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ON SEVERAL NOTIONS OF COMPLEXITY OF POLYNOMIAL

PROGRESSIONS

BORYS KUCA

Abstract. For a polynomial progression

(x, x+ P1(y), ..., x+ Pt(y)),

we define four notions of complexity: Host-Kra complexity, Weyl complexity, true complex-
ity and algebraic complexity. The first two describe the smallest characteristic factor of the
progression, the third one refers to the smallest-degree Gowers norm controlling the progres-
sion, and the fourth one concerns algebraic relations between terms of the progressions. We
conjecture that these four notions are equivalent, which would give a purely algebraic crite-
rion for determining the smallest Host-Kra factor or the smallest Gowers norm controlling
a given progression. We prove this conjecture for all progressions whose terms only satisfy
homogeneous algebraic relations and linear combinations thereof. This family of polynomial
progressions includes, but is not limited to, arithmetic progressions, progressions with lin-
early independent polynomials P1, ..., Pt and progressions whose terms satisfy no quadratic
relations. For progressions that satisfy only linear relations, such as

(x, x+ y2, x+ 2y2, x+ y3, x+ 2y3),

we derive several combinatorial and dynamical corollaries: (1) an estimate for the count of
such progressions in subsets of Z/NZ or totally ergodic dynamical systems; (2) a lower bound
for multiple recurrence; (3) and a popular common difference result in Z/NZ. Lastly, we show
that Weyl complexity and algebraic complexity always agree, which gives a straightforward
algebraic description of Weyl complexity.

1. Introduction

A polynomial P ∈ R[y] is integral if P (Z) ⊂ Z and P (0) = 0. For t ∈ N+, an integral

polynomial progression of length t+ 1 is a tuple ~P ∈ R[x, y]t+1 given by

~P (x, y) = (x, x+ P1(y), ..., x+ Pt(y))

for distinct integral polynomials P1, ..., Pt. We moreover say that a set A ⊂ N contains ~P (x, y)

for some x, y ∈ N if ~P (x, y) ∈ At+1. A major result on integral polynomial progressions is the
polynomial Szemerédi theorem by Bergelson and Leibman, which extends the famous theorem
of Szemerédi on arithmetic progressions.

Theorem 1.1 (Polynomial Szemerédi theorem). [BL96] Let t ∈ N+ and ~P ∈ R[x, y]t+1 be an

integral polynomial progression, and suppose that A ⊆ N is dense1. Then A contains ~P (x, y)
for some x, y ∈ N+.

Theorem 1.1 can be deduced from the following ergodic theoretic statement using the
Furstenberg correspondence principle.

1Meaning that lim sup
N→∞

|A∩[N]|
N

> 0, where [N ] = {1, ..., N}.
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Theorem 1.2. [BL96, HK05a] Let (X,X , µ, T ) be an invertible measure-preserving dynamical

system, t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polynomial progression. If µ(A) > 0 for
A ∈ X , then

lim
N→∞

En∈[N ]µ(A ∩ TP1(n)A ∩ ... ∩ TPt(n)A) > 0,(1)

where [N ] = {1, ..., N} and Ex∈X = 1
|X|

∑
x∈X for any set X.

To prove Theorem 1.1, one thus needs to understand limits of multiple ergodic averages
of the form

En∈[N ]T
P1(n)f1 · · ·TPt(n)ft(2)

for f1, ..., ft ∈ L∞(µ). By a remarkable result of Host and Kra [HK05a, HK05b], there exists
a family of factors2 (Zs)s∈N, called henceforth Host-Kra factors, with the property that weak
or L2 limits of expressions of the form (2) remain unchanged if we project any of the functions

fi onto one of the factors Zs for some s dependent on ~P and i.

Definition 1.3 (Characteristic factors). Let (X,X , µ, T ) be an invertible measure-preserving

dynamical system, t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polynomial progression.

Suppose that 1 6 i 6 t. A factor Y of X is characteristic for the L2-convergence of ~P at
i if for all choices of f1, ..., ft ∈ L∞(µ), the L2-limit of (2) is 0 whenever E(fi|Y) = 0.

Similarly, suppose that 0 6 i 6 t. A factor Y of X is characteristic for the weak con-

vergence of ~P at i if for all choices of f0, ..., ft ∈ L∞(µ), the weak limit of (2), i.e. the
expression

lim
N→∞

En∈[N ]

∫

X
f0 · TP1(n)f1 · · ·TPt(n)ftdµ,(3)

is 0 whenever E(fi|Y) = 0.

Theorem 1.4 ([HK05a, Lei05a]). Let t ∈ N+. For each integral polynomial progression
~P ∈ R[x, y]t+1, there is s ∈ N such that for all invertible ergodic systems (X,X , µ, T ), the

factor Zs is characteristic for the L2 convergence of ~P at i for all 0 6 i 6 t.

The utility of Host-Kra factors comes from the fact that they are inverse limits of nilsys-
tems, and so understanding (2) for arbitrary systems comes down to proving certain equidistri-
bution results on spaces called nilmanifolds that possess rich algebraic structure. Importantly,
Zs is a factor of Zs+1 for each s ∈ N, hence it is natural to inquire about the smallest value

of s for which the factor Zs is characteristic for ~P at i.

Definition 1.5 (Host-Kra complexity). Let t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polyno-

mial progression. Fix 0 6 i 6 t. The progression ~P has Host-Kra complexity s at i, denoted
HKi(~P ), if s is the smallest natural number such that the factor Zs is characteristic for the

weak convergence of ~P at i for all invertible totally ergodic dynamical systems (X,X , µ, T ).
We say ~P has Host-Kra complexity s if maxiHKi(~P ) = s.

2The definitions of factors, Weyl systems, nilsystems, and other concepts from ergodic theory and higher
order Fourier analysis used in the introduction will be provided in subsequent sections.
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Investigating complexity has been of particular interest for a class of dynamical systems
called Weyl systems, leading to another notion of complexity, a variant of which is given
below.

Definition 1.6 (Weyl complexity). Let t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polynomial

progression. Fix 0 6 i 6 t. The progression ~P has Weyl complexity s at i, denoted Wi(~P ),
if s is the smallest natural number such that the factor Zs is characteristic for the weak
convergence of ~P at i for all Weyl systems (X,X , µ, T ). We say ~P has Weyl complexity s if

maxiWi(~P ) = s.

In previous works [BLL07, Lei09, Fra08, Fra16], the aforementioned notions of complexity

have been defined for a polynomial family P = {P1, ..., Pt} rather than for a progression ~P .

However, we want to extend the definitions of complexity to “index 0”, i.e. the x term in ~P ,

which is why we prefer to define it for ~P rather than P. Similarly, complexity has previously
been defined for L2 convergence rather than weak convergence. However, the existence of
L2 limit (Theorem 1.4) and a basic functional analysis imply that weak and L2 limits are
identical.

Host-Kra factors are deeply related to a family of seminorms called Gowers-Host-Kra
seminorms. For s ∈ N+ and f ∈ L∞(µ), the Gowers-Host-Kra seminorm of f of degree s is
denoted by |||f |||s and satisfies the property

|||f |||s+1 = 0 ⇐⇒ E(f |Zs) = 0(4)

as well as the monotonicity property

|||f |||1 6 |||f |||2 6 |||f |||3 6 ...(5)

Gowers-Host-Kra seminorms have natural finitary analogues. For the transformation Tx =
x+1 on X = Z/NZ with N prime and the uniform probability measure µ, the weak limit (3)
becomes

Ex,y∈Z/NZf0(x)f1(x+ P1(y)) · · · ft(x+ Pt(y)).(6)

The Gowers-Host-Kra seminorm of any f : Z/NZ → C is a norm (for s > 1) called the Gowers
norm and denoted by U s, and it takes the form

||f ||Us =


Ex,h1,...,hs∈Z/NZ

∏

w∈{0,1}s

C|w|f(x+ w1h1 + ...+ wshs)




1
2s

,(7)

where C : z 7→ z is the conjugation operator and |w| = w1 + · · ·+ ws. As a result, ||f ||Us = 0
for some s > 1 if and only if ||f ||U2 = 0 if and only if f = 0, and so inquiring about the
smallest characteristic factor of this system in the sense of Definition 1.3 makes little sense.

We can however ask which Gowers norm “controls” ~P in a more finitary way, and this leads
to another notion of complexity.

Definition 1.7 (True complexity). Let t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polynomial

progression. Fix 0 6 i 6 t. The progression ~P has true complexity s at i, denoted Ti(~P ),
if s is the smallest natural number with the following property: for every ǫ > 0, there exist
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δ > 0 and N0 ∈ N such that for all primes N > N0 and all functions f0, ..., ft : Z/NZ → C

satisfying maxi ||fi||∞ 6 1, we have

|Ex,y∈Z/NZf0(x)f1(x+ P1(y)) · · · ft(x+ Pt(y))| < ǫ

whenever ||fi||Us+1 < δ. We say ~P has true complexity s if maxi Ti(~P ) = s.

We have so far defined three notions of complexity, that of Host-Kra, Weyl and true
complexity. They are all defined in terms of ergodic theory or higher order Fourier analysis
and have to do with “controlling” expressions like (2) and (6) by characteristic factors, Gowers-
Host-Kra seminorms and Gowers norms. We shall now introduce one more notion, defined
purely in terms of algebraic properties of polynomial progressions, and conjecture that all
four concepts of complexity are in fact the same.

Definition 1.8 (Algebraic relations and algebraic complexity). Let t ∈ N+ and ~P ∈ R[x, y]t+1

be an integral polynomial progression. An algebraic relation of degree (j0, ..., jt) satisfied by
~P is a tuple (Q0, ..., Qt) ∈ R[u]t+1 such that

Q0(x) +Q1(x+ P1(y)) + ...+Qt(Pt(y)) = 0,(8)

where degQi = ji for each 0 6 i 6 t. The progression ~P has algebraic complexity s at i for

some 0 6 i 6 t, denoted Ai(~P ), if s is the smallest natural number such that for any algebraic

relation (Q0, ..., Qt) satisfied by ~P , the degree of Qi is at most s. It has algebraic complexity

s if maxiAi(~P ) = s.

Conjecture 1.9 (Four notions of complexity are the same). Let t ∈ N+ and ~P ∈ R[x, y]t+1

be an integral polynomial progression. Fix 0 6 i 6 t. Then

HKi(~P ) = Wi(~P ) = Ti(~P ) = Ai(~P ) 6 t− 1.

The heuristic for Conjecture 1.9 is as follows: evaluating expressions like (3) and (6) comes
down to understanding the distribution of certain polynomial sequences on nilmanifolds, and
the only obstructions to equidistribution come from algebraic relations of the form (8).

Several substatements of Conjecture 1.9, such as the equivalence of Weyl and Host-Kra
complexity and the upper bound on complexities, have previously been conjectured in [BLL07,
Lei09, Fra08, Fra16]. Similarly, the equivalence of true and algebraic complexity has been
studied and proved for linear forms [GW10, GW11a, GW11b, GW11c] as well as certain
subclasses of polynomial progressions [Pel19, Kuc19, Kuc20]. However, we have not seen the
full statement of Conjecture 1.9 anywhere in the literature. In particular, we have not found
a conjecture relating Host-Kra and Weyl complexity to algebraic complexity, even though the
aforementioned papers researching the topic mention that algebraic relations form a source
of obstructions preventing a progression from having a characteristic small-degree Host-Kra
factor.

Before we state our main result, we have to distinguish between two large families of
progressions.

Definition 1.10 (Homogeneous and inhomogeneous relations and progressions). Let t ∈ N+

and ~P ∈ R[x, y]t+1 be an integral polynomial progression. An algebraic relation (Q0, ..., Qt) ∈
R[u]t+1 is homogeneous of degree d if it is of the form

(Q0(u), ..., Qt(u)) = (a0u
d, ..., atu

d)
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for some a0, ..., at ∈ R (some but not all of which may be zero), and inhomogeneous otherwise.

The progression ~P is homogeneous if all the algebraic relations that it satisfies are linear
combinations of its homogeneous algebraic relations, and it is called inhomogeneous otherwise.

An example of a homogeneous progression is (x, x+y, x+2y, x+y3), which only satisfies
a homogeneous relation

x− 2(x+ y) + (x+ 2y) = 0.(9)

Other examples include arithmetic progressions, progressions with P1, ..., Pt being linearly
independent such as (x, x + y, x + y2), or progressions whose terms satisfy no quadratic
relations, such as (x, x + y2, x + 2y2, x + y3, x + 2y3). By contrast, the progression
(x, x+y, x+2y, x+y2) is inhomogeneous because it satisfies both (9) and the inhomogeneous
relation

x2 + 2x− 2(x+ y)2 + (x+ 2y)2 − 2(x+ y2) = 0(10)

that cannot be broken down into a sum of homogeneous relations. These two progressions
will accompany us as running examples throughout the paper.

Our main result is the following.

Theorem 1.11 (Conjecture 1.9 holds for homogeneous progressions). Let t ∈ N+. If ~P ∈
R[x, y]t+1 is a homogeneous polynomial progression, then it satisfies Conjecture 1.9.

Although we have defined Host-Kra complexity using totally ergodic systems, we can
extend our results to ergodic systems. The main difference is that if a system has complexity
0, then the Z0 factor has to be replaced by the rational Kronecker factor Krat.

Corollary 1.12. Let t ∈ N+ and ~P ∈ R[x, y]t+1 be a homogeneous polynomial progression,

and suppose that Ai(~P ) = s for some 0 6 i 6 t and s ∈ N. For all invertible ergodic dynamical

systems (X,X , µ, T ), the factor Zs is characteristic for the weak or L2 convergence of ~P at i

if s > 0, and Krat is characteristic for the weak or L2 convergence of ~P at i if s = 0.

Theorem 1.11 and Corollary 1.12 can be viewed as extensions of [HK05a, HK05b, FK05,
FK06, Fra08, BLL07, Lei09], which find characteristic factors for linear configurations, linearly
independent polynomials, progressions of length 4, examine Weyl complexity for arbitrary
integral polynomial progression, and give an upper bound for Host-Kra complexity for general
integral progressions. Theorem 1.11 also partly extends [GW10, GW11a, GW11b, GW11c,
GT10, Pel19, Kuc19, Kuc20], which among other things determine true complexity for certain
families of linear forms and integral polynomial progressions.

In particular, we extend our earlier work from [Kuc20]. In that paper, we prove equidis-
tribution results on nilmanifolds for progressions of the form (x, x + Q(y), x + R(y), x +
Q(y) + R(y)) with degQ < degR, or (x, x + Q(y), x + 2Q(y), x + R(y), x + 2R(y)) with
degQ < (degR)/2, both of which are homogeneous. That equidistribution results follow
from inducting on the filtration of a certain nilmanifold associated with the progression; the
induction scheme involved is quite sensitive to the progression in question. Here, we achieve a
much more general equidistribution result (part (i) of Theorem 1.15) by obtaining a solid un-
derstanding of the algebra behind homogeneous progressions and introducing a more flexible
induction scheme.

From the fact that all progressions of algebraic complexity 1 are homogeneous, we deduce
the following counting result.
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Corollary 1.13. Let t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polynomial progression of
algebraic complexity at most 1. Suppose that Q1, ..., Qd ∈ R[y] are integral polynomials such

that Pi(y) =
∑d

j=1 aijQj(y) for aij ∈ Z for each 0 6 i 6 t and 1 6 j 6 d. Let Li(y1, ...yd) =∑d
j=1 aijyj. Then the following is true.

(i) For any f0, ..., ft : Z/NZ → C with maxi ||fi||∞ 6 1, we have

Ex,y∈Z/NZ

t∏

i=0

fi(x+ Pi(y)) = Ex,y1,...,yd∈Z/NZ

t∏

i=0

fi(x+ Li(y1, ..., yd)) + o(1),

where the error term o(1) is taken as N → ∞ over primes and does not depend on
the choice of f0, ..., ft.

(ii) For any invertible totally ergodic dynamical system (X,X , µ, T ) and f0, ..., ft ∈ L∞(µ),
we have

lim
N→∞

En∈[N ]

∫

X

t∏

i=0

TPi(n)fidµ = lim
N→∞

En1,...,nd∈[N ]

∫

X

t∏

i=0

TLi(n1,...,nd)fidµ.

We shall illustrate Corollary 1.13 for the specific example of

~P (x, y) = (x, x+ y2, x+ 2y2, x+ y3, x+ 2y3).

Taking Q1(y) = y2 and Q2(y) = y3 as in the statement of Corollary 1.13, we let ~L(x, y1, y2) =
(x, x+ y1, x+ 2y1, x+ y2, x+ 2y2). For any A ⊂ Z/NZ, we then have

|{(x, y) ∈ (Z/NZ)2 : (x, x+ y2, x+ 2y2, x+ y3, x+ 2y3) ∈ A5}|
=|{(x, y1, y2) ∈ (Z/NZ)3 : (x, x+ y1, x+ 2y1, x+ y2, x+ 2y2) ∈ A5}|/N + o(N2)

upon setting f0 = ... = ft = 1A. If (X,X , µ, T ) is a totally ergodic system and A ∈ X , then
we similarly obtain that

lim
N→∞

En∈[N ]µ(A ∩ T n2
A ∩ T 2n2

A ∩ T n3
A ∩ T 2n3

A)

= lim
N→∞

En,m∈[N ]µ(A ∩ T nA ∩ T 2nA ∩ TmA ∩ T 2mA).

For progressions of algebraic complexity 1, we also prove the following result, which gener-
alises Theorem C of [Fra08], Theorem 1.12 of [GT10], and results from [BHK05]. In additive
combinatorics, problems of this type are known as finding popular common differences; in
ergodic theory, one speaks of establishing lower bounds for multiple recurrence.

Theorem 1.14. Let t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polynomial progression of
algebraic complexity at most 1, with the following property: there exist linearly independent
integral polynomials Q1, ..., Qk such that

{a1Q1 + ...+ akQk : a1, ..., ak ∈ Z} = {b1P1 + ...+ btPt : b1, ..., bt ∈ Z}.(11)

Then the following is true.



ON SEVERAL NOTIONS OF COMPLEXITY OF POLYNOMIAL PROGRESSIONS 7

(i) Let (X,X , µ, T ) be an ergodic invertible measure preserving system and A ∈ X . Sup-
pose that µ(A) > 0. Then for every ǫ > 0, the set

{n ∈ N : µ(A ∩ TP1(n)A ∩ ... ∩ TPt(n)A) > µ(A)t+1 − ǫ}

is syndetic, i.e. it has bounded gaps.

(ii) Suppose that A ⊂ N has upper density α > 0. Then for every ǫ > 0, the set

{n ∈ N : µ(A ∩ (A+ P1(n)) ∩ ... ∩ (A+ Pt(n))) > αt+1 − ǫ}

is syndetic.

(iii) For any α, ǫ > 0 and prime N , and any subset A ⊂ Z/NZ of size |A| > αN , we have

|{n ∈ Z/NZ : |A ∩ (A+ P1(n)) ∩ ... ∩ (A+ Pt(n))| > (αt+1 − ǫ)N}| ≫α,ǫ N.

The definition of homogeneity (Definition 1.10) is equivalent to a certain linear algebraic
property that will be described in details in Section 4; this property makes it possible to explic-
itly describe closures of orbits of nilsequences evaluated at terms of homogeneous polynomial
progressions, from which we deduce Theorem 1.11. Homogeneous polynomial progressions
are moreover the largest family of integral polynomial progressions for which such an explicit
description is possible, and even the simplest examples of inhomogeneous progressions lead
to complications absent in the homogeneous case. The following result makes this precise.
As with all other results in this section, all the concepts in Theorem 1.15 are explained in
subsequent sections.

Theorem 1.15 (Dichotomy between homogeneous and inhomogeneous progressions). Let t ∈
N+ and ~P ∈ R[x, y]t+1 be an integral polynomial progression. Suppose that G is a connected,
simply-connected, nilpotent Lie group with a rational filtration G• and Γ is a cocompact lattice.
There exists a subnilmanifold GP /ΓP of Gt+1/Γt+1 with the following property.

(i) If ~P is homogeneous, then for every irrational polynomial sequence g : Z → G adapted
to G•, the sequence

gP (x, y) = (g(x), g(x+ P1(y)), ..., g(x+ Pt(y)))

is equidistributed on GP /ΓP .

(ii) If ~P is inhomogeneous, then for every irrational polynomial sequence g ∈ poly(Z, G•),
the closure of gP is a union of finitely many translates of a subnilmanifold of GP /ΓP .

For every ~P , we can moreover find a filtered nilmanifold G/Γ and an irrational poly-
nomial sequence g : Z → G such that gP is equidistributed on a proper subnilmanifold
of GP /ΓP .

While we have not been able to prove full Conjecture 1.9 for inhomogeneous progressions,
we are able to say a bit more about the relationship between various notions of complexity in
the general case.



8 BORYS KUCA

Theorem 1.16. Let t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polynomial progression. Fix
0 6 i 6 t. Then

Wi(~P ) = Ai(~P ) 6 min(Ti(~P ),HKi(~P )).

Of the various statements made in Theorem 1.16, the fact that Host-Kra complexity
bounds Weyl complexity is a simple consequence of definitions and shall be explained in
Section 11. Similarly, the fact that algebraic complexity is bounded from above by true
complexity has been shown in Theorem 1.13 of [Kuc20]. It is the equivalence of Weyl and
algebraic complexities that is a new statement here.

Outline of the paper. We start the paper by introducing basic ergodic theoretic definitions
and results concerning nilsystems in Section 2, and we explain why analyzing expressions like
(3) comes down to answering equidistribution questions on nilmanifolds. We then show in
Section 3 that in studying equidistribution on nilmanifolds, we can restrict ourselves to nil-
manifolds that are quotients of connected groups at the expense of replacing a linear sequence
by a polynomial one.

Section 4 explains key differences between homogeneous and inhomogeneous progressions,
and in particular it shows the upper bound on algebraic complexity for homogeneous progres-
sions in Theorem 1.11. Definitions introduced in this section allow us to state in the infinitary
version of an equidistribution result for homogeneous polynomial progressions on nilmanifolds
(Theorem 5.3) in Section 5, from which we deduce that for homogeneous progressions, Host-
Kra complexity is bounded from above by algebraic complexity (Corollary 5.4). We further
use Theorem 5.3 to deduce Corollaries 1.12 and 1.13(ii).

In Section 6, we introduce finitary analogues of tools from Section 2. These are needed in
Section 7, in which we show that proving the equivalence of true and algebraic complexity for
homogeneous progression comes down to proving Theorem 6.7, a finitary version of Theorem
5.3. We also explain in Section 7 how to prove Corollary 1.13(i). Theorem 6.7, the main
technical part of this paper, is derived in Section 8. Unfortunately, Theorem 6.7 fails for
inhomogeneous progressions, as explained in Section 9. In Section 10, we propose a method
to handle inhomogeneous progressions. While we succeed in proving an analogue of Theorem
5.3 for the inhomogeneous progression (x, x+ y, x+2y, x+ y2) in Proposition 10.1, we have
been unable to extend this construction to all inhomogeneous progressions. Subsequently, we
show in 11 that Weyl and algebraic complexity are always equal, which is the main statement
of Theorem 1.16. We conclude the paper by proving Theorem 1.14 in Section 12.

Acknowledgments. We are indebted to Donald Robertson for his comments on earlier ver-
sions of the paper and fruitful conversations on the project while it was carried out. We
would also like to thank Sean Prendiville for introducing us to the topic of complexity, Tuo-
mas Sahlsten for hosting a reading group on the dynamical proof of Szemerédi theorem, and
Jonathan Chapman for useful discussions on algebraic relations between terms of polynomial
progressions.

2. Infinitary nilmanifold theory

2.1. Basic definitions from ergodic theory. Let (X,X , µ, T ) be an invertible measure-
preserving dynamical system (henceforth, we shall simply call it a system). The background
in ergodic theory that we need can be found in [HK05b, HK18], among others; here, we only
reiterate the most important definitions.
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Definition 2.1. A factor of a system (X,X , µ, T ) can be defined in three equivalent ways:

(i) it is a T -invariant sub-σ-algebra of X ;

(ii) it is a system (Y,Y, ν, S) together with a factor map π : X ′ → Y ′, i.e. a measurable
map defined for a measurable T -invariant set X ′ of full measure, satisfying S◦π = π◦T
on X ′ and µ ◦ π−1 = ν;

(iii) it is a T -invariant subalgebra of L∞(µ).

For r ∈ N, we let Kr be the factor spanned by all T r-invariant functions in L∞(µ). In
particular, K1 = I is the factor spanned by T -invariant functions, and the rational Kronecker
factor Krat =

∨
r∈N

Kr is the factor spanned by all the functions in in L∞(µ) that are T r-

invariant for some r ∈ N. A system is ergodic if K1 = I is the trivial factor spanned by
constant functions, and it is totally ergodic if Krat is the trivial factor.

Of particular interest to us is a sequence of factors (Zs)s∈N defined in [HK05b], which we
refer to as Host-Kra factors. In accordance with Definition 2.1, we shall sometimes think of
Zs as a sub-σ-algebra of X , and at other times we will consider a factor map πs : X → Zs and
a factor (Zs,Zs, λ, S) of (X,X , µ, T ). If we concurrently talk about Host-Kra factors of two
distinct spaces X and Y , we may write Zs(X) and Zs(Y ) to mean Host-Kra factors of X and
Y respectively. We do not explicitly use the definition of Host-Kra factors anywhere in the
paper, and so we leave the interested reader to look it up in [HK05b, HK18]. Instead, we rely
on two properties of this family of factors that concern their utility and structure respectively.
First, these factors are characteristic for the convergence of polynomial progressions, as proved
in Theorem 1.4. Rephrasing Theorem 1.4 in terms of Definition 1.5, we can say that each
integral polynomial progression has a finite Host-Kra complexity. Second, each factor Zs is
an inverse limit3 of s-step nilsystems, which are objects of primary importance to us.

2.2. Nilsystems. Let G be a Lie group with connected component G0 and identity 1. A
filtration on G of degree s is a chain of subgroups

G = G0 = G1 > G2 > ... > Gs > Gs+1 = Gs+2 = ... = 1

satisfying [Gi, Gj ] 6 Gi+j for each i, j ∈ N. We denote it as G• = (Gi)
∞
i=0. A natural

example of filtration is the lower central series, given by Gk+1 = [G,Gk ] for each k > 1, where
the commutator of two elements a, b ∈ G is defined as [a, b] = a−1b−1ab, and [A,B] is the
subgroup of G generated by all the commutators [a, b] with a ∈ A, b ∈ B. The group G is
s-step nilpotent if Gs+1 = 1, where Gs+1 is the s-th element of the lower central series of G.
The only 0-step nilpotent group is the trivial group, and 1-step nilpotent groups are precisely
abelian groups.

For the rest of the paper, we let G be a nilpotent Lie group and Γ 6 G be a cocompact
lattice. We call the quotient X = G/Γ a nilmanifold. The group G acts on X by left
translation, and for each a ∈ G, we call the map Ta(gΓ) = (ag)Γ a nilrotation. Setting G/Γ
to be the Borel σ-algebra of X and ν to be the Haar measure with respect to left translation,
we call the system (G/Γ,G/Γ, ν, Ta) a nilsystem.

3The system (X,X , µ, T ) is an inverse limit of a sequence of factors (X,Xi, µ, T ) if Xi form an increasing
sequence of factors of X such that X =

∨

i∈N

Xi up to sets of measure zero.
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A subgroup H 6 G is rational if H/(H ∩ Γ) is closed in G/Γ. A filtration G• is rational
if Gi is a rational subgroup for each i ∈ N. We shall assume throughout the paper that each
filtration that we discuss is rational.

In the case when (G/Γ,G/Γ, ν, Ta) is an ergodic nilsystem, which will always be our case
anyway, we can make two simplifying assumptions about the group G. By passing to universal
cover, we assume that G is simply connected. Replacing the nilsystem with several simpler
nilsystems, we further assume that G is spanned by G0 and a. These assumptions, justified
in Chapter 11 of [HK18], hold for the rest of the paper.

We also denote Γi = Gi ∩ Γ and Γ0 = G0 ∩Γ. The rationality of Gi in G means that Γi is
cocompact in Gi.

Proposition 2.2 (Conditions for total ergodicity of nilsystems, Corollary 7 and 8 of [HK18]).

Let (G/Γ,G/Γ, ν, Ta) be an ergodic nilsystem. There exists r ∈ N+ such that T ja (G0/Γ0) is
totally ergodic with respect to T ra for all 0 6 j < r.

Moreover, the following are equivalent:

(i) Ta is totally ergodic;

(ii) G/Γ is connected;

(iii) G = G0Γ.

Nilsystems allow a particularly simple description of factors. If G• is the lower central
series filtration, then

Zs =
G

Gs+1Γ
(12)

for all s ∈ N+ (see Chapter 11 of [HK18]). For s = 0, we have Z0 = G/(G0Γ) ∼= (Z/rZ),
where r is the smallest positive integer for which ar ∈ G0. It follows from Proposition 2.2
that Z0 is trivial if and only if the nilsystem is totally ergodic.

Let ~P ∈ R[x, y]t+1 be an integral polynomial progression. By Theorem 1.4, there exists
s ∈ N such that for every ergodic system (X,X , µ, T ) and all choices of f0, ..., ft ∈ L∞(µ), we
have

lim
N→∞

En∈[N ]

∫

X
f0 · TP1(n)f1 · ... · TPt(n)ftdµ

= lim
N→∞

En∈[N ]

∫

Zs

E(f0|Zs) · SP1(n)E(f1|Zs) · ... · SPt(n)E(ft|Zs)dλ(13)

Using the fact that Zs is an inverse limit of ergodic s-step nilsystems, we can approximate
the average (13) arbitrarily well by projections onto ergodic nilsystems. Hence we are left
with understanding averages of the form

lim
N→∞

En∈[N ]

∫

G/Γ
f̃0(bΓ) · f̃1(aP1(n)bΓ) · ... · f̃t(aPt(n)bΓ)dν(bΓ)(14)

where f̃i is the projection of fi onto an ergodic s-step nilsystem (G/Γ,G/Γ, ν, Ta) for all
0 6 i 6 t. If T is totally ergodic, then so is the nilrotation Ta.
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2.3. Polynomial sequences. Let G• be a filtration on G of degree s. A polynomial sequence
g : Z → G adapted to G• is a sequence

g(n) =

s∏

i=0

g
(ni)
i .(15)

with the property that gi ∈ Gi for each i. Such sequences form a group denoted as poly(Z, G•)
by Proposition 6.2 of [GT12]. One may ask why we define polynomial sequence as (15) rather
than in the seemingly more natural form

g(n) =

s∏

i=0

gn
i

i .(16)

The reason is that if g is written in the form (15), then we have the following nice statement.

Lemma 2.3 (Lemma 2.8 of [CS12]). Suppose that g ∈ poly(Z, G•). The sequence g(n) =
∏s
i=0 g

(ni)
i takes values in H 6 G if and only if g0, ..., gs ∈ H.

Proof. The converse direction is straightforward, and we prove the forward direction by in-
duction on 0 6 k 6 s. For k = 0, we observe that g0 = g(0) ∈ H. Suppose that the statement

holds for k, i.e. g0, ..., gk ∈ H. Then g(k + 1) =

(∏k
i=0 g

(ki)
i

)
gk+1. Since g(k + 1), g0, ..., gk

are all in H, it follows that gk+1 ∈ H. �

Lemma 2.3 is not true if g is written in the form (16); for instance, g(n) =
(n
2

)
= 1

2n
2− 1

2n

takes values in Z even though 1
2 ,−1

2 /∈ Z.

In a similar manner, we define for any D ∈ N+ the group poly(ZD, G•) of D-parameter
polynomial sequence g : ZD → G adapted to G•, i.e. sequences of the form

g(n1, ..., nD) =

s∏

i=0

∏

i1+...+iD=i

gi1,...,iD
(n1
i1
)···(nD

iD
)

for gi1,...,iD ∈ Gi1+...iD .

2.4. Infinitary equidistribution theory on nilmanifolds. For the rest of Section 2, we
assume that G is connected. For D ∈ N+, a polynomial sequence g ∈ poly(ZD, G•) is
equidistributed on G/Γ if

En∈[N ]DF (g(n)Γ) →
∫

G/Γ
Fdν

for any continuous function F : G/Γ → C. The following notion is useful when discussing
equidistribution.

Definition 2.4 (Horizontal characters). A horizontal character on G is a continuous group
homomorphism η : G→ R for which η(Γ) 6 Z.

In particular, each horizontal character vanishes on [G,G].
Equidistribution on nilmanifolds was studied by Leibman, who provided a useful criterion

for when a polynomial sequence is equidistributed on a nilmanifold. We only need the version
of the statement in the case when G is connected, as we will be able to reduce to this case.
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Theorem 2.5 (Leibman’s equidistribution theorem, [Lei05b]). Let D ∈ N+ and g ∈ poly(ZD, G•).
The following are equivalent:

(i) g is equidistributed in G/Γ;

(ii) the projection of g onto G/[G,G] is equidistributed in G/[G,G]Γ;

(iii) if η : G→ R is a horizontal character for which η ◦ g is constant, then η is trivial.

We shall also need a stronger notion of equidistribution, that of irrational sequences.

Definition 2.6. Suppose that G• is a filtration on G and i ∈ N+, and let

G∇
i = 〈Gi+1, [Gj , Gi−j ], 1 6 j < i〉

An i-th level character is a continuous group homomorphism ηi : Gi → R that vanishes on G∇
i

and satisfies ηi(Γi) ∈ Z. An element gi of Gi is irrational if ηi(gi) /∈ Z for any nontrivial i-th

level character ηi. A sequence g(n) =
s∏
i=0

g
(ni)
i is irrational if gi is irrational for all i ∈ N+.

All irrational sequences are equidistributed, but not vice versa. For instance, let g(n) =
a1n + ... + asn

s be a real-valued polynomial. It is a polynomial sequence in R adapted to
the filtration G1 = ... = Gs = R, Gs+1 = 0. Thus, g is irrational iff as /∈ Q, and g is
equidistributed iff there exists 1 6 i 6 s with ai /∈ Q. It is clear in this case that irrational
implies equidistributed, but not vice versa.

We want to emphasise that whether a sequence is irrational or not depends on what
filtration we are using, whereas the notion of equidistribution does not depend on the filtration.

3. Reducing to the case of connected groups

The expression (14) indicates that to understand Host-Kra complexity of a polynomial

progression ~P , we have to understand the distribution of orbits

(bΓ, aP1(n)bΓ, ..., aPt(n)bΓ)(17)

inside a connected nilmanifold Gt+1/Γt+1. The point of this section is to show that we
can replace linear orbits (anbΓ)n∈N on G/Γ by polynomial orbits (gb(n)Γ

0)n∈N on G0/Γ0 for
some irrational polynomial sequence gb : Z → G0 with respect to a certain naturally defined
filtration G0

• on G0. This way, we want to reduce the question of finding the closure for (17)
inside (G/Γ)t+1 to finding the closure for

(gb(m)Γ0, gb(m+ P1(n))Γ
0, ..., gb(m+ Pt(n))Γ

0)(18)

inside (G0/Γ0)t+1. The connectedness of G0 allows us to use tools from Section 2.4.

Lemma 3.1. Let (G/Γ,G/Γ, ν, Ta) be a totally ergodic nilsystem and F : (G/Γ)t+1 → R be
essentially bounded. Then

En∈[N ]

∫

G/Γ
F (bΓ, aP1(n)bΓ, ..., aPt(n)bΓ)dν(bΓ)

= Em,n∈[N ]

∫

G/Γ
F (ambΓ, am+P1(n)bΓ, ..., am+Pt(n)bΓ)dν(bΓ).
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Proof. Since Ta is measure preserving, we have
∫

G/Γ
F (bΓ, aP1(n)bΓ, ..., aPt(n)bΓ)dν(bΓ) =

∫

G/Γ
F (ambΓ, am+P1(n)bΓ, ..., am+Pt(n)bΓ)dν(bΓ)

for any m,n ∈ N. Consequently,
∫

G/Γ
F (bΓ, aP1(n)bΓ, ..., aPt(n)bΓ)dν(bΓ)

= Em∈[N ]

∫

G/Γ
F (ambΓ, am+P1(n)bΓ, ..., am+Pt(n)bΓ)dν(bΓ),

from which the lemma follows. �

The main result of this section is the following.

Proposition 3.2. Let (G/Γ,G/Γ, ν, Ta) be a totally ergodic nilsystem and b ∈ G0. Suppose
that G• is the lower central series filtration on G and G0

• = G• ∩ G0. Then there exists an
irrational sequence gb ∈ poly(Z, G0

•) such that gb(n)Γ = anbΓ.

We observe that with this filtration on G0, we have G0
k = Gk for k > 2. That follows from

the fact that the groups Gk are connected for k > 2 (Lemma 5 of [HK18]), and hence are
contained in G0.

We lose no generality in assuming that b ∈ G0; Proposition 2.2 and the connectedness of
G/Γ imply that for all b ∈ G there exists b′ ∈ G0 such that bΓ = b′Γ.

Proof. The connectedness of G/Γ implies that G = G0Γ, and so there exist α ∈ G0 and γ ∈ Γ
such that a = αγ−1. Then

anbΓ = (αγ−1)nbΓ = (αγ−1)nbγnΓ.

It follows from normality of G0 and the fact that α and b are elements of G0 that the sequence
gb(n) = (αγ−1)nbγn takes values in G0. Since the sequences h1(n) = anb and h2(n) = γn are
adapted to G•, and the set poly(Z, G•) is a group, we deduce that gb = h1h2 is adapted to
G0

• = G• ∩G0.
We want a more precise description of gb, and for this we shall use some results from

Sections 11-13 of [Lei09]. Let g = gb for the identity b = 1; that is, g(n) = (αγ−1)nγn.
Leibman showed in Section 11.2 of [Lei09] that

g(n) =
∏

16k16s

(Ak−1α)qk1 (n)
∏

16k2<k1<s

[Ak1−1α,Ak2−1α]qk1,k2(n)...,(19)

where Ax = [x, γ] and qk1,...,kr are integral polynomials with deg qk1,...,kr 6 k1 + ...+ kr. More
explicitly, we have

g(n) = αn(Aα)(
n
2)(A2α)(

n
3) · · · [Aα,α](

n
3)[A2α,α](

n
4) · · · [A2α,Aα]4(

n+1
5 )[A3α,Aα]5(

n+1
6 ) · · ·

(20)

The coefficients of g can be analysed using a family of subgroups of G0 introduced in Section
12 of [Lei09]. For k1, ..., kl ∈ N+, we let G0

(k1,...,kl)
be the subgroup of G0 generated by all



14 BORYS KUCA

l-fold commutators4 of elements of the form Ak1−1h1, ..., A
kl−1hl for h1, ..., hl ∈ G0. We then

define

G0
k,l = 〈G0

(k1,...,ki)
: i > l, k1 + ...+ kl > k〉

for integers 1 6 l 6 k and set G0
k,l = G0

l,l whenever l > k.

The following lemma lists some basic properties of the groups G0
k,l that we shall use.

Lemma 3.3. For any integers 1 6 l 6 k,

(i) G0
k,l is normal in G;

(ii) [G0
k,l, G

0
i,j ] 6 G0

k+i,l+j for any integers 1 6 i 6 j;

(iii) AjG0
k,l 6 G0

k+j,l for any j ∈ N;

(iv) G0
k+1,l and G0

k,l+1 are subgroups of Gk,l, and the quotient groups G0
k,l/G

0
k+1,l and

G0
k,l/G

0
k,l+1 are abelian;

(v) for k > 2, Gk = G0
k = G0

k,1 = 〈Ak−1G0, G0
k,2〉 = 〈AG0

k−1, G
0
k,2〉;

(vi) (G0)∇k = 〈G0
k,2, G

0
k+1〉

Proof. Properties (i)-(iv) are proved in Lemma 12.2 of [Lei09]. For k > 2, the statement Gk =
G0
k in (v) is true by definition, and the statement Gk = G0

k,1 is proved in Lemma 12.3 of [Lei09].

To finish the proof of (v), it remains to show that G0
k,1 = 〈Ak−1G0, G0

k,2〉 = 〈AG0
k−1, G

0
k,2〉

for k > 2. For k = 2, this is true by definition of G0
k,1 and the fact that G0

k,2 > G0
k,3 > ...,

which follows from part (iv). We assume that the statement is true for some k > 2. That
G0
k+1 contains 〈AG0

k, G
0
k+1,2〉 follows from the fact that both AG0

k and G0
k+1,2 are contained

in the (k + 1)-th element of the lower central series of G, which is precisely G0
k+1. For the

other direction, we observe that

G0
k+1 = [Gk, G] = [G0

k, 〈G0, γ〉] 6 〈[G0
k, G

0], [G0
k, γ]〉

6 〈[Ak−1G0, G0], [G0
k,2, G

0], AG0
k〉 6 〈G0

k+1,2, AG
0
k〉.

A similar argument shows that G0
k+1 = 〈AkG0, G0

k+1,2〉.
Before we prove property (vi), we recall that (G0)∇k = 〈Gk+1, [Gj , Gk−j ] : 1 6 j < k〉.

That (vi) holds for k = 1 can be verified by inspection. For k > 2, we observe that
[Aj−1G0, Ak−j−1G0] 6 [G0

j , G
0
k−j ], and so

G0
k,2 6 〈[G0

j , G
0
k−j ] : 1 6 j < k〉;

when coupled with property (v), this implies that (G0)∇k > 〈G0
k,2, G

0
k+1〉. For the converse,

we have

[G0
j , G

0
k−j] = [〈Aj−1G0, G0

j,2〉, 〈Ak−j−1G0, G0
k−j,2〉] 6 〈G0

k,2, G
0
k,3, G

0
k,4〉 6 G0

k,2,

for each 1 6 j < k, from which it follows that (G0)∇k 6 〈G0
k,2, G

0
k+1〉. �

4A 1-fold commutator is any element h ∈ G. For l > 1, an l-fold commutator is an element of the form
[hi, hj ], where hi is an i-fold commutator, hj is an j-fold commutator and i+ j = l.
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Letting g(n) =
∏s
i=1 g

(ni)
i , we observe from (19), (20) as well as parts (v) and (vi) of

Lemma 3.3 that

gi = Ai−1α mod (G0)∇i .(21)

For an arbitrary b ∈ G0, we have gb(n) = anbγn = b(αbγ
−1)nγn, where αb = α[α, b]Ab, as

observed in Section 11.3 of [Lei09]. Letting gb(n) =
∏s
i=0 g

(ni)
b,i , it is therefore true that

gb,i = Ai−1αb = Ai−1α mod (G0)∇i(22)

for all i ∈ N+.
For i = 1, we have gb,1 = α mod G0

2, and we claim that gb,i is irrational. The ergodicity
of a implies that for almost every b, the sequence n 7→ anb is equidistributed in G/Γ, and
so the same is true for the sequence gb in G

0/Γ0. Consequently, the projection π(gb) : Z →
G0/(G0

2Γ
0) is equidistributed as well. Since π(gb(n)) = π(b) + π(α)n, it follows that π(α) is

an irrational element of G0/G0
2, and so gb,1 is an irrational element of G0.

Before proving that gb,i are irrational for i > 1, we discuss some properties of the map
A : G → G. From the definition of the filtration G0

• we observe that AG0
i 6 G0

i+1 for all
i > 1 (this is also a consequence of parts (iv) and (v) of Lemma 3.3). Therefore the map
Ai := A|G0

i
takes values in G0

i+1, and moreover Ai(Γi) 6 Γi+1. We also observe that the

projection Ai : G
0
i → G0

i+1/(G
0)∇i+1 is a (continuous) group homomorphism because

A(xy) = [xy, γ] = [x, γ][[x, γ], y][y, γ] = Ax[Ax, y]Ay = AxAy mod G0
2i+1,2

for any x, y ∈ G0
i and G0

2i+1,2 6 G0
i+1,2 6 (G0)∇i+1 by parts (iv) and (vi) of Lemma 3.3. From

part (v) of Lemma 3.3 it follows that Ai is surjective. Finally, we note using parts (iii) and
(v) of Lemma 3.3 that Ai((G

0)∇i ) 6 (G0)∇i+1.
Suppose that gb,i is irrational but gb,i+1 is not for some 1 6 i < s. Then there exists a

nontrivial (i + 1)-th level character ηi+1 : G0
i+1 → R such that ηi+1(gb,i+1) ∈ Z. From (22)

and the fact that ηi+1 vanishes on (G0)∇i+1, we deduce that ηi+1(gb,i+1) = ηi+1(A
iα). We also

let ηi+1 : G
0
i+1/(G

0)∇i+1 → R be the induced map.

Let ηi := ηi+1 ◦ Ai : G0
i → R. It is an i-th level character as a consequence of four facts:

the vanishing of ηi+1 on (G0)∇i+1, the inclusion (G0
i+1,2) 6 (G0)∇i+1 (both of which imply that

ηi = ηi+1 ◦Ai is a continuous group homomorphism), the inclusion Ai((G
0)∇i ) 6 (G0)∇i+1, and

the fact that ηi(Γi) 6 Z. It moreover satisfies

ηi(gb,i) = ηi(A
i−1α) = ηi+1(A

iα) = ηi+1(gb,i+1),

implying that ηi(gb,i) ∈ Z. The nontriviality of ηi+1 implies that ηi+1 and Ai are surjective
maps onto nontrivial groups; hence ηi is nontrivial. This contradicts the irrationality of gb,i.
By induction, gb,1, ..., gb,s are all irrational, implying that gb is irrational. �

Proposition 3.2 is vaguely reminiscent of Proposition 3.1 of [FK05] in that we replace
a linear sequence by a polynomial object on a simpler space. These two results are not
equivalent, however, in that in Proposition 3.2, we end up with a polynomial sequence on a
nilmanifold of a connected group where in Proposition 3.1 of [FK05], one obtains a unipotent
affine transformation on a torus.
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Lemma 3.4. Let G• and G0
• be as given in Proposition 3.2. Then Zi(G/Γ) = Zi(G

0/Γ0) =
G0/(G0

i+1Γ
0) for each i ∈ N.

Proof. We do the cases i = 0 and i > 0 separately. For i > 0, we recall from (12) that
Zi(G/Γ) = G/Gi+1Γ. Since G/Γ = G0/Γ0 by connectedness of G/Γ, and Gj = G0

j for j > 2,
it follows that

Zi(G
0/Γ0) = Zi(G/Γ) = G/Gi+1Γ = G0/G0

i+1Γ
0.

For i = 0, we have Zi(G/Γ) = G/G0Γ = 1 = G0/G0Γ0 = Zi(G
0/Γ0). �

4. Homogeneous and inhomogeneous polynomial progressions

The central message of this paper is that homogeneous polynomial progressions satisfy
certain linear algebraic properties that make them pliable for our analysis. In this section, we
explicitly describe these properties.

Let ~P ∈ R[x, y]t+1 be an integral polynomial progression. Let Vk be the subspace of R[x, y]
given by

Vk = SpanR{(x+ Pi(y))
j : 0 6 i 6 t, 1 6 j 6 k}

= SpanR

{(
x+ Pi(y)

j

)
: 0 6 i 6 t, 1 6 j 6 k

}
,

and similarly let

Wk = SpanR

{(
x+ Pi(y)

k

)
: 0 6 i 6 t

}
.

We also set

V ∗ = SpanR{(Q0, ..., Qt) ∈ R[u]t+1 : Q0(0) = ... = Qt(0) = 0,

Q0(x) +Q1(x+ P1(y)) + ...+Qt(x+ Pt(y)) = 0}

to be the space of all algebraic relations with zero constant terms satisfied by ~P . We recall
that an algebraic relation (Q0, ..., Qt) is homogeneous if there exists d ∈ N+ and a0, ..., ad ∈ R

not all zero such that Qi(u) = aiu
d for each 0 6 i 6 t. We call ~P homogeneous if V ∗ is

spanned by homogeneous algebraic relations, and inhomogeneous otherwise.
The concepts of integral polynomial progression and homogeneity, as well as our results in

this paper, could likely be extended to multiparameter polynomial progressions of the form

(x, x+ P1(y1, ..., yr), ..., x+ Pt(y1, ..., yr));

however, we do not pursue this generalisation so as not to obfuscate the notation.
Some important examples of homogeneous progressions include:

(i) linear progressions (x, x+ a1y, ..., x+ aty) for distinct nonzero integers a1, ..., at, as
well as their multiparameter generalizations;

(ii) progressions of algebraic complexity 0, i.e. progressions where the polynomials P1, ..., Pt
are integral and linearly independent;
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(iii) progressions of algebraic complexity 1, such as (x, x+ y, x+ y2, x+ y + y2), which
satisfy no quadratic or higher-order algebraic relation.

Another, less obvious example of a homogeneous progression is (x, x+ y, x+2y, x+ y3),
already mentioned in the introduction, which only satisfies the homogeneous relation

x− 2(x+ y) + (x+ 2y) = 0.(23)

This progression should be contrasted with (x, x+y, x+2y, x+y2), which is inhomogeneous
because it satisfies both (23) and the inhomogeneous relation

x2 + 2x− 2(x+ y)2 + (x+ 2y)2 − 2(x+ y2) = 0(24)

that cannot be written down as a sum of homogeneous relations. More generally, progressions
of the form

(x, x+ y, ..., x+ (t− 1)y, x+ Pt(y))

are all inhomogeneous whenever 1 < degPt < t.
For k ∈ N+, we define

W c
k =Wk ∩

∑

j 6=k

Wj and W c =
∑

k

W c
k ,

as well as the family of quotient spaces

W ′
k =Wk/W

c
k =Wk/


Wk ∩

∑

j 6=k

Wj


.

Proposition 4.1 (Equivalent conditions for homogeneity). Let t ∈ N+ and ~P ∈ R[x, y]t+1 be
an integral polynomial progression. The following are equivalent:

(i) ~P is homogeneous;

(ii) W c
k is trivial for each k ∈ N+;

(iii) W ′
k =Wk for each k ∈ N+.

Proof. The equivalence of (ii) and (iii) follows trivially from the definition of W ′
k, and we

focus on showing the equivalence of (i) and (ii) instead. The inhomogeneity of ~P implies the
existence of a nontrivial algebraic relation (Q0(u), ..., Qt(u)) = (

∑
k a0ku

k, ...,
∑

k atku
k) that

is not a sum of homogeneous algebraic relations. What this means is that there exists k ∈ N+

for which

R(x, y) = a0kx
k + a1k(x+ P1(y))

k + ...+ atk(x+ Pt(y))
k 6= 0.

Since

Q0(x) +Q1(x+ P1(y)) + · · · +Qt(x+ Pt(y)) = 0,
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we have

R(x, y) = −
∑

j 6=k

t∑

i=0

aij(x+ Pi(y))
j ∈

∑

j 6=k

Wj ,

and so W c
k = Wk ∩∑j 6=kWj is nonempty. Thus (ii) implies (i) by contrapositive. The

argument can be reversed, and so (i) and (ii) are in fact equivalent. �

For homogeneous progression, it is quite straightforward to obtain an upper bound on
algebraic complexity.

Proposition 4.2. Let t ∈ N+ and ~P ∈ R[x, y]t+1 be a homogeneous polynomial progression.

Then Ai(~P ) 6 t− 1 for each 0 6 i 6 t.

This bound is sharp, as evidenced by the example of arithmetic progressions.

Proof. By homogeneity of ~P , the only algebraic relations of degree t that ~P could satisfy are
of the form

a0

(
x

t

)
+ a1

(
x+ Pi(y)

t

)
+ ...+ at

(
x+ Pt(y)

t

)
= 0.(25)

A relation (25), together with the formula

(
x+ Pi(y)

t

)
=

(
x

t

)
+

(
x

t− 1

)
Pi(y) +

(
x

t− 2

)(
Pi(y)

2

)
+ ...+

(
Pi(y)

t

)
,

implies

a1

(
Pi(y)

k

)
+ ...+ at

(
Pt(y)

k

)
= 0

for 1 ≤ k ≤ t. From the invertibility of Vandermonde matrix it follows that this is only
possible when a1 = ... = at = 0, in which case a0 = 0 as well. Hence ~P satisfies no nontrivial
relation of degree t.

�

Proposition 4.1 implies that homogeneous progressions satisfy

Vk =

k⊕

i=1

Wi =

k⊕

i=1

W ′
i .(26)

In the inhomogeneous case, we instead have

Vk =

k∑

i=1

Wi =

(
k⊕

i=1

W ′
i

)
⊕ (W c ∩ Vk)(27)

for some nontrivial subspace W c ∩ Vk. The nontriviality of this subspace is the main source
of difficulty preventing us from generalising Theorem 1.11 to inhomogeneous progressions.



ON SEVERAL NOTIONS OF COMPLEXITY OF POLYNOMIAL PROGRESSIONS 19

Given the rather abstract nature of the spaces Wk,W
′
k and W c

k , we illustrate their defini-
tions with concrete examples. For the homogeneous progression (x, x + y, x + 2y, x + y3),
we have

W ′
1 =W1 = SpanR{x, y, y3} and W ′

2 =W2 = SpanR

{(
x

2

)
, xy +

(
y

2

)
, y2, xy3 +

(
y3

2

)}
,

while for the inhomogeneous progression (x, x+ y, x+ 2y, x+ y2), we have

W1 = SpanR{x, y, y2} and W2 = SpanR

{(
x

2

)
, xy +

(
y

2

)
, y2, xy2 +

(
y2

2

)}

but

W ′
1 = SpanR{x, y}, W ′

2 = SpanR

{(
x

2

)
, xy +

(
y

2

)
, xy2 +

(
y2

2

)}
and W c = SpanR{y2}.

The nontriviality of W c for the latter progression is intrinsically related to the algebraic
relation (24).

The spaces Vk and Wk are subspaces of R[x, y]. We also need an analogous family of
subspaces of Rt+1. Let

Pk = SpanR

{((
x

j

)
,

(
x+ P1(y)

j

)
, ...,

(
x+ Pt(y))

j

))
: x, y ∈ R, 1 6 j 6 k

}

= SpanR

{((
x

k

)
,

(
x+ P1(y)

k

)
, ...,

(
x+ Pt(y))

k

))
: x, y ∈ R

}

= SpanR

{
(xk, (x+ P1(y))

k, ..., (x + Pt(y))
k) : x, y ∈ R

}
.

We shall also use the notation

~P k(x, y) = (xk, (x+ P1(y))
k, ..., (x + Pt(y))

k) and

( ~P (x, y)
k

)
=

((
x

k

)
,

(
x+ P1(y)

k

)
, ...,

(
x+ Pt(y)

k

))
.

The equivalence of three formulations of Pk may not be obvious at first glance. The first two

formulations are equivalent because if (a0, ..., at) is the coefficient of
(x
i

)(y
l

)
in
(~P (x,y)

j

)
, then

it will be the coefficient of
(

x
i+k−j

)(
y
l

)
in
(~P (x,y)

k

)
whenever j 6 k. The equivalence of the last

two formulations follows by induction on k.
Let tk = dimWk and t′k = dimW ′

k for each k ∈ N. The spaces Wk and Pk can be related
as follows. Let {Qk,1, ..., Qk,tk} be a basis for Wk. Then

((
x

k

)
,

(
x+ P1(y))

k

)
, ...,

(
x+ Pt(y)

k

))
=

tk∑

j=1

~vk,jQk,j(x, y)

for some linearly independent vectors ~vk,1, ..., ~vk,tk ∈ Rt+1. We let τk(Qk,j) = ~vk,j, and extend
this map to all of Wk by linearity. This map depends on the choice of the basis for Wk. It
is surjective by the definition of Pk and injective by the linear independence of ~vk,1, ..., ~vk,tk .

Hence it is an isomorphism. In particular, Proposition 4.1 implies that W ′
k
∼= Pk whenever ~P

is homogeneous.
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For instance, for (x, x+ y, x+ 2y, x+ y3), the isomorphisms τ1 and τ2 are given by

τ1(x) = (1, 1, 1, 1), τ1(y) = (0, 1, 2, 0), τ1(y
3) = (0, 0, 0, 1)

and

τ2

((
x

2

))
= (1, 1, 1, 1), τ2

(
xy +

(
y

2

))
= (0, 1, 2, 0),

τ2(y
2) = (0, 0, 1, 0), τ2

(
xy3 +

(
y3

2

))
= (0, 0, 0, 1).

We treat Rt+1 as an R-algebra with coordinatewise multiplication ~v·~w = (v(0)w(0), ..., v(t)w(t))

for ~v = (v(0), ..., v(t)) and ~w = (w(0), ..., w(t)). We similarly let A ·B = {~a ·~b : ~a ∈ A,~b ∈ B}
be the product set of A and B for any A,B ⊆ Rt+1. With these definitions, we observe that
Pi+j 6 Pi · Pj , but the converse is in general not true. We also set ~ei to be the coordinate
vector with 1 in the i-th place and 0 elsewhere.

5. Relating Host-Kra complexity to algebraic complexity

Having introduced the notation for the spaces Pi, we are ready to show precisely how
determining Host-Kra complexity for homogeneous progressions can be reduced to a certain
equidistribution problem on nilmanifolds. We start by defining a group which contains the
orbit (18). Groups of this form have previously been defined in [Lei09, GT10, CS12, Kuc20],
among others.

Definition 5.1 (Leibman group). Let t ∈ N+ and G be a connected group with a filtration G•

of degree s. For an integral polynomial progression ~P ∈ R[x, y]t+1, we define the associated
Leibman group to be

GP = 〈g~vii : gi ∈ Gi, ~vi ∈ Pi, 1 6 i 6 s〉,

where h~v = (hv(0), ..., hv(t)) for any h ∈ G and ~v = (v(0), ..., v(t)) ∈ Rt+1. We also set
ΓP = GP ∩Gt+1. If g ∈ poly(Z, G•), then we denote

gP (x, y) = (g(x), g(x + P1(y)), ..., g(x + Pt(y)))

and observe that gP takes values in GP .

Lemma 5.2. Let t ∈ N+ and G be a connected group with a filtration G• of degree s. Suppose

that ~P ∈ R[x, y]t+1 is an integral polynomial progression with Ai(~P ) = s′ for some s′ ∈ N.
Then GP contains 1i ×Gs′+1 × 1t−i.

Proof. The assumption Ai(~P ) = s′ implies that (x + Pi(y))
s′+1 is linearly independent from

(x+ Pk(y))
s′+1 for k 6= i, hence Ps′+1 contains ~ei. The Lemma then follows by the definition

of GP . �

We are now ready to state an infinitary version of the main technical result in the paper.
This result constitutes the first part of Theorem 1.15.
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Theorem 5.3. Let t ∈ N+ and G be a connected group with filtration G•. Suppose that

g ∈ poly(Z, G•) is irrational and that ~P ∈ R[x, y]t+1 is a homogeneous polynomial progression.
Then gP is equidistributed on the nilmanifold GP /ΓP .

Importantly, Theorem 5.3 fails for inhomogeneous progressions in that for each inhomoge-

neous progression ~P , we can find a nilmanifold G/Γ, a filtration G•, and an irrational sequence
g ∈ poly(Z, G•) for which the orbit of gP is contained in a proper subnilmanifold of GP /ΓP .
An example of this is given in Section 9.

We have all the tools to prove Theorem 5.3 by now. However, we will later need a finitary
version of Theorem 5.3, and so instead of proving twice what is essentially the same result, we
shall only give the finitary proof later on and deduce Theorem 5.3 from it. For now, however,

we can show how the HKi(~P ) 6 Ai(~P ) part of Theorem 1.11 follows from Theorem 5.3.

Corollary 5.4. Let t ∈ N+ and ~P ∈ R[x, y]t+1 be a homogeneous polynomial progression. For
any 0 6 i 6 t, we have

HKi(~P ) 6 Ai(~P ).

The converse inequality will follow from showing that algebraic complexity equals Weyl
complexity, and that Weyl complexity is less than or equal to Host-Kra complexity, both of
which are done in Section 11.

Proof of Corollary 5.4 using Theorem 5.3. Let Ai(~P ) = s. Let (X,X , µ, T ) be a totally er-
godic system, f0, ..., ft ∈ L∞(µ), and suppose that E(fi|Zs) = 0. By Theorem 1.4, the
expression

lim
N→∞

En∈[N ]

∫

X
f0 · TP1(n)f1 · ... · TPt(n)ftdµ(28)

remains unchanged if we project the functions f0, ..., ft onto the factor Zs0 for some s0 ∈ N.
If s0 < s, then E(fi|Zs0) = 0 and the limit (28) is 0, so we can assume that s0 > s. Since the
factor Zs0 is an inverse limit of s0-step nilsystems, we can approximate X by totally ergodic
nilsystems.

Let (G/Γ,G/Γ, ν, Ta) be a totally ergodic nilsystem, and G• be the lower central series
filtration on G. Using (12), it suffices to show that if f0, ..., ft ∈ L∞(ν) and fi vanishes on
each coset of Gs+1Γ, then

lim
N→∞

En∈[N ]

∫

G/Γ
f0(bΓ) · f1(aP1(n)bΓ) · ... · ft(aPt(n)bΓ)dν(bΓ) = 0.

Let G0
• be the filtration on G0 given by G0

• = G• ∩ G0, and let gb ∈ poly(Z, G0
•) be the

irrational sequence defined in Proposition 3.2 for which anbΓ = gb(n)Γ. The irrationality of
gb, Lemma 3.1 and Theorem 5.3 imply that

lim
N→∞

En∈[N ]

∫

G/Γ
f0(bΓ) · f1(aP1(n)bΓ) · ... · ft(aPt(n)bΓ)dν(bΓ)

=

∫

G0/Γ0

lim
N→∞

Em,n∈[N ]f0(gb(m)Γ0) · f1(gb(m+ P1(n))Γ
0) · ... · ft(gb(m+ Pt(n))Γ

0)dν(bΓ0)

=

∫

(G0)P /(Γ0)P
f0 ⊗ ...⊗ ftdν

P ,
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where (G0)P is the Leibman group for ~P and νP is the Haar measure on (G0)P /(Γ0)P .
The assumption that fi vanishes on each coset of Gs+1Γ in G/Γ together with Lemma

3.4 imply that fi vanishes on each coset of G0
s+1Γ

0 inside G0/Γ0. By Lemma 5.2, the group

(G0)P contains H = 1i ×G0
s+1 × 1t−i; therefore

∣∣∣∣∣

∫

(G0)P /(Γ0)P
f0 ⊗ ...⊗ ft

∣∣∣∣∣ 6
∫

(G0)P /H(Γ0)P

∣∣∣∣∣

∫

xH(Γ0)P
f0 ⊗ ...⊗ ft

∣∣∣∣∣

6


∏

j 6=i

||fj||∞



∫

(G0)P /H(Γ0)P

∣∣∣∣∣

∫

xiG0
s+1Γ

0

fi

∣∣∣∣∣ = 0,

implying that Zs is characteristic for the weak convergence of ~P at i. �

Corollary 5.4 implies that if a progression ~P satisfies Ai(~P ) = s, then Zs is characteristic
for the weak or L2 convergence of ~P at i for any totally ergodic system. We now prove
Corollary 1.12, which extends this result to ergodic systems with a slight modification in the
s = 0 case. The proof is almost identical to the proof of Proposition 4.1 in [Fra08].

Proof of Corollary 1.12. Let ~P ∈ R[x, y]t+1 be a homogeneous progression with Ai(~P ) = s
and (X,X , µ, T ) be ergodic. By Theorem 1.4, there exists a Host-Kra factor that is char-

acteristic for the weak and L2 convergence of ~P . Since each Host-Kra factor is an inverse
limit of nilsequences, we can approximate X by an ergodic nilsystem (G/Γ,G/Γ, ν, Ta). The
compactness of G/Γ and the assumption that G is generated by the connected component G0

and a imply that ar ∈ G0 for some r ∈ N+; and hence

En∈[rN ]

t∏

i=1

TPi(n)
a fi = Ej∈[r]En∈[N ]

t∏

i=1

TPi(r(n−1)+j)
a fi(29)

= Ej∈[r]En∈[N ]

t∏

i=1

(T ra )
P̃i,j(n)(TPi(j)

a fi),

where P̃i,j(n) = Pi(r(n−1)+j)−Pi(j)
r . A tedious linear algebraic argument shows that for any

0 6 j < r, the progression ~P is homogeneous if and only if

~̃Pj(x, y) = (x, x+ P̃1,j(y), ..., x+ P̃t,j(y))

is, and that there is a one-to-one correspondence between algebraic relations that ~P and ~̃Pj

satisfy. In particular, ~̃Pj is also homogeneous and Ai(
~̃Pj) = s.

If s > 0, suppose that E(fi|Zs(Ta)) = 0. Then the equality Zs(Ta) = Zs(T ra ) and the

Ta-invariance of Zs imply that E(T
Pi(j)
a fi|Zs(T ra )) = 0. We deduce from Corollary 5.4 and

the total ergodicity of T ra on each connected components of G/Γ that the expression in (29)
converges to 0 as N → ∞.

If s = 0, suppose that E(fi|Krat(Ta)) = 0. The total ergodicity of T ra implies that

Krat(Ta) = Z0(T
r
a ), and so E(T

Pi(j)
a fi|Z0(T

r
a )) = 0. Again, it follows from Corollary 5.4
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and the total ergodicity of T ra on each connected components of G/Γ that the expression in
(29) converges to 0 as N → ∞.

�

Theorem 5.3 also allows us to prove the second part of Corollary 1.13.

Proof of Corollary 1.13(ii). Let (X,X , µ, T ) be a totally ergodic system, and suppose that
~P ∈ R[x, y]t+1 is an integral progression with algebraic complexity at most 1. This implies

that ~P is homogeneous since each inhomogeneous algebraic relation must have degree at least

2. For each 0 6 i 6 t, let Pi(y) =
∑d

j=1 ai,jQj(y) and Li(y1, ...yd) =
∑d

j=1 ai,jyj for some
ai,j ∈ Z and integral polynomials Q1, ..., Qd. Letting

~L(x, y1, ..., yd) = (x, x+ L1(y1, ..., yd), ..., x+ Lt(y1, ..., yd)),

we observe that ~P (x, y) = ~L(x,Q1(y), ..., Qd(y)). It follows that ~L also has an algebraic

complexity at most 1, since each algebraic relation of degree (j0, ..., jt) between terms of ~L

would immediately imply an algebraic relation of the same degree between terms of ~P after
substituting yi = Qi(y).

Using the same argument as in the proof of Corollary 5.4, we reduce the question of
understanding

lim
N→∞

En∈[N ]

∫

X

t∏

i=0

TPi(n)fidµ(30)

to understanding

lim
N→∞

Ex,y∈[N ]F (g
P (x, y))(31)

for each essentially bounded function F : (G/Γ)t+1 → C and an irrational sequence g ∈
poly(Z, G•) for some filtration G• on G. Following the same method to analyse

lim
N→∞

Ey1,...,yd∈[N ]

∫

X

t∏

i=0

TLi(y1,...,yd)fidµ,(32)

we deduce that understanding (32) comes down to estimating

lim
N→∞

Ex,y1,...,yd∈[N ]F (g
L(x, y1, ..., yd)),(33)

where
gL(x, y1, ..., yd) = (g(x), g(x + L1(y1, ..., yd)), ..., g(x + Lt(y1, ..., yd))).

By Theorem 5.3, the limit in (31) equals
∫
GP /ΓP F ; by Theorem 11 of [GT10], the limit

in (33) is
∫
GL/ΓL F for some subgroup GL 6 Gt+1. From the fact that maxiAi(~P ) 6 1

we deduce that GP = 〈h~v11 , Gt+1
2 : h1 ∈ G1, ~v1 ∈ P1〉; similarly, the construction of the

group GL in [GT10] and the fact that ~L has algebraic complexity at most 1 reveals that

GL = 〈h~v11 , Gt+1
2 : h1 ∈ G1, ~v1 ∈ L1〉, where

L1 = SpanR{(x, x+ L1(y1, ..., yd), ..., x + Lt(y1, ..., yd)) : x, y1, ..., yd ∈ R}.

We observe that P1 = L1; from this it follows that GP = GL, and so the limits in (31) and
(33) are equal. This implies that (30) and (32) equal as well.

�
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6. Finitary nilmanifold theory

Before we can prove a finitary version of Theorem 5.3, we need to introduce necessary
finitary concepts required for this task. Most concepts and definitions in this and next section
are taken from [GT10, GT12, CS12]. Throughout this section, we assume that G is connected,
and that each nilmanifold G/Γ comes with a filtration G• and a Mal’cev basis χ adapted to
G•. We call a nilmanifold endowed with filtration and a Mal’cev basis filtered. A Mal’cev basis
is a basis for the Lie algebra of G with some special properties; since we do not explicitly work
with the notion of Mal’cev basis or its rationality in the paper, we refer the reader to [GT12]
for definitions of these concepts. What matters for us is that each Mal’cev basis induces a
diffemomorphism ψ : G → Rm, called Mal’cev coordinate map, which satisfies the following
properties:

(i) ψ(Γ) = Zm;

(ii) ψ(Gi) = {0}m−mi × Rmi , where mi = dimGi.

Thus, ψ provides a natural coordinate system on G that respects the filtration G• and the
lattice Γ. Similarly to ψ, we define maps ψi : Gi → Rmi−mi+1 by assigning to each element
of Gi its Mal’cev coordinates indexed by m−mi + 1, ..., m−mi+1. With this definition, we
have ψi(x) = 0 if and only if x ∈ Gi+1, and ψi(x) ∈ Zmi−mi+1 if and only if x ∈ Γi.

Definition 6.1 (Complexity of nilmanifolds). A filtered nilmanifold G/Γ has complexity M
if the degree s of the filtration G•, the dimension m of the group G, and the rationality of the
Mal’cev basis χ are all bounded by M .

We remark that complexity of nilmanifolds has nothing to do with the four notions of com-
plexity of polynomial progressions that we examine. Neither does complexity of nilsequences
defined below.

Definition 6.2 (Nilsequences). A function f : Z → C is a nilsequence of degree s and
complexity M if f(n) = F (g(n)Γ), where F : G/Γ → R is an M -Lipschitz function on a
filtered nilmanifold G/Γ of degree s and complexity M , and g ∈ poly(Z, G•).

Definition 6.3 (Quantitative equidistribution). Let D ∈ N+ and δ > 0. A sequence g ∈
poly(ZD, G) is (δ,N)-equidistributed on G/Γ if

∣∣∣∣∣En∈[N ]DF (g(n)Γ) −
∫

G/Γ
F

∣∣∣∣∣ 6 δ||F ||Lip

for all Lipschitz functions F : G/Γ → C, where ||F ||Lip is the Lipschitz norm on F with
respect to a metric defined in [GT12].

It has been shown in Theorem 2.5 that equidistribution is related to horizontal characters.
Given the Mal’cev coordinate map ψ : G → Rm, each horizontal character can be written in
the form η(x) = k · ψ(x) for some k ∈ Zm. We call |η| = |k| = |k1| + ... + |km| the modulus
of η. Similarly, each i-th level character ηi : Gi → R is of the form ηi(x) = k · ψi(x) for some
k ∈ Zmi−mi+1 , and we define its modulus to be |ηi| = |k| = |k1|+ ...+ |kmi−mi+1 |.

We shall also need to quantify the notion of polynomials that are “almost constant” mod
Z, using a definition from [GT12]. In what follows, ||x||R/Z = min{|x − n| : n ∈ Z} is the
circle norm of x ∈ R.
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Definition 6.4 (Smoothness norm). Let

Q(n1, ..., nD) =

d∑

i=0

∑

i1+...+iD=i

ai1,...,iD

(
n

i1

)
· · ·
(
n

id

)

be a polynomial in R[n1, ..., nD]. For N ∈ N+, we define the smoothness norm of Q to be

||Q||C∞[N ] = max{N i1+...+iD ||ai1,...,iD||R/Z : i1, ..., iD ∈ N, 1 ≤ i1 + · · ·+ iD ≤ d}.

In particular, ||Q||C∞[N ] is bounded from above as N → ∞ if and only if Q is constant
mod Z.

With these definitions, we are ready to state a quantitative version of Theorem 2.5

Theorem 6.5 (Quantitative Leibman’s equidistribution theorem, Theorem 2.9 of [GT12]).
Let δ > 0, M > 2 and D,N ∈ N+ with D 6 M . Let G/Γ be a filtered nilmanifold of
complexity M and g ∈ poly(ZD, G•). Then there exists CM > 0 such that at least one of the
following is true:

(i) g is (δ,N)-equidistributed in G/Γ;

(ii) there exists a nontrivial horizontal character η of modulus |η| ≪ δ−CM for which
||η ◦ g||C∞[N ] ≪ δ−CM .

We now need to quantify the notion of irrationality.

Definition 6.6 (Quantitative irrationality). Let G/Γ be a filtered nilmanifold of degree s,
and suppose A,N > 0. An element gi ∈ Gi is (A,N)-irrational if for every nontrivial i-th
level character η : Gi → R of modulus |η| 6 A, we have ||η(gi)||R/Z > A/N i. It is A-irrational
if for every nontrivial i-th level character η : Gi → R of modulus |η| 6 A, we have η ◦ gi /∈ Z.
We say that a sequence g ∈ poly(Z, G•) is (A,N)-irrational (respectively A-irrational) if gi
is (A,N)-irrational (respectively A-irrational) for each 1 6 i 6 s. Similarly, we say that the
nilsequence n 7→ F (g(n)Γ) is (A,N)- or A-irrational if the polynomial sequence g is.

Clearly, (A,N)-irrationality is stronger than A-rationality, but for some of our applications
the latter notion will be sufficient.

We are now ready to state the finitary version of Theorem 5.3, which is the main technical
result of this paper, and derive Theorem 5.3 from it.

Theorem 6.7. Let t ∈ N+ and A,M,N > 2. Let G/Γ be a filtered nilmanifold of complexity
M . Suppose that g ∈ poly(Z, G•) is (A,N)-irrational, F : (G/Γ)t+1 → C is M -Lipschitz, and
~P ∈ R[x, y]t+1 is a homogeneous polynomial progression. Then

Ex,y∈[N ]F (g
P (x, y)Γt+1) =

∫

GP /ΓP

F +OM (A−cM )

for some cM > 0.

Proof of Theorem 5.3 using Theorem 6.7. Let F : (G/Γ)t+1 → R be a continuous function.
By Stone-Weierstrass theorem, Lipschitz functions on a compact set form a dense subset of
the algebra of continuous functions. Approximating F by a sequence of Lipschitz functions



26 BORYS KUCA

if necessary, we can assume without loss of generality that F is Lipschitz. We let M be the
maximum of the complexity of G/Γ and the Lipschitz norm of F .

Let g ∈ poly(Z, G•) be an irrational sequence. For each N ∈ N+, we let AN be the
maximal real number A for which g is (AN , N)-irrational. We claim that AN → ∞ as
N → ∞. If not, then there exists some number A > 0 and an index i ∈ N+ with the property
that gi is not (A,N)-irrational for all N ∈ N+. We fix this i. It follows that there exists
a sequence of nontrivial i-th level characters ηN : Gi → R of modulus at most A such that
||ηN (gi)||R/Z < A/N i. Since there are only finitely many i-th level characters of modulus
bounded by A, we conclude that there exists a nontrivial i-th level character η of modulus at
most A such that ||η(gi)||R/Z < A/N i for all N ∈ N+. Taking N → ∞, we see that η(gi) ∈ Z,
contradicting the irrationality of gi.

It therefore follows from Theorem 6.7 that

Ex,y∈[N ]F (g
P (x, y)Γt+1) =

∫

GP /ΓP

F +OM (A−cM
N )

Since M is constant, letting N → ∞ sends the error term to 0, implying that gP is equidis-
tributed on GP /ΓP as claimed. �

7. Reducing true complexity to an equidistribution question

In Sections 3-6, we have shown how the question of determining Host-Kra complexity for
homogeneous progressions can be reduced to showing that gP is equidistributed on GP /ΓP .
Determining true complexity for homogeneous progression comes down to the exact same
equidistribution question. All the arguments in this section can be viewed as finitary analogues
of arguments in previous sections.

Since we are now primarily concerned with functions from Z/NZ to C, we shall need
an N -periodic version of certain previously defined concepts. In this section, N is always a
prime, and the group G is connected. A function f : Z/NZ → C is called 1-bounded whenever
||f ||∞ 6 1.

Definition 7.1 (Periodic sequences). Let G• be a filtration on G. A sequence g ∈ poly(Z, G•)
is N -periodic if g(n +N)g(n)−1 ∈ Γ for each n ∈ Z, and it is periodic if it is N -periodic for
some N > 0. A nilsequence n 7→ F (g(n)Γ) is N -periodic (resp. periodic) if g is.

Given a homogeneous polynomial progression ~P ∈ R[x, y]t+1, we want to show that

Ai(~P ) = Ti(~P ) for each 0 6 i 6 t. The forward inequality is straightforward to derive
(see Theorem 1.13 in [Kuc20]); it is the reverse inequality that poses a challenge. We thus
want to prove the following.

Theorem 7.2. Let t ∈ N+, ~P ∈ R[x, y]t+1 be a homogeneous polynomial progression, 0 6 i 6

t, and suppose that Ai(~P ) = s. For every ǫ > 0, there exist δ > 0 and N0 ∈ N such that for
all primes N > N0 and all 1-bounded functions f0, ..., ft : Z/NZ → C, we have

|Ex,y∈Z/NZf0(x)f1(x+ P1(y))...ft(x+ Pt(y))| < ǫ

whenever ||fi||Us+1 < δ.

We know that each progression is controlled by some Gowers norm. The result below
plays the same role in deriving Theorem 7.2 as Theorem 1.4 plays in the proof of Corollary
5.4.
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Proposition 7.3 (Proposition 2.2 of [Pel19]). Let ~P ∈ R[x, y]t+1 be an integral polynomial
progression. There exists s ∈ N+ with the following property: for every ǫ > 0, there exist
δ > 0 and N0 ∈ N such that for all primes N > N0 and all 1-bounded functions f0, ..., ft :
Z/NZ → C, we have

|Ex,y∈Z/NZf0(x)f1(x+ P1(y))...ft(x+ Pt(y))| < ǫ

whenever ||fi||Us+1 < δ for some 0 6 i 6 t.

Next, we want to perform a finitary analogue of the approximation-by-nilsystems argu-
ment. This can be achieved with the help of a periodic version of celebrated arithmetic
regularity lemma from [GT10] in which the same polynomial sequence g is used in the de-
composition of several functions.

Lemma 7.4 (Lemma 2.13 of [Kuc20]). Let s, t ∈ N+, ǫ > 0, and F : R+ → R+ be a growth
function. There exists M = Oǫ,F (1), a filtered nilmanifold G/Γ of degree s and complexity at
most M , and an N -periodic, F(M)-irrational sequence g ∈ poly(Z, G•) satisfying g(0) = 1
such that for all 1-bounded functions f0, ..., ft : Z/NZ → C, there exist decompositions

fi = fi,nil + fi,sml + fi,unf

where

(i) fi,nil(n) = Fi(g(n)Γ) for M -Lipschitz function Fi : G/Γ → C,

(ii) ||fi,sml||2 6 ǫ,

(iii) ||fi,unf ||Us+1 6 1
F(M) ,

(iv) the functions fi,nil, fi,sml and fi,unf are 4-bounded,

The last piece that we need is a finitary, periodic version of Theorem 6.7.

Proposition 7.5. Let t ∈ N+ and A,M,N > 2. Let G/Γ be a filtered nilmanifold and com-
plexity M . Suppose that g ∈ poly(Z, G•) is an A-irrational, N -periodic polynomial sequence,

F : (G/Γ)t+1 → C is M -Lipschitz and 1-bounded, and ~P ∈ R[x, y]t+1 is a homogeneous
polynomial progression. Then

Ex,y∈Z/NZF (g
P (x, y)Γt+1) =

∫

GP /ΓP

F +OM (A−cM )

for some cM > 0.

Proof of Proposition 7.5 using Theorem 6.7. Let g ∈ poly(Z, G•) beA-irrational andN -periodic.
We claim that g is (A,Nk)-irrational for all sufficiently large k ∈ N+. If not, then there exists
1 6 i 6 s such that for each k ∈ N+ there exists an i-th level character ηi,k : Gi → R of
complexity at most A satisfying ||ηi,k(gi)||R/Z < A/(Nk)i. The N -periodicity of gi implies

that gN
i

i ∈ Γi mod G∇
i+1 (Lemma 5.3 of [CS12]); hence ηi,k(gi) ∈ 1

N i Z. Thus, ηi,k(gi) ∈ Z

whenever ki > A. In particular, since we can take k arbitrarily large, there exists a nontrivial
i-th level character ηi,k of complexity at most A for which ηi,k(gi) ∈ Z, contradicting the
A-irrationality of g. Hence g is (A,Nk)-irrational for all sufficiently large k ∈ N+.
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Applying Theorem 6.7, we deduce that

Ex,y∈Z/NZF (g
P (x, y)Γt+1) = Ex,y∈[Nk]F (g

P (x, y)Γt+1) +O(1/k)

=

∫

GP /ΓP

F +OM (A−cM ) +O(1/k)

for all sufficiently large k ∈ N+. Taking k → ∞ finishes the proof. �

Theorem 7.2 is a special case of Theorem 8.1 of [Kuc20], the proof of which is analogous
to the derivation of Corollary 5.4 from Theorem 5.3. Here, we only sketch the steps taken
in the derivation of Theorem 8.1 of [Kuc20], and we refer the reader to [Kuc20] for all the
details. First, we use Proposition 7.3 and Lemma 7.4 to replace the functions f0, ..., ft by
irrational, periodic nilsequences. Second, we use Proposition 7.5 to approximate the sum by

an integral of some Lipschitz function F over GP /ΓP . Third, we use the fact that Ai(~P ) = s
to conclude that 1i ×Gs+1 × 1ti is a subgroup of GP . Fourth, we use disintegration theorem
to bound

∫
GP /ΓP by averages of some Lipschitz function Fi over cosets of Gs+1Γ. Fifth, we

use the assumption that fi has a small U s+1 norm to conclude that averages of Fi over cosets
of Gs+1Γ are small. From this follows the smallness of

Ex,y∈Z/NZf0(x)f1(x+ P1(y)) · · · ft(x+ Pt(y)).

The proof of Theorem 8.1 of [Kuc20] makes this argument precise and illustrates how all the
error quantities are taken care of.

Finally, Proposition 7.5 together with Theorem 9.1 of [Kuc20] imply part (i) of Corollary
1.13.

8. The proof of Theorem 6.7

To complete the proofs of Corollary 5.4 and Theorem 7.2, it remains to derive Theorem
6.7. Before we prove Theorem 6.7 for an arbitrary homogeneous progression, we want to

deduce the theorem in the special case of ~P = (x, x + y, x + 2y, x + y3). This will help
illustrate the method, and we will later compare this progression with (x, x+y, x+2y, x+y2)
to see what is failing in the inhomogeneous case. The method is an adaptation of the proof of
Theorem 1.11 from [GT10], however the linear algebraic component coming from the fact that
we are dealing with polynomial progressions is much more involved. The method used here
is somewhat similar to the methods used in [Kuc20]; here, however, we perform downward
induction on the degree of subgroups Gi whereas in [Kuc20], we induct downwardly on the
degree of monomials in η ◦ gP .

Proposition 8.1. Let A,M,N > 2. Let G/Γ be a filtered nilmanifold of degree 2 and com-
plexity M . Suppose that g ∈ poly(Z, G•) is an (A,N)-irrational sequence satisfying g(0) = 1,

F : (G/Γ)t+1 → C is M -Lipschitz, and ~P = (x, x+ y, x+ 2y, x+ y3). Then

Ex,y∈[N ]F (g
P (x, y)Γ4) =

∫

GP /ΓP

F +OM (A−cM )

for some cM > 0.
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The assumption that G has a filtration of degree 2 is made to simplify the exposition, and
because all the difficulties that emerge in higher-step cases are already present here.

We shall need the following lemma.

Lemma 8.2. Let t ∈ N+ and ~P ∈ R[x, y]t+1 be a homogeneous polynomial progression, ǫ > 0,
and s,N ∈ N+. Let Wi 6 R[x, y] be as defined in Section 4, and for each 1 6 i 6 s, let
Qi,1, ..., Qi,ti be a basis for Wi composed of integral polynomials. Suppose that aij are real
numbers such that the polynomial

Q(x, y) =
s∑

i=1

ti∑

j=1

aijQi,j(x, y) =
∑

k,l

ckl

(
x

k

)(
y

l

)

satisfies ||Q||C∞[N ] 6 ǫ. Then there exists a positive integer q = O(1) with the property that

||qasj||R/Z ≪ ǫN−s for all 1 6 j 6 ts.

Proof. For k ∈ N+, we let Wk, Vk be as in Section 4. We also define

W̃k = SpanR{(x+ Pi(y))
k : 0 6 i 6 t} and Uk = SpanR

{(
x

i

)(
y

j

)
: i+ j < k

}
.

The homogeneity of ~P implies that Wk
∼= Vk/Vk−1

∼= W̃k, and we want to show that

dimWk/Uk = dimWk = tk. We observe that Wk/Uk ∼= Vk/UkVk−1
∼= W̃k/Uk ∼= W̃k, where

the last isomorphism follows from the fact no polynomial in W̃k has a nonzero monomial of
degree less than k. The claim dimWk/Uk = tk follows.

Let Q̃(x, y) =
∑

k+l>s

ckl
(
x
k

)(
y
l

)
. Thus, Q̃ = Q mod Us, and it satisfies ||Q̃||C∞[N ] 6 ǫ.

Setting Qi,j(x, y) =
∑
k,l

bklij
(x
k

)(y
l

)
, we similarly let Q̃i,j(x, y) =

∑
k+l>s

bklij
(x
k

)(y
l

)
. We deduce

from dimWk/Uk = tk = dimWk that Q̃s,1, ..., Q̃s,ts are linearly independent.
From the definitions of Q and bklij it follows that ckl =

∑
i,j
bklijaij , and that ||ckl||R/Z 6

ǫN−(k+l) 6 ǫN−s whenever k + l > s.
Let u be the number of pairs (k, l) with k + l > s for which ckl 6= 0. The fact that

dimWs/Us = ts implies that u > ts. Indexing these pairs as (k1, l1), ..., (ku, lu) in some
arbitrary fashion, we obtain an u× s matrix B = (bkrlrij)r as well as a ts-dimensional column
vector a = (asj)j and a u-dimensional column vector c = (ckrlr)r such that Ba = c. The

linear independence of Q̃s,1, ..., Q̃s,ts implies that there exists an invertible ts × ts submatrix

B̃ of B and a ts-dimensional column vector c̃ such that B̃a = c̃. Since the entries of B̃ are
integers of size O(1), the entries of B̃−1 are rational numbers of height O(1). Therefore, there

exists a positive integer q = O(1) for which the entries of the matrix qB̃−1 are integers of size

O(1). The equality a = B̃−1c̃ and the condition ||ckl||R/Z 6 ǫN−s whenever k + l > s imply

that ||qasj||R/Z ≪ ǫN−s for 1 6 j 6 ts, as claimed. �

Proof of Proposition 8.1. Let ~P = (x, x+ y, x+ 2y, x+ y3). We set

~v1 = (1, 1, 1, 1), ~v2 = (0, 1, 2, 0), ~v3 = (0, 0, 0, 1) and ~v4 = (0, 0, 1, 0)
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and observe that

~P (x, y) = ~v1x+ ~v2y + ~v3y
3

(~P (x, y)
2

)
= ~v1

(
x

2

)
+ ~v2

(
xy +

(
y

2

))
+ ~v3

(
xy3 +

(
y3

2

))
+ ~v4y

2.

Thus, we have

P1 = SpanR{~v1, ~v2, ~v3} and P2 = P3 = ... = SpanR{~v1, ~v2, ~v3, ~v4} = R4

as well as

GP = G~v1G~v2G~v3G4
2,

where H ~w = 〈h~w : h ∈ H〉.
We shall prove Proposition 8.1 by applying Theorem 6.5. Suppose that gP is not (cMA

−CM , N)-
equidistributed on GP /ΓP for some constants 0 < cM < 1 < CM . By Theorem 6.5,
there exists a nontrivial horizontal character η : GP → R of modulus at most cA, for which
||η ◦ gP ||C∞[N ] 6 cA for some constant c > 0 that depends on cM and CM . The constant
CM is chosen in such a way as to match the exponents in the case (ii) of Theorem 6.5. We
however have control over how we choose the constant cM , and we shall pick it small enough
to show that gP not being (cMA

−CM , N)-equidistributed contradicts the (A,N)-irrationality
of g.

Rewriting the expression for η ◦ gP , we see that

η ◦ gP (x, y) = η(g~v11 )x+ η(g~v21 )y + η(g~v31 )y3

+ η(g~v12 )

(
x

2

)
+ η(g~v22 )

(
xy +

(
y

2

))
+ η(g~v32 )

(
xy3 +

(
y3

2

))
+ ~v4y

2.

Applying Lemma 8.2 and the assumption ||η ◦ gP ||C∞[N ] 6 cA, and choosing cM in such a
way that c > 0 is sufficiently small, we deduce that there exists a positive integer q = O(1)

such that ||qη(g~vji )||R/Z < AN−i for all pairs

(i, j) ∈ {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (2, 4)}.

We aim to show that η is trivial by showing that it vanishes on all of GP . First, we
want to show that η vanishes on G4

2. Suppose that η|G4
2
6= 0, and define ξ2,1 : G2 → R by

ξ2,1(h2) = qη(h
(1,1,1,1)
2 ). We claim that ξ2,1 is a 2-nd level character. To prove this, we need

to show that ξ2,1 is a continuous group homomorphism, it vanishes on G3, it sends (Γ2) to Z,
and it vanishes on [G1, G1]. The first statement follows from the fact that η is a continuous
group homomorphism, the second is true since G3 is trivial, and the third follows from the
fact that q ∈ Z, η(ΓP ) 6 Z and (1, 1, 1, 1) ∈ Z4. To see the last statement, we note that for
any h1, h

′
1 ∈ G1, we have

[h~v11 , h
′
1
~v1 ] = [h1, h

′
1]
~v1 .

Since h~v11 , h
′
1
~v1 are both elements of GP , we have

ξ2,1([h1, h
′
1]) = η([h1, h

′
1]
~v1) = η([h~v11 , h

′
1
~v1 ]) = 0,
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implying that ξ2,1 vanishes on [G1, G1]. Thus, ξ2,1 is a 2-rd level character.

Performing a similar analysis while looking at the coefficients of
(x
2

)
, xy +

(y
2

)
, xy3 +

(y3
2

)

and y2 respectively, we conclude that for all 1 6 j 6 4, the maps ξ2,j(h2) = qη(h
~vj
2 ) from G2

to R are 2-nd level characters. The nontriviality of η on G4
2 and the fact that ~v1, ~v2, ~v3 and ~v4

span P2 = R4 imply that for at least one value 1 6 i 6 4, the character η does not vanish on

G~vi2 . We fix this i. From ||ξ2,i(gi)||R/Z = ||qη(g~vji )||R/Z < AN−i and the (A,N)-irrationality
of g2 we deduce that |ξ2,i| > A. Together with the bounds q = O(1) and |~v1| = O(1), this
implies that |η| > c′A for some constant c′ > 0. Choosing cM in such a way that c < c′ gives
the desired contradiction. Hence η vanishes on G4

2.
This leaves us with

η ◦ gP (x, y) = η(g~v11 )x+ η(g~v21 )y + η(g~v31 )y3.

By analysing the coefficients of x, y and y3 as above, we see that η vanishes on elements of

the form h~vi1 with h1 ∈ G1 and 1 6 i 6 3. Thus, η vanishes on all of GP . This contradicts the
nontriviality of η, and so gP is (cMA

−CM , N)-equidistributed on GP /ΓP . �

We now prove Theorem 6.7 in full generality.

Proof of Theorem 6.7. Let ~P ∈ R[x, y]t+1 be an integral polynomial progression, G• be a
filtration of degree s and g ∈ poly(Z, G•). By (26), we can find a family {Qi,j : 1 6 i 6
s, 1 6 j 6 ti} of linearly independent integral polynomials such that Qi,1, ..., Qi,ti is a basis
for Wi = W ′

i for 1 6 i 6 s. It is crucial that these polynomials are linearly independent,

which follows from homogeneity of ~P . For each i, let τi : Wi → Pi be the map associated
with Qi,1, ..., Qi,ti as defined in Section 4. We also let ~vi,j ∈ Zt+1 be the vectors such that
τi(Qi,j) = ~vi,j.

As in the proof of Proposition 8.1, suppose that gP is not (cMA
−CM , N)-equidistributed on

GP /ΓP for some constants 0 < cM < 1 < CM . We apply Theorem 6.5 again to conclude that
there exists a nontrivial horizontal character η : GP → R of modulus at most cA, satisfying
||η ◦ gP ||C∞[N ] 6 cA for some constant c > 0 that depends on cM and CM . The constant CM
is chosen in such a way as to match the exponents in the case (ii) of Theorem 6.5, but the
choice of cM is up to us again. We shall pick it small enough to show that the failure of gP

to be (cMA
−CM , N)-equidistributed contradicts the (A,N)-irrationality of g.

Thus,

η ◦ gP (x, y) =
s∑

i=1

ti∑

j=1

η(g
~vi,j
i )Qi,j(x, y).

Using Lemma 8.2 and the assumption ||η ◦ gP ||C∞[N ] 6 cA, and choosing cM in such a way
that c > 0 is sufficiently small, we deduce that there exists a positive integer q = O(1) such

that ||qη(g~vi,ji )||R/Z < AN−i for all 1 6 i 6 s and 1 6 j 6 ti.
Our goal now is to show by downward induction on i that η vanishes on the group

Hi = 〈h~vi,ji : hi ∈ Gi, 1 6 j 6 ti〉

for all i ∈ N+. This is trivially true for i > s + 1. Suppose that η vanishes on Hi+1 for
some 1 6 i 6 s but that it does not vanish on Hi. We define the maps ξi,j : Gi → R by
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ξi,j(hi) = η(qh
~vi,j
i ) and claim that they are i-th level characters. They are continuous group

homomorphisms because η is, and they vanish on Gi+1 by induction hypothesis. Since q ∈ Z

and ~vi,j have integer entries, we also have ξi,j(Γi) ⊆ Z. It remains to show that ξi,j vanishes
on [Gl, Gi−l] for all 1 6 l < i. The fact that Pi ⊆ Pl · Pi−l implies the existence of ~ul ∈ Pl
and ~ui−l ∈ Pi−l for which ~vi,j = ~ul · ~ui−l, and so we have

[G~ull , G
~ui−l

i−l ] = [Gl, Gi−l]
~ul·~ui−l mod Gt+1

i+1,

from which it follows that ξi,j|[Gl,Gi−l] = 0. Therefore each ξi,j is an i-th level character.
The nontriviality of η on Hi and the fact that Pi is spanned by the vectors ~vi,1, ..., ~vi,ti

imply that for at least one value 1 6 j 6 ti, the character η does not vanish on G
~vi,j
i , and

so ξi,j is nontrivial. From ||ξi,j(gi)||R/Z = ||qη(g~vi,ji )||R/Z < AN−i and the (A,N)-irrationality
of gi we deduce that |ξi,j| > A. Together with the bounds q = O(1) and |~vi,j| = O(1), this
implies that |η| > c′A for some constant c′ > 0. We choose cM in such a way that c < c′; this
contradicts the nontriviality of η on Hi. This proves the inductive step; hence η vanishes on all
of GP , contradicting the nontriviality of η. It follows that gP is (cMA

−CM , N)-equidistributed
on GP /ΓP . �

9. The failure of Theorem 6.7 in the inhomogeneous case

Having derived Theorem 6.7, we want to show why an analogous statement fails in the
inhomogeneous case. We let

~P (x, y) = (x, x+ y, x+ 2y, x+ y2),(34)

with a square instead of a cube in the last position. It is an inhomogeneous progression
because of the inhomogeneous relation (10). Suppose that g ∈ poly(Z, G•) is an irrational
polynomial sequence with g(0) = 1 on a connected group G with a filtration G• of degree
2. We shall try to show that gP is equidistributed on GP /ΓP the same way as we argued in
Proposition 8.1, and we indicate where and why the argument fails.

Once again, we let

~v1 = (1, 1, 1, 1), ~v2 = (0, 1, 2, 0), ~v3 = (0, 0, 0, 1) and ~v4 = (0, 0, 1, 0),

and we observe that P1 = SpanR{~v1, ~v2, ~v3} and P2 = SpanR{~v1, ~v2, ~v3, ~v4}. Hence GP =
G~v1G~v2G~v3G4

2. Suppose that gP is not (cMA
−CM , N)-equidistributed on GP /ΓP for some

constants 0 < cM < 1 < CM . Theorem 6.5 once again implies the existence of a nontrivial
horizontal character η : GP → R of modulus at most cA, for which ||η ◦ gP ||C∞[N ] 6 cA for
some constant c > 0 that depends on cM and CM .

Rewriting the expression for η ◦ gP , we see that

η ◦ gP (x, y) = η(g~v11 )x+ η(g~v21 )y + η(g~v31 )y2

+ η(g~v12 )

(
x

2

)
+ η(g~v22 )

(
xy +

(
y

2

))
+ η(g~v32 )

(
xy2 +

(
y2

2

))
+ ~v4y

2

= η(g~v11 )x+ η(g~v21 )y + (η(g~v31 ) + η(g~v42 ))y2

+ η(g~v12 )

(
x

2

)
+ η(g~v22 )

(
xy +

(
y

2

))
+ η(g~v32 )

(
xy2 +

(
y2

2

))
.
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Applying Lemma 8.2 and the assumption ||η ◦ gP ||C∞[N ] 6 cA, and choosing cM in such
a way that c > 0 is sufficiently small, we deduce that there exists a positive integer q = O(1)
such that

||qη(g~vji )||R/Z < AN−i(35)

for all pairs

(i, j) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3)}.

By looking at the coefficient of
(x
2

)
, xy +

(y
2

)
and xy2 +

(y2
2

)
, we deduce that the maps

h2 7→ qη(h~v12 ), qη(h~v22 ), qη(h~v32 )

are trivial 2-nd level characters; the argument goes the exact same way as in the proof of

Proposition 8.1. Thus, η vanishes on all elements of the form h~w2
2 with h2 ∈ G2 and

~w2 ∈ P ′
2 = SpanR{~v1, ~v2, ~v3}.

By looking at the coefficients of x and y, we similarly show that η vanishes on all elements of

the form h~w1
1 with h1 ∈ G1 and

~w1 ∈ P ′
1 = SpanR{~v1, ~v2}.

We are left with

η ◦ gP (x, y) =
(
η(g~v31 ) + η(g~v42 )

)
y2.

We would like to be able to say that η vanishes on all elements of the form h~w1
1 and h~w2

2

with hi ∈ Gi and ~wi ∈ Pi; this would imply that η is trivial. For this to be case, it would

suffice to show that both η(g~v31 ) and η(g~v42 ) satisfy an estimate (35), and then use (A,N)-

irrationality of g1 and g2 to conclude that the characters h1 7→ qη(h~v31 ) and h2 7→ qη(h~v42 ) are

trivial. Alas, this need not be true. In Proposition 8.1, the number η(h~v31 ) was the coefficient

of y3 while η(h~v42 ) was the coefficient of y2, from which it followed that they both satisfied
(35). Now, however, all we can show is that

||q(η(g~v31 ) + η(g~v42 ))||R/Z < AN−1(36)

because η(g~v31 ) + η(g~v42 ) is the coefficient of y2. But it need not follow that either of η(g~v31 )

and η(g~v42 ) satisfies (35); in particular, gP may take values in a proper rational subgroup of
GP .

We illustrate this with a specific example, akin to the example in Section 11 of [Kuc20].
Suppose that G = G1 = R2, G2 = 0 × R, G3 = 0 × 0. The sequence g(n) = (an, b

(
n
2

)
) is

adapted to the filtration G•, and it is irrational if and only if a and b are irrational. We
identify G4 with R8 via the map

G4 → R8

((x1, y1), (x2, y2), (x3, y3), (x4, y4)) 7→ (x1, x2, x3, x4, y1, y2, y3, y4).
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Setting

~v11 = ~e1 + ~e2 + ~e3 + ~e4, ~v12 = ~e2 + 2~e3, ~v13 = ~e4,

~v21 = ~e5 + ~e6 + ~e7 + ~e8, ~v22 = ~e6 + 2~e7, ~v23 = ~e8, ~v24 = ~e7,

we observe that GP = SpanR{~v11, ~v12, ~v13, ~v21, ~v22, ~v23, ~v24}.
With these definitions, the coefficient of y2 in gP becomes a~v13+b~v24 = a~e4+b~e7. If a, b, 1

are rationally independent, then the closure of gP is the image of the 7-dimensional subspace
GP in (R/Z)8. If a and b are rationally dependent, then the closure of gP is the image in
(R/Z)8 of the 6-dimensional subspace

G̃ = SpanR{~v11, ~v12, a~v13 + b~v24, ~v21, ~v22, ~v23}.

Finally, if some rational linear combination of a and b is a rational number q/r in its lower
terms with r > 1, then the closure of gP is a union of at most r translates of a 6-dimensional
subtorus of GP /ΓP . For instance, if a =

√
2 and b =

√
2 + 1

3 , then we define

G̃ = SpanR{~v11, ~v12, ~v13 + ~v24, ~v21, ~v22, ~v23},(37)

and observe that the sequences gP0 , g
P
1 , g

P
2 defined by gPi (x, y) = gP (x, 3y + i) are equidis-

tributed on G̃/Γ̃, 1
3~v24 + G̃/Γ̃ and 1

3~v24 + G̃/Γ̃ respectively. In particular, for inhomogeneous

progressions it is not true that the group G̃ depends only on the filtration G• and the pro-

gression ~P .
While annihilating the coefficients of η ◦ gP , we were able to deal with the coefficients of x

and y as well as
(
x
2

)
, xy+

(
y
2

)
and xy2 +

(
y2

2

)
, which span the spaces W ′

1 and W ′
2 respectively.

The problematic coefficient was that of y2, belonging to the space W c. We have remarked
below (27) in Section 4 that the nontriviality of the subspace W c prevents us from running
the same argument as in Proposition 8.1 and Theorem 6.7 for inhomogeneous progressions;
the problem with the coefficient of y2 that we have encountered here illustrates this point.
The reader should see from here how to generalise the aforementioned example to other
inhomogeneous progression; this generalised construction proves part (ii) of Theorem 1.15.

10. Finding closure in the inhomogeneous case

Section 9 shows that we cannot always hope for the sequence gP to equidistribute in

GP /ΓP for an inhomogeneous progression ~P . Here, we provide an inductive recipe for finding

the closure of gP in the case of ~P (x, y) = (x, x + y, x + 2y, x + y2). We believe that this
argument could be generalised to an arbitrary inhomogeneous progressions; while trying to do
so, however, we have encountered significant technical issues of linear algebraic nature that
we have not been able to overcome.

Since the argument that we present here is already complicated enough, we prove it in an
infinitary setting so as to avoid confusion coming from various quantitative parameters. In
effect, we show the following.

Proposition 10.1. Let G be a connected group with filtration G• of degree s, and ~P (x, y) =
(x, x+ y, x+2y, x+ y2). Suppose that g ∈ poly(Z, G•) is irrational. There exists a subgroup
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G̃ 6 GP and a decomposition gP = g̃γ, where g̃ takes values in G̃ and is equidistributed on
G̃/Γ̃ whereas γ is periodic. Moreover, the group G̃ contains the subgroup

K = 〈h~wi

i : hi ∈ Gi, ~wi ∈ P ′
i, 1 6 i 6 s〉,

where

P ′
1 = SpanR{(1, 1, 1, 1), (0, 1, 2, 0)},

P ′
2 = SpanR{(1, 1, 1, 1), (0, 1, 2, 0), (0, 0, 0, 1)},

P ′
3 = P ′

4 = ... = R4.

We will need the following lemma, which is similar in spirit to Lemma 8.2.

Lemma 10.2. Let a1, ..., as be nonzero real numbers. Let Q1, ..., Qs ∈ Q[x, y] be linearly
independent integral polynomials, and suppose that Q = a1Q1 + ...+ arQs takes values in Q.
Then ai ∈ Q for all 1 6 i 6 s.

Proof. Let bkli be the coefficient of
(
x
k

)(
y
l

)
in Qi. Then

ckl = a1bkl1 + ...+ asbkls

is the coefficient of
(x
k

)(y
l

)
in Q, and so it is rational. Indexing the pairs (k1, l1), ..., (ku, lu) in

some arbitrary fashion, we obtain an u× s matrix B = (bkrlri)ri as well as an s-dimensional
column vector a = (ai)i and a u-dimensional column vector c = (cjlkl)l such that Ba = c. The
linear independence of Q1, ..., Qr implies that B has full rank, and so there exists an invertible
s × s submatrix B̃ of B and an s-dimensional column vector c̃ such that B̃a = c̃. Since the
entries of B̃ are integers, the entries of B̃−1 are rational numbers. The equality a = B̃−1c̃
then implies that ai ∈ Q for each 1 6 i 6 s. �

Proof of Proposition 10.1. For each i > 3, we find a basis {Qi,1, Qi,2, Qi,3, Qi,4} for Wi. The
absence of an inhomogeneous algebraic relation of degree 3 or higher implies that

s∑

i=3

Wi =

s⊕

i=3

Wi,

from which it follows that the set {Qi,j : 3 6 i 6 s, 1 6 j 6 4} is linearly independent. For
3 6 i 6 s and 1 6 j 6 4, we let ~vi,j = τi(Qi,j). We also set

~v1 = (1, 1, 1, 1), ~v2 = (0, 1, 2, 0), ~v3 = (0, 0, 0, 1) and ~v4 = (0, 0, 1, 0).

We want to find a subgroup G̃ of GP on which we can guarantee equidistribution. Starting
with

H(1) = 〈h~v31 , h~v42 : h1 ∈ G1, h2 ∈ G2〉,
we inductively define a chain of subgroups

H(1) > H(2) > H(3) > ...

as well as groups G(k) = 〈K,H(k)〉 and Γ(k) = ΓP ∩G(k). We note that G(1) = GP .
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We also inductively define sequences g(k) and h(k), starting with h(1)(y) = g~v31
y2

g~v42
y2

and

g(1) = gP . If g(k) is equidistributed in G(k)/Γ(k), then we terminate the procedure. Otherwise

Theorem 2.5 implies the existence of a nontrivial horizontal character η(k) : G(k) → R that
vanishes on all of G(k) except H(k), and for which η(k) ◦g(k) = η(k) ◦h(k) takes values in Z. We
then take G(k+1) = ker η(k) and H(k+1) = ker η(k)|H(k) , and we factorize h(k) = h(k+1)γ(k+1)

using an infinitary version of Proposition 9.2 of [GT12], where ηk+1 ◦h(k+1) = 0 and γ(k+1) is
periodic. We define

g(k+1)(x, y) = g(k)(x, y)(γ(k+1)(y))−1

and observe that

g(k+1)(x, y) = g~v1x+~v2y1 h(k+1)(y)g
~v1(x2)+~v2(xy+(

y
2))+~v3(xy

2+(y
2

2 ))
2

s∏

i=3

4∏

j=1

g
~vi,jQi,j

i mod [G1, G2]
4.

The sequence g(k+1) takes values in G(k+1). We also write

h(k)(y) = a(k)(y)~v4b(k)(y)~v3 ,

with a(k) being G2-valued and b(k) being G1-valued. Letting a
(k)(y) =

s∏
i=1

a
(k)
i

(yi) and similarly

for b(k), we claim that a
(k)
2 and b

(k)
2 are irrational elements of G2 and G1 respectively with

regard to the filtration G• on G. Finally, we claim that

H(k) = G~v42 mod G~v31 and H(k) = G~v31 mod G~v42

First, we observe that all these properties hold at k = 1. We assume that they hold for
some k > 1, from which we aim to deduce that they also hold at (k + 1)-th level.

If g(k) is equidistributed in G(k)/Γ(k), then we are done. Otherwise there exists a nontrivial

horizontal character η(k) : G(k) → R for which η(k) ◦ g(k) is Z-valued. We have

η(k) ◦ g(k)(x, y) = η(k)(g~v11 )x+ η(k)(g~v21 )y + η(k)(h(k)(y))

+ η(k)(g~v12 )

(
x

2

)
+ 2η(k)(g~v22 )

(
xy +

(
y

2

))
+ η(k)(g~v32 )

(
xy2 +

(
y2

2

))

+

k∑

i=3

4∑

j=1

η(k)(g
~vi,j
i )Qi,j(x, y).

By looking at the coefficients of Qi,j for 3 6 i 6 s, applying Lemma 10.2, and following the

same method as in the proof of Theorem 6.7, we see that η(k) vanishes on elements of the form

h
~vi,j
i for hi ∈ Gi, 3 6 i 6 s and 1 6 j 6 4, and so η(k) vanishes on all of G3 ×G3 ×G3 ×G3.

This leaves us with

η(k) ◦ g(k)(x, y) = η(k)(g~v11 )x+ η(k)(g~v21 )y + η(k)(h(k)(y))

+ η(k)(g~v12 )

(
x

2

)
+ 2η(k)(g~v22 )

(
xy +

(
y

2

))
+ η(k)(g~v32 )

(
xy2 +

(
y2

2

))
.
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We now carry on. By looking at the coefficient of
(x
2

)
and xy +

(y
2

)
, we see that η(k)(g~v12 ) and

η(k)(g~v22 ) are both integers, and so η(k) vanishes on all elements of the form h~v12 and h~v22 with

h2 ∈ G2. By looking at the coefficients of x and y, we can similarly show that η(k) vanishes

on all elements of the form h~v11 and h~v21 with h1 ∈ G1. We are thus left with

η(k) ◦ g(k)(x, y) = η(k)(h(k)(y)) + η(k)(g~v32 )

(
xy2 +

(
y2

2

))
.

We first deal with the last term. Since H(k) = G~v31 mod G~v32 , we have [H(k),H(k)] =

[G~v31 , G
~v3
1 ] mod G4

3. Using the fact that η(k) vanishes on both G4
3 and [H(k),H(k)], we deduce

that it also vanishes on [G~v31 , G
~v3
1 ]. Hence the function ξ2,3 : G2 → R given by ξ2,3(h) =

η(k)(h~v3) is a 2-nd level character. By irrationality of g2, it follows that ξ2,3 is trivial, and so

η(k) vanishes on G~v32 . We have thus proved that η(k) vanishes on all of G(k) except H(k), and

consequently that η(k) ◦ g(k) = η(k) ◦ h(k).
We now show that

H(k+1) = G~v42 mod G~v31(38)

Suppose not; let U be a proper rational subgroup of G~v42 such that

H(k+1) = U mod G~v31 .

Then

H(k+1) 6 UG~v31 ∩H(k) 6 H(k).

We know from the rank-nullity theorem that dimH(k+1) = dimH(k)− 1, and we have H(k) =

G~v42 mod G~v31 from the inductive hypothesis. These two facts, together with the assumption

that U is a proper rational subgroup of G
(0,0,1,0)
2 , imply that H(k+1) = UG~v31 ∩H(k). It follows

that

η(k) ◦ g(k)(x, y) = η(k)(a(k)(y)~v4) + η(k)(b(k)(y)~v3) = η(k)(a(k)(y)~v4)

We have already shown that η(k) vanishes onG4
3. From the facts that a(k)(y) =

∏s
i=1 a

(k)
i

(yi)

with a
(k)
i ∈ Gi, we deduce that η

(k)(a(k)(y)
~v4
) = η(k)(a

(k)
1 )y+η(k)(a

(k)
2 )
(y
2

)
. The map ξ2,4(h2) =

η(k)(h~v42 ) is a continuous group homomorphism on G2 that vanishes on G3 and sends Γ2 to Z.
Since ~v4 = (~v2 · ~v2 − ~v2)/2, we also have

ξ2,4([h1, h
′
1]) =

1

2
η(k)([h~v21 , h

′
1
~v2 ])− 1

2
η(k)([h1, h

′
1]
~v2),

for any h1, h
′
1 ∈ G1, and so ξ2,4 vanishes on [G1, G1]. Thus ξ2,4 is a 2-nd level character on

G2 with respect to the filtration G• on G, and since a
(k)
2 is an irrational element of G2 with

respect to this filtration, it follows that η(k) is trivial, a contradiction; hence (38) holds. The
argument that

H(k+1) = G~v31 mod G~v42
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is similar.
Finally, we factorize h(k) = h(k+1)γ(k+1), where γ(k+1) is periodic and h(k+1) takes values

in H(k+1) = ker η(k+1). It remains to show that a
(k+1)
2 and b

(k+1)
2 are irrational elements of

G2 and G1 with respect to the filtration G• on G. We observe that

a(k) = a(k+1)γ(k+1)
a and b(k) = b(k+1)γ

(k+1)
b

for some periodic sequences γa and γb taking values in G2 and G1 respectively. Suppose that

ξ : G2 → R is a 2-nd level character with respect to the filtration G•, for which ξ(a
(k+1)
2 ) ∈ Z.

The sequence γ
(k+1)
a is periodic, hence ξ ◦γ(k+1)

a is Q-valued, and so it follows that ξ(a
(k)
2 ) ∈ Q

as well. Therefore there exists an integer l > 0 such that lξ(a
(k)
2 ) ∈ Z. Since ξ′ := l · ξ is also

a 2-nd level character, it follows from the irrationality of a
(k)
2 that ξ′ is trivial. This implies

that ξ is trivial as well, and hence a
(k+1)
2 is irrational. The argument showing that b

(k+1)
2 is

irrational is identical.
We have thus shows inductively that g(k), h(k), G(k) and H(k) satisfy all the properties we

want them to satisfy for all k > 1. Since 0 6 dimG(k+1) < dimG(k), the procedure eventually
terminates, at which point the sequence g(k) takes values in G(k) and is equidistributed on
G(k)/Γ(k). Letting G̃ = G(k) for this value of k and γ = γ(k)...γ(1), and observing that a
product of periodic sequences is periodic, we finish the proof. �

11. The equivalence of Weyl and algebraic complexity

While we are not able to show that Host-Kra and true complexities equal algebraic com-
plexity for inhomogeneous progression, we can show the equivalence of Weyl and algebraic
complexities for all integral progressions.

Definition 11.1 (Weyl system). A Weyl system is an ergodic system (X,X , µ, T ), where
X is a compact abelian Lie group and T is a unipotent affine transformation on X, i.e.
Tx = φ(x) + a for a ∈ X and an automorphism φ of X satisfying (φ − IdX)

s = 0 for some
s ∈ N+.

We recall that an integral polynomial progression ~P ∈ R[x, y]t+1 has Weyl complexity s
at 0 6 i 6 t if s the smallest natural number for which the factor Zs is characteristic for the
weak convergence of ~P at i for any Weyl system.

Every disconnected Weyl system can be written as a finite union of isomorphic tori that
are cyclically permuted by the transformation T , much the same way as each disconnected nil-
system is a union of connected nilsystems (cf. Proposition 2.2 and the remark below Theorem
3.5 of [BLL07]). Therefore we can restrict our attention to connected Weyl systems. These
can in turn be reduced to standard Weyl systems, which are totally ergodic by Proposition
2.2. Throughout this section, we let T = R/Z.

Definition 11.2 (Standard Weyl system of order s). Let s ∈ N+ and X = Ts. A standard
Weyl system of order s is a system (X,X , µ, T ), where X is the Borel σ-algebra on X, µ is
the Lebesgue measure, and

T (a1, ..., as) = (a1 + a0, a2 + a1, ..., as + as−1)

for some irrational a0.
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Proposition 11.3 (Lemma 4.1 of [FK05]). Each connected Weyl system is a factor of a
product of several standard Weyl systems.

Determining Weyl complexity therefore amounts to analysing standard Weyl systems.
Since each standard Weyl system is totally ergodic, we immediately deduce the following.

Proposition 11.4. Let t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polynomial progression.

Then Wi(~P ) 6 HKi(~P ) for all 0 6 i 6 t.

We now fix a standard Weyl system (X,X , µ, T ) of order s with some irrational a0. Then

T n(a1, ..., as) =

(
a1 + na0, a2 + na1 +

(
n

2

)
a0, ..., as + nas−1 + ...+

(
n

s

)
a0

)
(39)

= g0 + g1n+ ...+ gs

(
n

s

)
,

where gi = (a1−i, ..., as−i) and a−k = 0 for k > 0. For almost all points a = (a1, ..., as) ∈ Rs,
the numbers 1, a0, ..., as are rationally independent, and we fix a point a ∈ Rs for which this
is the case. The sequence g(n) = T na is adapted to the filtration Gi = {0}i−1 × Rs−i+1 for
1 6 i 6 s and Gi = 0 for i > s on G = G0 = Rs, and it is irrational due to the irrationality
of a0. Since the Zi factor of X consists of all the functions whose values depend only on the
first i coordinates, we have Zi = G/Gi+1Γ = Ti × {0}s−i, where Γ = Zs.

What we aim to show is therefore the following.

Proposition 11.5. Let t ∈ N+, (X,X , µ, T ) be a standard Weyl system of order s and ~P ∈
R[x, y]t+1 be an integral polynomial progression. Fix 0 6 i 6 t and suppose that Ai(~P ) = s′.
Then the image of the group {0}i × Gs′+1 × {0}t−i is contained in the closure of gP inside
(G/Γ)t+1.

If ~P ∈ R[x, y]t+1 is a homogeneous progression, then the sequence gP is equidistributed in
GP /ΓP by Theorem 5.3, and Proposition 11.5 follows immediately; we want to say something

about the closure of gP in the general case. We fix an integral progression ~P for the rest of this
section. For each 1 6 i 6 s, we pick linearly independent integral polynomials Qi,1, ..., Qi,t′i
that form a basis for W ′

i . We also let {R1, ..., Rr} be a basis for W c consisting of integral
polynomials. Thus,

( ~P
i

)
=

t′i∑

j=1

~vi,jQi,j +

r∑

j=1

~wi,jRj

for some vectors ~vi,j , ~wi,j ∈ Zt+1, which follows from (27). Consequently,

gP = g0~1 +
s∑

i=1

gi

t′i∑

j=1

~vi,jQi,j +
r∑

j=1

(
s∑

i=1

gi ~wi,j

)
Rj(40)

We should explain the notation used in (40). For h ∈ G and ~v ∈ Rt+1, we interpret h~v
as the element of (Rs)t+1 of the form (hv(0), ..., hv(t)), where hv(i) = (h1v(i), ..., hsv(i)) is an
element of Rs for each h = (h1, ..., hs) ∈ Rs and ~v = (v(0), ..., v(t)). Thus, h~v is the same as
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what we previously called h~v . We use the additive notation h~v now since we are working in
an abelian setting. We also denote ~1 = (1, ..., 1).

We let Ai,j = SpanR{gi~vi,j} and Bj = SpanR{
∑s

i=1 gi ~wi,j}, and we denote the closure

of their images in (G/Γ)t+1 as Ai,j and Bj respectively. From the rational independence
of ai and the rationality of the entries of ~vi,j and ~wi,j, we deduce that nonzero entries of
gi~vi,j and

∑s
i=1 gi ~wi,j are irrational; therefore the sequences (x, y) 7→ gi~vi,jQi,j(x, y) and

(x, y) 7→ ∑s
i=1 gi ~wi,jRj(x, y) are equidistributed on Ai,j and Bj respectively. The linear

independence of Qi,j, Rj then implies the following.

Proposition 11.6. The closure of gP is the image of g0~1 + G̃ inside (G/Γ)t+1, where

G̃ =

s∑

i=1

t′i∑

j=1

Ai,j +

r∑

j=1

Bj .

In particular, the group G̃ contains

K =

s∑

i=1

t′i∑

j=1

Ai,j = SpanR{hi~vi,j : hi ∈ Gi, 1 6 i 6 s, 1 6 j 6 t′i}.

We observe that K = G̃ = GP whenever ~P is homogeneous.

Corollary 11.7. Fix 0 6 i 6 t and let Ai(~P ) < s. For k 6 s, we have {0}i×Gk×{0}t−i 6 K

if and only if k > Ai(~P ).

Proof. For each 1 6 k 6 s, we let P ′
k = SpanR{~vk,1, ..., ~vk,t′k}. Thus

K = SpanR{hk~uk : 1 6 k 6 s, hk ∈ Gk, ~uk ∈ P ′
k},

and so for k 6 s, we have the inclusion {0}i×Gk×{0}t−i 6 K if and only if the vector ~ei with
1 in the i-th position and 0 elsewhere is contained in P ′

k. The statement ~ei ∈ P ′
k is equivalent

to the inclusion
(x+Pi(y)

k

)
∈ W ′

k. This is in turn equivalent to the statement that there are
no algebraic relations of the form (8) with degQi = k, which is precisely the condition that

k > Ai(~P ). �

Corollary 11.8. Let t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polynomial progression. Then

Wi(~P ) 6 Ai(~P ) for each 0 6 i 6 t.

We finish this section by showing the converse.

Proposition 11.9. Let t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral polynomial progression for

which Ai(~P ) = s for some 0 6 i 6 t. Then for any standard Weyl system (X,X , µ, T ) of order
s there exist smooth functions f0, ..., ft : X → C such that E(fi|Zs−1) = 0 but the expression

(28) is 1. In particular, Wi(~P ) > s.

Before we prove Proposition 11.9, we define ∂Q(x) = Q(x+1)−Q(x) for Q ∈ R[x]. From

the identity ∂
(
x
k

)
=
(
x+1
k

)
−
(
x
k

)
=
(
x
k−1

)
we deduce that

∂

(
a0 + a1

(
x

1

)
+ ...+ ad

(
x

d

))
= a1 + a2

(
x

1

)
+ ...+ ad

(
x

d− 1

)
.
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Proof of Proposition 11.9. Let T be as in (39) for some irrational a0. From Ai(~P ) = s it

follows that ~P satisfies an algebraic relation (8) with degQi = s. For each 0 6 k 6 t, we let
Qk(u) = bk,1u+ ...+ bk,s

(u
s

)
. We define ξ(u) = e(αu) for some irrational α, and we let

fk(a1, ..., as) = ξ(bk,1a1 + ...+ bk,sas).

Thus, we have

fk(T
x+Pk(y)a) = ξ(a0Qk(x+ Pk(y)) + a1∂Qk(x+ Pk(y)) + ...+ as∂

sQk(x+ Pk(y))),

and so

t∏

i=0

fi(T
x+Pi(y)a) = ξ




s∑

j=0

aj∂
j

t∑

k=0

Qk(x+ Pk(y))


 = 1.

On the other hand, we have

|E(fi|Zs−1)(a1, ..., as)| =
∣∣∣∣
∫

T

fi(a1, ..., as)das

∣∣∣∣ =
∣∣∣∣
∫

T

ξ(bi,sas)das

∣∣∣∣ = 0

for a.e. as. �

12. The proof of Theorem 1.14

We conclude the paper with the proof of Theorem 1.14. Throughout this section, we

let t ∈ N+ and ~P ∈ R[x, y]t+1 be an integral progression of algebraic complexity at most 1.
We also let Q1, ..., Qk be integral polynomials as in the statement of Theorem 1.14. Thus,
Pi =

∑
j aijQj and Qi =

∑
j a

′
ijPj for aij , a

′
ij ∈ Z. The second part of the theorem follows

from the first part and the Furstenberg Correspondence Principle. We therefore proceed to
prove part (i), followed by part (iii). Our argument for part (i) follows closely the proof of
Theorem C of [Fra08].

Proof of Theorem 1.14(i). We first prove part (i) of Theorem 1.14 in the totally ergodic case.
Suppose that (X,X , µ, T ) is a totally ergodic system with the Kronecker factor (Z1,Z1, ν, S).
The space Z1 can be assumed to be a connected compact abelian group with an ergodic
translation Sx = x+ b. For each δ > 0, let Bδ be the δ-neighbourhood of the identity in Z1,
and let

B̃δ = {n ∈ N : Q1(n)b, ..., Qk(n)b ∈ Bδ}.

It follows from the ergodicity of S and linear independence of Q1, ..., Qk that

lim
N−M→∞

|B̃δ ∩ [M,N)|
N −M

= ν(Bδ)
k > 0

for any δ > 0. In particular, B̃δ is syndetic for any δ > 0, otherwise we would have

lim infN−M→∞
|B̃δ∩[M,N)|
N−M = 0.

We aim to show that for any A ∈ X with µ(A) > 0 and any ǫ > 0, we have

lim
N−M→∞

En∈B̃δ∩[M,N)µ(A ∩ TP1(n)A ∩ ... ∩ TPt(n)A) > µ(A)t+1 − ǫ(41)
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for all sufficiently small δ > 0. This implies part (i) of Theorem 1.14 as follows: if there is a
sequence KN of intervals in N of length converging to infinity, with the property that

µ(A ∩ TP1(n)A ∩ ... ∩ TPt(n)A) < µ(A)t+1 − ǫ(42)

for all n ∈ ⋃N∈N
KN , then the sets K̃N = KN ∩ B̃δ are nonempty for all sufficiently large N

due to the syndecticity of Bδ (in fact, their cardinalities also converge to infinity). Since (42)

holds for all n ∈ ⋃N∈N
K̃N , the equality (41) fails, leading to a contradiction.

We first show that if E(fi|Z1) = 0, then

lim
N−M→∞

En∈[M,N)1B̃δ
(n)

t∏

i=1

TPi(n)fi = 0(43)

in L2 for any f1, ..., ft ∈ L∞(µ). From the measurability of Bδ it follows that we can approxi-

mate 1B̃δ
(n) =

∏k
i=1 1Bδ

(Qi(n)b) arbitrarily well by linear combinations of
∏k
i=1 ξi(Qi(n)b) for

some characters ξ1, ..., ξk on Z1. Using the fact that each Qi is an integral linear combination

of P1, ..., Pt, we can rewrite
∏k
i=1 ξi(Qi(n)b) =

∏t
i=1 ξ̃i(Pi(n)b) for some characters ξ̃1, ..., ξ̃t.

In effect, it suffices to show that

lim
N−M→∞

En∈[M,N)

t∏

i=1

ξ̃i(Pi(n)b)
t∏

i=1

TPi(n)fi = 0.(44)

We can rephrase the limit in (44) as

lim
N−M→∞

t∏

i=1

ξ̃i(−y)En∈[M,N)

t∏

i=1

RPi(n)(fi(x)ξ̃i(y)),(45)

where R = T × S. Let (Rt)t be the ergodic components of R and (fi ⊗ ξi)(x, y) = fi(x)ξi(y);
then E(fi⊗ξi|Z1(Rt)) = 0 whenever E(fi|Z1(T )) = 0 for a.e. t. It thus follows from Corollary
1.12 that if E(fi|Z1) = 0 for some i, then the limit in (45) is 0, which proves the claim.

We therefore deduce that

lim
N−M→∞

En∈B̃δ∩[M,N)

∫

X

t∏

i=0

TPi(n)1Adµ = lim
N−M→∞

En∈B̃δ∩[M,N)

∫

Z1

t∏

i=0

SPi(n)1̃Adν

= lim
N−M→∞

En∈B̃δ∩[M,N)

∫

Z1

t∏

i=0

S
∑

j aijQj(n)1̃Adν,(46)

where 1̃A = E(1A|Z1). Due to the ergodicity of S and the linear independence of Q1, ..., Qk,
the limit in (46) equals

1

ν(Bδ)k

∫

Bk
δ

∫

Z1

t∏

i=0

1̃A(x+
∑

j

aijyj)dν(x)dν
k(y).(47)

In the limit δ → 0, the expression in (47) converges to
∫
Z1
(1̃A)

t+1; hence for every ǫ > 0 and
sufficiently small δ > 0, we have

1

ν(Bδ)k

∫

Bk
δ

∫

Z1

t∏

i=0

1̃A(x+
∑

j

aijyj)dν(x)dν
k(y) >

∫

Z1

(1̃A)
t+1 − ǫ.(48)
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Using Hölder inequality, we obtain that
∫
Z1
(1̃A)

t+1 > (
∫
Z1

1̃A)
t+1 = µ(A)t+1, which implies

(41). This finished the totally ergodic case; the derivation of the ergodic case from the totally
ergodic one proceeds in the same way as in the proof of Theorem C of [Fra08].

�

We now proceed to the proof of part (iii) of Theorem 1.14. The argument can below can be
seen as a finitary version of the argument above, with all the necessary modifications coming
from working in the finitary setting. It follows the proof of the 3-term arithmetic progression
case in Theorem 1.12 of [GT10].

Proof of Theorem 1.14(iii). Let α, ǫ > 0, and suppose that A ⊂ Z/NZ has size |A| > αN
for a prime N > N0(α, ǫ). Let F : R+ → R+ be a growth function to be specified later.
By Theorem 5.1 of [CS12], the irrational and periodic version of the celebrated arithmetic
regularity lemma of Green and Tao (Theorem 1.2 of [GT10]), there exists a positive number
M = Oǫ,F (1) and a decomposition

1A = fnil + fsml + funf(49)

into 1-bounded functions such that

(i) fnil = F (g(n)Γ) is an F(M)-irrational, N -periodic nilsequence of degree 1 and com-
plexity M ;

(ii) ||fsml||1 6 ǫ;

(iii) ||funf ||U2 6 1
F(M) .

Moreover, fnil takes values in [0, 1]. Unpacking the definition of fnil, we see that F : (R/Z)m →
[0, 1] is M -Lipschitz, 1 6 m 6 M , and g(n) = bn for some F(M)-irrational element b ∈
( 1
NZ/Z)m.

Our strategy is as follows. We shall define a weight µ̃ : Z/NZ → R>0 which satisfies

Ey∈Z/NZµ̃(y) = 1 +O(ǫ)(50)

and

Ex,y∈Z/NZµ̃(y)
t∏

i=0

1A(x+ Pi(y)) > αt+1 −O(ǫ).(51)

Using pigeonhole principle and (50), it can be deduced from (51) that for Ωα,ǫ(N) values of
y, we have

Ex∈Z/NZ

t∏

i=0

1A(x+ Pi(y)) > αt+1 −O(ǫ),

which proves part (iii) of Theorem 1.14.
We shall prove (51) by splitting each 1A using (49) and showing that terms involving fsml

or funf have contributions at most O(ǫ) while the term

Ex,y∈Z/NZµ̃(y)
t∏

i=0

fnil(x+ Pi(y))(52)
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has size at least αt+1 − O(ǫ). Showing that the terms involving fsml or funf make negligible
contributions to (51) is akin to showing (43) for all functions with E(fi|Z1) = 0 in the proof
of part (i) of Theorem 1.14. In doing so, we shall use the idea that while we fix ǫ > 0, we have
control over how fast we choose F to grow - and we choose it to grow fast enough depending
on α and ǫ to ensure that all the estimates work.

Let δ > 0 be fixed later. We define ψ : (R/Z)m → R+ to be a nonnegative, 1-bounded,
OM (δ−1)-Lipschitz function that is 1 on [−1

4δ,
1
4δ]

m and 0 outside [−1
2δ,

1
2δ]

m. We let c =∫
(R/Z)m ψ; thus (

1
2δ)

m 6 c 6 δm. We then let µ(y) = ψ(by)
c . Since b can be picked without the

loss of generality from [0, 1]m, the function µ is OM (δ−M−1)-Lipschitz.
We let µ̃(y) = µ(Q1(y))...µ(Qk(y)). It is a weight that picks out all the values y for which

Q1(y)b, ..., Qk(y)b are close to being an integer, and it plays a similar role as the function
1B̃δ

in the proof of part (i) of Theorem 1.14, except that it is constructed using a Lipschitz

function rather than an indicator function. To show (50), we observe that

Ey∈Z/NZµ̃(y) =
1

ck
Ey∈[N ]

k∏

i=1

ψ(bQi(y)).(53)

Using the F(M)-irrationality of g, linear independence of Q1, ..., Qk as well as Theorem 2.5,
we deduce that (53) equals

1

ck

((∫
ψ

)k
+OM (δ−1F(M)−cM )

)
= 1 +OM (δ−M−2F(M)−cM )

for some cM > 0. The estimate (50) follows from choosing F growing fast enough depending
on δ and picking δ = c′M ǫ for an appropriately chosen c′M > 0.

We decompose each 1A in (51) using (49) and split (51) into 3t accordingly using mul-
tilinearity. We first estimate (52), and subsequently we bound contributions of fsml and
funf .

Taking F growing fast enough, we assume that ||funf ||U2 6 ǫ, and thus |Ex∈Z/NZfunf(x)| =
||funf ||U1 6 ||funf ||U2 6 ǫ. From Hölder inequality and the bound on the L1 norm of
fsml, we obtain a bound |Ex∈Z/NZfsml| 6 ǫ. From these bounds and (49) we deduce that
Ex∈Z/NZfnil(x) > α− 2ǫ.

We observe that by M -Lipschitzness of F and the definitions of µ, µ̃ and Qj, we have
f(x + Pi(y)) = f(x +

∑
j aijQj(y)) = f(x) + OM (δ) = f(x) + O(ǫ) whenever µ̃(y) > 0. It

follows from this that

Ex,y∈Z/NZµ̃(y)

t∏

i=0

f(x+
∑

j

aijQj(y))

=
(
Ex∈Z/NZf(x)

t+1 +O(ǫ)
)
Ey∈Z/NZµ̃(y).(54)

Using the estimate for (50) and Hölder inequality, we deduce that (54) is bounded from below
by

(
Ex∈Z/NZfnil(x)

)t+1 −O(ǫ) > αt+1 −O(ǫ),

where the last inequality follows from Hölder inequality.
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We now bound terms involving fsml. Suppose without loss of generality that fsml is in
the i = 0 position, and let f1, ..., ft ∈ {fnil, fsml, funf}. Then

|Ex,y∈Z/NZµ̃(y)fsml(x)
t∏

i=1

fi(x+ Pi(y))| 6 ||fsml||1Ey∈Z/NZµ̃(y) 6 ǫ,(55)

where the first inequality follows from Hölder inequality, positivity of µ̃ and 1-boundedness
of f1, ..., ft.

It remains to bound the contributions of funf . Using a standard argument (see e.g.
the proof of Proposition 3.1 of [GT12]), we want to approximate funf by a trigonometric
polynomial, which allows us to essentially replace funf by additive characters. Let K ∈ N+ be

fixed later. Since µ is an OM (ǫ−M )-Lipschitz function, there exists a trigonometric polynomial

µ1 : Z/NZ → C such that ||µ − µ1||∞ ≪M ǫ−C
(1)
M K−c for some 0 < c,C

(1)
M . Moreover, µ1 has

degree at most KM and its coefficients satisfy ||µ̂1||∞ 6 ||µ||∞ ≪M ǫ−M .
Let f0, ..., ft ∈ {fnil, fsml, funf}, with at least one of them being funf . We then bound

|Ey∈Z/NZµ̃(y)

t∏

i=0

fi(x+ Pi(y))| = |Ey∈Z/NZ

k∏

i=1

µ(Qi(y))

t∏

i=0

fi(x+ Pi(y))|(56)

6 kmax(||µ||∞, ||µ1||∞)k−1||µ− µ||∞ + |Ey∈Z/NZ

k∏

i=1

µ1(Qi(y))

t∏

i=0

fi(x+ Pi(y))|.

The first term has size at most C
(2)
M ǫ−C

(2)
M K−c for some C

(2)
M > 0. The second term is bounded

by

KM ||µ̂1||∞|Ey∈Z/NZ

k∏

i=1

ξi(Qi(y))

t∏

i=1

fi(x+ Pi(y))|(57)

for some characters ξi on Z/NZ. Since each Qi is an integral linear combination of Pi’s, we

can rewrite
∏k
i=1 ξi(Qi(y)) =

∏t
i=1 ξ̃i(x + Pi(y)). We let f̃i = fiξ̃i. Since each ξ̃i is a linear

character, we have ||fi||U2 = ||f̃i||U2 for each i.

We recall from Theorem 1.11 that ~P has true complexity 1. Combining this fact with (56),

(57) and the bound ||f̃i||U2 6 1/F(M) for some i, we deduce that there is some decreasing

function ω : R+ → R+, depending only on ~P , such that

|Ey∈Z/NZµ̃(y)
t∏

i=0

fi(x+ Pi(y))| 6 C
(2)
M ǫ−C

(2)
M K−c + C

(2)
M ǫ−MKMω(1/F(M)),(58)

increasing the constant C
(2)
M if necessary. We note that the existence of ω is equivalent to the

statement that ~P is controlled by U2 at i. We now show that we can choose K large enough
and F growing fast enough so that the right-hand side of (58) is bounded by O(ǫ).

For any given M , we find a constant C
(3)
M such that (C

(3)
M )c > C

(2)
M and cC

(3)
M − C

(2)
M > 1.

We then let KM = C
(3)
m ǫ−C

(3)
M , so that

C
(2)
M ǫ−C

(2)
M K−c

M = C
(2)
M C

(3)
M

−c
ǫcC

(3)
M

−C
(2)
M 6 ǫ.
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Picking F growing sufficiently fast depending on ǫ, we can ensure that C
(2)
M ǫ−MKM

M ω(1/F(M)) 6
ǫ. We thus set K = KM for the value of M induced by ǫ and F , and so

|Ey∈Z/NZµ̃(y)

t∏

i=0

fi(x+ Pi(y))| 6 2ǫ.

�

References

[BHK05] V. Bergelson, B. Host, and B. Kra. Multiple recurrence and nilsequences. Invent. Math., 160:261–
303, 2005. With an appendix by I. Ruzsa.

[BL96] V. Bergelson and A. Leibman. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems.
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