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ON SEVERAL NOTIONS OF COMPLEXITY OF POLYNOMIAL
PROGRESSIONS

BORYS KUCA

ABSTRACT. For a polynomial progression
(IE,.’I} + Pl(y)7 T Pt(y))y

we define four notions of complexity: Host-Kra complexity, Weyl complexity, true complex-
ity and algebraic complexity. The first two describe the smallest characteristic factor of the
progression, the third one refers to the smallest-degree Gowers norm controlling the progres-
sion, and the fourth one concerns algebraic relations between terms of the progressions. We
conjecture that these four notions are equivalent, which would give a purely algebraic crite-
rion for determining the smallest Host-Kra factor or the smallest Gowers norm controlling
a given progression. We prove this conjecture for all progressions whose terms only satisfy
homogeneous algebraic relations and linear combinations thereof. This family of polynomial
progressions includes, but is not limited to, arithmetic progressions, progressions with lin-
early independent polynomials Pi, ..., P, and progressions whose terms satisfy no quadratic
relations. For progressions that satisfy only linear relations, such as

(z,x+y° 4+ 2y, x + 3%,z + 2°),

we derive several combinatorial and dynamical corollaries: (1) an estimate for the count of
such progressions in subsets of Z/NZ or totally ergodic dynamical systems; (2) a lower bound
for multiple recurrence; (3) and a popular common difference result in Z/NZ. Lastly, we show
that Weyl complexity and algebraic complexity always agree, which gives a straightforward
algebraic description of Weyl complexity.

1. INTRODUCTION

A polynomial P € R[y] is integral if P(Z) C Z and P(0) = 0. For t € N4, an integral
polynomial progression of length ¢ 4 1 is a tuple P € R[z,y]'™! given by

—

P(z,y) = (z, =+ Pi(y), ..., x + P(y))

for distinct integral polynomials P;, ..., P,. We moreover say that a set A C N contains P(z, y)
for some z,y € N if ]3(:5, y) € AL A major result on integral polynomial progressions is the
polynomial Szemerédi theorem by Bergelson and Leibman, which extends the famous theorem
of Szemerédi on arithmetic progressions.

Theorem 1.1 (Polynomial Szemerédi theorem). [BL96] Let t € N and P € R[z, y]'t! be an
integral polynomial progression, and suppose that A C N is dense'. Then A contains P(z,y)
for some x,y € Ny.

Theorem 1.1 can be deduced from the following ergodic theoretic statement using the
Furstenberg correspondence principle.

IMeaning that lim sup ‘Aﬁ—j\[,N” > 0, where [N] = {1, ..., N}.

N— o0
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Theorem 1.2. [BL96, HKO05a| Let (X, X, u, T') be an invertible measure-preserving dynamical
system, t € Ny and P € Rlz,y]'™" be an integral polynomial progression. If u(A) > 0 for
Aec X, then

(1) Jim Ecpqu(ANTPM™ AN TP A) > 0,
—00

where [N] ={1,...., N} and E,ex = ﬁ > zex for any set X.

To prove Theorem 1.1, one thus needs to understand limits of multiple ergodic averages
of the form

(2) Enei T fr - TP fy

for fi,..., fr € L*>°(u). By a remarkable result of Host and Kra [HK05a, HK05b], there exists
a family of factors® (Z)sew, called henceforth Host-Kra factors, with the property that weak
or L? limits of expressions of the form (2) remain unchanged if we project any of the functions
fi onto one of the factors Z, for some s dependent on P and i.

Definition 1.3 (Characteristic factors). Let (X, X, u,T) be an invertible measure-preserving
dynamical system, t € Ny and Pe Rlz,y]"*! be an integral polynomial progression.
Suppose that 1 < i <t. A factor Y of X is characteristic for the L?-convergence of P at
i if for all choices of fi,..., fr € L>®(u), the L2-limit of (2) is 0 whenever E(f;|Y) = 0.
Similarly, suppose that 0 < i < t. A factor Y of X is characteristic for the weak con-
vergence of P at i if for all choices of fo,..., f: € L>°(u), the weak limit of (2), i.e. the
exTpPression

(3) lim E,,epy / Fo TP £ R f
N—o0 X

is 0 whenever E(f;|YV) = 0.

Theorem 1.4 ([HKO05a, Lei05al). Let t € Ni. For each integral polynomial progression
P € Rz, y]"*!, there is s € N such that for all invertible ergodic systems (X, X,u,T), the
factor Z, is characteristic for the L? convergence of P at i for all 0 <i < t.

The utility of Host-Kra factors comes from the fact that they are inverse limits of nilsys-
tems, and so understanding (2) for arbitrary systems comes down to proving certain equidistri-
bution results on spaces called nilmanifolds that possess rich algebraic structure. Importantly,
Z, is a factor of Z4y1 for each s € N, hence it is natural to inquire about the smallest value
of s for which the factor Z, is characteristic for P at i.

Definition 1.5 (Host-Kra complexity). Let t € Ny and P € Rlz, y]"*! be an integral polyno-
mial progression. Fix 0 <1 < t. The progression P has Host-Kra complexity s at i, denoted
’HICZ-(JS), if s is the smallest natural number such that the factor Zs is characteristic for the
weak convergence of P ati for all invertible totally ergodic dynamical systems (X, X, u,T).
We say P has Host-Kra complexity s if max; ’HICZ(ﬁ) =s.

2The definitions of factors, Weyl systems, nilsystems, and other concepts from ergodic theory and higher
order Fourier analysis used in the introduction will be provided in subsequent sections.
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Investigating complexity has been of particular interest for a class of dynamical systems
called Weyl systems, leading to another notion of complexity, a variant of which is given
below.

Definition 1.6 (Weyl complexity). Let t € N and P € R[z,y]"*! be an integral polynmm’al
progression. Fix 0 < i < t. The progression P has Weyl complexity s at ¢, denoted W; (P)
if s is the smallest natuml number such that the factor Z4 is characteristic for the weak
convergence of]3 at i for all Weyl systems (X, X, u,T). We say P has Weyl complexity s if
maXx; Wl(ﬁ) = S.

In previous works [BLLO7, Lei09, Fra08, Fral6], the aforementioned notions of complexity
have been defined for a polynomial family P = {Py, ..., P;} rather than for a progression P.
However, we want to extend the definitions of complexity to “index 0”, i.e. the x term in 15,
which is why we prefer to define it for P rather than P. Similarly, complexity has previously
been defined for L? convergence rather than weak convergence. However, the existence of
L? limit (Theorem 1.4) and a basic functional analysis imply that weak and L? limits are
identical.

Host-Kra factors are deeply related to a family of seminorms called Gowers-Host-Kra
seminorms. For s € Ny and f € L>®(u), the Gowers-Host-Kra seminorm of f of degree s is
denoted by [||f]||s and satisfies the property

(4) Hfllls+1 =0 <= E(f[Z5) =0

as well as the monotonicity property

(®) AT < T2 < [l1£1lls <

Gowers-Host-Kra seminorms have natural finitary analogues. For the transformation Tz =
z+1on X =Z/NZ with N prime and the uniform probability measure p, the weak limit (3)
becomes

(6) Eeyez/nzfo(x)fi(z + Pi(y))--- filz + P(y)).

The Gowers-Host-Kra seminorm of any f : Z/NZ — Cis a norm (for s > 1) called the Gowers
norm and denoted by U?, and it takes the form

1
23

(7) I[fllvs = | By, heez/NZ H Clf(x + wihy + ... + wshy) ;
we{0,1}3

where C : z +— Z is the conjugation operator and |w| = wy + -+ + ws. As a result, ||f||ys =0
for some s > 1 if and only if ||f||[y2 = 0 if and only if f = 0, and so inquiring about the
smallest characteristic factor of this system in the sense of Definition 1.3 makes little sense.
We can however ask which Gowers norm “controls” P in a more finitary way, and this leads
to another notion of complexity.

Definition 1.7 (True complexity). Let t € D\l+ and P € Rlz, y]'™t be an integral polynomzal
progression. Fiz 0 < i < t. The progression P has true complexity s at i, denoted T;(P )
if s is the smallest natural number with the following property: for every e > 0, there exist
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0 > 0 and Ny € N such that for all primes N > Ny and all functions fo, ..., ft : Z/NZ — C
satisfying max; || filloo < 1, we have

Bz yez/nzfo(x) fi(z + Pi(y)) - fi(z + Pi(y))| < e

whenever || fi|ys+1 < 8. We say P has true complexity s if max; 7;(P) = s.

We have so far defined three notions of complexity, that of Host-Kra, Weyl and true
complexity. They are all defined in terms of ergodic theory or higher order Fourier analysis
and have to do with “controlling” expressions like (2) and (6) by characteristic factors, Gowers-
Host-Kra seminorms and Gowers norms. We shall now introduce one more notion, defined
purely in terms of algebraic properties of polynomial progressions, and conjecture that all
four concepts of complexity are in fact the same.

Definition 1.8 (Algebraic relations and algebraic complexity). Let ¢t € Ny and P € R[z, y]*+!
be an integral polynomial progression. An algebraic relation of degree (jo,...,ji) satisfied by
P is a tuple (Qo, ..., Q¢) € R[u]'™" such that

(8) Qo(z) + Qu(z + P1(y)) + ... + Q:(Pi(y)) = 0,

where deg Q; = j; for each 0 < i < t. The progression P has algebraic complexity s at ¢ for
some 0 < ¢ < t, denoted Ai(ﬁ), if s is the smallest natural number such that for any algebraic
relation (Qo, ..., Qt) satisfied by 13, the degree of QQ; is at most s. It has algebraic complexity
s if max; A;(P) = s.

Conjecture 1.9 (Four notions of complexity are the same). Let t € Ny and P € R[z,y]'*
be an integral polynomial progression. Fiz 0 <11 <t. Then

HK(P) = Wi(P) = Ti(P) = A(P) <t — 1.

The heuristic for Conjecture 1.9 is as follows: evaluating expressions like (3) and (6) comes
down to understanding the distribution of certain polynomial sequences on nilmanifolds, and
the only obstructions to equidistribution come from algebraic relations of the form (8).

Several substatements of Conjecture 1.9, such as the equivalence of Weyl and Host-Kra
complexity and the upper bound on complexities, have previously been conjectured in [BLLO7,
Lei09, Fra08, Fral6]. Similarly, the equivalence of true and algebraic complexity has been
studied and proved for linear forms [GW10, GW1la, GW11lb, GWllc] as well as certain
subclasses of polynomial progressions [Pel19, Kucl9, Kuc20]. However, we have not seen the
full statement of Conjecture 1.9 anywhere in the literature. In particular, we have not found
a conjecture relating Host-Kra and Weyl complexity to algebraic complexity, even though the
aforementioned papers researching the topic mention that algebraic relations form a source
of obstructions preventing a progression from having a characteristic small-degree Host-Kra
factor.

Before we state our main result, we have to distinguish between two large families of
progressions.

Definition 1.10 (Homogeneous and inhomogeneous relations and progressions). Let t € N
and P € Rz, y]**! be an integral polynomial progression. An algebraic relation (Qo, ..., Q¢) €
R[u]**! is homogeneous of degree d if it is of the form

(Qo(u), ..., Q¢(u)) = (aoud, e atud)
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for some ag, ...,ay € R (some but not all of which may be zero), and inhomogeneous otherwise.
The progression P is homogeneous if all the algebraic relations that it satisfies are linear
combinations of its homogeneous algebraic relations, and it is called inhomogeneous otherwise.

An example of a homogeneous progression is (z, z+y, = -+2y, x+y>), which only satisfies
a homogeneous relation

9) z—2(x+y)+(x+2y) =0.

Other examples include arithmetic progressions, progressions with P, ..., P; being linearly
independent such as (z, = +y, = + y?), or progressions whose terms satisfy no quadratic
relations, such as (z, = + y?, = + 2y =z + ¥, z + 2y3). By contrast, the progression
(z, x+vy, v+2y, v+y?) is inhomogeneous because it satisfies both (9) and the inhomogeneous
relation

(10) 22422 -2 +y)?+ (x+2y)° -2 +y*) =0

that cannot be broken down into a sum of homogeneous relations. These two progressions
will accompany us as running examples throughout the paper.
Our main result is the following.

Theorem 1.11 (Conjecture 1.9 holds for homogeneous progressions). Let t € N+. If Pc
Rlz, 3]t is a homogeneous polynomial progression, then it satisfies Conjecture 1.9.

Although we have defined Host-Kra complexity using totally ergodic systems, we can
extend our results to ergodic systems. The main difference is that if a system has complexity
0, then the Zj factor has to be replaced by the rational Kronecker factor C,q;.

Corollary 1.12. Lett € Ny and P e Rlz, 3]t be a homogeneous polynomial progression,
and suppose that A,(ﬁ) = s for some 0 < i <t ands € N. For all invertible ergodic dynamical
systems (X, X, u,T), the factor Z, is characteristic for the weak or L? convergence ofl3 at 1
if s >0, and K, is characteristic for the weak or L? convergence 0f]3 at i if s = 0.

Theorem 1.11 and Corollary 1.12 can be viewed as extensions of [HK05a, HK05b, FKO05,
FKO06, Fra08, BLLO7, Lei09], which find characteristic factors for linear configurations, linearly
independent polynomials, progressions of length 4, examine Weyl complexity for arbitrary
integral polynomial progression, and give an upper bound for Host-Kra complexity for general
integral progressions. Theorem 1.11 also partly extends [GW10, GW1la, GW11b, GWllIc,
GT10, Pell9, Kucl9, Kuc20], which among other things determine true complexity for certain
families of linear forms and integral polynomial progressions.

In particular, we extend our earlier work from [Kuc20]. In that paper, we prove equidis-
tribution results on nilmanifolds for progressions of the form (z, = + Q(y), = + R(y), = +
Q(y) + R(y)) with deg@ < degR, or (z, x + Q(y), = +2Q(y), = + R(y), = + 2R(y)) with
deg@ < (deg R)/2, both of which are homogeneous. That equidistribution results follow
from inducting on the filtration of a certain nilmanifold associated with the progression; the
induction scheme involved is quite sensitive to the progression in question. Here, we achieve a
much more general equidistribution result (part (i) of Theorem 1.15) by obtaining a solid un-
derstanding of the algebra behind homogeneous progressions and introducing a more flexible
induction scheme.

From the fact that all progressions of algebraic complexity 1 are homogeneous, we deduce
the following counting result.



6 BORYS KUCA

Corollary 1.13. Let t € N4 and P c Rlz,y]** be an integral polynomial progression of
algebraic complexity at most 1. Suppose that Q1,...,Qq € R[y| are integral polynomials such
that P;(y) = Z?:l a;jQ;(y) for a;; € Z for each 0 < i <t and 1 < j <d. Let Li(y1,...yq) =

Z;'l=1 a;jy;. Then the following is true.
(i) For any fo,..., ft : Z/NZ — C with max; || fi||cc < 1, we have

t t
[E:c,yEZ/NZ H fl(x + Pl(y)) = [Ex,y1,...,ydEZ/NZ H fl(x + Li(yl7 ey yd)) + 0(1)7
=0 =0

where the error term o(1) is taken as N — oo over primes and does not depend on
the choice of fo, ..., ft.

(ii) For any invertible totally ergodic dynamical system (X, X, u, T) and fo, ..., fr € L*(un),
we have

t t
: PZ(TL) . — : Li(nl,...,nd) .
]\;E)noo [EnG[N] /X E)T fzdﬂ ]\;E)noo [Enl’m’nde[N] /X g g fldu

We shall illustrate Corollary 1.13 for the specific example of
P(a,y) = (z, 49 2+ 2% 2 +¢°, 2 +2y°).

Taking Q1(y) = y? and Q2(y) = ¥ as in the statement of Corollary 1.13, we let E(m, Y1,Y2) =
(x, =+ y1, x4+ 2y1, =+ y2, ® + 2y2). For any A C Z/NZ, we then have

{(z,y) € (Z/NZ)?: (z, z +y* z+24° x+¢°, z+2y°) € A%}
={(z,y1,92) € (Z/NZ)*: (x,  + 1, © + 2y1, T+ Y2, © + 2y2) € A°}|/N + o(N?)

upon setting fo = ... = fy = 14. If (X, X, u,T) is a totally ergodic system and A € X, then
we similarly obtain that

lim E,enu(ANT ANT* ANT™ ANT™ A)
N—o0
= lim E, equ(ANT"ANT" ANTTANT?>™A).
N—oco 7
For progressions of algebraic complexity 1, we also prove the following result, which gener-
alises Theorem C of [Fra08], Theorem 1.12 of [GT10], and results from [BHKO05]. In additive

combinatorics, problems of this type are known as finding popular common differences; in
ergodic theory, one speaks of establishing lower bounds for multiple recurrence.

Theorem 1.14. Let t € Ny and P € Rlz,y]**! be an integral polynomial progression of
algebraic complexity at most 1, with the following property: there exist linearly independent
integral polynomials Q1, ..., Qi such that

(11) {a1Q1 + .t apQr: aq,...,a; € Z} = {blpl 4+ ..+ b:P: by,.... b € Z}.

Then the following is true.
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(i) Let (X, X, u,T) be an ergodic invertible measure preserving system and A € X. Sup-
pose that u(A) > 0. Then for every e > 0, the set

(neN:u(AnTHMAN . ATHM A) > p(A)HF — ¢}
s syndetic, i.e. it has bounded gaps.
(ii) Suppose that A C N has upper density o > 0. Then for every ¢ > 0, the set
{neN:u(AN(A+ Pi(n))N..N(A+ Pi(n)) > o™ — ¢}
is syndetic.
(1ii) For any a,e > 0 and prime N, and any subset A C Z/NZ of size |A| = aN, we have

H{n € Z/NZ :|AN(A+ Pi(n))N...0 (A+ Py(n))| > (@™ — )N} >, N.

The definition of homogeneity (Definition 1.10) is equivalent to a certain linear algebraic
property that will be described in details in Section 4; this property makes it possible to explic-
itly describe closures of orbits of nilsequences evaluated at terms of homogeneous polynomial
progressions, from which we deduce Theorem 1.11. Homogeneous polynomial progressions
are moreover the largest family of integral polynomial progressions for which such an explicit
description is possible, and even the simplest examples of inhomogeneous progressions lead
to complications absent in the homogeneous case. The following result makes this precise.
As with all other results in this section, all the concepts in Theorem 1.15 are explained in
subsequent sections.

Theorem 1.15 (Dichotomy between homogeneous and inhomogeneous progressions). Lett €
Ny and Pe Rlz, 3]t be an integral polynomial progression. Suppose that G is a connected,
simply-connected, nilpotent Lie group with a rational filtration Ge and ' is a cocompact lattice.
There exists a subnilmanifold G JT'T of G /T with the following propertsy.

(i) Ifl5 is homogeneous, then for every irrational polynomial sequence g : Z — G adapted
to Go, the sequence

9" (@,y) = (9(x), g(z+ Pi(y), ... g(z + Pi(y)))
is equidistributed on GT /TP,

(ii) If]3 is inhomogeneous, then for every irrational polynomial sequence g € poly(Z,G,),
the closure of g* is a union of finitely many translates of a subnilmanifold of G /T'T.
For every P, we can moreover find a filtered nilmanifold G/T" and an irrational poly-
nomial sequence g : Z — G such that g% is equidistributed on a proper subnilmanifold

of G /TF.

While we have not been able to prove full Conjecture 1.9 for inhomogeneous progressions,
we are able to say a bit more about the relationship between various notions of complexity in
the general case.
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Theorem 1.16. Let t € N4 and P e Rlz,y]"* be an integral polynomial progression. Fix
0<i<t. Then

Wi(P) = Ai(P) < min(Ti(P), HK;(P)).

Of the various statements made in Theorem 1.16, the fact that Host-Kra complexity
bounds Weyl complexity is a simple consequence of definitions and shall be explained in
Section 11. Similarly, the fact that algebraic complexity is bounded from above by true
complexity has been shown in Theorem 1.13 of [Kuc20]. It is the equivalence of Weyl and
algebraic complexities that is a new statement here.

Outline of the paper. We start the paper by introducing basic ergodic theoretic definitions
and results concerning nilsystems in Section 2, and we explain why analyzing expressions like
(3) comes down to answering equidistribution questions on nilmanifolds. We then show in
Section 3 that in studying equidistribution on nilmanifolds, we can restrict ourselves to nil-
manifolds that are quotients of connected groups at the expense of replacing a linear sequence
by a polynomial one.

Section 4 explains key differences between homogeneous and inhomogeneous progressions,
and in particular it shows the upper bound on algebraic complexity for homogeneous progres-
sions in Theorem 1.11. Definitions introduced in this section allow us to state in the infinitary
version of an equidistribution result for homogeneous polynomial progressions on nilmanifolds
(Theorem 5.3) in Section 5, from which we deduce that for homogeneous progressions, Host-
Kra complexity is bounded from above by algebraic complexity (Corollary 5.4). We further
use Theorem 5.3 to deduce Corollaries 1.12 and 1.13(ii).

In Section 6, we introduce finitary analogues of tools from Section 2. These are needed in
Section 7, in which we show that proving the equivalence of true and algebraic complexity for
homogeneous progression comes down to proving Theorem 6.7, a finitary version of Theorem
5.3. We also explain in Section 7 how to prove Corollary 1.13(i). Theorem 6.7, the main
technical part of this paper, is derived in Section 8. Unfortunately, Theorem 6.7 fails for
inhomogeneous progressions, as explained in Section 9. In Section 10, we propose a method
to handle inhomogeneous progressions. While we succeed in proving an analogue of Theorem
5.3 for the inhomogeneous progression (x, = +vy, =+ 2y, = +y?) in Proposition 10.1, we have
been unable to extend this construction to all inhomogeneous progressions. Subsequently, we
show in 11 that Weyl and algebraic complexity are always equal, which is the main statement
of Theorem 1.16. We conclude the paper by proving Theorem 1.14 in Section 12.

Acknowledgments. We are indebted to Donald Robertson for his comments on earlier ver-
sions of the paper and fruitful conversations on the project while it was carried out. We
would also like to thank Sean Prendiville for introducing us to the topic of complexity, Tuo-
mas Sahlsten for hosting a reading group on the dynamical proof of Szemerédi theorem, and
Jonathan Chapman for useful discussions on algebraic relations between terms of polynomial
progressions.

2. INFINITARY NILMANIFOLD THEORY

2.1. Basic definitions from ergodic theory. Let (X, X, 1, T) be an invertible measure-
preserving dynamical system (henceforth, we shall simply call it a system). The background
in ergodic theory that we need can be found in [HK05b, HK18], among others; here, we only
reiterate the most important definitions.
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Definition 2.1. A factor of a system (X, X,u,T) can be defined in three equivalent ways:
(i) it is a T-invariant sub-o-algebra of X';

(i1) it is a system (Y, YV,v,S) together with a factor map 7 : X' — Y’ i.e. a measurable
map defined for a measurable T-invariant set X' of full measure, satisfying Somw = woT

on X" and porn ' =v;

(iii) it is a T-invariant subalgebra of L™ (p).

For r € N, we let K, be the factor spanned by all T"-invariant functions in L*(u). In
particular, K1 = Z is the factor spanned by T-invariant functions, and the rational Kronecker

factor Krqt = \/ K, is the factor spanned by all the functions in in L*°(u) that are T7-
reN
invariant for some r € N. A system is ergodic if K; = Z is the trivial factor spanned by

constant functions, and it is totally ergodic if K4 is the trivial factor.

Of particular interest to us is a sequence of factors (Zs)sen defined in [HK05b], which we
refer to as Host-Kra factors. In accordance with Definition 2.1, we shall sometimes think of
Z, as a sub-o-algebra of X', and at other times we will consider a factor map w5 : X — Z5 and
a factor (Zs, Zs, A\, S) of (X, X, u,T). If we concurrently talk about Host-Kra factors of two
distinct spaces X and Y, we may write Z4(X) and Zs(Y) to mean Host-Kra factors of X and
Y respectively. We do not explicitly use the definition of Host-Kra factors anywhere in the
paper, and so we leave the interested reader to look it up in [HK05b, HK18]. Instead, we rely
on two properties of this family of factors that concern their utility and structure respectively.
First, these factors are characteristic for the convergence of polynomial progressions, as proved
in Theorem 1.4. Rephrasing Theorem 1.4 in terms of Definition 1.5, we can say that each
integral polynomial progression has a finite Host-Kra complexity. Second, each factor Z is
an inverse limit® of s-step nilsystems, which are objects of primary importance to us.

2.2. Nilsystems. Let G be a Lie group with connected component G° and identity 1. A
filtration on G of degree s is a chain of subgroups

G=Go=G12G2>2..2G;>2G441=Gg9=...=1

satisfying [G;,G;] < Git; for each i,j € N. We denote it as Go = (G;)2,. A natural
example of filtration is the lower central series, given by Gyy1 = [G, G| for each k > 1, where
the commutator of two elements a,b € G is defined as [a,b] = a~'b~'ab, and [A, B] is the
subgroup of G generated by all the commutators [a,b] with @ € A,b € B. The group G is
s-step nilpotent if Gg41 = 1, where G441 is the s-th element of the lower central series of G.
The only 0O-step nilpotent group is the trivial group, and 1-step nilpotent groups are precisely
abelian groups.

For the rest of the paper, we let G be a nilpotent Lie group and I' < G be a cocompact
lattice. We call the quotient X = G/T'" a nilmanifold. The group G acts on X by left
translation, and for each a € G, we call the map T,(¢I') = (ag)T' a nilrotation. Setting G/T
to be the Borel g-algebra of X and v to be the Haar measure with respect to left translation,
we call the system (G/T',G/T,v,T,) a nilsystem.

3The system (X, X, u,T) is an inverse limit of a sequence of factors (X, X;, u, T') if &X; form an increasing

sequence of factors of X such that X = \/ X; up to sets of measure zero.
iEN



10 BORYS KUCA

A subgroup H < G is rational if H/(H NT) is closed in G/T'. A filtration G, is rational
if G; is a rational subgroup for each i € N. We shall assume throughout the paper that each
filtration that we discuss is rational.

In the case when (G/I',G/T",v,T,) is an ergodic nilsystem, which will always be our case
anyway, we can make two simplifying assumptions about the group GG. By passing to universal
cover, we assume that G is simply connected. Replacing the nilsystem with several simpler
nilsystems, we further assume that G is spanned by G? and a. These assumptions, justified
in Chapter 11 of [HK18], hold for the rest of the paper.

We also denote I'; = G; NI and 'Y = GYNT. The rationality of G; in G means that I'; is
cocompact in G;.

Proposition 2.2 (Conditions for total ergodicity of nilsystems, Corollary 7 and 8 of [HK18]).
Let (G/T,G/T,v,T,) be an ergodic nilsystem. There exists r € Ny such that T3 (G°/T) is
totally ergodic with respect to Ty, for all0 < j <.

Moreover, the following are equivalent:

(i) Ty is totally ergodic;
(ii) G/T is connected;
(iii) G = GT.

Nilsystems allow a particularly simple description of factors. If G, is the lower central
series filtration, then

G
G5+1P

(12) Zs =

for all s € Ny (see Chapter 11 of [HK18]). For s = 0, we have Zy = G/(G'T") = (Z/rZ),
where 7 is the smallest positive integer for which a” € G°. It follows from Proposition 2.2
that Zy is trivial if and only if the nilsystem is totally ergodic.

Let P € Rlz,3]"t! be an integral polynomial progression. By Theorem 1.4, there exists
s € N such that for every ergodic system (X, X, u, T) and all choices of fy, ..., fy € L (u), we
have

i Ency [ o 7700 i TP
N—oo X

(13) = lim Eepy /Z E(fol25) - STE(f1]25) - - STVE(f] Z5)dA

s

Using the fact that Z; is an inverse limit of ergodic s-step nilsystems, we can approximate
the average (13) arbitrarily well by projections onto ergodic nilsystems. Hence we are left
with understanding averages of the form

(14) lm Epeqy / FodT) - f1(aPr ™Dy - .- fy(a*™bD)du(bT)
N—oo G/F

where f; is the projection of f; onto an ergodic s-step nilsystem (G/T,G/T,v,T,) for all
0 <i <t If T is totally ergodic, then so is the nilrotation 7.
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2.3. Polynomial sequences. Let G4 be a filtration on G of degree s. A polynomial sequence
g:Z — G adapted to G, is a sequence

(15) g(n) = [ o”.
1=0

with the property that g; € G; for each i. Such sequences form a group denoted as poly(Z, G,)
by Proposition 6.2 of [GT12]. One may ask why we define polynomial sequence as (15) rather
than in the seemingly more natural form

(16) g(n) =T o¢"
=0

The reason is that if ¢ is written in the form (15), then we have the following nice statement.
Lemma 2.3 (Lemma 2.8 of [CS12]). Suppose that g € poly(Z,G,). The sequence g(n) =
I, gi(?) takes values in H < G if and only if go,...,9s € H.

Proof. The converse direction is straightforward, and we prove the forward direction by in-
duction on 0 < k < s. For k = 0, we observe that gy = g(0) € H. Suppose that the statement

k
holds for k, i.e. go,...,gx € H. Then g(k +1) = <Hf:0 gl(l)> gk+1. Since g(k + 1), 90, ..., gk
are all in H, it follows that g1 € H.

Lemma 2.3 is not true if g is written in the form (16); for instance, g(n) = () = 4n%—1in
takes values in Z even though %, —% ¢ 7.

In a similar manner, we define for any D € N, the group poly(Z”,G,) of D-parameter
polynomial sequence g : ZP — G adapted to G., i.e. sequences of the form

gnnp) =T TI oo CB)

1=0141+...+ip=1
fOT gil,...,iD S Gi1+...iD'

2.4. Infinitary equidistribution theory on nilmanifolds. For the rest of Section 2, we
assume that G is connected. For D € N,, a polynomial sequence g € poly(ZP,G,) is
equidistributed on G/T" if

Enevp F(g(n)l) — Fdv
G/T
for any continuous function F' : G/T' — C. The following notion is useful when discussing
equidistribution.

Definition 2.4 (Horizontal characters). A horizontal character on G is a continuous group
homomorphism n : G — R for which n(I') < Z.

In particular, each horizontal character vanishes on [G, G|.

Equidistribution on nilmanifolds was studied by Leibman, who provided a useful criterion
for when a polynomial sequence is equidistributed on a nilmanifold. We only need the version
of the statement in the case when G is connected, as we will be able to reduce to this case.
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Theorem 2.5 (Leibman’s equidistribution theorem, [Lei05b]). Let D € N and g € poly(ZP,G,).
The following are equivalent:

(1) g is equidistributed in G/T';
(i1) the projection of g onto G/|G, G| is equidistributed in G/|G, G|T;
(iii) if n: G — R is a horizontal character for which no g is constant, then n is trivial.

We shall also need a stronger notion of equidistribution, that of irrational sequences.

Definition 2.6. Suppose that Ge is a filtration on G and i € Ny, and let
GY = (Git1, G, Ginyl, 1 < j < i)

An i-th level character is a continuous group homomorphism n; : G; — R that vanishes on GZ-V
and satisfies n;(T';) € Z. An element g; of G; is irrational if n;(g;) ¢ Z for any nontrivial i-th
S n
level character n;. A sequence g(n) = [] gl(’) is irrational if g; is irrational for all i € Ny.
i=0
All irrational sequences are equidistributed, but not vice versa. For instance, let g(n) =
ain + ... + azn® be a real-valued polynomial. It is a polynomial sequence in R adapted to
the filtration G; = ... = G5 = R, Gs41 = 0. Thus, g is irrational iff a5 ¢ Q, and g is
equidistributed iff there exists 1 < i < s with a; ¢ Q. It is clear in this case that irrational
implies equidistributed, but not vice versa.
We want to emphasise that whether a sequence is irrational or not depends on what
filtration we are using, whereas the notion of equidistribution does not depend on the filtration.

3. REDUCING TO THE CASE OF CONNECTED GROUPS

The expression (14) indicates that to understand Host-Kra complexity of a polynomial
progression P, we have to understand the distribution of orbits

(17) oL, a0, ... ap0)

inside a connected nilmanifold G'*!/T**1. The point of this section is to show that we
can replace linear orbits (a™bI'),cn on G/T' by polynomial orbits (g5(n)'%),en on G°/TY for
some irrational polynomial sequence g : Z — G° with respect to a certain naturally defined
filtration G? on Gy. This way, we want to reduce the question of finding the closure for (17)
inside (G/T)*! to finding the closure for

(18) (go(m)T°, gy(m + Pr(n))I°, ..., gy(m + Py(n))I)

inside (G%/T?)*1. The connectedness of G° allows us to use tools from Section 2.4.

Lemma 3.1. Let (G/T,G/T,v,T,) be a totally ergodic nilsystem and F : (G/T)*! — R be
essentially bounded. Then

Ereiv . F(bT, b (")bF, o aPt(n)bI‘)dy(bI‘)

= ErnnelN] - F(a™bD, o P mpr a0 dy (1),
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Proof. Since T, is measure preserving, we have

/ FOL, a™™pr, ..., o) p0)dy(bD) = / F(a™bD, a1 0pr a0y (bT)
G/T G/T

for any m,n € N. Consequently,
/ FOr, a0, . o™ ™p0)du (D)
G/T
= Epe(n] / F(a™bD, a1 pr oM pr) dy (b1,
G/T

from which the lemma follows. O

The main result of this section is the following.

Proposition 3.2. Let (G/T,G/T',v,T,) be a totally ergodic nilsystem and b € G°. Suppose
that Ge is the lower central series filtration on G and G(,] = Ge NGY. Then there exists an
irrational sequence g, € poly(Z,GY) such that gy(n)T' = a™bT .

We observe that with this filtration on GY, we have G? = G}, for k > 2. That follows from
the fact that the groups G* are connected for k > 2 (Lemma 5 of [HK18]), and hence are
contained in G°.

We lose no generality in assuming that b € G°; Proposition 2.2 and the connectedness of
G/T imply that for all b € G there exists b’ € G° such that bI' = V'T.

Proof. The connectedness of G /T implies that G = G°T", and so there exist o € GY and v € T
such that @ = ay~!. Then

a™bl' = (ay )"0 = (ay™H)"by"T.

It follows from normality of G° and the fact that o and b are elements of G° that the sequence
gp(n) = (ay™1)"by" takes values in GU. Since the sequences hq(n) = a™b and ha(n) =" are
adapted to G,, and the set poly(Z,G,) is a group, we deduce that g, = hyhe is adapted to
GY=G.NGY.

We want a more precise description of g, and for this we shall use some results from
Sections 11-13 of [Lei09]. Let g = g, for the identity b = 1; that is, g(n) = (ay~1)"y".
Leibman showed in Section 11.2 of [Lei09] that

(19) g(n) = H (Ak‘—la)le (n) H [Ak‘l—la’ Akz_la]qklvkz("),,,,
1<k1<s 1<ko<k1<s

where Az = [z,v] and g, ..., are integral polynomials with degqg, .k, < ki +...+k,. More
explicitly, we have

(20)
g(n) = a™(A4a)(3)(420)(5) ... [Aq, a]5)[4%0, a] (D) ... [4%a, 4a]*("3)) (430, 40]P("5")

The coefficients of g can be analysed using a family of subgroups of G° introduced in Section
12 of [Lei09]. For ki,...,k € N4, we let G(()k1 ) be the subgroup of GY generated by all
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I-fold commutators® of elements of the form A¥~1hy, ..., AR=1h; for hy,...,h; € G°. We then
define

Gy = Gy oy 02l kit o+ > k)
for integers 1 < [ < k and set G%l = GZOJ whenever | > k.
The following lemma lists some basic properties of the groups G%l that we shall use.
Lemma 3.3. For any integers 1 <1 < k,
(i) Gg’l is normal in G;
(ii) [G%I,G?’j] < G2+i7l+j for any integers 1 <1 < j;
(iii) AJG%I < Ggﬂ,l for any j € N;

(iv) G2+1,l and G%,Hl are subgroups of G*!', and the quotient groups G%I/GQHJ and
Gg’l/G%H_l are abelian;

(v) for k=2, Gy, =G = G%l = (Ak_lGO,G%Q = <AG2—1=G272>;
(vi) (GO)Y = <G2,2=G2+1>

Proof. Properties (i)-(iv) are proved in Lemma 12.2 of [Lei09]. For k > 2, the statement G}, =
GY in (v) is true by definition, and the statement Gy, = G%l is proved in Lemma 12.3 of [Lei09].
To finish the proof of (v), it remains to show that G%l = <Ak_1GO,G272> = (AGg_l,G%z)
for k£ > 2. For k = 2, this is true by definition of G2,1 and the fact that Ggg > Gg’?) > ..,
which follows from part (iv). We assume that the statement is true for some k > 2. That
Ggﬂ contains (AGY, G2+1’2> follows from the fact that both AGY and Ggﬂg are contained
in the (k + 1)-th element of the lower central series of G, which is precisely GY 41+ For the
other direction, we observe that

Ghy1 =[Gy, G] = [G), (G0, 7)) < (G}, G°L, [GRA))
S <[Ak_1GO7 GO]? [G2,27 G0]7 AG2> S <Gg+1,27 AG2>
A similar argument shows that GY, | = (AFGO, G2+1’2>.

Before we prove property (vi), we recall that (G)Y = (Ggy1,[Gj, Gr—j] : 1 < j < k).
That (vi) holds for & = 1 can be verified by inspection. For k& > 2, we observe that
[AT1GY AR=I-1G0) < [G?,Gg_j], and so

Gro <([G}.Gl_j]: 1< j < k);

when coupled with property (v), this implies that (G%)Y > (G%z, GY +1)- For the converse,
we have

[G%G%_j] = [(Aj_lGoaG?,2>7 (Ak_j_lGoaGg—j,zﬂ < <G2,2,G2,3,G274> < Gg,m

for each 1 < j < k, from which it follows that (G°)Y < <G272, Ghi)- O

4A 1-fold commutator is any element h € GG. For [ > 1, an [-fold commutator is an element of the form
[li, hj], where h; is an i-fold commutator, h; is an j-fold commutator and i + j = [.
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(1)

Letting g(n) = [[;_; 9;", we observe from (19), (20) as well as parts (v) and (vi) of
Lemma 3.3 that

(21) gi=A"la mod (G°)Y.

For an arbitrary b € G°, we have g,(n) = a"by" = b(ay~')"y", where a;, = aa, b|Ab, as
observed in Section 11.3 of [Lei09]. Letting gy(n) = [[7_, g£7 ), it is therefore true that

(22) ghi = A7 lay = A la mod (G0)Y

for all 7 € N.

For i = 1, we have g1 = o mod GY, and we claim that gp,i is irrational. The ergodicity
of a implies that for almost every b, the sequence n +— a"b is equidistributed in G/T", and
so the same is true for the sequence g, in GY/I'°. Consequently, the projection 7(gy) : Z —
GO/(GITY) is equidistributed as well. Since 7(gy(n)) = 7(b) + 7(a)n, it follows that 7(«a) is
an irrational element of G°/ Gg, and so gp1 is an irrational element of GO.

Before proving that g, are irrational for 7 > 1, we discuss some properties of the map
A : G — G. From the definition of the filtration G we observe that AG? < GY,; for all
i > 1 (this is also a consequence of parts (iv) and (v) of Lemma 3.3). Therefore the map
A; = A|G? takes values in G?H, and moreover A;(I";) < T';41. We also observe that the

projection A; : GY — GY i (GO)Z_1 is a (continuous) group homomorphism because

A(zy) = [xy,7] = [2,M[[z, 7], y]ly, 7] = Az[Az,y]Ay = AzAy mod G,

for any 2,y € Gf and G9,,, , <GP, 5 < (G°)Y.; by parts (iv) and (vi) of Lemma 3.3. From
part (v) of Lemma 3.3 it follows that A; is surjective. Finally, we note using parts (iii) and
(v) of Lemma 3.3 that 4;((G°)Y) < (G°)Y,,.

Suppose that g ; is irrational but g, ;41 is not for some 1 < i < s. Then there exists a
nontrivial (i + 1)-th level character 7;4; : G?+1 — R such that 7;41(gp,i+1) € Z. From (22)
and the fact that 7,11 vanishes on (G°)Y,;, we deduce that 7;+1(gpi+1) = 7i+1(A’a). We also
let 7,11 : GY.1/(G%)Y.; — R be the induced map.

Let n; :=m;410 A; G? — R. It is an ¢-th level character as a consequence of four facts:
the vanishing of 7;+1 on (G%)Y,, the inclusion (GZQ+172) < (G%)Y.; (both of which imply that
1; = ;410 A; is a continuous group homomorphism), the inclusion 4;((G°)Y) < (G°)Y,,, and
the fact that n;(T';) < Z. It moreover satisfies

ni(gpi) = mi(A7 ) = i1 (A'a) = mit1(giv1),

implying that 7;(gs;) € Z. The nontriviality of n;+1 implies that 7;,, and A4; are surjective
maps onto nontrivial groups; hence n; is nontrivial. This contradicts the irrationality of g ;.
By induction, g1, ..., gp s are all irrational, implying that g; is irrational. U

Proposition 3.2 is vaguely reminiscent of Proposition 3.1 of [FK05] in that we replace
a linear sequence by a polynomial object on a simpler space. These two results are not
equivalent, however, in that in Proposition 3.2, we end up with a polynomial sequence on a
nilmanifold of a connected group where in Proposition 3.1 of [FK05], one obtains a unipotent
affine transformation on a torus.
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Lemma 3.4. Let Gy and GO be as given in Proposition 3.2. Then Z;(G/T') = Z;(GY/T'?) =
G /(G T) for each i € N.

Proof. We do the cases i = 0 and i > 0 separately. For i > 0, we recall from (12) that
Zi(G)T) = G/Gi+1T. Since G/T' = GY/T° by connectedness of G/I', and G; = Gg for j > 2,
it follows that

Z;(G°)1%) = Z;(G)T) = G/GiaT = G°/GY, T°.

For i = 0, we have Z;(G/T') = G/G°T =1 = G"/G'T° = Z;(G°/1"). O

4. HOMOGENEOUS AND INHOMOGENEOUS POLYNOMIAL PROGRESSIONS

The central message of this paper is that homogeneous polynomial progressions satisfy
certain linear algebraic properties that make them pliable for our analysis. In this section, we
explicitly describe these properties.

Let P € R[z,y)'™ be an integral polynomial progression. Let Vj, be the subspace of Rz, y]
given by

Vi = Spang{(z + P;(y))’ : 0<i<t, 1<j<k}
= SpanR{<x+]‘Di(y)> : 0

and similarly let

We also set

V* = Spang{(Qo, ..., Q:) € R[u]"™ : Q(0) = ... = Q:(0) =0,
Qo(z) + Qi(z + Pi(y)) + ... + Qe(x + Pi(y)) = 0}

to be the space of all algebraic relations with zero constant terms satisfied by P. We recall
that an algebraic relation (Qo, ..., Q) is homogeneous if there exists d € N1 and ag, ...,aq € R
not all zero such that Q;(u) = a;u® for each 0 < i < t. We call P homogeneous if V* is
spanned by homogeneous algebraic relations, and inhomogeneous otherwise.

The concepts of integral polynomial progression and homogeneity, as well as our results in
this paper, could likely be extended to multiparameter polynomial progressions of the form

(33, 33‘+P1(y17"'7y7‘)7 sy 33‘—|—Pt(y1,---7y7‘));

however, we do not pursue this generalisation so as not to obfuscate the notation.
Some important examples of homogeneous progressions include:

(i) linear progressions (z, = + a1y, ..., © + azy) for distinct nonzero integers ay, ..., a;, as
well as their multiparameter generalizations;

(ii) progressions of algebraic complexity 0, i.e. progressions where the polynomials P, ..., P;
are integral and linearly independent;
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(iii) progressions of algebraic complexity 1, such as (z, = +y, = +y?, = + y + y?), which
satisfy no quadratic or higher-order algebraic relation.

Another, less obvious example of a homogeneous progression is (z, z+y, x +2y, = +y3),
already mentioned in the introduction, which only satisfies the homogeneous relation

(23) z—=2(x+y)+ (z+2y) =0.

This progression should be contrasted with (z, x+4v, =+ 2y, = +y?), which is inhomogeneous
because it satisfies both (23) and the inhomogeneous relation

(24) 22422 — 2 +y)? + (x+2y)° -2 +y*) =0

that cannot be written down as a sum of homogeneous relations. More generally, progressions
of the form

are all inhomogeneous whenever 1 < deg P; < t.
For k € N4, we define

WE=Wen) W, and We=> W,
J#k k

as well as the family of quotient spaces

Wi, = Wi/Wi = Wi/ | Wen > W;
itk

Proposition 4.1 (Equivalent conditions for homogeneity). Lett € N, and P € Rlz,y]'t! be
an integral polynomial progression. The following are equivalent:

(i) P is homogeneous;
(1) W is trivial for each k € N_;
(iii) W, = Wy, for each k € N,

Proof. The equivalence of (i) and (iii) follows trivially from the definition of W}, and we
focus on showing the equivalence of (i) and (i) instead. The inhomogeneity of P implies the
existence of a nontrivial algebraic relation (Qo(u), ..., Q¢(u)) = (3, agku”, ..., >, agu) that

is not a sum of homogeneous algebraic relations. What this means is that there exists k € N,
for which

R(z,y) = agez”™ + arp(z + Pi(y)* + ... + am(z + Pi(y))* # 0.

Since

Qo(x) + Q1(z+ Pi(y)) + -+ Qilx + P(y)) =0,
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we have
t .
Jj#k i=0 Jj#k

and so Wi = Wy N3, W is nonempty. Thus (ii) implies (i) by contrapositive. The
argument can be reversed, and so (i) and (ii) are in fact equivalent. O

For homogeneous progression, it is quite straightforward to obtain an upper bound on
algebraic complexity.

Proposition 4.2. Lett € Ny and Pe Rlz, 3]t be a homogeneous polynomial progression.
Then A;(P) <t—1 for each 0 <i < t.

This bound is sharp, as evidenced by the example of arithmetic progressions.

Proof. By homogeneity of 15, the only algebraic relations of degree ¢ that P could satisfy are
of the form

(25) ao <Ht;> + aq <a: + ?(y)) + . tay <a: * ft(y)> =0.

A relation (25), together with the formula

() =0 (T )ror () (757) - ()
ay <Piéy)> totay (Ptéy)> =0

for 1 < k < t. From the invertibility of Vandermonde matrix it follows that this is only
possible when a1 = ... = a; = 0, in which case ag = 0 as well. Hence P satisfies no nontrivial
relation of degree t.

implies

O

Proposition 4.1 implies that homogeneous progressions satisfy

k k
i=1 i=1

In the inhomogeneous case, we instead have

k k
(27) Vi=> W= (EB W{) & (Wen V)
1=1 i=1

for some nontrivial subspace W N V). The nontriviality of this subspace is the main source
of difficulty preventing us from generalising Theorem 1.11 to inhomogeneous progressions.
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Given the rather abstract nature of the spaces Wy, W}, and W[, we illustrate their defini-
tions with concrete examples. For the homogeneous progression (x, = + vy, x + 2y, = + 3°),
we have

3
W{ =W, = Spang{z,y,y°} and Wj =W, = Spang { <;>wy - <g>,y2,wy3 + <y2 > } :

while for the inhomogeneous progression (z, x + ¥,  + 2y, = + y?), we have

2
W1 = Spang{z,y,y*} and W, = Spang { <a2:>,$y + (g),yz,xyz + <y2 >}

but

2
W, = Spang{z,y}, Wj = Spang { <;>,:Ey + <z2/>,xy2 + <y2 )} and W= Spang{y*}.

The nontriviality of W€ for the latter progression is intrinsically related to the algebraic
relation (24).

The spaces Vi, and W} are subspaces of R[z,y]. We also need an analogous family of
subspaces of RftL. Let

st (0 (09 () v
s ({72 (1) )

= Spang {(azk, (x+ Pk, ..., (x+ Py z,y e [R} .

‘We shall also use the notation

—

B(x,y) = (%, (@ + PLy))F, ... (x + P(y))*) and <P(f€’y)> = ((i) <‘”” N 5“”) . (3’ i ka(y)» .

The equivalence of three formulations of P, may not be obvious at first glance. The first two
formulations are equivalent because if (ay, ..., a;) is the coefficient of (%) (¥) in (P (j’y)), then

it will be the coefficient of (2 +,f_ j) (@l/) in (13 (i’y)) whenever j < k. The equivalence of the last
two formulations follows by induction on k.
Let t;, = dim W}, and t), = dim W, for each k € N. The spaces W}, and P, can be related

as follows. Let {Qp. 1, ..., Qk, } be a basis for W,. Then

((2). (2., (7 P jﬁ:;lvk,jczk,m,y)

for some linearly independent vectors vy, 1, ..., Uk ¢, € RHL. We let Tk(Qk,j) = Uk,j, and extend
this map to all of W}, by linearity. This map depends on the choice of the basis for Wj. It
is surjective by the definition of P} and injective by the linear independence of ¥y, 1, ..., U, -
Hence it is an isomorphism. In particular, Proposition 4.1 implies that W, = P whenever P
is homogeneous.
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For instance, for (x, x +y, = + 2y, = + y3), the isomorphisms 71 and 7, are given by

7—1(517) = (1’ 1,1, 1)7 Tl(y) = (0’ 172’0)7 Tl(yg) = (070’07 1)

T <<;>> —(1,1,1,1), m <xy+ (g)) = (0,1,2,0),

m(y?) = (0,0,1,0), 7 <:cy3 + (y;)) = (0,0,0,1).

and

We treat R as an R-algebra with coordinatewise multiplication 7 = (v(0)w(0), ..., v(t)w(t))
for 7 = (v(0), ...,v(t)) and @ = (w(0), ..., w(t)). We similarly let A-B ={G-b:ad e A,b e B}
be the product set of A and B for any A, B C R‘*1. With these definitions, we observe that
Pit; < P; - Pj;, but the converse is in general not true. We also set ¢€; to be the coordinate
vector with 1 in the i-th place and 0 elsewhere.

5. RELATING HOST-KRA COMPLEXITY TO ALGEBRAIC COMPLEXITY

Having introduced the notation for the spaces P;, we are ready to show precisely how
determining Host-Kra complexity for homogeneous progressions can be reduced to a certain
equidistribution problem on nilmanifolds. We start by defining a group which contains the
orbit (18). Groups of this form have previously been defined in [Lei09, GT10, CS12, Kuc20],
among others.

Definition 5.1 (Leibman group). Lett € Ny and G be a connected group with a filtration G
of degree s. For an integral polynomial progression P € Rz, y]'*', we define the associated
Leibman group to be

GV =(gl" : gi € Gy, B € P11 <i < 8),

where h? = (WO, . h*®) for any h € G and T = (v(0),...,v(t)) € R*L. We also set
I'? =GP NG If g € poly(Z,G,), then we denote

9" (z,y) = (9(z),9(z + Pi(y)), ... g(x + Pi(y)))

and observe that g© takes values in G .

Lemma 5.2. Lett € Ny and G be a connected group with a filtration Ge of degree s. Suppose
that P € R[z,y|'*! is an integral polynomial progression with A;(P) = s’ for some s’ € N.
Then GY contains 1' x Ggyq x 1071,

Proof. The assumption A;(P) = s’ implies that (z + P;(y))* ™! is linearly independent from
(x4 Py(y))**! for k # 4, hence Py contains &. The Lemma then follows by the definition
of G O

We are now ready to state an infinitary version of the main technical result in the paper.
This result constitutes the first part of Theorem 1.15.
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Theorem 5.3. Let t € Ny and G be a connected group with filtration Go. Suppose that
g € poly(Z,G,) is irrational and that P € Rz, y]'*! is a homogeneous polynomial progression.
Then g is equidistributed on the nilmanifold G /T'F.

Importantly, Theorem 5.3 fails for inhomogeneous progressions in that for each inhomoge-
neous progression 15, we can find a nilmanifold G/T', a filtration G, and an irrational sequence
g € poly(Z,G,) for which the orbit of g” is contained in a proper subnilmanifold of G /T'F.
An example of this is given in Section 9.

We have all the tools to prove Theorem 5.3 by now. However, we will later need a finitary
version of Theorem 5.3, and so instead of proving twice what is essentially the same result, we
shall only give the finitary proof later on and deduce Theorem 5.3 from it. For now, however,
we can show how the HA;(P) < A;(P) part of Theorem 1.11 follows from Theorem 5.3.

Corollary 5.4. Lett € Ny and Pe Rlz,y]**! be a homogeneous polynomial progression. For
any 0 <1 < t, we have

HEi(P) < Ai(P).

The converse inequality will follow from showing that algebraic complexity equals Weyl
complexity, and that Weyl complexity is less than or equal to Host-Kra complexity, both of
which are done in Section 11.

Proof of Corollary 5.4 using Theorem 5.3. Let A,(ﬁ) = s. Let (X,X,u,T) be a totally er-
godic system, fo,..., fr € L*(u), and suppose that E(f;|Zs) = 0. By Theorem 1.4, the
expression

(28) lim E ey / forTP TP fdp
N—oo X

remains unchanged if we project the functions fy, ..., fr onto the factor Z,, for some sg € N.
If so < s, then E(fi|Zs,) = 0 and the limit (28) is 0, so we can assume that sg > s. Since the
factor Zg, is an inverse limit of sp-step nilsystems, we can approximate X by totally ergodic
nilsystems.

Let (G/T',G/T',v,T,) be a totally ergodic nilsystem, and Go be the lower central series
filtration on G. Using (12), it suffices to show that if fo,..., fy € L*°(v) and f; vanishes on
each coset of Gsy11', then

lim E,epn / FodT) - f1 (a0 - .- fy (P ™BD)du (b)) = 0.
N—o00 G/T
Let GY be the filtration on G given by GY = G, N G, and let g, € poly(Z,GY) be the

irrational sequence defined in Proposition 3.2 for which a"bI" = g,(n)I". The irrationality of
gy, Lemma 3.1 and Theorem 5.3 imply that

lim E,eqn / Fo(bD) - f1(a* D) - - fi(aP 0D dw (b1)
N—oo G/T

= /GO/FO Jim Epnein) fo(go(m)T?) - fi(gs(m + Pr(n))T%) - ... - fi(gs(m + Pi(n))T%)dv(bI)

=/ fo®...® frdv®,
(GO)P /(T0)P
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where (G%)F is the Leibman group for P and v is the Haar measure on (G°)”/(I'%)F.

The assumption that f; vanishes on each coset of G 1T in G/I' together with Lemma
3.4 imply that f; vanishes on each coset of G +1F inside G°/I'°. By Lemma 5.2, the group
(G°)F contains H = 1" x G%,; x 1'™7; therefore

/ fo® .. ® fi] <
(GO)F/(T0)F

b /(G0>P/H<FO>P
TT 11511 /
0]

fi
ki (GOYP /H(T0)P /miGO ro

s+1

/ fo®..® fi
xH(T0)P

)

implying that Z; is characteristic for the weak convergence of P at i. O

Corollary 5.4 implies that if a progression P satisfies A,(ﬁ) = s, then Z; is characteristic
for the weak or L? convergence of P at i for any totally ergodic system. We now prove
Corollary 1.12, which extends this result to ergodic systems with a slight modification in the
s = 0 case. The proof is almost identical to the proof of Proposition 4.1 in [Fra08|.

Proof of Corollary 1.12. Let P € R[z,y]"*! be a homogeneous progression with Al(ﬁ) =s
and (X, X, u,T) be ergodic. By Theorem 1.4, there exists a Host-Kra factor that is char-
acteristic for the weak and L? convergence of P. Since each Host-Kra factor is an inverse
limit of nilsequences, we can approximate X by an ergodic nilsystem (G/T",G/T",v,T,). The
compactness of G/I" and the assumption that G is generated by the connected component G
and a imply that a” € G° for some r € N ; and hence

t
(29) Encien [ [ T8 fi = EjepnEnep [ [ 75004 £,
i=1 i=1

= Ljelr] ne N]H P” TP@ fz)

where ]5”(71) = Pi(r(n_l):' D=PG) A tedious linear algebraic argument shows that for any

0 < j <r, the progression Pis homogeneous if and only if

o

(‘Tay) - (‘Tv T +p17j(y)7 ey T pt,j(y))

is, and that there is a one—to—one correspondence between algebraic relations that P and P
satisfy. In particular, P is also homogeneous and A;(P ) = 8.

If s > 0, suppose that E(fi|Zs(Tw)) = 0. Then the equality Z4(T,) = Z,(T7) and the
T,-invariance of Z; imply that E(7, f i) filZs(T}F)) = 0. We deduce from Corollary 5.4 and
the total ergodicity of T, on each connected components of G/I" that the expression in (29)
converges to 0 as N — oo.

If s = 0, suppose that [E( fZ\ICmt( w)) = 0. The total ergodicity of 7, implies that

Krat(To) = 2o(T)), and so E(T, 1) filZo(T))) = 0. Again, it follows from Corollary 5.4
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and the total ergodicity of T on each connected components of G/T" that the expression in
(29) converges to 0 as N — oo.
O

Theorem 5.3 also allows us to prove the second part of Corollary 1.13.

Proof of Corollary 1.13(ii). Let (X, X,u,T) be a totally ergodic system, and suppose that
Pe Rlx,y]"*! is an integral progression with algebraic complexity at most 1. This implies
that P is homogeneous since each inhomogeneous algebraic relation must have degree at least
2. For each 0 < i < t, let P(y) = Z?Zl a; jQ;(y) and L;(y1,...yq) = Z;-lzl a; jy; for some
a;; € Z and integral polynomials Q1,...,Qq. Letting

-

L(x7y17 "'7yd) = (337 z + Ll(yla "'7yd)7 cy T Lt(yla ---yyd))a

we observe that P(z,y) = L(z,Q1(y),...,Qq(y)). It follows that L also has an algebraic
complexity at most 1, since each algebraic relation of degree (jo, ..., j¢) between terms of L
would immediately imply an algebraic relation of the same degree between terms of P after
substituting y; = Q;(y).

Using the same argument as in the proof of Corollary 5.4, we reduce the question of
understanding

t
; Pi(n) £

(30) Jim E,epy /X [[7" s

to understanding

(31) Jim e v F (9" (2,9))

for each essentially bounded function F' : (G/I')'*! — C and an irrational sequence g €
poly(Z,G,) for some filtration Go on G. Following the same method to analyse

t
Xi=0

we deduce that understanding (32) comes down to estimating

(33) ]\}1—H>100 [Ex,yh...,ydE[N]F(gL(:Evy17"-7yd))7

where

9" @y, ya) = (9(2),9(x + Li(y1, s ¥a))s - 9(@ + Li(yn, - va)))-
By Theorem 5.3, the limit in (31) equals fGP/FP F; by Theorem 11 of [GT10], the limit
in (33) is fGL /FLF for some subgroup G < G'*'. From the fact that max; Al(ﬁ) <1
we deduce that GF = (hfl,G?l : hy € G1,U; € Py); similarly, the construction of the

group G in [GT10] and the fact that L has algebraic complexity at most 1 reveals that
GE = (n]', G4 - hy € Gy, 01 € L1), where

El = Spanﬂ?{($7$ + Ll(y17 "'7yd)7 ey X+ Lt(yh 7yd)) ST, YL, - Yd € [R}

We observe that P; = Ly; from this it follows that G = G¥, and so the limits in (31) and
(33) are equal. This implies that (30) and (32) equal as well.
O
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6. FINITARY NILMANIFOLD THEORY

Before we can prove a finitary version of Theorem 5.3, we need to introduce necessary
finitary concepts required for this task. Most concepts and definitions in this and next section
are taken from [GT10, GT12, CS12|. Throughout this section, we assume that G is connected,
and that each nilmanifold G/T" comes with a filtration G4 and a Mal’cev basis y adapted to
(Go. We call a nilmanifold endowed with filtration and a Mal’cev basis filtered. A Mal’cev basis
is a basis for the Lie algebra of G with some special properties; since we do not explicitly work
with the notion of Mal’cev basis or its rationality in the paper, we refer the reader to [GT12]
for definitions of these concepts. What matters for us is that each Mal’cev basis induces a
diffemomorphism ¢ : G — R™, called Mal’cev coordinate map, which satisfies the following
properties:

(i) () =2
(i) ¥(G;) = {0}y ™ x R™i, where m; = dim G;.

Thus, v provides a natural coordinate system on G that respects the filtration G4 and the
lattice I'. Similarly to 1, we define maps v; : G; — R™i~™i+1 by assigning to each element
of G; its Mal’cev coordinates indexed by m —m; + 1, ..., m — m;y1. With this definition, we
have v;(z) = 0 if and only if x € G411, and 9;(z) € Z™ "+ if and only if x € T;.

Definition 6.1 (Complexity of nilmanifolds). A filtered nilmanifold G/T' has complexity M
if the degree s of the filtration G, the dimension m of the group G, and the rationality of the
Mal’cev basis x are all bounded by M.

We remark that complexity of nilmanifolds has nothing to do with the four notions of com-
plexity of polynomial progressions that we examine. Neither does complexity of nilsequences
defined below.

Definition 6.2 (Nilsequences). A function f : Z — C is a nilsequence of degree s and
complexity M if f(n) = F(g(n)l'), where F' : G/T' — R is an M-Lipschitz function on a
filtered nilmanifold G/T of degree s and complexity M, and g € poly(Z,G.,).

Definition 6.3 (Quantitative equidistribution). Let D € Ny and 6 > 0. A sequence g €
poly(ZP,G) is (6, N)-equidistributed on G/T if

< O F|Lip

o Flol) = [ F
G/T

for all Lipschitz functions F' : G/T' — C, where ||F||ri, is the Lipschitz norm on F with
respect to a metric defined in [GT12].

It has been shown in Theorem 2.5 that equidistribution is related to horizontal characters.
Given the Mal’cev coordinate map 1 : G — R, each horizontal character can be written in
the form n(z) = k- ¢(x) for some k € Z™. We call |n| = |k| = |k1| + ... + |km| the modulus
of n. Similarly, each i-th level character n; : G; — R is of the form n;(x) = k - 1;(x) for some
ke z™i~mi+1and we define its modulus to be |n;| = |k| = [k1| + ... + |k —my 1 |-

We shall also need to quantify the notion of polynomials that are “almost constant” mod
Z, using a definition from [GT12]. In what follows, ||z||g/z = min{|z —n|: n € Z} is the
circle norm of x € R.
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Definition 6.4 (Smoothness norm). Let

STES VD DTN () B ()

=0 i1+..+ip=i td
be a polynomial in Rlny,...,np|. For N € Ny, we define the smoothness norm of @ to be
HQHCOO[N] = maX{Niler—i_iDHa’il,...,iDHIR/Z : il, ...,iD S [N, 1<ig+---+ip < d}

In particular, [|Q|[¢e[n] is bounded from above as N — oo if and only if @ is constant
mod Z.
With these definitions, we are ready to state a quantitative version of Theorem 2.5

Theorem 6.5 (Quantitative Leibman’s equidistribution theorem, Theorem 2.9 of [GT12]).
Let 6 > 0, M > 2 and D,N € Ny with D < M. Let G/T be a filtered nilmanifold of
complexity M and g € poly(ZP,G,). Then there exists Cpy > 0 such that at least one of the
following is true:

(1) g is (6, N)-equidistributed in G/T';

(ii) there exists a nontrivial horizontal character n of modulus |n| < 6~ for which
|17 0 gllcoepny < 67N

We now need to quantify the notion of irrationality.

Definition 6.6 (Quantitative irrationality). Let G/T" be a filtered nilmanifold of degree s,
and suppose A,N > 0. An element g; € G; is (A, N)-irrational if for every nontrivial i-th
level character n: G; — R of modulus |n| < A, we have ||n(g:)||lr/z = A/N". It is A-irrational
if for every nontrivial i-th level character n : G; — R of modulus |n| < A, we have nog; ¢ 7.
We say that a sequence g € poly(Z,Gs) is (A, N)-irrational (respectively A-irrational) if g;
is (A, N)-irrational (respectively A-irrational) for each 1 < i < s. Similarly, we say that the
nilsequence n — F(g(n)T") is (A, N)- or A-irrational if the polynomial sequence g is.

Clearly, (A, N)-irrationality is stronger than A-rationality, but for some of our applications
the latter notion will be sufficient.

We are now ready to state the finitary version of Theorem 5.3, which is the main technical
result of this paper, and derive Theorem 5.3 from it.

Theorem 6.7. Lett € Ny and A,M,N > 2. Let G/T" be a filtered nilmanifold of complexity
M. Suppose that g € poly(Z,G,) is (A, N)-irrational, F : (G/T)*! — C is M-Lipschitz, and
P € Rlz,y]"t! is a homogeneous polynomial progression. Then

E,ye F(g"” (@)l = / F + Opp(A™M)
GP/FP

for some cpr > 0.

Proof of Theorem 5.3 using Theorem 6.7. Let F : (G/T)"*! — R be a continuous function.
By Stone-Weierstrass theorem, Lipschitz functions on a compact set form a dense subset of
the algebra of continuous functions. Approximating F' by a sequence of Lipschitz functions
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if necessary, we can assume without loss of generality that F' is Lipschitz. We let M be the
maximum of the complexity of G/I" and the Lipschitz norm of F.

Let g € poly(Z,G,.) be an irrational sequence. For each N € N;, we let Ay be the
maximal real number A for which g is (Ay, N)-irrational. We claim that Ay — oo as
N — oo. If not, then there exists some number A > 0 and an index ¢ € N4 with the property
that g; is not (A, N)-irrational for all N € N,. We fix this i. It follows that there exists
a sequence of nontrivial i-th level characters ny : G; — R of modulus at most A such that
Inn(9i)llr/z < A/N'. Since there are only finitely many i-th level characters of modulus
bounded by A, we conclude that there exists a nontrivial i-th level character 1 of modulus at
most A such that ||1(g;)||r/z < A/N* for all N € N,. Taking N — oo, we see that 1(g;) € Z,
contradicting the irrationality of g;.

It therefore follows from Theorem 6.7 that

E,yepnF (9" (2, y)IH) = / F 4 Op(AY™)
GP/TP

Since M is constant, letting N — oo sends the error term to 0, implying that ¢g* is equidis-
tributed on G*/I'P as claimed. O

7. REDUCING TRUE COMPLEXITY TO AN EQUIDISTRIBUTION QUESTION

In Sections 3-6, we have shown how the question of determining Host-Kra complexity for
homogeneous progressions can be reduced to showing that g is equidistributed on G¥/T'F.
Determining true complexity for homogeneous progression comes down to the exact same
equidistribution question. All the arguments in this section can be viewed as finitary analogues
of arguments in previous sections.

Since we are now primarily concerned with functions from Z/NZ to C, we shall need
an N-periodic version of certain previously defined concepts. In this section, N is always a
prime, and the group G is connected. A function f : Z/NZ — C is called 1-bounded whenever

[ flloo < 1.

Definition 7.1 (Periodic sequences). Let G4 be a filtration on G. A sequence g € poly(Z,G,)
is N-periodic if g(n + N)g(n)~' € T’ for each n € Z, and it is periodic if it is N-periodic for
some N > 0. A nilsequence n — F(g(n)I') is N-periodic (resp. periodic) if g is.

Given a homogeneous polynomial progression P € Rz, y]t!

, we want to show that
Ai(P) = T;(P) for each 0 < ¢ < t. The forward inequality is straightforward to derive
(see Theorem 1.13 in [Kuc20]); it is the reverse inequality that poses a challenge. We thus

want to prove the following.

Theorem 7.2. Lett € N, Pe R[z, " be a homogeneous polynomial progression, 0 < i <
t, and suppose that A;(P) = s. For every € > 0, there exist 6 > 0 and Ny € N such that for
all primes N > Ny and all 1-bounded functions fo, ..., ft : Z/NZ — C, we have

|Esyez/nzfo(z) fi(z + Pi(y))... fi(z + Pi(y))] < e

whenever || fi||grs+1 < 0.

We know that each progression is controlled by some Gowers norm. The result below
plays the same role in deriving Theorem 7.2 as Theorem 1.4 plays in the proof of Corollary
5.4.
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Proposition 7.3 (Proposition 2.2 of [Pel19]). Let P € Rz, y]*™" be an integral polynomial
progression. There exists s € No with the following property: for every ¢ > 0, there exist
6 > 0 and Ny € N such that for all primes N > Ny and all 1-bounded functions fo,..., ft :
Z/NZ — C, we have

\Eeyez/nzfo(z) fi(z + Pi(y))... fi(z + Pi(y))| < e

whenever || fi||gs+1 < 6 for some 0 <1 < t.

Next, we want to perform a finitary analogue of the approximation-by-nilsystems argu-
ment. This can be achieved with the help of a periodic version of celebrated arithmetic
regularity lemma from [GT10] in which the same polynomial sequence ¢ is used in the de-
composition of several functions.

Lemma 7.4 (Lemma 2.13 of [Kuc20]). Let s,t € N+, € > 0, and F : Ry — R4 be a growth
function. There exists M = O¢ (1), a filtered nilmanifold G/T" of degree s and complexity at
most M, and an N -periodic, F (M )-irrational sequence g € poly(Z,G,) satisfying g(0) = 1
such that for all 1-bounded functions fo,..., fr : Z/NZ — C, there exist decompositions

fi = fi,nil + fi,sml + fi,unf
where
(i) finit(n) = Fi(g(n)T') for M-Lipschitz function F; : G/T' — C,
(ZZ) ||fi,sml||2 < €,
(it8) || fiunsllus+r < ﬁ,
w) the functions f; nit, fismi and fiuns are 4-bounded,
b b b f

The last piece that we need is a finitary, periodic version of Theorem 6.7.

Proposition 7.5. Lett € Ny and A, M,N > 2. Let G/T be a filtered nilmanifold and com-
plexity M. Suppose that g € poly(Z,Gs) is an A-irrational, N -periodic polynomial sequence,
F : (G/T)*Y = C is M-Lipschitz and 1-bounded, and P € Rlz,y]'* is a homogeneous
polynomaal progression. Then

EyyeznzF(g" (o, y)T ) = / F 4 Opr(A=M)
GP /TP

for some cpr > 0.

Proof of Proposition 7.5 using Theorem 6.7. Let g € poly(Z,G,) be A-irrational and N-periodic.
We claim that ¢ is (A, Nk)-irrational for all sufficiently large k£ € N4. If not, then there exists

1 <@ < s such that for each & € N there exists an i-th level character n;; : G; — R of
complexity at most A satisfying ||n;x(9:)|lr/z < A/(Nk)". The N-periodicity of g; implies
that ¢/ € T; mod GY,; (Lemma 5.3 of [CS12]); hence n; 1 (g;) € %Z. Thus, 7,5(9:) € Z
whenever k' > A. In particular, since we can take k arbitrarily large, there exists a nontrivial
i-th level character 7;; of complexity at most A for which 7;,(g;) € Z, contradicting the
A-irrationality of g. Hence g is (A, Nk)-irrational for all sufficiently large k € N.
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Applying Theorem 6.7, we deduce that

[Ex,yGZ/NZF(gP(‘Ta y) L) = [Ex,ye[Nk}F(QP(l’a y)I' ) + O(1/k)

_ / F 4 Onr(A=M) + O(1/k)
GP TP

for all sufficiently large £ € Ny. Taking k — oo finishes the proof. U

Theorem 7.2 is a special case of Theorem 8.1 of [Kuc20], the proof of which is analogous
to the derivation of Corollary 5.4 from Theorem 5.3. Here, we only sketch the steps taken
in the derivation of Theorem 8.1 of [Kuc20], and we refer the reader to [Kuc20] for all the
details. First, we use Proposition 7.3 and Lemma 7.4 to replace the functions fy,..., fr by
irrational, periodic nilsequences. Second, we use Proposition 7.5 to approximate the sum by
an integral of some Lipschitz function F over GF/T'F. Third, we use the fact that A;(P) = s
to conclude that 1 x Gy1 x 1% is a subgroup of GF'. Fourth, we use disintegration theorem
to bound pr /TP by averages of some Lipschitz function F; over cosets of Gs11I['. Fifth, we

use the assumption that f; has a small U*T! norm to conclude that averages of F; over cosets
of Gsy1I" are small. From this follows the smallness of

Eoyez/nzfo(x) fi(x + Pi(y)) - filz + P(y)).

The proof of Theorem 8.1 of [Kuc20] makes this argument precise and illustrates how all the
error quantities are taken care of.

Finally, Proposition 7.5 together with Theorem 9.1 of [Kuc20] imply part (i) of Corollary
1.13.

8. THE PROOF OF THEOREM 6.7

To complete the proofs of Corollary 5.4 and Theorem 7.2, it remains to derive Theorem
6.7. Before we prove Theorem 6.7 for an arbitrary homogeneous progression, we want to
deduce the theorem in the special case of P = (v, x +y, v+ 2y, =+ y>). This will help
illustrate the method, and we will later compare this progression with (z, z+y, x+2y, z+y?)
to see what is failing in the inhomogeneous case. The method is an adaptation of the proof of
Theorem 1.11 from [GT10], however the linear algebraic component coming from the fact that
we are dealing with polynomial progressions is much more involved. The method used here
is somewhat similar to the methods used in [Kuc20]; here, however, we perform downward
induction on the degree of subgroups G; whereas in [Kuc20|, we induct downwardly on the
degree of monomials in 7o g*.

Proposition 8.1. Let A, M,N > 2. Let G/T be a filtered nilmanifold of degree 2 and com-
plexity M. Suppose that g € poly(Z,Ge) is an (A, N)-irrational sequence satisfying g(0) = 1,
F: (G/T)*Y — C is M-Lipschitz, and P = (z, x +vy, v + 2y, x+v3). Then

Eoyev Fg" (2,9)T) = / F + Opr(A=CM)
GP /TP

for some cpr > 0.
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The assumption that GG has a filtration of degree 2 is made to simplify the exposition, and
because all the difficulties that emerge in higher-step cases are already present here.
We shall need the following lemma.

Lemma 8.2. Lett € N4 and Pe Rlz,y]**! be a homogeneous polynomial progression, € > 0,
and s, N € Ny. Let W; < Rlz,y| be as defined in Section 4, and for each 1 < i < s, let
Qi1,--, Qit, be a basis for W; composed of integral polynomials. Suppose that a;; are real
numbers such that the polynomial

Q(z,y) = Z i a1 Qi (@) = ) _ e <2> (Zl/>

i=1 j=1 k,l

satisfies ||Q||coo(n) < €. Then there exists a positive integer ¢ = O(1) with the property that
lqasjllr/z < N~ for all 1 < j <ts.

Proof. For k € N, we let W, V). be as in Section 4. We also define
W, = Spang{(z + P;(y))*: 0<i <t} and U = Spang { <f> <§/> i< k‘} .

The homogeneity of P implies that Wy = Vi /Vi_1 = Wk, and we want to show that
dim Wy /Uy, = dim W), = t;. We observe that Wy /Uy, = Vi/UpVi_1 = Wi/Up = Wy, where
the last isomorphism follows from the fact no polynomial in W, has a nonzero monomial of
degree less than k. The claim dim Wy /Uy = t; follows.

Let Q(z,y) = > ew(})(¥). Thus, @ = Q mod U, and it satisfies HQHCOO[N} < e

k+il>s
Setting Qi j(z,y) = > bruj (i) (3;), we similarly let QNi,j(a:,y) = > bryj (i) (@l/) We deduce
k,l k+1>s

from dim Wy /Uy, = t, = dim W}, that QNSJ, s Qs,ts are linearly independent.
From the definitions of @ and by;; it follows that cxy = ) briijaij, and that ||ex||r/z <
i,J
eN—(E+D) < e N=5 whenever k + 1 > s.

Let u be the number of pairs (k,l) with k& + [ > s for which ¢ # 0. The fact that
dim Wy /Uy = t, implies that u > t5. Indexing these pairs as (ki,l1),..., (ky,l,) in some
arbitrary fashion, we obtain an u x s matrix B = (by,,4;)r as well as a t,-dimensional column
vector a = (asj); and a u-dimensional column vector ¢ = (cg,y,)r such that Ba = c¢. The
linear independence of Qs,l, - Q~57ts implies that there exists an invertible t; X ts submatrix
B of B and a ts;-dimensional column vector é such that Ba = ¢ Since the entries of B are
integers of size O(1), the entries of B~' are rational numbers of height O(1). Therefore, there
exists a positive integer ¢ = O(1) for which the entries of the matrix gB~! are integers of size
O(1). The equality a = B~'¢ and the condition llckillr/z < €N~% whenever k +1 > s imply
that [|gas;||r/z < eN~* for 1 < j < i, as claimed. O

Proof of Proposition 8.1. Let P = (z, x+y, v+ 2y, x+y>). We set

v =(1,1,1,1), v»=(0,1,2,0), v3=(0,0,0,1) and vy =(0,0,1,0)
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and observe that

—

P(z,y) = tha + oy + v3y°

("57) =) e (o () o (e (5)) 2t

Thus, we have
Py = Spang{¥, ¥, 3} and Py = P3 = ... = Spang{#, ¥, U3, 74} = R*
as well as
Gf = GG GRGE,

where H” = (h” : h € H).

We shall prove Proposition 8.1 by applying Theorem 6.5. Suppose that g¥ is not (cpr A=M, N)-
equidistributed on GF / I'" for some constants 0 < ¢y < 1 < Cpr. By Theorem 6.5,
there exists a nontrivial horizontal character n: GF — R of modulus at most cA, for which
[|m o 9P||coo[N] < cA for some constant ¢ > 0 that depends on cj; and Cj;. The constant
C) is chosen in such a way as to match the exponents in the case (ii) of Theorem 6.5. We
however have control over how we choose the constant cp;, and we shall pick it small enough
to show that g not being (cpr A= N)-equidistributed contradicts the (A, N)-irrationality
of g.

Rewriting the expression for 1o g¥’, we see that

nogh(z,y) =n(gi)z +n(gi?)y +n(gl)y®

+1(g5") (;) +1(95°) <wy + (g)) +1(95°) <wy3 + <y23>> + Ty,

Applying Lemma 8.2 and the assumption ||y o QPHCOO[N} < c¢A, and choosing cjs in such a
way that ¢ > 0 is sufficiently small, we deduce that there exists a positive integer ¢ = O(1)

such that an(gfj)HR/Z < AN~ for all pairs
(1,5) € {(1,1),(1,2),(1,3),(2,1), (2,2),(2,3), (2,4)}.

We aim to show that n is trivial by showing that it vanishes on all of G. First, we
want to show that 1 vanishes on G3. Suppose that 77|G§ # 0, and define &1 : G2 — R by

&21(h2) = qn(hél’l’l’l)). We claim that &1 is a 2-nd level character. To prove this, we need
to show that &3 ;1 is a continuous group homomorphism, it vanishes on G, it sends (I'y) to Z,
and it vanishes on [G1,G1]. The first statement follows from the fact that 7 is a continuous
group homomorphism, the second is true since Gg is trivial, and the third follows from the
fact that ¢ € Z, n(I'") < Z and (1,1,1,1) € Z*. To see the last statement, we note that for
any hi, b} € Gy, we have

[, By = [ha, Y]

Since hf ,h’li71 are both elements of G, we have

Ea,1([h1, h]) = n([he, BY)™) = (RS, H™]) = 0,
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implying that £ ; vanishes on [G1, G1]. Thus, &1 is a 2-rd level character.
Performing a similar analysis while looking at the coefficients of (5),zy + (y) zy® + (y;)

and y? respectively, we conclude that for all 1 < j < 4, the maps &(hs) = qn(h2 ) from G2
to R are 2-nd level characters. The nontriviality Of 7 on G4 and the fact that v, U5, U3 and Uy
span Py = R* imply that for at least one value 1 <4 < 4, the character 1 does not vanish on
le We fix this i. From ||£2,i(9:)l|r/z = lqn(g; Nlr/z < AN~" and the (A, N)-irrationality
of g2 we deduce that |&;| > A. Together w1th the bounds ¢ = O(1) and |7;| = O(1), this
implies that |n| > ¢’ A for some constant ¢ > 0. Choosing ¢j; in such a way that ¢ < ¢ gives
the desired contradiction. Hence 1 vanishes on G3.
This leaves us with

no gt (x,y) = n(g)z +n(gi)y +n(gi*)y’.

By analysing the coefficients of =,y and y3 as above, we see that 7 vanishes on elements of
the form h{" with h; € G7 and 1 < i < 3. Thus, 1 vanishes on all of GP. This contradicts the
nontriviality of 7, and so g% is (cpy A~M | N)-equidistributed on G¥'/T'P. O

We now prove Theorem 6.7 in full generality.

Proof of Theorem 6.7. Let P e Rlz,y]"t! be an integral polynomial progression, G4 be a
filtration of degree s and g € poly(Z,G,). By (26), we can find a family {Q;; : 1 < i <
s, 1 < j < t;} of linearly independent integral polynomials such that Q; 1, ..., Qi is a basis
for W; = W/ for 1 < i < s. It is crucial that these polynomials are linearly independent,
which follows from homogeneity of P. For each i, let 7; : W; — P; be the map associated
with @;1, ..., @iy, as defined in Section 4. We also let v ; € 7' be the vectors such that
7i(Qij) = Uij-

As in the proof of Proposition 8.1, suppose that g% is not (cpy A=M | N)-equidistributed on
GT /TP for some constants 0 < cp; < 1 < Cpr. We apply Theorem 6.5 again to conclude that
there exists a nontrivial horizontal character 7 : G¥ — R of modulus at most cA, satisfying
[l o 9P||coo[N} < cA for some constant ¢ > 0 that depends on c¢y; and Cys. The constant Chy
is chosen in such a way as to match the exponents in the case (ii) of Theorem 6.5, but the
choice of ¢yr is up to us again. We shall pick it small enough to show that the failure of g%’
to be (cprA~M, N)-equidistributed contradicts the (A, N)-irrationality of g.

Thus,

7709 ZZU Qz,j$y)

=1 j=1

Using Lemma 8.2 and the assumption ||n o g©’ l[cee[n) < €A, and choosing cp in such a way
that ¢ > 0 is sufficiently small, we deduce that there exists a positive integer ¢ = O(1) such

that ||q77(gz”)||[g/z < AN forall 1 < sand 1 < j <t;.
Our goal now is to show by downward induction on ¢ that 7 vanishes on the group

Hy=(h) :hi € Gi,1 < j < t)

for all ¢ € No. This is trivially true for ¢ > s + 1. Suppose that n vanishes on H;;; for
some 1 < ¢ < s but that it does not vanish on H;. We define the maps & ; : G; — R by
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& j(hi) = n(qh;i’j ) and claim that they are i-th level characters. They are continuous group
homomorphisms because 7 is, and they vanish on G;;1 by induction hypothesis. Since ¢ € Z
and ¥; ; have integer entries, we also have & ;(I';) C Z. It remains to show that & ; vanishes
on [Gy,G;_y] for all 1 <1 < i. The fact that P; C P; - P,_; implies the existence of @, € P,
and u;—; € P;—; for which ¥; ; = 4; - @;—;, and so we have

(G}, G = [G1, Gy ™™~ mod G111,

from which it follows that &; j|(q, ¢, ;) = 0. Therefore each &; ; is an i-th level character.

The nontriviality of n on H; and the fact that P; is spanned by the vectors ¥ 1, ..., ¥,
imply that for at least one value 1 < j < ¢;, the character n does not vanish on G:i’j , and
50 &, is nontrivial. From [1€;(9:)llr/z = llan(g;"’ )llg/z < AN " and the (A, N)-irrationality
of g; we deduce that |§; ;| > A. Together with the bounds ¢ = O(1) and |7; ;| = O(1), this
implies that |n| > ¢ A for some constant ¢ > 0. We choose ¢js in such a way that ¢ < ¢; this
contradicts the nontriviality of n on H;. This proves the inductive step; hence n vanishes on all
of G, contradicting the nontriviality of n. It follows that g is (cpr A=M | N)-equidistributed
on G /TP, O

9. THE FAILURE OF THEOREM 6.7 IN THE INHOMOGENEOUS CASE

Having derived Theorem 6.7, we want to show why an analogous statement fails in the
inhomogeneous case. We let

(34) P(z,y) = (z, = +y, =+ 2y, =+,

with a square instead of a cube in the last position. It is an inhomogeneous progression
because of the inhomogeneous relation (10). Suppose that g € poly(Z,G,) is an irrational
polynomial sequence with g(0) = 1 on a connected group G with a filtration Go of degree
2. We shall try to show that ¢g” is equidistributed on G /T'*’ the same way as we argued in
Proposition 8.1, and we indicate where and why the argument fails.

Once again, we let

0 =(1,1,1,1), v»=(0,1,2,0), v3=(0,0,0,1) and @y =(0,0,1,0),

and we observe that P; = Spang{#), v, U3} and Py = Spang{v, s, U3, 74}. Hence G¥' =
GGG GEY. Suppose that g7 is not (cprA~CM, N)-equidistributed on GF/T'T for some
constants 0 < ¢py < 1 < Cpy. Theorem 6.5 once again implies the existence of a nontrivial
horizontal character 77 : G — R of modulus at most cA, for which || o g”'||cen) < ¢4 for
some constant ¢ > 0 that depends on ¢); and C)yy.

Rewriting the expression for 1o g¥, we see that

nog” (z,y) =n(g")z +n(g)y + n(gi*)y?

+n(g5") <§> +1(g5°) (my + (g)) +1(g5°) <rcy2 + <y22>> + Ty

= (g +n(g?)y + (n(gi*) + n(gs))y

+ 77(951) <§> + n(g§2) <xy + <g>> + 77(9§3) <xy2 + <y22>> .
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Applying Lemma 8.2 and the assumption || o g*'||ce (v] < cA, and choosing ¢y in such
a way that ¢ > 0 is sufficiently small, we deduce that there exists a positive integer ¢ = O(1)
such that

(35) lan(g;")|lrjz < AN

for all pairs
(1,5) € {(1,1),(1,2),(2,1),(2,2),(2,3)}.
By looking at the coefficient of (g), Ty + (g) and zy? + (y; ), we deduce that the maps

ha > qn(hat), qn(hi?), qn(hs?)

are trivial 2-nd level characters; the argument goes the exact same way as in the proof of
Proposition 8.1. Thus, 1 vanishes on all elements of the form hy? with hy € G and

- ’ S S o
Wy € Py = Spang{v1, U2, U3 }.

By looking at the coefficients of x and y, we similarly show that n vanishes on all elements of
the form hi* with h; € G| and

W € Py = Spang{vi, U2 }.
We are left with
P o U3 o 2
nog (z,y) = (77(91 ) + (g5 ))y :

We would like to be able to say that 1 vanishes on all elements of the form hfl and th
with h; € G; and W; € P;; this would imply that 7 is trivial. For this to be case, it would
suffice to show that both 7(¢%) and n(g*) satisfy an estimate (35), and then use (4, N)-
irrationality of g; and gs to conclude that the characters hy — qn(h?) and hg — qn(h?‘) are
trivial. Alas, this need not be true. In Proposition 8.1, the number n(hfg) was the coefficient
of 1% while n(hg‘l) was the coefficient of 42, from which it followed that they both satisfied
(35). Now, however, all we can show is that

(36) lla(n(gi®) + n(g5"))llgjz < AN

because n(g?) + n(g?‘*) is the coefficient of y?. But it need not follow that either of 77(91173)
and 77(954) satisfies (35); in particular, g©’ may take values in a proper rational subgroup of
Gr.

We illustrate this with a specific example, akin to the example in Section 11 of [Kuc20].
Suppose that G = G; = R?, Go = 0 x R, G3 = 0 x 0. The sequence g(n) = (an,b(g)) is
adapted to the filtration G,, and it is irrational if and only if ¢ and b are irrational. We
identify G* with R® via the map

G 5 R

((z1,91), (x2,92), (23,Y3), (T4, Y4)) — (21,22, 3, T4, Y1, Y2, Y3, Y4)-
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Setting

@1

=€1 + e+ é3+ éy,

=é€5+ & + €7+ e, Uy = €g+ 2687, Uz =2Es, Uoy = €T,

wl

we observe that GP = SpanR{ﬁn, 2712, 1713, 1721, 2722, 1723, 2724}.

With these definitions, the coefficient of y? in g*’ becomes a3 + biiay = aéy +bér. If a,b, 1
are rationally independent, then the closure of g% is the image of the 7-dimensional subspace
GP in (R/Z)%. If a and b are rationally dependent, then the closure of g” is the image in
(R/Z)8 of the 6-dimensional subspace

G = Spang{¥h1, V12, ath3 + bUay, Va1, Va2, Va3 }.

Finally, if some rational linear combination of a and b is a rational number ¢/r in its lower
terms with r > 1, then the closure of ¢g” is a union of at most 7 translates of a 6-dimensional
subtorus of G / I‘P For instance, if a = V2 and b =2 2+3 1 , then we define

(37) G = Spang{¥11, V12, V13 + Vo4, Va1, Va2, Va3 },

and observe that the sequences g(]; ,9f, g% defined by gip (z,y) = gF(x,3y + i) are equidis-
tributed on G / T, %1724 +G / I and %?724 +G / r respectively. In particular, for inhomogeneous
progressions it is not true that the group G depends only on the filtration G4 and the pro-
gression P.

While annihilating the coefficients of o g, we were able to deal with the coefficients of
and y as well as (5), zy + (3) and zy* + (y; ), which span the spaces W{ and W} respectively.
The problematic coefficient was that of 32, belonging to the space W¢. We have remarked
below (27) in Section 4 that the nontriviality of the subspace W¢ prevents us from running
the same argument as in Proposition 8.1 and Theorem 6.7 for inhomogeneous progressions;
the problem with the coefficient of y? that we have encountered here illustrates this point.
The reader should see from here how to generalise the aforementioned example to other
inhomogeneous progression; this generalised construction proves part (ii) of Theorem 1.15.

10. FINDING CLOSURE IN THE INHOMOGENEOUS CASE

Section 9 shows that we cannot always hope for the sequence g to equidistribute in
G /TP for an 1nhom0geneous progressmn P. Here, we provide an inductive recipe for finding
the closure of g in the case of P(a:,y) = (z, v +y, v+ 2y, v+ y?). We believe that this
argument could be generalised to an arbitrary inhomogeneous progressions; while trying to do
so, however, we have encountered significant technical issues of linear algebraic nature that
we have not been able to overcome.

Since the argument that we present here is already complicated enough, we prove it in an
infinitary setting so as to avoid confusion coming from various quantitative parameters. In
effect, we show the following.

Proposition 10.1. Let G be a connected group with filtration Ge of degree s, and ﬁ(x,y) =
(v, x+y, x+2y, v+y?). Suppose that g € poly(Z,G,) is irrational. There exists a subgroup



ON SEVERAL NOTIONS OF COMPLEXITY OF POLYNOMIAL PROGRESSIONS 35

C:? < GY and a decomposition g* = Gv, where § takes values in G and is equidistributed on
G /T whereas 7 is periodic. Moreover, the group G contains the subgroup

K = (h¥ : h; € Gy, ; € Pl,1 <i < 8),
where
Pj = Spang{(1,1,1,1),(0,1,2,0)},
Pl = Spang{(1,1,1,1),(0,1,2,0),(0,0,0,1)},
Pi=Py=..=R".
We will need the following lemma, which is similar in spirit to Lemma 8.2.

Lemma 10.2. Let ay,...,as be nonzero real numbers. Let Q1,...,Qs € Qlx,y| be linearly
independent integral polynomials, and suppose that Q = a1Q1 + ... + a,Qs takes values in Q.
Then a; € Q for all 1 <1 < s.

Proof. Let by; be the coefficient of (i) (@l/) in @Q;. Then
Crl = albkll + ...+ asbkls

is the coefficient of (7) (%) in @, and so it is rational. Indexing the pairs (k1,11), ..., (ku, L) in
some arbitrary fashion, we obtain an u x s matrix B = (bg,;,;); as well as an s-dimensional
column vector a = (a;); and a u-dimensional column vector ¢ = (cj,x,); such that Ba = ¢. The
linear independence of Q1, ..., @, implies that B has full rank, and so there exists an invertible
s x s submatrix B of B and an s-dimensional column vector ¢ such that Ba = ¢. Since the
entries of B are integers, the entries of B~! are rational numbers. The equality « = B~1¢é
then implies that a; € Q for each 1 < i < s. O

Proof of Proposition 10.1. For each i > 3, we find a basis {Q; 1, Qi 2,Qi3,Qia} for W;. The
absence of an inhomogeneous algebraic relation of degree 3 or higher implies that

S S
>_Wi=Pw,
i=3 i=3
from which it follows that the set {Q;; : 3 < i <'s, 1 < j < 4} is linearly independent. For
3<i<sand 1 <j <4, welet v ; =7(Q;;). We also set
v =(1,1,1,1), ¥ =(0,1,2,0), v3=(0,0,0,1) and ;= (0,0,1,0).
We want to find a subgroup G of G on which we can guarantee equidistribution. Starting

with L
HY = (0%, 15t 2 hy € Gy, by € Gy),

we inductively define a chain of subgroups
HD > H® > H® > .

as well as groups G*) = (K, H®) and T*) = " 0 G*). We note that GV = GF.
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We also inductively define Sequences g(k) and h*) | starting with h(l)(y) = gf?’ v gg“yQ and
gV = ¢ 1f g¥ is equidistributed in G(* / I'®), then we terminate the procedure. Otherwise
Theorem 2.5 implies the existence of a nontr1v1al horizontal character n*) : G*) — R that
vanishes on all of G*) except H*®), and for which n*) o g®¥) = 1) o 4(¥) takes values in Z. We
then take G = kern®) and H*+Y = kern® |, and we factorize h(K) = p(k+1)(k+1)
using an infinitary version of Proposition 9.2 of [GT12], where n**1 o A(k*1) = 0 and »*+1) is
periodic. We define

g* ) (@, y) = ¥ (2, ) (v * TV () 7

and observe that

g* D) (2, ) = gv1m+v2yh(k+1)(y)g§1(2)+772(ry+( ey + (7 HHQZ”Q” mod [Gy, Ga]*.
i=3j=1

k+1) k+1)

The sequence g takes values in G( . We also write

h8) (y) = ol (y)T1p®) ()%,

s v
with a(®) being Gy-valued and b*) being G-valued. Letting a®)(y) = [] agk)(l) and similarly
i=1
for b*), we claim that a(k) and bék) are irrational elements of G5 and (1 respectively with
regard to the filtration G on G. Finally, we claim that

H® =G% mod G and H® =G% mod GJ

First, we observe that all these properties hold at £ = 1. We assume that they hold for
some k > 1, from which we aim to deduce that they also hold at (k + 1)-th level.

If g% is equidistributed in G*) /T'®) | then we are done. Otherwise there exists a nontrivial
horizontal character n®) : G*) — R for Which n*) o g% is Z-valued. We have

n*) o g®) (2, y) = n® gz +n*) (¢72)y + n®) (AF) (y))

+®) (gd) <f;> +2n®) (g22) <a:y + <12/>> +n7®(g5°) (fﬂy + <22>>
+Z_:Z 1™ (g7)Qy j(x,y).

By looking at the coefficients of Q; ; for 3 < ¢ < s, applying Lemma 10.2, and following the
same method as in the proof of Theorem 6.7, we see that 7(*) vanishes on elements of the form

h?’j for h; € G;, 3<i<sand 1< j <4, and so n(k) vanishes on all of G3 x G3 x GG3 x GG3.
This leaves us with

n*) o g8 (z,y) = n® (g2 + n*) (¢72)y + n*) (hF) (y))

™ (gl <;> +27* (g3?) (wy + <g>> +1™(g5") <xy2 * <y22>> '
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We now carry on. By looking at the coefficient of (g) and xy + (g), we see that n*) (ggl) and

n*) (ggz) are both integers, and so n*) vanishes on all elements of the form hgl and hgz with
ho € Go. By looking at the cpefﬁcien‘gs of z and y, we can similarly show that n(*) vanishes
on all elements of the form hA{' and hj? with h; € G;. We are thus left with

2
™ o g™ (@,y) = 0™ (0 ) + 0™ (g5") <~”ﬂy2 + <y2 >> ‘

We first deal with the last term. Since H®*) = Gf?’ mod Gg?’, we have [H®) H®)] =
[G%, G%] mod G4. Using the fact that 7*) vanishes on both G4 and [H®), H®)], we deduce
that it also vanishes on [G?,G?]. Hence the function &3: G2 — R given by &23(h) =
n(k)(h%) is a 2-nd level character. By irrationality of go, it follows that &5 3 is trivial, and so
n¥) vanishes on Gg?’. We have thus proved that 7(*) vanishes on all of G*) except H*), and
consequently that n*) o g(¥) = (k) o pk)

We now show that

(38) H*H) = G mod G}?
Suppose not; let U be a proper rational subgroup of Gg‘* such that
H* D = U mod Gfg.
Then
H*D <cuaBnH® < H®),

We know frozn the rank-nullity theorem that dim H*+1) = dim H*) — 1, and we have H*) =
G5* mod G7* from the inductive hypothesis. These two facts, together with the assumption
that U is a proper rational subgroup of Ggo,0,1,0)7 imply that H*+1) = UG”I73 NH®) . Tt follows
that

n*) o g™ (z,y) = n™ (@™ (y)™) + ™ B® (y)%) = n® (a®) (y)™)

Yy
We have already shown that n*) vanishes on G4. From the facts that a(*) (y) = [} al )

= i=1%
with agk) € G;, we deduce that n®) (o) (y)™) = n(k)(agk))y—l—n(k) (agk)) (4). The map &.4(ha) =
n(k)(hg‘*) is a continuous group homomorphism on G5 that vanishes on GG3 and sends I's to Z.
Since vy = (U - Uy — U2)/2, we also have
1 Ty g1 1 7
&2a((ha, 1)) = o0 (07 14 ™]) = o0 ((ha, 1T™),

for any hi,h] € G1, and so &4 vanishes on [G1,G1]. Thus &24 is a 2-nd level character on

G5 with respect to the filtration G4 on G, and since agk) is an irrational element of G9 with
respect to this filtration, it follows that n¥) is trivial, a contradiction; hence (38) holds. The
argument that

HE+1) = G? mod Gg“
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is similar.
Finally, we factorize h(®) = B(E+DA(+1D)  where 4*+1) ig periodic and AF+1) takes values
in H*+1) = ker p(*+1_ It remains to show that agkﬂ) and bgﬁ'l) are irrational elements of

G5 and GG with respect to the filtration G4 on G. We observe that

(k+1)

a®) = (k1) ( and ) — b(k—l—l),yék—i-l)

for some periodic sequences 7, and 7, taking values in G2 and G respectively. Suppose that
¢ : G — Ris a 2-nd level character with respect to the filtration G, for which & (agkﬂ)) eZ.
The sequence yt(lkﬂ) is periodic, hence £ O%(Lkﬂ) is Q-valued, and so it follows that & (agk)) cQ
as well. Therefore there exists an integer [ > 0 such that [ (agk)) € Z. Since £ :=1-£ is also

a 2-nd level character, it follows from the irrationality of agk) that & is trivial. This implies
that & is trivial as well, and hence agﬁ'l) is irrational. The argument showing that bgkﬂ) is

irrational is identical.

We have thus shows inductively that ¢®), h(®) G(¥) and H®*) satisfy all the properties we
want them to satisfy for all k£ > 1. Since 0 < dim G#+1) < dim G®), the procedure eventually
terminates, at which point the sequence ¢g(*) takes values in G*) and is equidistributed on
G(k)/F(k). Letting G = G®) for this value of k and v = v*)..4/(1) and observing that a
product of periodic sequences is periodic, we finish the proof. O

11. THE EQUIVALENCE OF WEYL AND ALGEBRAIC COMPLEXITY

While we are not able to show that Host-Kra and true complexities equal algebraic com-
plexity for inhomogeneous progression, we can show the equivalence of Weyl and algebraic
complexities for all integral progressions.

Definition 11.1 (Weyl system). A Weyl system is an ergodic system (X, X, u,T), where
X is a compact abelian Lie group and T is a unipotent affine transformation on X, i.e.
Tx = ¢(x) + a for a € X and an automorphism ¢ of X satisfying (¢ — Idx)® = 0 for some
S € N+.

We recall that an integral polynomial progression P e R[z,y]"*! has Weyl complexity s
at 0 <7 < tif s the smallest natural number for which the factor Z, is characteristic for the
weak convergence of P at i for any Weyl system.

Every disconnected Weyl system can be written as a finite union of isomorphic tori that
are cyclically permuted by the transformation 7', much the same way as each disconnected nil-
system is a union of connected nilsystems (cf. Proposition 2.2 and the remark below Theorem
3.5 of [BLLOT7]). Therefore we can restrict our attention to connected Weyl systems. These
can in turn be reduced to standard Weyl systems, which are totally ergodic by Proposition
2.2. Throughout this section, we let T = R/Z.

Definition 11.2 (Standard Weyl system of order s). Let s € Ny and X = T°. A standard
Weyl system of order s is a system (X, X, u,T), where X is the Borel o-algebra on X, p is
the Lebesgue measure, and

T(ai,...,as) = (a1 + ag,a2 + a1, ...,as + as—1)

for some irrational ag.
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Proposition 11.3 (Lemma 4.1 of [FKO05]). Each connected Weyl system is a factor of a
product of several standard Weyl systems.

Determining Weyl complexity therefore amounts to analysing standard Weyl systems.
Since each standard Weyl system is totally ergodic, we immediately deduce the following.

Proposition 11.4. Let t € Ny and P e Rlx,y]"*t! be an integral polynomial progression.
Then W;i(P) < HIK;(P) for all0 < i < t.

We now fix a standard Weyl system (X, X', u, T) of order s with some irrational ag. Then

n n
(39) T"(ay,...,as) = (al + nag, as + naj + <2>a0, vy Qg +NAg_1 + ...+ <S>a0>

n
290+91n+---+gs<s>,

where g; = (a1—4,...,as—;) and a_ = 0 for k£ > 0. For almost all points a = (aq, ..., as) € R?,
the numbers 1, ag, ..., as are rationally independent, and we fix a point a € R® for which this
is the case. The sequence g(n) = T"a is adapted to the filtration G; = {0}*~! x R*~**! for
1<i<sand G; =0fori>son G=Gy=R? and it is irrational due to the irrationality
of ag. Since the Z; factor of X consists of all the functions whose values depend only on the
first i coordinates, we have Z; = G/G; 41T = T¢ x {0}*~¢, where T' = Z°.

What we aim to show is therefore the following.

Proposition 11.5. Let t € Ny, (X, X, u,T) be a standard Weyl system of order s and Pe
Rlz, 3]t be an integral polynomial progression. Fiz 0 < i <t and suppose that A;(P) = s'.

Then the image of the group {0} x Gy, 1 x {0}~ is contained in the closure of g* inside
((;/I)t+l.

If P e R[z,y]"*! is a homogeneous progression, then the sequence g” is equidistributed in
G* /TP by Theorem 5.3, and Proposition 11.5 follows immediately; we want to say something
about the closure of g” in the general case. We fix an integral progression P for the rest of this
section. For each 1 < i < s, we pick linearly independent integral polynomials @; 1, ..., Qi,t;
that form a basis for W/. We also let {R1,..., R} be a basis for W€ consisting of integral
polynomials. Thus,

, t, r

P B B

)= > 0jQuj+ Y Wik
j=1 j=1

for some vectors v ;,w; ; € 71 which follows from (27). Consequently,

Y

(40) 9" =00l +> Y H Qi+ > (Z gi’@,j) R;
=1 j=1 j=1 \i=1
We should explain the notation used in (40). For h € G and ¥ € R'T!, we interpret hv
as the element of (R*)'™! of the form (hv(0), ..., hv(t)), where hv(i) = (h1v(i), ..., hsv(i)) is an
element of R® for each h = (hy,...,hs) € R® and ¢ = (v(0),...,v(t)). Thus, h¥' is the same as
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what we previously called h”. We use the additive notation h# now since we are working in
an abelian setting. We also denote 1 = (1, ..., 1).

We let A;; = Spang{g;0;;} and B; = Spang{)_;_; ¢;W;;}, and we denote the closure
of their images in (G/I')""! as A;; and B; respectively. From the rational independence
of a; and the rationality of the entries of #;; and wj; ;, we deduce that nonzero entries of
9iU; ; and ZZ 1 9iW; j are irrational; therefore the sequences (m y) — ¢iU;;Qij(x,y) and
(z,y) = i, giWi;Rj(z,y) are equidistributed on A;; and B, respectively. The linear
independence of @); ;, R; then implies the following.

Proposition 11.6. The closure of g is the image of gol + G inside (G/T)'*", where

G = ZZAJJrZB

i=1 j=1

In particular, the group G contains

K = ZZA]—Span[R{hv” hi € Gi,1<i<s,1<j<t}
=1 j=1

We observe that K = G = G whenever P is homogeneous.

Corollary 11.7. Fiz 0 <i <t and let A;(P) < s. Fork < s, we have {0}’ x G, x {0}/ < K
if and only if k > A;(P).

Proof. For each 1 < k < s, we let P;, = Spang{tj 1, ...,ﬁk%}. Thus
K = Spang{hyiiy : 1 <k <s, hy € Gy, iy € Py},

and so for k < s, we have the inclusion {0} x G}, x {0}~ < K if and only if the vector €; with
1 in the i-th position and 0 elsewhere is contained in Pj. The statement é; € Pj, is equivalent
to the inclusion (m+%(y)) € W/. This is in turn equivalent to the statement that there are
no algebraic relations of the form (8) with deg @Q; = k, which is precisely the condition that
k> A;(P). O

Corollary 11.8. Lett € Ny and Pe Rlz,y]"*! be an integral polynomial progression. Then
Wi(P) < A;(P) for each 0 < i < t.
We finish this section by showing the converse.

Proposition 11.9. Lett € D\l+ and P € Rlz,y]"*t! be an integral polynomial progression for
which A;(P ) = s for some 0 < i < t. Then for any standard Weyl system (X, X, u,T) of order
s there exist smooth functzons fo, vy ft + X — C such that E(f;|Zs-1) = 0 but the expression
(28) is 1. In particular, W;(P) > s.

Before we prove Proposition 11.9, we define 0Q(z) = Q(z + 1) — Q(z) for @ € R[z]. From
the identity 9(}) = (le) — (3) = (,7,) we deduce that

0 (wrar(])+eraa})) marrar(]) +ra(, 7).
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Proof of Proposition 11.9. Let T be as in (39) for some irrational ag. From A;(P) = s it
follows that P satisfies an algebraic relation (8) with deg@; = s. For each 0 < k < ¢, we let
Qr(u) = bpau+ ... + by s(¥). We define £(u) = e(au) for some irrational o, and we let

fk(al, ...,CLS) = f(bk,lal 4+ ...+ bk,sas).
Thus, we have
Fo(T* P 0) = €(agQu(x + Pr(y)) + a10Qp (2 + Pe(y)) + ... + as0°Qr(x + Pu(y))),

and so

t

S t
[[H@ " Way=¢ > a;0"> Quz+ Puly)) | =1L
k=0

i=0 Jj=0

On the other hand, we have

|E(fi| Zs—1)(a1,...,as)| = ‘/Tfi(al,...,as)das =0

- ' [ taayia,

for a.e. as. O

12. THE PROOF OF THEOREM 1.14

We conclude the paper with the proof of Theorem 1.14. Throughout this section, we
let t € Ny and P e Rlz,3]"t! be an integral progression of algebraic complexity at most 1.
We also let Q1,...,Qr be integral polynomials as in the statement of Theorem 1.14. Thus,
Py =3%",aijQ; and Q; = > aj; Py for a;;,a;; € Z. The second part of the theorem follows
from the first part and the Furstenberg Correspondence Principle. We therefore proceed to
prove part (i), followed by part (iii). Our argument for part (i) follows closely the proof of

Theorem C of [Fra08].

Proof of Theorem 1.14(i). We first prove part (i) of Theorem 1.14 in the totally ergodic case.
Suppose that (X, X, u,T) is a totally ergodic system with the Kronecker factor (Z1, Z1,v,.5).
The space Z; can be assumed to be a connected compact abelian group with an ergodic
translation Sz = x + b. For each § > 0, let By be the J-neighbourhood of the identity in 71,
and let

Bs={neN:Qi(n)b, ..., Qun)b € Bs}.
It follows from the ergodicity of S and linear independence of Q1, ..., Qi that

BsN[M,N
lim |Bs N [M, N)|

_ k
N-M—=oco N-—-M v(Bs)" >0

for any 6 > 0. In particular, By is syndetic for any § > 0, otherwise we would have
3 3 IBén[MvN)‘ _
liminfy_pr oo =y = 0.

We aim to show that for any A € X with p(A) > 0 and any € > 0, we have

(41) lim g (ANTWAN AT A) > pu(4) 7 — e
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for all sufficiently small 6 > 0. This implies part (i) of Theorem 1.14 as follows: if there is a
sequence K of intervals in N of length converging to infinity, with the property that

(42) p(ANTPM AN AT A) < (A — e

for all n € Jycp Kn, then the sets Kx = Ky N By are nonempty for all sufficiently large N
due to the syndecticity of By (in fact, their cardinalities also converge to infinity). Since (42)
holds for all n € (Jyey Ky, the equality (41) fails, leading to a contradiction.

We first show that if E(f;|Z1) = 0, then

Pz(n
(43) cAm Eeprnlp HT

in L? for any fi, ..., f € L>=(u). From the measurability of Bj it follows that we can approxi-
mate 15 (n) = Hf 1 1B,(Qi(n)b) arbitrarily well by linear combinations of Hf 1 &i(Qi(n)b) for
some characters &1, ..., & on Zl Using the fact that each @); is an integral linear combination

of Py, ..., P;, we can rewrite Hl L&(Qi(n)b) = [1i_, &(Pi(n)b) for some characters &, ..., &.
In effect, it suffices to show that

t t
P;(n)
(44) Aim Eoepuy 1_1 ) [[ 77
We can rephrase the limit in (44) as
t
Pi(n) (£ ()£
(45) N lﬁ[n_)ool_[gz nE[MN ZI_JIZR ( )(fz(x)fz(y))y

where R =T x S. Let (R;); be the ergodic components of R and (f; ® &)(x,y) = fi(x)&(y);
then E(f; ®&;|21(R;)) = 0 whenever E(f;|Z1(T")) = 0 for a.e. t. It thus follows from Corollary
1.12 that if E(f;]Z1) = 0 for some 4, then the limit in (45) is 0, which proves the claim.

We therefore deduce that

¢ ¢
: 5 PZ(TL) _ . _ PZ(TL) T
N_l}én_m [EneB(;ﬂ[M,N) /X HT Ladp = N_IMHLOO [EneBm[M,N) /Z H ) Ladv

i=0 1i=0
t
— ; _ > 0iiQi(n){
(46) wAm B /Z1 gS j Ladv,

where 14 = E(14|21). Due to the ergodicity of S and the linear independence of Q1, ..., Qp,
the limit in (46) equals

1
(47) W/Bg/&ﬂ)l/; 513""2“@)?/] )dv(x ( ).

In the limit § — 0, the expression in (47) converges to [ Zl(l )Y hence for every € > 0 and
sufficiently small § > 0, we have

1 Tt
(48) W/Bj;/ZHlA :E+Zawyj )dv(x dy()//Zl(lA)H—e.

1i=0
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Using Holder inequality, we obtain that || Zl(i A > (f 2 1) = p(A)H!, which implies
(41). This finished the totally ergodic case; the derivation of the ergodic case from the totally

ergodic one proceeds in the same way as in the proof of Theorem C of [Fra08].
O

We now proceed to the proof of part (iii) of Theorem 1.14. The argument can below can be
seen as a finitary version of the argument above, with all the necessary modifications coming
from working in the finitary setting. It follows the proof of the 3-term arithmetic progression
case in Theorem 1.12 of [GT10].

Proof of Theorem 1.14(iii). Let o, e > 0, and suppose that A C Z/NZ has size |A| > aN
for a prime N > Ny(a,€). Let F : Ry — R4 be a growth function to be specified later.
By Theorem 5.1 of [CS12], the irrational and periodic version of the celebrated arithmetic
regularity lemma of Green and Tao (Theorem 1.2 of [GT10]), there exists a positive number
M = O 7(1) and a decomposition

(49) 1A:fnil+fsml+funf
into 1-bounded functions such that

(1) fni = F(g(n)') is an F(M)-irrational, N-periodic nilsequence of degree 1 and com-
plexity M;

(i) [[fsmlls <€
(iii) HfuanU2 < ﬁ

Moreover, fp; takes values in [0, 1]. Unpacking the definition of f,,;;, we see that F': (R/Z)™ —
[0,1] is M-Lipschitz, 1 < m < M, and g(n) = bn for some F(M)-irrational element b €

(NZ/Z)™
Our strategy is as follows. We shall define a weight fi : Z/NZ — R>( which satisfies
(50) Eyez/nzii(y) =1+ O(e)
and
t
(51) Euyez/nziy) [[ 1a(@ + Pi(y)) = o1 = O(e).

1=0

Using pigeonhole principle and (50), it can be deduced from (51) that for Q, (N) values of
y, we have

t
Foez/nz [[1a(z + Pi(y)) = o' = O(e),
i=0

which proves part (iii) of Theorem 1.14.
We shall prove (51) by splitting each 14 using (49) and showing that terms involving fg,u
or funs have contributions at most O(e) while the term

(52) [Em,yEZ/NZﬂ(y) H fml(x + Pz(y))
1=0
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has size at least a/™1 — O(€). Showing that the terms involving fs, or fu,; make negligible
contributions to (51) is akin to showing (43) for all functions with E(f;|Z1) = 0 in the proof
of part (i) of Theorem 1.14. In doing so, we shall use the idea that while we fix € > 0, we have
control over how fast we choose F to grow - and we choose it to grow fast enough depending
on « and € to ensure that all the estimates work.

Let 0 > 0 be fixed later. We define ¢ : (R/Z)™ — R, to be a nonnegative, 1-bounded,
On(671)-Lipschitz function that is 1 on [—24,16]™ and 0 outside [—34, 36]™. We let ¢ =
f(R/Z)m ¥; thus (36)™ < ¢ < 6™. We then let pu(y) = w(by) . Since b can be picked without the

loss of generality from [0, 1]™, the function p is O (6~ M- D)-Lipschitz.

We let i(y) = u(Q1(y))...(Qr(y)). It is a weight that picks out all the values y for which
Q1(y)b, ..., Qr(y)b are close to being an integer, and it plays a similar role as the function
1 Bs in the proof of part (i) of Theorem 1.14, except that it is constructed using a Lipschitz
function rather than an indicator function. To show (50), we observe that

1 k
(53) Eyez/vzily) = Eyen [ [ 0(0Qiv)).
1=1

Using the F(M)-irrationality of g, linear independence of @1, ..., Q) as well as Theorem 2.5,
we deduce that (53) equals

1 F — —cC —M—= —CMm
7 <</w> + On (57 F(M) M)) = 14+ Ou(5™ M2 F (M) ™)

for some ¢y > 0. The estimate (50) follows from choosing F growing fast enough depending
on 0 and picking § = ¢ € for an appropriately chosen ¢}, > 0.

We decompose each 14 in (51) using (49) and split (51) into 3! accordingly using mul-
tilinearity. We first estimate (52), and subsequently we bound contributions of fg,,; and
f unf-

Taking F growing fast enough, we assume that || funs|[2 < €, and thus |Eyez/nz fung(2)] =
| funfllor < ||funfllye < e From Holder inequality and the bound on the L' norm of
fsmi, we obtain a bound |E,ez/nzfsmi| < €. From these bounds and (49) we deduce that
Eecz/Nzfrit(T) = o — 2e.

We observe that by M-Lipschitzness of F' and the definitions of p, fi and @Q;, we have

flx+ Pi(y) = flz+>;a5Q;(y) = f(z) + Om(6) = f(x) + O(e) whenever fi(y) > 0. It
follows from this that

,yEZ/NZN H f ‘T + Z aZ]Q]

(54) = (Ezez/nzf () + O(e)) yeZ/Nz,u(y)-

Using the estimate for (50) and Holder inequality, we deduce that (54) is bounded from below
by

(Epez/nzfoa(2)) ™ = O0(e) = o' — O(e),

where the last inequality follows from Hélder inequality.
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We now bound terms involving fs,,;. Suppose without loss of generality that fg,,; is in
the i = 0 position, and let fi,..., fi € {fnit, fsmi, funs}. Then

t
(55) Es yez/NzB(Y) fsmi () Hfi(ﬂf + P (y)| < | fsmil 1 Byez/nzii(y) < e,

i=1

where the first inequality follows from Holder inequality, positivity of i and 1-boundedness

of f17 "'7ft-

It remains to bound the contributions of f,,r. Using a standard argument (see e.g.
the proof of Proposition 3.1 of [GT12]), we want to approximate f,,; by a trigonometric
polynomial, which allows us to essentially replace f,,s by additive characters. Let K € N4 be

fixed later. Since p is an Oy (e=™)-Lipschitz function, there exists a trigonometric polynomial

p1:Z/NZ — C such that ||p — p1]]ec <ar e=C\ K¢ for some 0 < c, C](Vl[). Moreover, j1; has

degree at most KM and its coefficients satisfy |[7i1]]oo < ||ft]|oe <ar € M.

Let fo, ..., f € {fnit, fsmi, funs}, with at least one of them being f,,¢. We then bound

t k

(56) Eyeznziy) [ [ file + Piy)| = [Eyezinz [ [ Qi) T file + Piw))

1=0 i=1 =0

k t
< ([l oo, [l lloe)*~Hlp = pilloe + |Eyezyvz [ [ i (Qiw)) TT file + Pi())l.
i=1 =0

The first term has size at most CJ(\?E_CI(;)K ~¢ for some C’](\f,) > (. The second term is bounded
by

k t

(57) KM\l Eyezynz [ [ 6(Quw) [] e + Pw))]

i=1 i=1

for some characters & on Z/NZ. Since each Q); is an integral linear combination of P;’s, we
can rewrite [[%_, &(Qi(y)) = [I'_, &(x + Pi(y)). We let f; = fi&;. Since each & is a linear
character, we have ||f;||;2 = ||fil|2 for each i.

We recall from Theorem 1.11 that P has true complexity 1. Combining this fact with (56),
(57) and the bound ||f||y2 < 1/F(M) for some i, we deduce that there is some decreasing
function w : Ry — R4, depending only on ]3, such that

t
. @ . _
(58)  |Eyezynzii(y) [ filz + Pi))| < CF e K¢+ OF) e M KMw(1/F(M)),
7=0

increasing the constant C’](é) if necessary. We note that the existence of w is equivalent to the

statement that P is controlled by U? at i. We now show that we can choose K large enough
and F growing fast enough so that the right-hand side of (58) is bounded by O(e).

For any given M, we find a constant C’](\Z) such that (C’J(\?[))c > C’](\f,) and CCJ(\Z) — C’](\f,) > 1.
We then let Ky = Cr(,f)e_cl(?, so that

2 —c 3) _~(2)
CPe O Kt =P 0B "eOn O e,
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Picking F growing sufficiently fast depending on €, we can ensure that CJ(\Z)E_M KMw(1/F(M)) <
€. We thus set K = Ky for the value of M induced by € and F, and so

t
|Eyez/Nzii(y) H fi(z + Pi(y))| < 2e.
i=0
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