. We first note that Φp is nondecreasing with respect to stochastic dom-
ination, namely if µ ≤d ν then Φp(µ) ≤d Φp(ν). Therefore, if µ is a solution of the inequation
µ ≤d Φp(µ) (Inequation (9)), we have Φp(µ) ≤d Φ2

p(µ), and, iterating, we get µ ≤d Φp(µ) ≤d
· · · ≤d Φk

p(µ) for all k ≥ 1.
Moreover the Dirac distribution δ0 is a fixed point of Φp. Since Φp is a weak contraction

by Lemma 3.3 and sinceM1([0, 1]) is compact, we know from Banach fixed-point theorem that
Φk
p tends to δ0 in distribution. Combined with µ ≤d Φk

p(µ), this forces µ = δ0 for any probability
distribution µ on [0, 1] verifying (9), which is what we wanted to prove. �

3.3. Completing the proof of the sublinearity results. Propositions 3.1 and 3.2 imply the fol-
lowing result, which is the core of the proofs of our sublinearity results (Theorems 1.9 and 1.10).

Theorem 3.4. For p in [0, 1), we have α̃(W p) = 0 almost surely.

We now proceed with the proofs of our sublinearity results.

Proof of Theorem 1.9. Let p ∈ [0, 1) and consider a sequence (Gn) of random graphs which
converges to the Brownian cographon W p. By Skorokhod representation theorem, we can rep-
resent allGn andW p on the same probability space so thatGn converges toW p almost surely.
Applying Proposition 2.3, we get that, a.s.,

lim sup
n→∞

1
n
α(Gn) = lim sup

n→∞
α̃(WGn) ≤ α̃(W p),

By Theorem 3.4, the upper bound is 0 a.s. Thus, 1
n
α(Gn) converges to 0 a.s. and hence in

probability. �

Proof of Theorem 1.10. Recall that, for any permutation σ, there is a one-to-one correspondence
between increasing subsequences of σ and independent sets of inv(σ). In particular, one has
LIS(σ) = α(inv(σ)).

Consider now a sequence σn of random permutations tending to the Brownian separable per-
muton µp for p ∈ [0, 1). By Proposition 2.7, the sequence inv(σn) converges to the Brown-
ian cographon W p. Applying Theorem 1.9 gives that α(inv(σn))

n
tends to 0 in probability. But

α(inv(σn))
n

= LIS(σn)
n

a.s., concluding the proof. �

4. ON THE NUMBER OF INDEPENDENT SETS OF A GIVEN SIZE

For k ≤ n let Xn,k be the random variable given by the number of independent sets of size k
in a uniform cograph of size n. The goal of this section is to prove Theorem 1.3, i.e. to estimate
E[Xn,k] in the case where k grows linearly in n.
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The first step of the proof is to obtain equations for the exponential generating series of
cographs with a marked independent set, through symbolic combinatorics. To this aim, it is
convenient to encode cographs by their cotrees. The asymptotic analysis is then performed via
saddle-point analysis.

4.1. Combinatorial preliminaries: cographs and cotrees.

Definition 4.1. A labeled cotree of size n is a rooted tree t with n leaves labeled from 1 to n such
that:

• t is not plane, (i.e. the children of every internal node are not ordered);
• every internal node has at least two children;
• every internal node in t is decorated with a 0 or a 1;
• decorations 0 and 1 should alternate along each branch from the root to a leaf.

An unlabeled cotree of size n is a labeled cotree of size n where we forget the labels on the leaves.

Remark 4.2. In [BBF+19], the objects above were called canonical cotrees, the cotrees therein
being defined relaxing the last condition above. In the current paper, we only use cotrees where
decorations 0 and 1 do alternate, hence we return to the usual terminology, calling them simply
cotrees.

For an unlabeled cotree t, we denote by Cograph(t) the unlabeled graph defined recursively as
follows (see an illustration in Fig. 3):

• If t consists of a single leaf, then Cograph(t) is the graph with a single vertex.
• Otherwise, the root of t has decoration 0 or 1 and has subtrees t1, . . . , td attached to it

(d ≥ 2). Then, if the root has decoration 0, we let Cograph(t) be the disjoint union
of Cograph(t1), . . . , Cograph(td). Otherwise, the root has decoration 1, and we let
Cograph(t) be the join of Cograph(t1), . . . , Cograph(td).

1

2
3

4

5
6

7

8

1 8

24

35

67

0

11

0

FIGURE 3. Left: A labeled cotree t with 8 leaves. Right: The associated labeled
cograph Cograph(t) of size 8.

Note that the above construction naturally entails a one-to-one correspondence between the
leaves of the cotree t and the vertices of its associated graph Cograph(t). Therefore, it maps the
size of a cotree to the size of the associated graph. Another consequence is that we can extend the
above construction to a labeled cotree t, and obtain a labeled graph (also denoted Cograph(t)),
with vertex set {1, . . . , n}: each vertex of Cograph(t) receives the label of the corresponding leaf
of t.
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By construction, for all cotrees t, the graph Cograph(t) is a cograph. Conversely, each cograph
can be obtained in this way, and this correspondence is one-to-one. This property is ensured
by the alternation of decorations 0 and 1 in cotrees. This was first shown in [CLS81]. The
presentation of [CLS81], although equivalent, is however a little bit different, since cographs are
generated using exclusively “complemented unions” instead of disjoint unions and joins. The
presentation we adopt has since been used in many algorithmic papers, see e.g. [HP05, BCH+08].

From a graph G, the unique cotree t such that Cograph(t) = G is recursively built as follows.
If G consists of a single vertex, t is the unique cotree with a single leaf. If G has at least two
vertices, we distinguish cases depending on whether G is connected or not.

• If G is not connected, the root of t is decorated with 0 and the subtrees attached to it are
the cographs associated with the connected components of G.
• If G is connected, the root of t is decorated with 1 and the subtrees attached to it are

the cographs associated with the induced subgraphs of G whose vertex sets are those of
the connected components of Ḡ, where Ḡ is the complement of G (graph on the same
vertices with complement edge set).

Important properties of cographs which justify the correctness of the above construction are the
following: cographs are stable by induced subgraph and by complement, and a cographG of size
at least two is not connected exactly when its complement Ḡ is connected.

Remark 4.3. The transformation which switches every decoration 1↔ 0 in a cotree is of course
an involution. Moreover, it turns independent sets into cliques in the corresponding cograph
(indeed {v, v′} is an edge in Cograph(t) if and only if the first common ancestor of the corre-
sponding leaves of t has decoration 1). This proves that for every n, if Gn denotes a uniform
random cograph (either labeled or unlabeled) of size n, then

(17) α(Gn)
(d)
= ω(Gn),

where ω(G) is the maximal size of a clique in the graph G.

4.2. Proof of Theorem 1.3: Enumeration. LetL be the combinatorial family of labeled cotrees
for which we forget decorations, counted by the number of leaves. Let L(z) denote the corre-
sponding exponential generating function. The series L(z) =

∑
`∈L z

|`|/|`|! is the unique formal
power series without constant term solution of

(18) L(z) = z + eL(z) − 1− L(z).

(The enumeration of L is provided in [FS09, Example VII.12 p.472] under the name of labeled
hierarchies, see also [BBF+19] Propositions 5.1 and 5.4.)

Next we consider pairs (G, I), where G is a (labeled) cograph and I an independent set of
G. We see such a pair as a marked cograph. Let us consider the associated bivariate generating
function

C(z, u) =
∑

(G,I) :G cograph,
I⊆VG independent

1

|VG|!
z|VG|u|I|.
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Note that if G is reduced to a single vertex • we have (G, I) = (•,∅) or (•, {•}), therefore

(19) C(z, u) = z + zu+ C0(z, u) + C1(z, u),

where C0(z, u) (resp C1(z, u)) is the bivariate series of the set C0 (resp. C1) of marked cographs
(necessarily of size ≥ 2) for which the root of the associated cotree is decorated with a 0 (resp.
a 1). We have L(z) = z + C0(z, 0) = z + C1(z, 0). Indeed when the decoration of the root is
fixed, the other decorations are then determined by the alternation condition.

Proposition 4.4 (Functional equations for C0, C1).
i) A relation between the series C0(z, u) and C1(z, u) is given by

(20) C0(z, u) = ez(1+u)+C1(z,u) − 1− z(1 + u)− C1(z, u),

ii) and the series C1(z, u) is a solution of

(21) C1(z, u) = eL(z) − 1− L(z) + (eL(z) − 1)
(
ez(1+u)+C1(z,u) − 1− C1(z, u)− L(z)

)
.

In the proof below, we make use of the notation exp≥k(x) :=
∑

i≥k
xi

i!
.

Proof. When a cotree T has its root r decorated by a 0, if we denote by (Ti) the subtrees rooted
at the children of r, then the cographG associated with T is the disjoint union of the cographsGi

corresponding to the Ti. An independent set of G is then the union of independent sets chosen in
each of the Gi. Recall also that by definition of cotrees, r has at least two children.

Therefore the marked cographs for which the root of the associated cotree is decorated with a
0 can be described as a multiset of at least two elements chosen between (•,∅), (•, {•}) and the
elements of C1.

Using the symbolic method for labeled structures [FS09], we get the equation

C0(z, u) = exp≥2 (z + zu+ C1(z, u)) = ez(1+u)+C1(z,u) − 1− z(1 + u)− C1(z, u),

which is Eq. (20).
When on the contrary a cotree T has its root r decorated by a 1, if we denote again by (Ti)

the subtrees rooted at the children of r, then the cograph G associated with T is the join of the
cographs Gi corresponding to the Ti. An independent set of G must then be an independent set
chosen in one of the Gi only (and the other children of r do not contribute to this independent
set).

Let C∅ denote the set of cographs without mark and whose cotree does not have a root deco-
rated by a 1, i.e. C∅ is the set consisting in (•,∅) and the elements of C0 marked with an empty
independent set. Then, we distinguish two cases to describe the elements of C1 (marked cographs
for which the root of the associated cotree is decorated with a 1). Either they are marked with
an empty independent set, and in this case they can be described as multisets of at least two
elements of C∅. Or they are marked with a nonempty independent set, and they can be described
as the pairs consisting of

• a cograph which is either (•, {•}) or an element of C0 marked with a nonempty indepen-
dent set (for the graph Gi containing the independent set); and
• a multiset of at least one element of C∅ (for the other graphs Gi).
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We get the equation

C1(z, u) = exp≥2 (z + C0(z, 0)) + (zu+ C0(z, u)− C0(z, 0))× exp≥1 (z + C0(z, 0)) .

Thus, by eliminating C0(z, u) and using that L(z) = z + C0(z, 0), we obtain Eq. (21). �

4.3. Proof of Theorem 1.3: main asymptotics - Proof of Eq.1 p.3. From [FS09, Example
VII.12 p.472] the series L(z) has radius of convergence ρ = 2 log(2) − 1 and is ∆-analytic.
Moreover the following expansion holds at z = ρ:

(22) L(z) =
z→ρ

log(2)−√ρ
√

1− z
ρ

+O(1− z
ρ
).

Eq. (22) combined with the transfer theorem [FS09, Cor.VI.1] yields

(23) [zn]L(z) ∼
√

2 log 2− 1

4π
ρ−n n−3/2.

Fix u ∈ C. The overall strategy is to perform saddle-point analysis with C1(z, u). To do so
we rewrite Eq. (21) as C1(z, u) is solution of C = G(z, C, u) where

G(z, c, u) = eL(z) − 1− L(z) + (eL(z) − 1)
(
ec+z(1+u) − 1− c− L(z)

)
.

We will show that this almost fits the settings of the so-called smooth implicit-function schema
(see [FS09, Sec. VII.4.1]), only the nonnegativity of the coefficients of G is not verified here.
Nevertheless, we shall prove that sufficient conditions for the validity of [FS09, Thm. VII.3
p.468] are satisfied.

Analyticity:
Observe that for every u ∈ C the bivariate series (z, c) 7→ G(z, c, u) is analytic for |z| < ρ and
c ∈ C.

Solution of the characteristic system:
We use the notational convention that, for any function H and variable t, Ht denotes the partial
derivative of H with respect to t.

We consider the characteristic system

(24) G(r, s, u) = s, Gc(r, s, u) = 1,

namely

eL(r) − 1− L(r) + (eL(r) − 1)
(
es+r(1+u) − 1− s− L(r)

)
= s,(25)

(eL(r) − 1)
(
es+r(1+u) − 1

)
= 1.(26)

We aim at proving that, for any u > 0, it admits a unique solution (r, s) = (r(u), s(u)) with
0 < r < ρ and 0 < s. Below, we often use that the radius of convergence ρ of L(z) satisfies
ρ = 2 log(2)− 1 and L(ρ) = log(2).

We observe that if we substitute Eq. (26) into Eq. (25) we obtain that

(27) s = 1− L (r) .
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Then Eq. (26) can be rewritten as

(28) F (r, u) = 0 with F (x, u) = (eL(x) − 1)(e1−L(x)+x(1+u) − 1)− 1.

We have

Fx(x, u) =
(
L′(x)eL(x) +

(
1 + u− L′(x)

)
(eL(x) − 1)

)
e1−L(x)+x(1+u) − L′(x)eL(x).

= (1 + u)(eL(x) − 1)e1−L(x)+x(1+u) + L′(x)
(
e1−L(x)+x(1+u) − eL(x)

)
.

Fix u > 0. For 0 < x ≤ ρ, one has

1− L(x) + x(1 + u) > 1− L(x) + x ≥ L(x)

(indeed one has equality for x = ρ and 2L(x)−x is increasing), so that Fx(x, u) > 0. Therefore,
the function F is increasing with x on the interval [0, ρ]. Since F (0, u) = −1 and F (ρ, u) >
F (ρ, 0) = 0, Eq. (28) admits a unique solution r such that 0 < r < ρ.

From Eq. (27), we have s = 1−L(r). Since L is increasing and r < ρ, we have s > 1−L(ρ) =
1− log(2) > 0.

We conclude that for u > 0, the charateristic system (24) has a unique positive solution
r(u), s(u) in the analyticity domain of G.

Locating the singularity of C1(z, u):
Fix u > 0. To obtain the singular behavior of C1(z, u) as in [FS09, Thm. VII.3 p.468] despite
the negativity of some coefficients of G, we see from [FS09, Note VII.16 p.471] that it is enough
to show the following: C1(z, u) has radius of convergence r(u) and its value at this singularity
is given by C1(r(u), u) = s(u), i.e. the dominant singularity of C1(z, u) corresponds to the
solution of the characteristic system.

The argument to prove this is an adaptation of that in [FS09, p.468] to our setting where
G has some negative coefficients but a larger analyticity region than what is usually assumed.
Namely, our G is analytic on the whole domain {|z| < ρ, c ∈ C}, while the smooth implicit-
function schema only assumes analyticity on {|z| < R, |c| < S} (with the notation of [FS09,
Sec. VII.4.1]). Let us denote temporarily ρ(u) the radius of convergence of C1(z, u), which is a
singularity of C1(z, u) from Pringsheim’s theorem.

We first show that ρ(u) ≥ r(u). We proceed by contradiction, and assume ρ(u) < r(u). We
set σ(u) = C1(ρ(u), u) and distinguish two cases.

• Assume σ(u) < +∞. Then, since C1(z, u) is a solution of C = G(z, C, u), we have
σ(u) = G(ρ(u), σ(u), u). By uniqueness of the solution of the characteristic system, we
necessarily have Gc(ρ(u), σ(u), u) 6= 1 . Therefore, using the analytic implicit function
lemma [FS09, Lemma VII.2, p.469], C1(z, u) can be extended analytically in a neigh-
bourhood of ρ(u), contradicting the fact that ρ(u) is a singularity of C1(z, u).
• If σ(u) = +∞, one checks easily that the function z 7→ Gc(z, C1(z, u), u) tends to +∞

when z tends to ρ(u). But for z = 0, we have Gc(0, C1(0, u), u) = 0. The intermediate
value theorem ensures the existence of z1 in (0, ρ(u)) such that Gc(z1, C1(z1, u), u) = 1.
This gives an other solution (z1, C1(z1, u)) of the characteristic system, contradicting the
uniqueness of the solution.
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We have reached a contradiction in both cases, proving that ρ(u) ≥ r(u).
This allows us to consider C1(r(u), u) (which is possibly infinite), and we assume for the sake

of contradiction that C1(r(u), u) 6= s(u). Then for a < r(u) sufficiently closed to r(u) the
equation y = G(a, y, u) admits several solutions y ∈ C:

• one is given by y = C1(a, u),
• and two are obtained evaluating in a the two functions y1(z) and y2(z) given by the singu-

lar implicit function lemma [FS09, Lemma VII.3, p.469] applied to the point (r(u), s(u)).
(Note that the applicability of this lemma is guaranteed by the fact that (r(u), s(u)) is a solution
of the characteristic system and Eq. (30) below.)

From [FS09, Lemma VII.3, p.469], it is clear that the last two solutions above are distinct for
a close enough to r(u). The first one is also different from them for a close enough to r(u):
indeed, for z tending to r(u), C1(z, u) tends to C1(r(u), u) while the two other solutions tend to
s(u). However, the function y 7→ G(a, y, u) is strictly convex (one checks easily that its second
derivative is positive) and therefore cannot cross three times the main diagonal. We have reached
a contradiction. We conclude that C1(r(u), u) = s(u).

It remains to prove ρ(u) = r(u). Since (r(u), s(u)) is a solution of the characteristic system,
there is no analytic solution of the equation y = G(z, y, u) around the point (z, y) = (r(u), s(u))
(see the proof of [FS09, Lemma VII.3, p.469], where it is shown that any solution y has a series
expansion involving a square-root term and hence cannot be analytic). Therefore C1(z, u) cannot
be extended analytically to a neighbourhood of r(u). So, ρ(u) = r(u), as wanted.

Obtaining the asymptotics:
From [FS09, Sec. VII.4.1], we therefore obtain an estimate of C1(z, u) as z approaches r(u).
Namely, for every u > 0 the series C1(z, u) has a square-root singularity at r(u) and in some
∆-domain, we have

(29) C1(z, u)
z→r(u)

= s(u)− γ1(u)
√

1− z/r(u) +O(1− z/r(u))

with γ1(u) =
√

2 r(u)Gz(r(u),s(u),u)
Gcc(r(u),s(u),u)

. Note that

Gcc(r(u), s(u), u) > 0 and Gz(r(u), s(u), u) > 0,(30)

the first inequality following from the explicit expression of Gcc, and the second one from
Eq. (40) below. Also note that the determination of the sign in front of

√
1− z/r(u) uses that

C1 is increasing in z when z approaches r(u) from the left.
We now argue that the solutions (r, s) = (r(u), s(u)) of the characteristic system (24) have

analytic continuations in a neighbourhood of every u > 0. Observe thatG is analytic and that the
Jacobian matrix of the system is the following determinant (where all derivatives are evaluated
at (r(u), s(u), u)) ∣∣∣∣ Gz Gc − 1

Gcz Gcc

∣∣∣∣ =

∣∣∣∣ Gz 0
Gcz Gcc

∣∣∣∣ = GzGcc.

It is nonzero from Eq. (30). Consequently, the functions r(u), s(u) can be uniquely extended to
complex u that are sufficiently close to the positive real axis.
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By continuity we can also ensure that Gz and Gcc are non-zero. We denote by U the open set
of complex numbers u where these properties hold. By [Drm09, proof of Remark 2.20], it thus
follows that the singular representation (29) also holds for complex u ∈ U (and for z in a proper
∆-domain depending on u).

Combining relations (19) and (20) with the above development (29) of C1(z, u) near z = r(u),
we obtain

C(z, u)
z→r(u)

= r(u)(1 + u)− γ(u)
√

1− z/r(u) +O(1− z/r(u)),

where γ(u) is defined by

γ(u) = γ1(u) exp (s(u) + r(u)(1 + u)) .

Moreover since C(z, u) is aperiodic, r(u) is the unique dominant singularity of C and

(31) [zn]C(z, u)
n→+∞

=
γ(u)

2
√
π
n−3/2(r(u))−n (1 +O(1/n))

uniformly for u in a compact subset contained in U .
Now we can proceed as in [Drm94, Thm.3], with the nonnegativity of the coefficients of G re-

placed by the above variant of the smooth-implicit function schema, and obtain by an application
of a saddle point integration

(32) [znuk]C(z, u) ∼
Rk/n

n2

(
r(u(k/n))u(k/n)k/n

)−n
,

uniformly for an ≤ k ≤ bn with 0 < a < b < 1, where Rβ (0 < β < 1) is some positive
(computable) constant and u = u(β) is determined by the equation

(33) β = −u r
′(u)

r(u)
=

uGu(r(u), s(u), u)

r(u)Gz(r(u), s(u), u)
.

Indeed Eq. (33) is the rewriting of [Drm94, (2.14)] with our notation.
For u > 0, Gu(r(u), s(u), u) > 0 (differentiating the definition of G) and Gz(r(u), s(u), u) >

0 (see Eq. (40) below). So, β 7→ u(β) is the inverse of the function u 7→ β defined in Eq. (33),
which is positive for u > 0, and we deduce that u(β) > 0 for β > 0.

Finally with Eq. (23) we obtain

E[Xn,k] =
[znuk]C(z, u)

[zn]C(z, 0)
=

for n≥2

[znuk]C(z, u)

[zn]2L(z)
∼
Bk/n√
n

(Ck/n)n,

uniformly for an ≤ k ≤ bn for some Bβ > 0 and with

(34) Cβ :=
2 log(2)− 1

r(u(β))u(β)β
.

concluding the proof of Eq. (1) (page 3).
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4.4. Proof of Theorem 1.3: Estimates (i) and (ii). Now we want to establish that there exists
β0 > 0 such that for any β ∈ (0, β0), Cβ > 1 proving the exponential growth of E[Xn,bβnc] for
these values of β. The main trick is a parametrization of the quantities involved in the expression
of β.

It turns out that everything can be parametrized with y := L (r(u)). Eq. (18) p.19 becomes

(35) y = r(u) + ey − 1− y.

If we plug s(u) = 1− y into Eq. (26), we quickly derive

(36) e1+r(u)(1+u) =
e2y

ey − 1

and we can eliminate r(u) thanks to Eq. (35): we obtain

(37) u =
ey − 2− log(ey − 1)

2y + 1− ey
.

Using the notation y(β) = L (r(u(β))) we get from Eq. (37) and Eq. (35):

u(β) =
ey(β) − 2− log(ey(β) − 1)

2y(β) + 1− ey(β)
,(38)

r(u(β)) = 2y(β) + 1− ey(β).(39)

Finally, we use Eq. (33) to write β as a function of y(β). As a first step in deriving this
expression of β, we use Eqs. (24) and (25) defining G, and then Eqs. (27), (35) and (36) to obtain

Gu (r(u), s(u), u) = (eL(r(u)) − 1)es(u)+r(u)(1+u)r(u)

= (ey − 1)
ey

ey − 1
(2y + 1− ey) = ey(2y + 1− ey).

For the next step, we focus on Gz (r(u), s(u), u). Using Eqs. (18), (27) and (35), we start by
observing that

L′(z) =
1

2− eL(z)
, es(u)+r(u)(1+u) =

ey

ey − 1
, 1 + s(u) + y = 2.

Therefore, with the shorter notation L := L(r(u)), L′ := L′(r(u)), r := r(u), s := s(u), we
have

Gz (r(u), s(u), u) = (eL − 1)L′ + eLL′
(
es+r(1+u) − 1− s− L

)
+ (eL − 1)

(
es+r(1+u)(1 + u)− L′

)(40)

=
�
�
��ey − 1

2− ey
+

ey

2− ey
×
(

ey

ey − 1
− 2

)
+ (ey − 1)×

(
ey

ey − 1
(1 + u)−

�
�
��1

2− ey

)
(41)

=
ey

2− ey
×
(

ey

ey − 1
− 2

)
+�����(ey − 1)×

(
ey

����ey − 1
(1 + u)

)
(42)

=
ey

����2− ey
×����2− ey

ey − 1
+ ey(1 + u) =

ey

ey − 1
+ ey(1 + u).(43)
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Setting u = u(β) in the above, we obtain, using Eq. (38),

Gz (r(u(β)), s(u(β)), u(β)) =
ey(β)

ey(β) − 1
+ ey(β)

2y(β)− 1− log(ey(β) − 1)

2y(β) + 1− ey(β)
.

Recalling Eqs. (33) and (39) and putting everything together we can write β as an explicit
function of y := y(β):

(44) β =
(ey − 2− log(ey − 1)) (ey − 1)

2y + 1− ey + (ey − 1)(2y − 1− log(ey − 1))

Combining Eq. (34) with Eqs. (38), (39) and (44), we can therefore express Cβ as an explicit
function of y(β), or as a function of β (inverting numerically Eq. (44)). See Fig. 1 p.6. Indeed
the relation between y ∈ (0, log 2) and β ∈ (0, 1) is monotonously decreasing and bijective from
Eq. (44). Using the Taylor expansion of the RHS of Eq. (44) around y = log(2) we obtain (see
the jupyter notebook mentioned below)

(45) β =
(y − log(2))2

2 log(2)− 1
+O((y − log(2))3).

Plugging this estimate in the Taylor expansion of Eqs. (38) and (39) around y = log(2) we obtain

r(u(β)) = 2 log(2)− 1− (y − log(2))2 +O((y − log(2))3)

= 2 log(2)− 1 + (1− 2 log(2))β +O(β3/2),

u(β) =
2

2 log(2)− 1
(y − log(2))2 +O((y − log(2))3)

= 2β +O(β3/2).

From Eq. (34) we deduce Theorem 1.3 item (ii):

Cβ =
2 log(2)− 1

r(u(β))u(β)β
= 1 + β| log(β)|+ o(β log(β))

when β → 0.
In particular, this proves Cβ > 1 for β ∈ (0, β0) for some β0 > 0. Numerically, we obtain the

estimate β0 ≈ 0.522677 . . . ; we furthermore observe numerically that Cβ reaches its maximum
at β? ≈ 0.229285 . . .

Details on the computations above are provided in a jupyter notebook embedded into this pdf
(alternatively you can download the source of the arXiv version to get the files). We provide both
an html read-only version and an editable ipynb version for the reader’s convenience.

5. ASYMPTOTIC RESULTS FOR SEPARABLE PERMUTATIONS

We now discuss the proof of Theorem 1.8, the analog of Theorem 1.3 for separable permuta-
tions. We start with some definitions.

Given two permutations, π of size k and τ of size `, the sum (resp. skew-sum) of π and τ ,
denoted ⊕[π, τ ] (resp. 	[π, τ ]) is the permutation σ of size k + ` such that

• for 1 ≤ i ≤ k, σ(i) = π(i) (resp. σ(i) = `+ π(i)), and
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• for 1 ≤ i ≤ `, σ(k + i) = k + τ(i) (resp. σ(k + i) = τ(i)).

Sums and skew-sums readily extend to more than two permutations, writing ⊕[π, . . . , τ, ρ] =
⊕[π, · · · ⊕ [τ, ρ]] (and similarly for 	).

As mentioned in Section 1.2, separable permutations are those which can be obtained from
permutations of size 1 performing sums and skew-sums. This is similar to the characterization of
cographs as the graphs obtained using the join and disjoint union construtions, from graphs with
one vertex. And similarly to the description of cographs through their cotrees, this allows to as-
sociate a tree with each separable permutation. (This is actually a special case of the construction
which associate with each permutation, not necessarily separable, its substitution decomposition
tree – see e.g. [BBF+19b, Section 1.1]).

There are actually several presentations of this correspondence between separable permuta-
tions and trees. The one which is suitable here is presented in [BBF+18, Section 2.2], and we
borrow our terminology from there.

Definition 5.1. A signed Schröder tree where the signs alternate of size n is a rooted tree t with
n leaves such that:

• t is plane (i.e. the children of every internal node are ordered);
• every internal node has at least two children;
• every internal node in t is decorated with ⊕ or 	;
• decorations ⊕ and 	 should alternate along each branch from the root to a leaf.

An important difference with cotrees is that the above trees are plane, while cotrees are not
plane.

We can associate to a signed Schröder tree where the signs alternate a permutation perm(t) of
the same size, as follows.

• If t consists of a single leaf, then perm(t) is the permutation of size 1.
• Otherwise, the root of t has decoration ⊕ or 	 and has subtrees t1, . . . , td attached to it

(d ≥ 2), in this order from left to right. Then, if the root has decoration⊕, we let perm(t)
be ⊕[perm(t1) . . . , perm(td)]. Otherwise, the root has decoration 	, and we let perm(t)
be 	[perm(t1), . . . , perm(td)].

Proposition 5.2. The correspondence presented above between separable permutations and
signed Schröder trees where the signs alternate is one-to-one.

For a proof of this statement, we refer to [BBF+18, Proposition 2.13] – see also the references
given in [BBF+18].

We can now move to the proof of Theorem 1.8. The strategy is the same as in the proof of
Theorem 1.3, using the encoding of separable permutations by their signed Schröder trees where
the signs alternate, instead of the encoding of cographs by their cotrees. We therefore only sketch
the computations here. Details are provided in the attached jupyter notebook.

The proof involves the generating function S	 := S	(z, u) (resp. S⊕ := S⊕(z, u)) counting
separable permutations which can be decomposed as a skew-sum (resp. sum) marked with an
increasing subsequence.
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We denote by S := S(z) the solution of S = z + S2/(1 − S). Equivalently, S is the series
of Schröder trees (i.e., plane trees where internal nodes have at least two children) counted by
leaves. Unlike in the case of cographs, the series S is explicit here, namely it holds that S(z) =
(1 + z −

√
1− 6z + z2)/4. Its radius of convergence is ρ = 3 − 2

√
2 and we have S(ρ) =

(2−
√

2)/2.
The analogs of Eqs. (20) and (21) p.20 are thenS	 = S2

1−S +
(

(S	+z+zu)2

1−(S	+z+zu) + zu+ z − S
)
×
(

1
(1−S)2 − 1

)
,

S⊕ = (S	+z+zu)2

1−(S	+z+zu) .

Indeed an element counted by S⊕ can be described as a sequence of at least two elements chosen
between (•,∅), (•, {•}) and the elements counted by S	, leading to the second equation. More-
over, S⊕+ zu+ z counts marked trees whose root is not 	, while S counts trees marked with an
empty increasing sequence where we forgot signs.

Fix u > 0. In order to perform saddle-point analysis with S	 we rewrite the first equation of
the previous system as S	 is solution of S	 = G(z, S	, u) where

(46) G(z, c, u) =
S2(z)

1− S(z)
+

(
(c+ z + zu)2

1− (c+ z + zu)
+ zu+ z − S(z)

)
×
(

1

(1− S(z))2
− 1

)
Again this almost fits the settings of the smooth implicit-function schema, only the nonnega-

tivity of the coefficients of G is not verified here. And, as we shall see, sufficient conditions for
the validity of [FS09, Thm. VII.3 p.468] similar to the cograph case are satisfied.

Note that the bivariate series (z, c) 7→ G(z, c, u) is analytic on {(z, c) : |z| < ρ, c+z+zu < 1}.
Moreover the characteristic system,

(47) G(r, s, u) = s, Gc(r, s, u) = 1,

can be worked out and its solutions satisfy either

(r1, s1) =

(
1

1 + u
(2S(r1)− 2

√
2S(r1)− S(r1)2 + 1),−2S(r1) +

√
2S(r1)− S(r1)2

)
or

(r2, s2) =

(
1

1 + u
(2S(r2) + 2

√
2S(r2)− S(r2)2 + 1),−2S(r2)−

√
2S(r2)− S(r2)2

)
.

Since s2 < 0, we focus on solutions of the first kind. A simple function analysis shows that, for
any u > 0, there is a unique r1 in (0, ρ) satisfying

r1 =
1

1 + u
(2S(r1)− 2

√
2S(r1)− S(r1)2 + 1).
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This proves that for u > 0, the characteristic system (47) has a unique positive solution (r(u), s(u)).
Moreover, with y := S (r(u)) we have

r(u) =
1

u+ 1

(
2y − 2

√
2y − y2 + 1

)
,(48)

s(u) = −2y +
√

2y − y2 ,(49)

u =
2 (1− y)

√
2y − y2 − 1

2y2 − y
.(50)

One can show as in the cograph case, but comparing S	(ρ(u), u) with 1− ρ(u)(1 +u) instead
of +∞, that S	(z, u) has radius of convergence r(u) and that its value at this singularity is given
by S	(r(u), u) = s(u). Again in an analogous way to the cograph case one can verify that the
solutions (r, s) = (r(u), s(u)) of the characteristic system (47) have analytic continuations in a
neighbourhood of every u > 0, noting that

Gz(r(u), s(u), u) =
6y2
√
y(2− y)− 4y2 − 10y

√
y(2− y) + 9y + 2

√
y(2− y)− 2

y(y − 1)(y − 2)(2y − 1)(2y2 − 4y + 1)

is positive on the interval (0, S(ρ)).
Therefore since S	(z, u) is aperiodic we can apply [Drm94, Thm.3] to prove Eq. (3) of The-

orem 1.8 and we obtain

Eβ =
1

(3 + 2
√

2)r(u(β))u(β)β
.

Then Eq. (48) provides an explicit (yet complicated) expression for Eβ which is tractable with
a computer algebra system. This expression allows to prove that there exists β1 > 0 (numerically
estimated at β1 ≈ 0.5827) such that for every β < β1 we have Eβ > 1.
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Symbolic computations associated to Independent sets in cographs and increasing subsequences in separable permutations¶

The aim of this SymPy (python) worksheet is to provide all the computations needed to get the exact and numerical results of Section 4-5 in the paper "Linear-sized independent sets in random cographs and increasing subsequences in separable permutations" by F.Bassino et al.


Notation and definitions are taken from this paper.
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In [1]:


     
## loading python libraries

# necessary to display plots inline:
%matplotlib inline   

# load the libraries
import matplotlib.pyplot as plt # 2D plotting library
import numpy as np              # package for scientific computing  
from pylab import *

from math import *              # package for mathematics (pi, arctan, sqrt, factorial ...)
import sympy as sp            # package for symbolic computation
from sympy import *
from IPython.display import display # nice displays

from sympy import init_printing
init_printing() 





     
















Sec.4 Linear-sized independent sets in cographs¶

Recall the notation of Section 4: for fixed $\beta\in (0,1)$ the random variable $X_{n,\lfloor \beta n\rfloor}$ is the number of independent sets
of size $\lfloor \beta n\rfloor$ in a uniform random labeled cograph of size $n$.


We prove that there exist some computable constants $B_\beta >0$, $C_\beta >0$ such that
\begin{equation}
\mathbb{E}[X_{n,\lfloor \beta n\rfloor}] \sim B_\beta n^{-1/2} (C_\beta)^n.
\end{equation}


We now provide all the necessary code to obtain exact and  numerical approximation of $C_\beta$ with arbitrary precision (and also prove that $C_\beta >1$ for small enough $\beta$).













Exact results: parametrization with $y$¶

First it is proved that $\beta$ can be written as $\beta=\Psi(y)$ where
$$
\Psi(y):=\frac{ \left( e^{y}-2 - \log(e^{y}-1) \right) (e^{y}-1)  }
{ 2y + 1 - e^{y} + (e^{y}-1) (2y - 1- \log(e^{y}-1) ) }.
$$
and where we have put 
$$
y=L\left(r(u(\beta) \right)
$$
(see below for the expressions of functions $r,u$).









In [2]:


     
var('y')
def Psi(y):    
    A=(sp.exp(y)-2-sp.log(sp.exp(y)-1))*(sp.exp(y)-1)
    B=2*y+1-sp.exp(y)+(sp.exp(y)-1)*(2*y-1-sp.log(sp.exp(y)-1))
    return A/B

print('beta as a function of y:')
display(Psi(y))





     















    
    




beta as a function of y:










    
    






$\displaystyle \frac{\left(e^{y} - 1\right) \left(e^{y} - \log{\left(e^{y} - 1 \right)} - 2\right)}{2 y + \left(e^{y} - 1\right) \left(2 y - \log{\left(e^{y} - 1 \right)} - 1\right) - e^{y} + 1}$

















In Sec.4 of the paper it is then proved that $C_\beta$ can be written as
$$
C_\beta= \frac{2\log(2)-1}{r(u(\beta)) u(\beta)^{\beta}}=  \frac{2\log(2)-1}{G(y)F(y)^{\beta}}
=  \frac{2\log(2)-1}{G(y)F(y)^{\Psi(y)}}
$$
where
\begin{align*}
F(y)&=\frac{e^{y}-2 - \log(e^{y}-1)}{2y + 1 - e^{y}}\\
G(y)&= 2y + 1 - e^{y}.
\end{align*}









In [4]:


     
def F(y):
    A=(sp.exp(y)-2-sp.log(sp.exp(y)-1))
    B=2*y+1-sp.exp(y)   
    return A/B

def G(y):
    B=2*y+1-sp.exp(y)  
    return B

def C_beta(y):
    return (2*sp.log(2)-1)/(G(y)*(F(y)**Psi(y)))

print('C_beta as a function of y:')
display(C_beta(y))





     















    
    




C_beta as a function of y:










    
    






$\displaystyle \frac{\left(\frac{e^{y} - \log{\left(e^{y} - 1 \right)} - 2}{2 y - e^{y} + 1}\right)^{- \frac{\left(e^{y} - 1\right) \left(e^{y} - \log{\left(e^{y} - 1 \right)} - 2\right)}{2 y + \left(e^{y} - 1\right) \left(2 y - \log{\left(e^{y} - 1 \right)} - 1\right) - e^{y} + 1}} \left(-1 + 2 \log{\left(2 \right)}\right)}{2 y - e^{y} + 1}$

















Therefore we can plot $C_\beta$ as a function of $y$:









In [5]:


     
Y=np.arange(0.01,np.log(2),0.01)
C=[C_beta(y) for y in Y]
plt.plot(Y,C)
plt.title('C_beta as a function of y')
plt.show()
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Numerical approximations: parametrization with $\beta$¶









First a small function which uses the dichotomy method to compute numerically an implicit function:









In [6]:


     
def FindImplicit(function,value,x_min,x_max,eps):
    # returns x in (x_min,x_max) such that function(x)=value with precision eps
    if x_max -x_min < eps:
        return (x_max+x_min)/2 
    else:
        z= (x_max+x_min)/2 
        if (function(z)-value)*(function(x_min)-value)<0:
            return FindImplicit(function,value,x_min,z,eps)
        else:       
            return FindImplicit(function,value,z,x_max,eps)

print(FindImplicit(C_beta,value=1,x_min=0.01,x_max=0.6,eps=10**(-8)))





     















    
    




0.13363615326583386



















Thus we find that $C_\beta=1$ for $y \approx 0.13363615\dots$.









In [7]:


     
def C(beta):
    eps=0.00001
    y=FindImplicit(Psi,beta,eps**2,np.log(2),eps)
    return C_beta(y)
         
beeeta=np.arange(0.0001,0.9,0.01)
plt.plot(beeeta,[C(b) for b in beeeta])
plt.plot(0.5226,1,'o')
plt.title('C as a function of beta')
plt.show()
#TEST=[C(b) for b in np.arange(0.0001,0.8,0.01)]
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We now can give the $\beta_0$ of Theorem 1.3 in the paper. It is the value starting from which $C_\beta <1$ (the orange spot in the above plot). Namely 
$$
\beta_0 = \Psi( C_\beta^{-1}(1) )
$$


Therefore:









In [8]:


     
print(Psi(FindImplicit(C_beta,1,0.01,0.6,eps=10**(-8))))





     















    
    




0.522677412648179






















Expansion expansion of $C_\beta$ when $\beta \to 0$¶

Finally we compute the Taylor expansion of $C_\beta$ which is useful in the proof of Theorem 1.3 (ii):









In [9]:


     
print('Psi(y) near log(2) :')

Expression=Psi(y)
print(Expression.series(y,sp.log(2),n=3))





     















    
    




Psi(y) near log(2) :
2*(y - log(2))**2/(-2 + 4*log(2)) + O((y - log(2))**3, (y, log(2)))



















This shows 
\begin{equation}
\beta=\Psi(y)=(y - \log(2))^2/(2\log(2)-1) +\mathcal{O}((y - \log(2))^3).\tag{$45$}
\end{equation}

This allows us to compute the expansions of $u(\beta),r(u(\beta))$:









In [45]:


     
var('y')

def u(y):
    A=(sp.exp(y)-2-sp.log(sp.exp(y)-1))
    B=2*y+1-sp.exp(y)   
    return A/B

def r_circ_u(y):
    B=2*y+1-sp.exp(y)  
    return B

Expression=r_circ_u(y)
print('r \circ u: ')
display(Expression.series(y,sp.log(2),n=3))

print('u: ')
Expression=u(y)
display(Expression.series(y,sp.log(2),n=3))





     















    
    




r \circ u: 










    
    






$\displaystyle 2 \log{\left(2 \right)} - 1 - \left(y - \log{\left(2 \right)}\right)^{2} + O\left(\left(y - \log{\left(2 \right)}\right)^{3}; y\rightarrow \log{\left(2 \right)}\right)$








    
    




u: 










    
    






$\displaystyle \frac{2 \left(y - \log{\left(2 \right)}\right)^{2}}{-1 + 2 \log{\left(2 \right)}} + O\left(\left(y - \log{\left(2 \right)}\right)^{3}; y\rightarrow \log{\left(2 \right)}\right)$

















If we plug finally eq.(45) in the above we get
\begin{align*}
r(u(\beta))&=2\log(2) - 1 - \beta(2\log(2)-1) + \mathcal{O}(\beta^{3/2})\\
u(\beta)&=2\beta+ \mathcal{O}(\beta^{3/2})\\
\end{align*}


This allows us to find that
$$
C_\beta=1+\beta|\log(\beta)| +\mathrm{o}(\beta\log(\beta)).
$$













Sec.5: increasing sequences in separable permutations¶









In Section 5 we apply the same general strategy to the series $S_+(z,u)$, $S_-(z,u)$ which are solutions of


\begin{align*}
S_-(z,u) &= \frac{S^2}{1-S}+\left(\frac{(S_-(z,u) +z+zu)^2}{1-(S_-(z,u) +z+zu)}+zu+z -S(z)\right)\times \left( \frac{1}{(1-S)^2}-1\right),\\
S_+(z,u) &= \frac{(S_-(z,u) +z+zu)^2}{1-(S_-(z,u) +z+zu)}
\end{align*}where $S(z)$ is the solution of $S=z+S^2/(1-S)$.









In [10]:


     
# Of course we can explicitly solve S: 
var('S z')
def Schroder(z):
    return solve(S-z-S**2/(1-S),S)[0]
print('S(z) = ')
display(Schroder(z))





     















    
    




S(z) = 










    
    






$\displaystyle \frac{z}{4} - \frac{\sqrt{z^{2} - 6 z + 1}}{4} + \frac{1}{4}$

















We focus on $S_-$ and simplify the above equation: $S_-$ is solution of
$$
S_-(z,u) = \frac{S^2}{1-S}+\left(\frac{(S_-(z,u) +z+zu)^2}{1-(S_-(z,u) +z+zu)}+zu+z -S(z)\right)\times \left( \frac{1}{(1-S)^2}-1\right)=:G(z,S_-,u)
$$
The associated characteristic system is then:


\begin{align}\label{eq:CharacteristicSystem}
\frac{S(r)^2}{1-S(r)}+\left(\frac{(s +r+ru)^2}{1-(s+r+ru)}+ru+r -S(r)\right)\times \left( \frac{1}{(1-S(r))^2}-1\right)&=s, \tag{$\star 1$}\\
\left( \frac{1}{(1-(s+r+ru))^2}  - 1 \right)\left( \frac{1}{(1-S(r))^2}-1\right)&=1. \tag{$\star 2$} 
\end{align}We can solve this system seeing $S(r)$ as a parameter:









In [11]:


     
var('s r u S')

A=S**2/(1-S)
B=(s+r+r*u)**2/(1-s-r-r*u)+r*u+r-S
C=1/((1-S)**2)-1
D=1/(1-s-r-r*u)**2-1

print('Solution of the charac. system as functions of S:')
display(solve([A+B*C-s,D*C-1],[s,r]))





     















    
    




Solution of the charac. system as functions of S:










    
    






$\displaystyle \left[ \left( - 2 S - \sqrt{- S \left(S - 2\right)}, \  \frac{2 S + 2 \sqrt{S \left(2 - S\right)} + 1}{u + 1}\right), \  \left( - 2 S + \sqrt{- S \left(S - 2\right)}, \  \frac{2 S - 2 \sqrt{S \left(2 - S\right)} + 1}{u + 1}\right)\right]$

















We obtain
\begin{align}\label{eq:Simpli_r_u}
r(u)&=  \frac{1}{u + 1} \left(2 y - 2 \sqrt{2y - y^2} + 1\right),\\
s(u)&= -2y+\sqrt{2y - y^2}
\end{align}
where $y:S(r(u))$.













Exact results: computing everything as a function of $y$¶








In [13]:


     
var('y u r')

def u(y):
    Numer_u=2*y-2*sp.sqrt(2*y-y**2)+1
    Denom_u=y-y**2/(1-y)
    u=Numer_u/Denom_u-1
    return (simplify(u))

print('u(y) = ')
display(u(y))





     















    
    




u(y) = 










    
    






$\displaystyle \frac{- 2 y \sqrt{y \left(2 - y\right)} + 2 \sqrt{y \left(2 - y\right)} - 1}{y \left(2 y - 1\right)}$

















It is easy to check that
$$
y\in (0,1-\tfrac{\sqrt{2}}{2}] \mapsto u(y) \in [0,+\infty),
$$
is a one-to-one mapping.









In [14]:


     
def s(y):
    return -2*y+sp.sqrt(2*y-y**2)
print('s(y) =')
display(s(y))





     















    
    




s(y) =










    
    






$\displaystyle - 2 y + \sqrt{- y^{2} + 2 y}$
















In [15]:


     
def r(y):
    return y-y**2/(1-y)
print('r(y) =')
display(r(y))


print('In passing we check: r(u=0) = '+str(simplify((r(1-sp.sqrt(2)/2))))+' as expected')





     















    
    




r(y) =










    
    






$\displaystyle - \frac{y^{2}}{1 - y} + y$








    
    




In passing we check: r(u=0) = 3 - 2*sqrt(2) as expected



















Recall that $S$ is a solution of $S=z+S^2/(1-S)$. By differentiating this equation we get
$$
S'=1+\frac{S' S(2-S)}{(1-S)^2}
$$
which gives a simple expression of $S'$ as a function of $S$:









In [16]:


     
var('Sprime')
print('S\' as a function of S:')
display(solve(Sprime-1-Sprime*S*(2-S)/(1-S)**2,Sprime))





     















    
    




S' as a function of S:










    
    






$\displaystyle \left[ \frac{\left(S - 1\right)^{2}}{S^{2} - 2 S + \left(S - 1\right)^{2}}\right]$
















In [17]:


     
def Sprime(y):
    return (y-1)**2/(y*(y-2)+(y-1)**2)
print('S\'(y) =')
display(Sprime(y))





     















    
    




S'(y) =










    
    






$\displaystyle \frac{\left(y - 1\right)^{2}}{y \left(y - 2\right) + \left(y - 1\right)^{2}}$

















Using (eq.(2.14) in M.Drmota Asymptotic distributions and a multivariate Darboux method in enumeration problems (1994)) we have that
$$
\beta= \frac{ uG_u(r(u),s(u),u) }{r(u)G_z(r(u),s(u),u)}
$$










We first have
\begin{align*}
G_u\left(r(u),s(u),u \right) &= \frac{r}{(1-r-s-ru)^2}\times \left( \frac{1}{(1-S(r))^2}-1\right)\\
&=r\times \left( \frac{1}{(1-S(r))^2}\right) \qquad \text{(using 2d equation of the charac. system)}.
\end{align*}


We now want to find an expression for $G_z$. 
\begin{multline}
G_z\left(r(u),s(u),u \right)=\frac{SS'(2-S)}{(1-S)^2}+\left(\frac{u+1}{(1-r-s-ru)^2}-S'\right)\times \left( \frac{1}{(1-S(r))^2}-1\right)\\
+\left(\frac{(s +r+ru)^2}{1-(s+r+ru)}+ru+r -S\right)\times \left( \frac{2S'}{(1-S)^3}\right).
\end{multline}


Therefore
\begin{align}
\beta=\frac{ uG_u(r,s,u) }{rG_z(r,s,u)}
&= \frac{u(y)\times r\times \left( \frac{1}{(1-y)^2}\right)}
{ r\times \bigg(\frac{SS'(2-S)}{(1-S)^2}+\left(\frac{u+1}{(1-r-s-ru)^2}-S'\right)\times \left( \frac{2S-S^2}{(1-S)^2}\right) 
 +\left(\frac{(s +r+ru)^2}{1-(s+r+ru)}+ru+r- S\right)\times \left( \frac{2S'}{(1-S)^2(1-S)}\right)\bigg)}\\
&= \frac{u(y)}
{SS'(2-S)+\left(\frac{u+1}{(1-r-s-ru)^2}-S'\right)\times \left( 2S-S^2\right) 
 +\left(\frac{(s +r+ru)^2}{1-(s+r+ru)}+ru+r- S\right)\times \left( \frac{2S'}{1-S}\right)} \qquad (\star) 
\end{align}


Finally if we use
$$
S'=\frac{(S - 1)^2}{S(S-2) + (S - 1)^2}, 
$$
we can deduce from above an "explicit" expression of $\beta$ as a function of $y(\beta)$










We compute the denominator of $(\star)$:









In [18]:


     
def Denom_beta(y):
    Denom1=y*Sprime(y)*(2-y)
    Denom2=y*(2-y)*((u(y)+1)/((1-r(y)-s(y)-r(y)*u(y))**2)-Sprime(y))
    Denom3=((s(y)+r(y)+r(y)*u(y))**2/(1-s(y)-r(y)-r(y)*u(y))+r(y)*u(y)+r(y)-y)*((2*Sprime(y))/(1-y))
    return Denom1+Denom2+Denom3
print('Denominator of beta:')
display(Denom_beta(y))





     















    
    




Denominator of beta:










    
    






$\displaystyle \frac{y \left(2 - y\right) \left(y - 1\right)^{2}}{y \left(y - 2\right) + \left(y - 1\right)^{2}} + y \left(2 - y\right) \left(\frac{1 + \frac{- 2 y \sqrt{y \left(2 - y\right)} + 2 \sqrt{y \left(2 - y\right)} - 1}{y \left(2 y - 1\right)}}{\left(\frac{y^{2}}{1 - y} + y - \sqrt{- y^{2} + 2 y} + 1 - \frac{\left(- \frac{y^{2}}{1 - y} + y\right) \left(- 2 y \sqrt{y \left(2 - y\right)} + 2 \sqrt{y \left(2 - y\right)} - 1\right)}{y \left(2 y - 1\right)}\right)^{2}} - \frac{\left(y - 1\right)^{2}}{y \left(y - 2\right) + \left(y - 1\right)^{2}}\right) + \frac{2 \left(y - 1\right)^{2} \left(- \frac{y^{2}}{1 - y} + \frac{\left(- \frac{y^{2}}{1 - y} - y + \sqrt{- y^{2} + 2 y} + \frac{\left(- \frac{y^{2}}{1 - y} + y\right) \left(- 2 y \sqrt{y \left(2 - y\right)} + 2 \sqrt{y \left(2 - y\right)} - 1\right)}{y \left(2 y - 1\right)}\right)^{2}}{\frac{y^{2}}{1 - y} + y - \sqrt{- y^{2} + 2 y} + 1 - \frac{\left(- \frac{y^{2}}{1 - y} + y\right) \left(- 2 y \sqrt{y \left(2 - y\right)} + 2 \sqrt{y \left(2 - y\right)} - 1\right)}{y \left(2 y - 1\right)}} + \frac{\left(- \frac{y^{2}}{1 - y} + y\right) \left(- 2 y \sqrt{y \left(2 - y\right)} + 2 \sqrt{y \left(2 - y\right)} - 1\right)}{y \left(2 y - 1\right)}\right)}{\left(1 - y\right) \left(y \left(y - 2\right) + \left(y - 1\right)^{2}\right)}$
















In [19]:


     
def Beta(y):
    return u(y)/(Denom_beta(y))

def E_beta(y):
    ro=3+2*np.sqrt(2)
    return 1/(ro*r(y)*(u(y)**Beta(y)))





     












In [20]:


     
Y=np.arange(0.0001,1-np.sqrt(2)/2,0.001)
CC=[Beta(y) for y in Y]
plt.plot(Y,CC)
plt.title('beta as a function of y')
plt.show()
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In [21]:


     
Y=np.arange(0.0001,1-np.sqrt(2)/2,0.001)

EE=[E_beta(y) for y in Y]
plt.plot(Y,EE)
plt.title('E as a function of y')
plt.show()
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Numerical approximations: parametrization with $\beta$¶








In [22]:


     
def why(beeeta,eps):
    # return y(beta) with precision eps
    return FindImplicit(Beta,beeeta,0.0000001,1-np.sqrt(2)/2-0.000001,eps)

print(why(0.5,0.001))

def EE_beta(b):
    return E_beta(why(b,0.00001))





     















    
    




0.07808559651960206


















In [23]:


     
B=np.arange(0.0001,0.8,0.01) #np.arange(0.25028,0.25030,0.000001)
CC=[EE_beta(b) for b in B]


plt.plot(B,CC)
plt.title('E_beta as a function of beta')
plt.plot(0.5827,1,'o')
plt.show()
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Finally we compute the value for which $E_\beta=1$ :









In [24]:


     
FindImplicit(EE_beta,1,0.00001,0.99,0.000001)





     















    
    Out[24]:






$\displaystyle 0.582748011136055$

















Expansion of $E_\beta$ when $\beta \to 0$¶








In [25]:


     
Expr=Beta(y)
print('beta(y) near 1-sqrt(2)/2: ')
print(Expr.series(y,1-sp.sqrt(2)/2,n=3))





     















    
    




beta(y) near 1-sqrt(2)/2: 
-2*(y - 1 + sqrt(2)/2)**2/(2 - 3*sqrt(2)/2) + O((y - 1 + sqrt(2)/2)**3, (y, 1 - sqrt(2)/2))



















Hence
$$
\beta(y)=\frac{1}{\tfrac{3}{4} \sqrt{2}-1}(y - 1 + \tfrac{\sqrt{2}}{2})^2 + O(y -1+\tfrac{\sqrt{2}}{2})^3
$$
therefore
$$
y=1-\tfrac{\sqrt{2}}{2}+ \sqrt{\beta}\sqrt{\tfrac{3}{4} \sqrt{2}-1} + \mathrm{o}(\sqrt{\beta}).
$$
We find the same asymptotic for $E_\beta$ as for $C_\beta$:
$$
E_\beta=1+\beta|\log(\beta)| +\mathrm{o}(\beta\log(\beta)).
$$









In [ ]:
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      "text/latex": [
       "$\\displaystyle \\frac{\\left(e^{y} - 1\\right) \\left(e^{y} - \\log{\\left(e^{y} - 1 \\right)} - 2\\right)}{2 y + \\left(e^{y} - 1\\right) \\left(2 y - \\log{\\left(e^{y} - 1 \\right)} - 1\\right) - e^{y} + 1}$"
      ],
      "text/plain": [
       "        ⎛ y    ⎞ ⎛ y      ⎛ y    ⎞    ⎞        \n",
       "        ⎝ℯ  - 1⎠⋅⎝ℯ  - log⎝ℯ  - 1⎠ - 2⎠        \n",
       "───────────────────────────────────────────────\n",
       "      ⎛ y    ⎞ ⎛         ⎛ y    ⎞    ⎞    y    \n",
       "2⋅y + ⎝ℯ  - 1⎠⋅⎝2⋅y - log⎝ℯ  - 1⎠ - 1⎠ - ℯ  + 1"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "var('y')\n",
    "def Psi(y):    \n",
    "    A=(sp.exp(y)-2-sp.log(sp.exp(y)-1))*(sp.exp(y)-1)\n",
    "    B=2*y+1-sp.exp(y)+(sp.exp(y)-1)*(2*y-1-sp.log(sp.exp(y)-1))\n",
    "    return A/B\n",
    "\n",
    "print('beta as a function of y:')\n",
    "display(Psi(y))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In Sec.4 of the paper it is then proved that $C_\\beta$ can be written as\n",
    "$$\n",
    "C_\\beta= \\frac{2\\log(2)-1}{r(u(\\beta)) u(\\beta)^{\\beta}}=  \\frac{2\\log(2)-1}{G(y)F(y)^{\\beta}}\n",
    "=  \\frac{2\\log(2)-1}{G(y)F(y)^{\\Psi(y)}}\n",
    "$$\n",
    "where\n",
    "\\begin{align*}\n",
    "F(y)&=\\frac{e^{y}-2 - \\log(e^{y}-1)}{2y + 1 - e^{y}}\\\\\n",
    "G(y)&= 2y + 1 - e^{y}.\n",
    "\\end{align*}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "C_beta as a function of y:\n"
     ]
    },
    {
     "data": {
      "image/png": "\n",
      "text/latex": [
       "$\\displaystyle \\frac{\\left(\\frac{e^{y} - \\log{\\left(e^{y} - 1 \\right)} - 2}{2 y - e^{y} + 1}\\right)^{- \\frac{\\left(e^{y} - 1\\right) \\left(e^{y} - \\log{\\left(e^{y} - 1 \\right)} - 2\\right)}{2 y + \\left(e^{y} - 1\\right) \\left(2 y - \\log{\\left(e^{y} - 1 \\right)} - 1\\right) - e^{y} + 1}} \\left(-1 + 2 \\log{\\left(2 \\right)}\\right)}{2 y - e^{y} + 1}$"
      ],
      "text/plain": [
       "                              ⎛ y    ⎞ ⎛ y      ⎛ y    ⎞    ⎞                 \n",
       "                             -⎝ℯ  - 1⎠⋅⎝ℯ  - log⎝ℯ  - 1⎠ - 2⎠                 \n",
       "                      ───────────────────────────────────────────────         \n",
       "                            ⎛ y    ⎞ ⎛         ⎛ y    ⎞    ⎞    y             \n",
       "                      2⋅y + ⎝ℯ  - 1⎠⋅⎝2⋅y - log⎝ℯ  - 1⎠ - 1⎠ - ℯ  + 1         \n",
       "⎛ y      ⎛ y    ⎞    ⎞                                                        \n",
       "⎜ℯ  - log⎝ℯ  - 1⎠ - 2⎟                                                        \n",
       "⎜────────────────────⎟                                               ⋅(-1 + 2⋅\n",
       "⎜           y        ⎟                                                        \n",
       "⎝    2⋅y - ℯ  + 1    ⎠                                                        \n",
       "──────────────────────────────────────────────────────────────────────────────\n",
       "                                            y                                 \n",
       "                                     2⋅y - ℯ  + 1                             \n",
       "\n",
       "       \n",
       "       \n",
       "       \n",
       "       \n",
       "       \n",
       "       \n",
       "       \n",
       "log(2))\n",
       "       \n",
       "       \n",
       "───────\n",
       "       \n",
       "       "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "def F(y):\n",
    "    A=(sp.exp(y)-2-sp.log(sp.exp(y)-1))\n",
    "    B=2*y+1-sp.exp(y)   \n",
    "    return A/B\n",
    "\n",
    "def G(y):\n",
    "    B=2*y+1-sp.exp(y)  \n",
    "    return B\n",
    "\n",
    "def C_beta(y):\n",
    "    return (2*sp.log(2)-1)/(G(y)*(F(y)**Psi(y)))\n",
    "\n",
    "print('C_beta as a function of y:')\n",
    "display(C_beta(y))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Therefore we can plot $C_\\beta$ as a function of $y$:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "Y=np.arange(0.01,np.log(2),0.01)\n",
    "C=[C_beta(y) for y in Y]\n",
    "plt.plot(Y,C)\n",
    "plt.title('C_beta as a function of y')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a id=\"NumericalSec5\"></a>\n",
    "# Numerical approximations: parametrization with $\\beta$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "First a small function which uses the dichotomy method to compute numerically an implicit function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.13363615326583386\n"
     ]
    }
   ],
   "source": [
    "def FindImplicit(function,value,x_min,x_max,eps):\n",
    "    # returns x in (x_min,x_max) such that function(x)=value with precision eps\n",
    "    if x_max -x_min < eps:\n",
    "        return (x_max+x_min)/2 \n",
    "    else:\n",
    "        z= (x_max+x_min)/2 \n",
    "        if (function(z)-value)*(function(x_min)-value)<0:\n",
    "            return FindImplicit(function,value,x_min,z,eps)\n",
    "        else:       \n",
    "            return FindImplicit(function,value,z,x_max,eps)\n",
    "\n",
    "print(FindImplicit(C_beta,value=1,x_min=0.01,x_max=0.6,eps=10**(-8)))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Thus we find that $C_\\beta=1$ for $y \\approx 0.13363615\\dots$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "\n",
    "def C(beta):\n",
    "    eps=0.00001\n",
    "    y=FindImplicit(Psi,beta,eps**2,np.log(2),eps)\n",
    "    return C_beta(y)\n",
    "         \n",
    "beeeta=np.arange(0.0001,0.9,0.01)\n",
    "plt.plot(beeeta,[C(b) for b in beeeta])\n",
    "plt.plot(0.5226,1,'o')\n",
    "plt.title('C as a function of beta')\n",
    "plt.show()\n",
    "#TEST=[C(b) for b in np.arange(0.0001,0.8,0.01)]\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We now can give the $\\beta_0$ of Theorem 1.3 in the paper. It is the value starting from which $C_\\beta <1$ (the orange spot in the above plot). Namely \n",
    "$$\n",
    "\\beta_0 = \\Psi( C_\\beta^{-1}(1) )\n",
    "$$\n",
    "\n",
    "Therefore:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.522677412648179\n"
     ]
    }
   ],
   "source": [
    "print(Psi(FindImplicit(C_beta,1,0.01,0.6,eps=10**(-8))))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a id='Sec5Taylor'></a>\n",
    "## Expansion expansion of $C_\\beta$ when $\\beta \\to 0$\n",
    "\n",
    "Finally we compute the Taylor expansion of $C_\\beta$ which is useful in the proof of Theorem 1.3 (ii):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Psi(y) near log(2) :\n",
      "2*(y - log(2))**2/(-2 + 4*log(2)) + O((y - log(2))**3, (y, log(2)))\n"
     ]
    }
   ],
   "source": [
    "\n",
    "print('Psi(y) near log(2) :')\n",
    "\n",
    "Expression=Psi(y)\n",
    "print(Expression.series(y,sp.log(2),n=3))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This shows \n",
    "\\begin{equation}\n",
    "\\beta=\\Psi(y)=(y - \\log(2))^2/(2\\log(2)-1) +\\mathcal{O}((y - \\log(2))^3).\\tag{$45$}\n",
    "\\end{equation}\n",
    "<!--and thus\n",
    "$$\n",
    "y(\\beta)=\\log(2) -(2\\log(2)-1)^{1/2}\\beta^{1/2} +\\mathcal{O}(\\beta),\n",
    "$$\n",
    "as claimed in the paper.-->\n",
    "This allows us to compute the expansions of $u(\\beta),r(u(\\beta))$:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "r \\circ u: \n"
     ]
    },
    {
     "data": {
      "image/png": "\n",
      "text/latex": [
       "$\\displaystyle 2 \\log{\\left(2 \\right)} - 1 - \\left(y - \\log{\\left(2 \\right)}\\right)^{2} + O\\left(\\left(y - \\log{\\left(2 \\right)}\\right)^{3}; y\\rightarrow \\log{\\left(2 \\right)}\\right)$"
      ],
      "text/plain": [
       "                           2    ⎛            3            ⎞\n",
       "2⋅log(2) - 1 - (y - log(2))  + O⎝(y - log(2)) ; y → log(2)⎠"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "u: \n"
     ]
    },
    {
     "data": {
      "image/png": "\n",
      "text/latex": [
       "$\\displaystyle \\frac{2 \\left(y - \\log{\\left(2 \\right)}\\right)^{2}}{-1 + 2 \\log{\\left(2 \\right)}} + O\\left(\\left(y - \\log{\\left(2 \\right)}\\right)^{3}; y\\rightarrow \\log{\\left(2 \\right)}\\right)$"
      ],
      "text/plain": [
       "              2                               \n",
       "2⋅(y - log(2))     ⎛            3            ⎞\n",
       "─────────────── + O⎝(y - log(2)) ; y → log(2)⎠\n",
       " -1 + 2⋅log(2)                                "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "var('y')\n",
    "\n",
    "def u(y):\n",
    "    A=(sp.exp(y)-2-sp.log(sp.exp(y)-1))\n",
    "    B=2*y+1-sp.exp(y)   \n",
    "    return A/B\n",
    "\n",
    "def r_circ_u(y):\n",
    "    B=2*y+1-sp.exp(y)  \n",
    "    return B\n",
    "\n",
    "Expression=r_circ_u(y)\n",
    "print('r \\circ u: ')\n",
    "display(Expression.series(y,sp.log(2),n=3))\n",
    "\n",
    "print('u: ')\n",
    "Expression=u(y)\n",
    "display(Expression.series(y,sp.log(2),n=3))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If we plug finally eq.(45) in the above we get\n",
    "\\begin{align*}\n",
    "r(u(\\beta))&=2\\log(2) - 1 - \\beta(2\\log(2)-1) + \\mathcal{O}(\\beta^{3/2})\\\\\n",
    "u(\\beta)&=2\\beta+ \\mathcal{O}(\\beta^{3/2})\\\\\n",
    "\\end{align*}\n",
    "\n",
    "This allows us to find that\n",
    "$$\n",
    "C_\\beta=1+\\beta|\\log(\\beta)| +\\mathrm{o}(\\beta\\log(\\beta)).\n",
    "$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a id='separable'></a>\n",
    "# Sec.5: increasing sequences in separable permutations\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In Section 5 we apply the same general strategy to the series $S_+(z,u)$, $S_-(z,u)$ which are solutions of\n",
    "\n",
    "\\begin{align*}\n",
    "S_-(z,u) &= \\frac{S^2}{1-S}+\\left(\\frac{(S_-(z,u) +z+zu)^2}{1-(S_-(z,u) +z+zu)}+zu+z -S(z)\\right)\\times \\left( \\frac{1}{(1-S)^2}-1\\right),\\\\\n",
    "S_+(z,u) &= \\frac{(S_-(z,u) +z+zu)^2}{1-(S_-(z,u) +z+zu)}\n",
    "\\end{align*}\n",
    "\n",
    "where $S(z)$ is the solution of $S=z+S^2/(1-S)$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "S(z) = \n"
     ]
    },
    {
     "data": {
      "image/png": "\n",
      "text/latex": [
       "$\\displaystyle \\frac{z}{4} - \\frac{\\sqrt{z^{2} - 6 z + 1}}{4} + \\frac{1}{4}$"
      ],
      "text/plain": [
       "       ______________    \n",
       "      ╱  2               \n",
       "z   ╲╱  z  - 6⋅z + 1    1\n",
       "─ - ───────────────── + ─\n",
       "4           4           4"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Of course we can explicitly solve S: \n",
    "var('S z')\n",
    "def Schroder(z):\n",
    "    return solve(S-z-S**2/(1-S),S)[0]\n",
    "print('S(z) = ')\n",
    "display(Schroder(z))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We focus on $S_-$ and simplify the above equation: $S_-$ is solution of\n",
    "$$\n",
    "S_-(z,u) = \\frac{S^2}{1-S}+\\left(\\frac{(S_-(z,u) +z+zu)^2}{1-(S_-(z,u) +z+zu)}+zu+z -S(z)\\right)\\times \\left( \\frac{1}{(1-S)^2}-1\\right)=:G(z,S_-,u)\n",
    "$$\n",
    "The associated characteristic system is then:\n",
    "\n",
    "\\begin{align}\\label{eq:CharacteristicSystem}\n",
    "\\frac{S(r)^2}{1-S(r)}+\\left(\\frac{(s +r+ru)^2}{1-(s+r+ru)}+ru+r -S(r)\\right)\\times \\left( \\frac{1}{(1-S(r))^2}-1\\right)&=s, \\tag{$\\star 1$}\\\\\n",
    "\\left( \\frac{1}{(1-(s+r+ru))^2}  - 1 \\right)\\left( \\frac{1}{(1-S(r))^2}-1\\right)&=1. \\tag{$\\star 2$} \n",
    "\\end{align}\n",
    "We can solve this system seeing $S(r)$ as a parameter:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Solution of the charac. system as functions of S:\n"
     ]
    },
    {
     "data": {
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      "text/latex": [
       "$\\displaystyle \\left[ \\left( - 2 S - \\sqrt{- S \\left(S - 2\\right)}, \\  \\frac{2 S + 2 \\sqrt{S \\left(2 - S\\right)} + 1}{u + 1}\\right), \\  \\left( - 2 S + \\sqrt{- S \\left(S - 2\\right)}, \\  \\frac{2 S - 2 \\sqrt{S \\left(2 - S\\right)} + 1}{u + 1}\\right)\\right]$"
      ],
      "text/plain": [
       "⎡⎛                                 ___________    ⎞  ⎛                        \n",
       "⎢⎜         ____________  2⋅S + 2⋅╲╱ S⋅(2 - S)  + 1⎟  ⎜         ____________  2\n",
       "⎢⎜-2⋅S - ╲╱ -S⋅(S - 2) , ─────────────────────────⎟, ⎜-2⋅S + ╲╱ -S⋅(S - 2) , ─\n",
       "⎣⎝                                 u + 1          ⎠  ⎝                        \n",
       "\n",
       "         ___________    ⎞⎤\n",
       "⋅S - 2⋅╲╱ S⋅(2 - S)  + 1⎟⎥\n",
       "────────────────────────⎟⎥\n",
       "         u + 1          ⎠⎦"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "var('s r u S')\n",
    "\n",
    "A=S**2/(1-S)\n",
    "B=(s+r+r*u)**2/(1-s-r-r*u)+r*u+r-S\n",
    "C=1/((1-S)**2)-1\n",
    "D=1/(1-s-r-r*u)**2-1\n",
    "\n",
    "print('Solution of the charac. system as functions of S:')\n",
    "display(solve([A+B*C-s,D*C-1],[s,r]))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We obtain\n",
    "\\begin{align}\\label{eq:Simpli_r_u}\n",
    "r(u)&=  \\frac{1}{u + 1} \\left(2 y - 2 \\sqrt{2y - y^2} + 1\\right),\\\\\n",
    "s(u)&= -2y+\\sqrt{2y - y^2}\n",
    "\\end{align}\n",
    "where $y:S(r(u))$."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a id='ExactSec6'></a>\n",
    "## Exact results: computing everything as a function of $y$ "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "u(y) = \n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAAA0CAYAAADi3w9vAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAL/klEQVR4Ae2d25HVOBCGB4oABsgAMuASAZABEMKSAVs8wRvFZrBDBCxkAEQATAZDBlBkMPt/HtmlI99kWbZlHXWVR7Yure5Wq0+rLWuuXV5enhwDvHnz5qP4fHoMvMbmUbK7FhtnCviKToSPQko6cSOcjf20lMDvQW1Kgt+P9PKktOhEPuN6PR9WBjl5p9K3gzUCCjUR7gQ0S65JLnxMFOwiOgENOchzTzxkb8Q0GLUXdj5RyQerC+9LVahwD1bcR+Edw88+qJ1J5VI6AVkZ6cVudOJarJiYBg+v5G+jXw+U/uZZ+VGNh8Hvnah/YmFvY9IhXMTWHiqt+a3o0XOSMvARlmjHKP9ReuZTf4k6a8lP/UTXCeQhvFnphfjZXCdsPRM9OA2M3X3d/6nLohgxIWTy/qv0SY1Y97jrCOGJ7r/U+Wumhq6PSu/H6le4ToXrq4vT9JWcDKbwLR5+qP4jpY2CTGk/p+5a8jP9RNUJ+BbeLPVCfG2mE5Zc3+sepwjnCEN2U3Q1OhprOYnBeqGrAXWCl0JHWM6tALoOvKUIhIDz3w48qcqgg9TeLPiCjyDQmD/W9VdQ46t+19ChJXQClnPVi1k6EagLTTOMla5nutCND02BdRPLiD0Wzgt1xK+RDXhgp8rHU1sVTJ+s62N7gc+Fs2vJlZwMpgrc8AV/7jj6oqJdaNvF5Se+0MMldAL5ZKkXEXQC2SwKsYwYhuKnGP7TQ22oYveg88rGA4v6RlL8EfP42dN7ijLoIXUwG/6eD9ZYpnAN+UXXCURxBHqxlU54aVqUfWIaxGc9vR28GVQ9jBnLjbu6fui58WhM2fsBXD1dtLMNrgdKD5Yn1DRloTQQ8+v07ITXSwZtapfJmcEn/MFnMzbLUHiIdWn5GXksoRMwkrtebKIThxrS/xTLE2v1IKXBgOG+2zGpV8r/R3mfdbmxF3798XRiwCsh6fPC5tBAYPHCl8AeGfg2n1svlE/4Y9w2h8jyW0onkFPuepGMTnQp5WJGTJ0R0P9kjNaJUchvhgh+uXjbYEPvr5ldaexe/eDtPVX6ya0bgQZwu3S73djPBzKwC5a8n8kn/CVhxERHFPktrBMMZe56kZJOIO8DqJaTZpC/qoTB8AXeGJx3VVY+bzSIkdlLLJ7r+nhdrqdEYNfNa9CrbUWb0j9NZvcNS0XXy6trzqJBSG7pGuu/6kt0dsmgpuMgNbxFk7+Qz+GT+MegHhjeGC8XkM+JylvLeGWfK9/WB7ftwbPpw9Uht04KOgFNuevFqE4gBI0Z4xFTj0E7CrURY2JG2UslRjAit5TiWTWgZ/o4UYryw2wTc1EeS0/y+uJNlCOc/3R1TRBlN/BC+Ii5tUD5wTS0kA1kqJ9OGfQ1MXRFkT99zORzdEIKf+cYKJ9wAG//CBkEg9qPyk91dqUTCMOHL1toqo++pqAXozph+ItKry2Lofuoy0kJHSW+q7T5xdU9Sm0vTyjjV7kyKIY4DBv7QWpPzWRXA19NDGV814Vy94Las7kWD2gMJtFgIcOtPrWeW7eiwUcGrXYLZYTwCX/wuQn4yM/UQadS0AnklLtebKoTY4oYzYhJsfhlbH2KozwmtT0pUD7cUxt642HCS1yN+Fa1RNT9kCHDC/PxAibRYBEK3bTtBPXtK4PO9gtkhvDJr647PguQ1kbpKz/VS0knYCR3vdhMJ9pa0s6plpPt7Gk5UiomC0HYL7p3PaHHyrMNCwOOUCpQGV4YV+cS5apW5ZGBm7a87WyWolY5xq0VzK/LnTSIBuE41/XQwVU9irYpMuhCsUReCJ8sX+BzVQiRn9qkoBPIKXe92EQnOhTwtsnDfjQruShGTAjZMsEk7vKS3AmBEWI/GJ7VL111/KozHqZyG2jD94kYRrc+eH3jB6E0fFAfGOsumCKDrvZL5IXwOfqDsgShwhkqv611AnHkrhdb6USlaprr9ZyDDoBvX/mB/qz07IRTLLa8Xr9+/U7XD18aVPdS12e7vp6f6npn5025p60uLxpU70LXvSn4U6k7xqfK78BfKL1qyzi8DG0f2k59XuraTCegW/1nqRfia5ZOhI7plHbXK7u20h9ZzXe6+Cq+At0TMMR7e3uV4/WXpSSeGJ5fDa9044UjAg388g8ufWuitkwD+cRzg79QwMVv3PxQJAHtttYJSM5VL+bqRMBwTmuyqhETaQT5cb1reK+bM00431gW7epJhnBP1BYX87tS38kziwb1w4Rx37hCSmowiU/xxY8CfLXijb6MqS0xquD2vv101NtUJ6DH8J2VXoin2TrRMVbRs25ExziMEMPDHjK2QhALI77lxrYGMag+GyBpgweHR4QCs5XAF2bToI7oj3X6wV44XwJWqjeVT17IJO9hdskuEZ2AtNz0Yhc6EeVQxC7FWjJPSov3RSC48uD0PMWIRSFNffIrxedN9pvXKLjXRiIe+FFh2wLB0l2CaN9cJxCc6MhCL8THbnRil0bMKMuFUhSGzbW7nXzwUiCOBKQHRSfiiHJXWNZeTsYUDstIjr4uBiymVPeNq+jEvscviPrdemJB3JZGRQJFAtlJ4Hp2HBWGigSKBI5KAte0me3yqDguzBYJFAlkJYGynMxqOAszRQLHJ4GynDy+MS8cFwlkJYFixLIazsJMkcDxSaAYseMb8xbH2qZyp5WZccax8ZvxUFasFSOW+wiP8KcJzc7seyPVcivmG0f4LpCBBEpgP4NBDGVBE5mPxLtO4z1RGd5Z9ZG90ge6fvOsfPd8OGWnB6ITw8z3rfd13zocQHkYMY5E3+KD9fQEtmOKihHb8eDNIV2T91TtvyptHSSpPAwYH+c3H7jrnt3wTHy+kpj00b7arAKiC544GQWDi+HFkN1UfsuIKf9E+RwL9aivnDoF0pdAWU6mP0ZLUYhRco8Sr/ui7OBEC010vDKMQX3KZl03mRRjpIt/JQjtHzwIg394LbBjCRQjtuPBm0n6c032vqUUJ0JcqBzPxgY8sFPl46ntHgz/yMHlc/e8HRMDxYgd02gbXjVpiYUNfTiPseLcts5lmMpymvTI4bmuAjuVwJ5PsdipyOOQbbwHDobkcMkfem68KlPGP2PpO2et91/kQd1Au+otpsqr4L5SjFkoDXSVAmCwkUcjvxSIKjT4S6B4Yv6ySq3mKxkRDmTkcEg3roNngbfVBwS9OXvLG9QXBoxlZP3GkrZzaKB9ClCfQZYCLYWGAAkUIxYgtK2bGIPyzdCBF8HbOBsGPS1VxINy29jtu+4J6HP6a3WSbQQauvrYIg85YJwL7FQCZTm5z4EjXlUt6UQ+Xtdbhw0C826eXeWWHvriXXa96l598RaPPu3l6SwahAtD+lUXqS/w5rHm27fNWD1iYlNoGMNXyleWQDFiKws8RneayJUBUoqxYgI28RzlsewjL8peLuEj5sU/d8G7a0DPs2gw7Vt71JoO1ruZZNDXI6v05CuBspz0lVSa9fCMzmuDYkjEsLFfashjYQmFoRsE4SCuxv8waDww3bv/liyUhsG+VyxEDsijwE4lUIzYTgfOkE0sx90qMRYPoyltBuNAMlZ4dF2fJGHY7EkfSoPQJAF4Yq4MkyCsEOEngbKc9JNTqrWYfEzCCmR48MK4DnbbX5Ue/MVLe3iQYz3gbemRQD7/DNfd1f9Yefa/qQulwepxkdvbBuvYcpElLfIosFMJFCO204EzZLPdgf1gbLH4pYs9Y8BYPIxPcoY+H2LbBoaMeJgL7oQPpcHFG+VZsqj5wpgDH5WHof2stIkdViVXf3yMvlW93KYmgfIBeGojMoMeY8zwlEYD5qrD/qjob/um0DCD1ShNRSuGGuNWG/8oeAuSdSVwfd3uSm+xJICx0MUpDBXongA1ntPQ1oqryld/8d7Glp12/dZ9BBpaOFfOwIt0NwqvTELpbq4EihGbK8Ht2hNgZ1lYA0fQnMmwfKozhlLVY2nlvmkcatJVNouGLoRr5Yl/vDD471pirkVG6SeCBEpMLIIQN0KBF8H+Lc74YjnE+V9jsTCXVLZHEEM62APmVhp4jkHDAPpFi3hhMcsTXZS6gtxbAiUm5i2qPCsaj+SpUvuNY57MGq6M4ecTqrK1IoOR/h+rOPDYdC8vgwAAAABJRU5ErkJggg==\n",
      "text/latex": [
       "$\\displaystyle \\frac{- 2 y \\sqrt{y \\left(2 - y\\right)} + 2 \\sqrt{y \\left(2 - y\\right)} - 1}{y \\left(2 y - 1\\right)}$"
      ],
      "text/plain": [
       "        ___________       ___________    \n",
       "- 2⋅y⋅╲╱ y⋅(2 - y)  + 2⋅╲╱ y⋅(2 - y)  - 1\n",
       "─────────────────────────────────────────\n",
       "               y⋅(2⋅y - 1)               "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "var('y u r')\n",
    "\n",
    "def u(y):\n",
    "    Numer_u=2*y-2*sp.sqrt(2*y-y**2)+1\n",
    "    Denom_u=y-y**2/(1-y)\n",
    "    u=Numer_u/Denom_u-1\n",
    "    return (simplify(u))\n",
    "\n",
    "print('u(y) = ')\n",
    "display(u(y))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It is easy to check that\n",
    "$$\n",
    "y\\in (0,1-\\tfrac{\\sqrt{2}}{2}] \\mapsto u(y) \\in [0,+\\infty),\n",
    "$$\n",
    "is a one-to-one mapping."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "s(y) =\n"
     ]
    },
    {
     "data": {
      "image/png": "\n",
      "text/latex": [
       "$\\displaystyle - 2 y + \\sqrt{- y^{2} + 2 y}$"
      ],
      "text/plain": [
       "          ____________\n",
       "         ╱    2       \n",
       "-2⋅y + ╲╱  - y  + 2⋅y "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "def s(y):\n",
    "    return -2*y+sp.sqrt(2*y-y**2)\n",
    "print('s(y) =')\n",
    "display(s(y))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "r(y) =\n"
     ]
    },
    {
     "data": {
      "image/png": "\n",
      "text/latex": [
       "$\\displaystyle - \\frac{y^{2}}{1 - y} + y$"
      ],
      "text/plain": [
       "     2     \n",
       "    y      \n",
       "- ───── + y\n",
       "  1 - y    "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In passing we check: r(u=0) = 3 - 2*sqrt(2) as expected\n"
     ]
    }
   ],
   "source": [
    "def r(y):\n",
    "    return y-y**2/(1-y)\n",
    "print('r(y) =')\n",
    "display(r(y))\n",
    "\n",
    "\n",
    "print('In passing we check: r(u=0) = '+str(simplify((r(1-sp.sqrt(2)/2))))+' as expected')\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Recall that $S$ is a solution of $S=z+S^2/(1-S)$. By differentiating this equation we get\n",
    "$$\n",
    "S'=1+\\frac{S' S(2-S)}{(1-S)^2}\n",
    "$$\n",
    "which gives a simple expression of $S'$ as a function of $S$:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "S' as a function of S:\n"
     ]
    },
    {
     "data": {
      "image/png": "\n",
      "text/latex": [
       "$\\displaystyle \\left[ \\frac{\\left(S - 1\\right)^{2}}{S^{2} - 2 S + \\left(S - 1\\right)^{2}}\\right]$"
      ],
      "text/plain": [
       "⎡             2     ⎤\n",
       "⎢      (S - 1)      ⎥\n",
       "⎢───────────────────⎥\n",
       "⎢ 2                2⎥\n",
       "⎣S  - 2⋅S + (S - 1) ⎦"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "var('Sprime')\n",
    "print('S\\' as a function of S:')\n",
    "display(solve(Sprime-1-Sprime*S*(2-S)/(1-S)**2,Sprime))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "S'(y) =\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAA5CAYAAABArXsrAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAISElEQVR4Ae2c/3XUOBDHl7wUwI8KLnQQSAUXOgA6uFwH8Pgr+e8e1wFQAQ86ACrgoAPo4I50wH0/jmRsRfJqV8ra0mre80qWrfHMV+PRSNbq1s+fP1eN6kHg4uLitrR5YTQ6MukfKr+sR8srTQ5rU6jps3opQ/3T4qD8K+W/6Lhvy2pJD2pRpOnRI3Amgz3tz1arl8ofqex4UFZFthlvFc04UgKv+8+opNKTWy3mrbRljVryuHjex0pb2FBqU6vx7OClVBVWm+qg+wkVHut4UKzSE4LvRdigRnwmDGqI+Yhd0WUtGUPH6z5QvrqZBgCoPmxQw+F5TpQ+R+Glk+TkJXunw2t0uo7xXip9HdJF1+hlnivtZh3M+Urp91CdEsurNl41FnOen5Quuts0cr6RrP/peKgDA76jcq/HVDlTX7/7rqsMw2V6bPiyYsQYs5efrhVJtc/z0m3SkIsmY1RPEFL5mBAHndCtn8+lriEMm5eWtCfx9d3bXy8xU7vn/aFGu1NSwxjjxTCDnhd9dN8PJb8prcqbolssVTtgU6MS61YV4zmNim5PnbK9Oq05bHiklvzoa00ZNt3qmQ7mPr/ovB/8mGtvlHbduK/+QsrQDR172Rci187EqNbzCkEGPt8CSL6Qcf6tax900EUPCW+G1146oRuDs72lmo0X78rofUQyWkbyn00hnsu9J+ixR4zmP0HuvTbemsOGu2pc32Dmuwz4q7E9vOxfJm8TFrW4ZfbaSnV5KT7pII2lJ4NnxtZZdx8x7yYyrONX3PWajdfbGDKizqCVYqQ0fh8zqgyvTJk3Vlb5ytRfwrxx6OVEzL2gmsMGutUpz8SA7KsxRtvYGDRfr6xntuVLTNENHfeWajZeutWpmJBr7lRaKfEuBovndeWnfG+oZuPFe55MtOSo4eVt8boczEDMSffMwzHOKSJ0KaGHmNIh6dphUu1lV34r8VjgEiK+/TOfy1TZvzrsetdgvBtilKNcclhZeYGgdyrjBfugtI/LuytXP9xX3SffgX5rs7V/HmYuNGqkb4z4VOkSBmOTDScZCXkwavvCTd5f68WawwbaDK96zTthqDr6hSvKM/jhi1twikzXlkT0Gu7HlSXJtxNZqjZeGSXdLQu48VRD4gsaYYUlliO+1n3vbcFSU6MLOvlCiaWKfSNy1RzzWsCYEiOeZCbBEp7rrgyA5Yd0va+UnyXWtQJtkLIc8lpvskH9am6tOua1rWS8FX9CZD1DsWRetvdKRzMlxSqUKPheGG8iRq36QhGoOuZdKOZNrEwINOPNBGRjs3sEbp2fn7ed9naPe3tiBgRazJsBxMZiHgRa2DAP7u2pGRDYh3neDDA1FnMgoClBvny+MM+2H5r6vYab8c7RKu2ZsQhM7jXcwoZYGNt9cyBwJu/L6jlLrOfo9xpuxmthaekSEeAzeHivYfbnzX1o+u0oN89d81uyDkuWLbadttFBdV7q+Gafkd3zmu/v/JGxdIreTnSXiu4rvtIbm2I1YL/eOus8rx4A88VvJyo5GbnaXRQfKs8fGdlFcfS3Gp2z6mxyO1Fd3xmVgq8FRPJicKzo23q7VniJD+3Fajr+WHBJGZTNeMWUaY0SthPtgJC8/RJJ5RkIYKiPlB8tjdQ5i9a924mqfGckOUrBFzmzbNcKuNK7czRKu2Wg5pzy7zmnyjAA3o6lE3KO1sMKCLwu/6TAS7i7SqLTtToqiybxZsScuoC8CHylK56x2+dNeRzCuhAyiK/qW49L+1g+tF3Xax4ok4ue6gElrO7HkL5JVjzEkPC4tw1gfbnRCd3c+/t7IjLUTanPI0rBNwKOX7eswZdej/YitQfTZ5dwyOJ5xYxYt5QF0hjpsQUAEBzyGRm6PdUxy8tZGL4OnFGnXnylt9sLjph1xqubaLCULT+Dm3Vk4D0SOPVE8nRdmodP1y3p+mjQZu7D4NFxFuM1zx7F4kau1dLwtXJtmG6Frw0bUrf8ZMRe7HaiMgAMtxsYBECfezvRovENYDos3grfA9Nwnw0nvAvTRkMKetXBTXhutx5eAaNI5T14zI1lGajx37DQf9zQDeOei0rHdx1uW+FL2JC05aeR6q7SS4+ESbxlTDTaJx2ksRS1yYhlpmcw2kXOUDjBrcRka2UwvBhguAQ+K10fzXKYm9jsb+rZ3HYj+MJYz75xjHnOGorC1+VxKOEvKVQK6CjSx3Uqw3NS5o23VD5JqbxN/f6LyuTDtrgo/sT5/AWe3mWKQsYzqiM+PuNcqZwBLVNlIc8+4hN7In7JbWd43BjGkbpE4evysjEv5bz92275idvHyEOUwjvEM6ncGNR9pb3XUx4D84UH6HYtLEoSYLPKxeG7mXqd7WyM79B4aTTc95Bi4l3up56v0S2vFN6WR7ZUBkqP4vuMjYf0gYhncLHJJk8Eo6LwjdDHvWUrfLupMsMJgGDSkRqYMILD2xVe3dX/flXupD+7nknhfZ1bQonxrAzQPirvfhE8VZmva6dbRce5qBh8HYDumXPsqgtxnOv2dCt8h8bLJ7dtt/x8q7oYRIhSeId4blvO/rv0BMS7LoUMNPYldvnlOi8J35UcgLUFcINuZrtWuzbSTc3ayS9ueeicdZY6jkPXh+Wb8h7W3XVesh6hW8pzVf+xjmeJPBq+ztrzA14LvSk5tvz0Ll7JxBsx5yJ6DXRLIbrMqW4zhnfD10GpM16VMVCha7K08ZafMlKm2Hyj9WTeVqhdp9KJ8AKd+unDbWRQfeLrVB4NXwd8G/PiXXJs+cm0E/HOcN40F29H9J2cMqCLGbDuRBg9pOE7QDrbYnTL03irtp2oBSRz2vD9Bej/P8QdgNd6DQ4AAAAASUVORK5CYII=\n",
      "text/latex": [
       "$\\displaystyle \\frac{\\left(y - 1\\right)^{2}}{y \\left(y - 2\\right) + \\left(y - 1\\right)^{2}}$"
      ],
      "text/plain": [
       "             2      \n",
       "      (y - 1)       \n",
       "────────────────────\n",
       "                   2\n",
       "y⋅(y - 2) + (y - 1) "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "def Sprime(y):\n",
    "    return (y-1)**2/(y*(y-2)+(y-1)**2)\n",
    "print('S\\'(y) =')\n",
    "display(Sprime(y))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Using (eq.(2.14) in M.Drmota <i>Asymptotic distributions and a multivariate Darboux method in enumeration problems</i> (1994)) we have that\n",
    "$$\n",
    "\\beta= \\frac{ uG_u(r(u),s(u),u) }{r(u)G_z(r(u),s(u),u)}\n",
    "$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "We first have\n",
    "\\begin{align*}\n",
    "G_u\\left(r(u),s(u),u \\right) &= \\frac{r}{(1-r-s-ru)^2}\\times \\left( \\frac{1}{(1-S(r))^2}-1\\right)\\\\\n",
    "&=r\\times \\left( \\frac{1}{(1-S(r))^2}\\right) \\qquad \\text{(using 2d equation of the charac. system)}.\n",
    "\\end{align*}\n",
    "\n",
    "We now want to find an expression for $G_z$. \n",
    "\\begin{multline}\n",
    "G_z\\left(r(u),s(u),u \\right)=\\frac{SS'(2-S)}{(1-S)^2}+\\left(\\frac{u+1}{(1-r-s-ru)^2}-S'\\right)\\times \\left( \\frac{1}{(1-S(r))^2}-1\\right)\\\\\n",
    "+\\left(\\frac{(s +r+ru)^2}{1-(s+r+ru)}+ru+r -S\\right)\\times \\left( \\frac{2S'}{(1-S)^3}\\right).\n",
    "\\end{multline}\n",
    "\n",
    "Therefore\n",
    "\\begin{align}\n",
    "\\beta=\\frac{ uG_u(r,s,u) }{rG_z(r,s,u)}\n",
    "&= \\frac{u(y)\\times r\\times \\left( \\frac{1}{(1-y)^2}\\right)}\n",
    "{ r\\times \\bigg(\\frac{SS'(2-S)}{(1-S)^2}+\\left(\\frac{u+1}{(1-r-s-ru)^2}-S'\\right)\\times \\left( \\frac{2S-S^2}{(1-S)^2}\\right) \n",
    " +\\left(\\frac{(s +r+ru)^2}{1-(s+r+ru)}+ru+r- S\\right)\\times \\left( \\frac{2S'}{(1-S)^2(1-S)}\\right)\\bigg)}\\\\\n",
    "&= \\frac{u(y)}\n",
    "{SS'(2-S)+\\left(\\frac{u+1}{(1-r-s-ru)^2}-S'\\right)\\times \\left( 2S-S^2\\right) \n",
    " +\\left(\\frac{(s +r+ru)^2}{1-(s+r+ru)}+ru+r- S\\right)\\times \\left( \\frac{2S'}{1-S}\\right)} \\qquad (\\star) \n",
    "\\end{align}\n",
    "\n",
    "Finally if we use\n",
    "$$\n",
    "S'=\\frac{(S - 1)^2}{S(S-2) + (S - 1)^2}, \n",
    "$$\n",
    "we can deduce from above an \"explicit\" expression of $\\beta$ as a function of $y(\\beta)$\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We compute the denominator of $(\\star)$:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Denominator of beta:\n"
     ]
    },
    {
     "data": {
      "image/png": "\n",
      "text/latex": [
       "$\\displaystyle \\frac{y \\left(2 - y\\right) \\left(y - 1\\right)^{2}}{y \\left(y - 2\\right) + \\left(y - 1\\right)^{2}} + y \\left(2 - y\\right) \\left(\\frac{1 + \\frac{- 2 y \\sqrt{y \\left(2 - y\\right)} + 2 \\sqrt{y \\left(2 - y\\right)} - 1}{y \\left(2 y - 1\\right)}}{\\left(\\frac{y^{2}}{1 - y} + y - \\sqrt{- y^{2} + 2 y} + 1 - \\frac{\\left(- \\frac{y^{2}}{1 - y} + y\\right) \\left(- 2 y \\sqrt{y \\left(2 - y\\right)} + 2 \\sqrt{y \\left(2 - y\\right)} - 1\\right)}{y \\left(2 y - 1\\right)}\\right)^{2}} - \\frac{\\left(y - 1\\right)^{2}}{y \\left(y - 2\\right) + \\left(y - 1\\right)^{2}}\\right) + \\frac{2 \\left(y - 1\\right)^{2} \\left(- \\frac{y^{2}}{1 - y} + \\frac{\\left(- \\frac{y^{2}}{1 - y} - y + \\sqrt{- y^{2} + 2 y} + \\frac{\\left(- \\frac{y^{2}}{1 - y} + y\\right) \\left(- 2 y \\sqrt{y \\left(2 - y\\right)} + 2 \\sqrt{y \\left(2 - y\\right)} - 1\\right)}{y \\left(2 y - 1\\right)}\\right)^{2}}{\\frac{y^{2}}{1 - y} + y - \\sqrt{- y^{2} + 2 y} + 1 - \\frac{\\left(- \\frac{y^{2}}{1 - y} + y\\right) \\left(- 2 y \\sqrt{y \\left(2 - y\\right)} + 2 \\sqrt{y \\left(2 - y\\right)} - 1\\right)}{y \\left(2 y - 1\\right)}} + \\frac{\\left(- \\frac{y^{2}}{1 - y} + y\\right) \\left(- 2 y \\sqrt{y \\left(2 - y\\right)} + 2 \\sqrt{y \\left(2 - y\\right)} - 1\\right)}{y \\left(2 y - 1\\right)}\\right)}{\\left(1 - y\\right) \\left(y \\left(y - 2\\right) + \\left(y - 1\\right)^{2}\\right)}$"
      ],
      "text/plain": [
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                 ⎛                                    ________\n",
       "                                 ⎜                            - 2⋅y⋅╲╱ y⋅(2 - \n",
       "                  2              ⎜                        1 + ────────────────\n",
       " y⋅(2 - y)⋅(y - 1)               ⎜                                           y\n",
       "──────────────────── + y⋅(2 - y)⋅⎜────────────────────────────────────────────\n",
       "                   2             ⎜                                            \n",
       "y⋅(y - 2) + (y - 1)              ⎜⎛                                  ⎛     2  \n",
       "                                 ⎜⎜                                  ⎜    y   \n",
       "                                 ⎜⎜   2           ____________       ⎜- ───── \n",
       "                                 ⎜⎜  y           ╱    2              ⎝  1 - y \n",
       "                                 ⎜⎜───── + y - ╲╱  - y  + 2⋅y  + 1 - ─────────\n",
       "                                 ⎝⎝1 - y                                      \n",
       "\n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                             2\n",
       "                                                                              \n",
       "                                                                              \n",
       "___       ___________                                                    ⎞    \n",
       "y)  + 2⋅╲╱ y⋅(2 - y)  - 1                                                ⎟    \n",
       "─────────────────────────                                         2      ⎟    \n",
       "⋅(2⋅y - 1)                                                 (y - 1)       ⎟    \n",
       "────────────────────────────────────────────────── - ────────────────────⎟ + ─\n",
       "                                                 2                      2⎟    \n",
       "   ⎞                                            ⎞    y⋅(y - 2) + (y - 1) ⎟    \n",
       "   ⎟ ⎛        ___________       ___________    ⎞⎟                        ⎟    \n",
       "+ y⎟⋅⎝- 2⋅y⋅╲╱ y⋅(2 - y)  + 2⋅╲╱ y⋅(2 - y)  - 1⎠⎟                        ⎟    \n",
       "   ⎠                                            ⎟                        ⎟    \n",
       "────────────────────────────────────────────────⎟                        ⎟    \n",
       "              y⋅(2⋅y - 1)                       ⎠                        ⎠    \n",
       "\n",
       "          ⎛                                                                   \n",
       "          ⎜          ⎛                                ⎛     2     ⎞           \n",
       "          ⎜          ⎜                                ⎜    y      ⎟ ⎛        _\n",
       "          ⎜          ⎜     2           ____________   ⎜- ───── + y⎟⋅⎝- 2⋅y⋅╲╱ \n",
       "          ⎜          ⎜    y           ╱    2          ⎝  1 - y    ⎠           \n",
       "          ⎜     2    ⎜- ───── - y + ╲╱  - y  + 2⋅y  + ────────────────────────\n",
       "        2 ⎜    y     ⎝  1 - y                                                y\n",
       "⋅(y - 1) ⋅⎜- ───── + ─────────────────────────────────────────────────────────\n",
       "          ⎜  1 - y                                     ⎛     2     ⎞          \n",
       "          ⎜                                            ⎜    y      ⎟ ⎛        \n",
       "          ⎜             2           ____________       ⎜- ───── + y⎟⋅⎝- 2⋅y⋅╲╱\n",
       "          ⎜            y           ╱    2              ⎝  1 - y    ⎠          \n",
       "          ⎜          ───── + y - ╲╱  - y  + 2⋅y  + 1 - ───────────────────────\n",
       "          ⎝          1 - y                                                    \n",
       "──────────────────────────────────────────────────────────────────────────────\n",
       "                                                                              \n",
       "                                                                        (1 - y\n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "\n",
       "                                  2                                           \n",
       "                                 ⎞                                            \n",
       "__________       ___________    ⎞⎟                                            \n",
       "y⋅(2 - y)  + 2⋅╲╱ y⋅(2 - y)  - 1⎠⎟    ⎛     2     ⎞                           \n",
       "                                 ⎟    ⎜    y      ⎟ ⎛        ___________      \n",
       "─────────────────────────────────⎟    ⎜- ───── + y⎟⋅⎝- 2⋅y⋅╲╱ y⋅(2 - y)  + 2⋅╲\n",
       "⋅(2⋅y - 1)                       ⎠    ⎝  1 - y    ⎠                           \n",
       "─────────────────────────────────── + ────────────────────────────────────────\n",
       "                                                             y⋅(2⋅y - 1)      \n",
       "___________       ___________    ⎞                                            \n",
       " y⋅(2 - y)  + 2⋅╲╱ y⋅(2 - y)  - 1⎠                                            \n",
       "                                                                              \n",
       "──────────────────────────────────                                            \n",
       "y⋅(2⋅y - 1)                                                                   \n",
       "──────────────────────────────────────────────────────────────────────────────\n",
       "  ⎛                   2⎞                                                      \n",
       ")⋅⎝y⋅(y - 2) + (y - 1) ⎠                                                      \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "                                                                              \n",
       "\n",
       "                 ⎞\n",
       "                 ⎟\n",
       "                 ⎟\n",
       "                 ⎟\n",
       " ___________    ⎞⎟\n",
       "╱ y⋅(2 - y)  - 1⎠⎟\n",
       "                 ⎟\n",
       "─────────────────⎟\n",
       "                 ⎟\n",
       "                 ⎟\n",
       "                 ⎟\n",
       "                 ⎟\n",
       "                 ⎟\n",
       "                 ⎠\n",
       "──────────────────\n",
       "                  \n",
       "                  \n",
       "                  \n",
       "                  \n",
       "                  \n",
       "                  \n",
       "                  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "\n",
    "def Denom_beta(y):\n",
    "    Denom1=y*Sprime(y)*(2-y)\n",
    "    Denom2=y*(2-y)*((u(y)+1)/((1-r(y)-s(y)-r(y)*u(y))**2)-Sprime(y))\n",
    "    Denom3=((s(y)+r(y)+r(y)*u(y))**2/(1-s(y)-r(y)-r(y)*u(y))+r(y)*u(y)+r(y)-y)*((2*Sprime(y))/(1-y))\n",
    "    return Denom1+Denom2+Denom3\n",
    "print('Denominator of beta:')\n",
    "display(Denom_beta(y))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def Beta(y):\n",
    "    return u(y)/(Denom_beta(y))\n",
    "\n",
    "def E_beta(y):\n",
    "    ro=3+2*np.sqrt(2)\n",
    "    return 1/(ro*r(y)*(u(y)**Beta(y)))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "Y=np.arange(0.0001,1-np.sqrt(2)/2,0.001)\n",
    "CC=[Beta(y) for y in Y]\n",
    "plt.plot(Y,CC)\n",
    "plt.title('beta as a function of y')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "image/png": "\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "Y=np.arange(0.0001,1-np.sqrt(2)/2,0.001)\n",
    "\n",
    "EE=[E_beta(y) for y in Y]\n",
    "plt.plot(Y,EE)\n",
    "plt.title('E as a function of y')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a id='NumericalSec6'></a>\n",
    "##  Numerical approximations: parametrization with $\\beta$\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.07808559651960206\n"
     ]
    }
   ],
   "source": [
    "\n",
    "def why(beeeta,eps):\n",
    "    # return y(beta) with precision eps\n",
    "    return FindImplicit(Beta,beeeta,0.0000001,1-np.sqrt(2)/2-0.000001,eps)\n",
    "\n",
    "print(why(0.5,0.001))\n",
    "\n",
    "def EE_beta(b):\n",
    "    return E_beta(why(b,0.00001))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "image/png": "\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "B=np.arange(0.0001,0.8,0.01) #np.arange(0.25028,0.25030,0.000001)\n",
    "CC=[EE_beta(b) for b in B]\n",
    "\n",
    "\n",
    "plt.plot(B,CC)\n",
    "plt.title('E_beta as a function of beta')\n",
    "plt.plot(0.5827,1,'o')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally we compute the value for which $E_\\beta=1$ :"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "\n",
      "text/latex": [
       "$\\displaystyle 0.582748011136055$"
      ],
      "text/plain": [
       "0.582748011136055"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "FindImplicit(EE_beta,1,0.00001,0.99,0.000001)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Expansion of $E_\\beta$ when $\\beta \\to 0$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "beta(y) near 1-sqrt(2)/2: \n",
      "-2*(y - 1 + sqrt(2)/2)**2/(2 - 3*sqrt(2)/2) + O((y - 1 + sqrt(2)/2)**3, (y, 1 - sqrt(2)/2))\n"
     ]
    }
   ],
   "source": [
    "Expr=Beta(y)\n",
    "print('beta(y) near 1-sqrt(2)/2: ')\n",
    "print(Expr.series(y,1-sp.sqrt(2)/2,n=3))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Hence\n",
    "$$\n",
    "\\beta(y)=\\frac{1}{\\tfrac{3}{4} \\sqrt{2}-1}(y - 1 + \\tfrac{\\sqrt{2}}{2})^2 + O(y -1+\\tfrac{\\sqrt{2}}{2})^3\n",
    "$$\n",
    "therefore\n",
    "$$\n",
    "y=1-\\tfrac{\\sqrt{2}}{2}+ \\sqrt{\\beta}\\sqrt{\\tfrac{3}{4} \\sqrt{2}-1} + \\mathrm{o}(\\sqrt{\\beta}).\n",
    "$$\n",
    "We find the same asymptotic for $E_\\beta$ as for $C_\\beta$:\n",
    "$$\n",
    "E_\\beta=1+\\beta|\\log(\\beta)| +\\mathrm{o}(\\beta\\log(\\beta)).\n",
    "$$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
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