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Abstract

Let G be a reductive linear algebraic group over an algebraically closed field K of characteristic 2.
Fix a parabolic subgroup P such that the unipotent radical is abelian and a Levi subgroup L C P.
We parametrize the orbits of a Borel B C P over the Hermitian symmetric variety G/L supposing
the root system @ is irreducible. For ® simply laced we prove a combinatorial characterization of the
Bruhat order over these orbits. We also prove a formula to compute the dimension of the orbits from
combinatorial characteristics of their representatives.

1 Introduction

Let G be a connected reductive linear algebraic group over an algebraically closed field K. Denote with
g the Lie algebra of G and fix a maximal torus 7. This defines a decomposition

g=fEBEBua

acd

where t is the Lie algebra of T', the u, are the root spaces and ® = ®(G, T) is the root system of G. Fix
a Borel subgroup B D T which is the same as a basis A of ® or a set of positive roots ®* C &. Recall
that the Weyl group W of ® can be identified with Ng(T)/T and that the simple reflections s, with
a € A generate W.

Fix a parabolic subgroup P 2O B. If P = L x P"% is a Levi decomposition for P and P" is abelian we
say that G/L is a Hermitian symmetric variety. Note that in this case the Lie algebra of P* is abelian
as a Lie algebra. We denote it with p* and we denote with ¥ the set {a € ®* | u, C p“}.

The Borel subgroup B acts on G/L by multiplication and on p* through the adjoint representation.
In both cases the orbits are finite and we can define an order by stating that O < @’ if and only if © C O’
where on the right we have the Zariski closure of O’. This is called the Bruhat order.

The situation is quite similar to the well-known case of a flag variety G/B. In this case we have the
Bruhat decomposition

G/B= | | BuB/B
veW
and BvB/B < BwB/B if and only if v < w where the order in W (which is still called Bruhat order)
has the following combinatorial characterization: for every reduced expression w = 4, - - - Sq,, there must
be a subsequence 1 < 43 < ... < 4, < n such that v = So, """ Sa, - More generally, if P O B is any
parabolic subgroup define Wp the Weyl group of P and W the set of minimal length representatives of
the quotient W/Wp. Then we have the decomposition

G/P= || BuP/P

veW?P

and BuP/P < BwP/P if and only if v < w.

Return now to our parabolic P with abelian unipotent radical and consider the projection 7: G/L —
G/ P. Tts fibers are isomorphic to p* and, if we denote with w” the longest element in W7, the stabilizer
in B of wP'P/P is exactly B, = BN L. It follows that the By-orbits in p* correspond exactly to the
B-orbits in Bw?” P. But in our hypothesis P" acts trivially on p“ so the Bp-orbits and the B-orbits
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on p* coincide. Moreover, the correspondence between the orbits is order-preserving. It follows that
we can see the B-orbits on p“ as a subset of the B-orbits in G/L. Actually, we can define for every
v € WP subgroups B, = v~!Bv N P and actions of each B, on p* (Equation [, page[B]) such that every
B-orbit in G/L corresponds to a unique B,-orbit in p* for some v € W Tt follows that the problem of
parametrizing the B-orbits in G/L can be reduced to parametrizing the B,-orbits in Note that B,,r = By,
and the action of By, coincides with the action of B so among these actions there is also the adjoint action
of B on p" we were interested in from the beginning.

Until now, we didn’t mention the characteristic of the base field K because the previous results didn’t
depend on it. Suppose now that the characteristic is different from 2. Then the B-orbits on p* were
parametrized by Panyushev [I, Theorem 2.2] while the orbits on the Hermitian symmetric variety were
parametrized by Richardson and Springer in [2]. We will use the parametrization given by Gandini
and Maffei in [3] which is based on the admissible pairs. These are pairs (v,S) with v € W¥ and S
an orthogonal subset of roots for which v(S) < 0. Here for orthogonal subset we mean a subset such
that o and 8 are orthogonal for every o # § € S. Gandini and Maffei also proved a combinatorial
characterization of the Bruhat order in G/L which was itself a conjecture by Richardson and Springer.

In this paper, we will study the B-orbits on G/L and p* in the hypothesis of char(K) = 2. The main
objective will be to give a parametrization of the orbits both on p* and on G/L. The results are divided
in relations to the type of the root system ® which we will always suppose irreducible.

Fix an element e, # 0 for every root space u, C Lie(G) = g and for S C ® define es = ) g €a-
When the root system is simply laced, that is of type ADE, we will obtain the following parametrization
for p*:

Theorem There is a correspondence:

{S orthogonal | S C U} <> {B-orbits in p“}
S — Beg

Now, for S C ¥ orthogonal define zg = exp(es)L/L. Note that the exponential map exp: p* — P
is well defined. Then, for G/L we will prove:

Theorem [4.3l There is a correspondence:

{(v,9) | ve WP v(S) <0,S orthogonal} <+ {B-orbits in G/L}
(v,S) = Buxg

These coincide with the parametrizations in [3] and we will see that the proof is similar.

For the simply laced case we will also study the Bruhat order in G/L and, by restriction, on p*. The
fact that the parametrization doesn’t depend on the characteristic makes it easy to conjecture that the
characterization of the order remains the same. That is what actually happens, but the proof is not as
straightforward as one might think because some intermediate results used by Gandini and Maffei which
come from [2] don’t have a clear analogue in this setting. In the end, we will prove the characterization
by showing that the Bruhat order in characteristic 2 and the Bruhat order in characteristic different from
2 define the same order on the set of admissible pairs which are parameters for both.

Following [4], to every admissible pair we can associate an involution in W as

Oy(S) = Sy
v€V(S)

Moreover, given a w € W denote with [w]? the representative in WF of the coset wWp. The following
result coincides with [3] Theorem 1.3]:

Theorem [4.15]

Buxpr < Bvrs & oyr) < 0y(s) and [UJS]P < [uJR]P <u<w

Note that this also gives a characterization of the order in p* if we restrict to u = v = w’.

The type C case is more complicated because the Panyushev parametrization in orthogonal subsets
fails. To parametrize these orbits we introduce another definition of admissible pairs which is the following:



Definition 1.1 (Definition and Definition [6.3). Let ®*(v) = {a € ¥ |v(a) <0} and S C ®*(v).
Then S is full admissible (for v) if S can be partitioned as X (S) U Z(S) where:

1. X(S) is orthogonal,

2. every element of Z(S) is a long root 8 and for every 8 € Z(9) exists a a in X(S) and v € ®},
verifying 8 = « 4 «. This element is unique, so define p(3) = «;

3. for every 8 € S long and v € S short with s(y) € ®*(v) and s(y) > B either s(y) € Z(S) or
B € Z(S) and p(B) < 1.

The most important result of this paper are Theorem [6.7] and [E.11] which together imply that in type
C:

Theorem 1.2. There is a correspondence:

{(v,8) | S is full admissible for v} <> B-orbits in G/L
(v, S) — Buzxg

The type B case is similar to the type C case, but the combinatorics are simpler. We obtaine
a parametrization which is similar to the one above and that can be proved in a more manual way
(Theorem [B.1] page [14).

We also show a generalization of the dimensional formula [4, Lemma 7.2] that is true in any charac-
teristic (Theorem [T4] page22]). From this, we prove two formulas to compute the dimension of the orbits
in the type B and C cases that depend only on the combinatorial characteristics of the representatives
that parametrize the orbit. Again, the most interesting result is the type C one which is the following:

Theorem [T.8. Let v € W and S a full admissible for v. Then:
dim(Bst) = #U + L(Uu(X(S))) — #S + #Z(S)

Here we denote with Sy the set of short roots in S and with L(oy(x(s))) = w the length
of o,(x(s)) as an involution.

The paper is organized as follows. After a brief introduction of notations in section 2, we recall and
expand some results from [3] and [4] that are independent from the characteristic (section 3). These facts
are mostly about the specific combinatorics of the roots and the Weyl groups and will be of great use
later. We will also introduce our most powerful tool: the action of the minimal parabolic subgroups.

In section 3 we will prove the results regarding the simply laced case, while in sections 4 and 5 we

will describe the parametrization of the B-orbits in the type B and C respectively. The sixth and last
section will be devoted to proving the dimensional formula and its corollaries.

2 Notations

Fix once and for all an algebraically closed field K of characteristic 2 and a connected, reductive, linear
algebraic group G over K. In G, fix a torus T and a Borel subgroup B containing 7. They define a root
system ® = ®(G, T) and a basis A of ®, which is the same as a subset of positive roots ®*. We will often
write & > 0 and « < 0 to mean that o € ® and a € —®™ respectively. The root system will always be
reduced and irreducible.

For every root a € ® we have a one-dimensional root space u, in the Lie algebra g of G and a
one-parameter subgroup U, in G. Recall that formally a one-parameter subgroup is a morphism of linear
algebraic groups u,: K — G and U,, is just the image of this map. Therefore, we will often use u,(t) to
denote an element in U,. Fix once and for all representatives e, € u, and if S C ® denote eg = ), cs Ca-
As a sort of converse of this construction if x € g we know that z can be written as x = ) | 4 ao and
we will call the support of z, denoted as Supp(z), the set {o € @ | an # 0}. If M C g we will denote with
Supp(M) the union of Supp(z) for all x € M.

To every root system we can associate its Weyl group W. It is defined as the subgroup of isometries
generated by the reflections s, that fix the hyperplane orthogonal to a and send a to —a for every



root @ € ®. In this case, the Weyl group can be realized as the quotient Ng(7T)/T where Ng(T) is the
normalizer of G in T. For this reason, we will often treat a v € W as an element of G by identifying
it with a representative. Every time we will do this, which representative we choose will be irrelevant.
Given a v € W we will denote with ®*(v) the set {« € ®* | v(a) < 0}.

There is a correspondence between subsets of S C A and parabolic subgroups Pg containing B. In
this correspondence the unipotent radical P¥ is abelian if and only if S = A\ {a} where « is a simple
root that appears with coefficient 1 in the highest root of ®. We will fix a parabolic subgroup of this
kind which will be denoted by P with no subscripts. It admits a Levi decomposition P = L x P“. Here
L is called the Levi subgroup of P and is reductive. Its root system ®p can be seen as the subsystem of
® generated by S. It follows that S is a basis for ®p and we will denote it Ap. On the other hand the
root spaces in p* correspond to the roots in ® in which « appears with coefficient 1. Hence, if we denote
with W C ® the subset they form we have

u __
=P
eV

The choice of a parabolic subgroup Ps = P gives naturally two subsets of the Weyl group. The first
is the subgroup of isometries generated by {s, | & € S}, which is the Weyl group associated to the Levi
subgroup L. We will denote this with Wp.

The second is the set of isometries

WP ={we W |w(a) >0 for every a € S}

They are related by W = WP Wp. Note that w € W if and only if ®*(w) C ¥ and there is a maximal
element in W¥ which we note with w? and that is identified by ®*+(wf) = ¥.

3 General results

As said, K will be a characteristic 2 field. Note that if ® is of type Gz then G admits no parabolic
subgroup with abelian unipotent radical, so we can suppose without loss of generality that ® is not of
this type. Then we know that if K has odd or zero characteristic and «, 8 € ® we have

uq(t).eg = eg + ategra + bt265+2a

where a # 0 if and only if 4+ a € ® and b # 0 if and only if 842« € ®. This is not true in characteristic
2 and that’s the ultimate reason for which the characterization by Panyushev in [I] doesn’t hold in this
case. The next result follows from [5], chapter 10]

Lemma 3.1. Suppose o, € ® with o # —f and us(t) the one-parameter subgroup relative to «. Then
U (t).e5 = ep + ategyo + bt esoa
where a and b don’t depend on t and:
I.a=0ifandonlyif B+ag¢ P orf+ac® and f—a € P;
2. b=0 if and only if B+ 2a ¢ .

In this section we will cite many results from [3] regarding root systems and Weyl groups. They
clearly don’t depend on the characteristic of K and will be of great importance in the next sections.

Proposition 3.2 (Proposition 2.5, [3]). Letv € W¥ and let o € A such that sqv < v. Put 8 = —v~1(a).
Then B is mazimal in ®*(v) and minimal in U\ T (s40).
Vice versa:

1. if B is mazimal in ®T(v) then a = —v(B) € A and s,v < v;

2. if B is minimal in ¥\ ®T(v) then a = v(B) € A and sqv > v.



We denote with < the Bruhat order on W.
Lemma 3.3. Let u,v € W and suppose u < v. For every a € A we have:
1. if squ > u and sqv > v then squ < SuU;
2. if squ < u and Sqv < v then sau < Sav;
8. if squ > u and sqv < v then u < squ and squ < v.

Following [4] we will associate to every orbit a particular involution in W. Note that many results
in [4] are based on the existence of an involution §: G — G that fixes L, which is not necessarily true
in characteristic 2. We will give our own proof when this happens.

Now, let Z C W be the subset of all involutions. We can define an action of the set of simple reflections
Sa, for & € A on Z in the following way:

Sa0 if sqo=o0s
S 00 = a = oo a
$a08q if 840 # 054

Note that sq 0o = 7 if and only if s, o7 = 0.

Lemma 3.4 (Lemma 3.1, [3]). Let « € A and 0 € Z. Then sq 0 0 and o are always comparable.
Moreover, sq 00 > o if and only if sqo0 > 0.

Note that if s,0 # 08, then s4084 > 540 > 0 and $,084 > 0S4 > 0.
The action on involutions interacts with the Bruhat orders with properties similar to the one in [33]

Lemma 3.5 (Lemma 3.2, [3]). Let 0,7 € T and suppose o < 7. For every a € A we have:
1. if saooc >0 and sqa 0T > T then 5,00 < §q 0T,
2. if sqo0 <o and sq 0T < T then sq 00 < 84, 0T;
3. if sqao00 >0 and s 0T < T then sqa00 <7 and o < Sq0T.

We define the length of an involution o as

where [(0) is the usual length in W and A(o) is the dimension of the (—1)-eigenspace of o on ® @ R.
Lemma 3.6. Let a € A and 0 € T.
[ L(o)+1 ifsqoo>0
L(SO‘OU){ L(o)—1 ifsaoo<o
To every set S C ¥ of mutually orthogonal roots we can naturally attach the involution

US:HSa

a€eS

Note that if @ and 8 are orthogonal then sq,sg = sgsa, s0 og is well defined. The (—1)-eigenspace of
such involution is generated by S so we have

U os)+#S
o 2

Lemma 3.7 (Lemma 3.6, [3]). Let 8,8 € U be orthogonal. Then:

L(os)

1. B and ' are strongly orthogonal, that is B+ 3’ ¢ U;
2. if B+a € ® for some o € ®F then 8’ +a ¢ ®;
3. if B—a €W for some a € DT then f/ —a ¢ V.



We say that a subset S C @ is strongly orthogonal if all the roots in S are strongly orthogonal. In our
analysis of the characteristic 2 case, we will use the following result.

Corollary 3.8 (Corollary 3.9, [3]). Let S,T C ® be strongly orthogonal and suppose g = or. Then
S=T.

Now, consider the projection map n: G/L — G/P. It is B-equivariant. Recall that G/P =
Upewr BuP/P and for v € W define B” = vPv~! N B the stabilizer of vP/P € G/P in B. Then
7~ Y(BvP/P) = BuP/L = B xB" 77 (vP/P) = B xB" vP/L

Hence we have a bijection between the B-orbits in BuP/L and the BY orbits in vP/L which is compatible
with the Bruhat order. If we define B, = PNv~'Buv then these orbits are in bijection with the B,-orbits
in P/L.

Lemma 3.9 (Lemma 4.1, [3]). Let v € WP. Then By = B, N L and B, = Br x U, where U, is the
subgroup of P* generated by the U, with o € U\ % (v).

Note that the Lie algebra of U, is u, = @ae‘y\qﬁ(v) U, and that if w’ is the longest element in W7,
then the B action is equal to the By, = B N L-action which is by definition the B, ,r-action.

Let exp: p, — P“ be the exponential map and compose it with the projection 7: G — G/L. We
obtain an isomorphism rp: p, — P/L that is not P-equivariant if we consider the adjoint action on p,,
and the left multiplication on P/L. We want to define an action of P on p,, that makes rp a P-equivariant
map. Consider the isomorphisms

Lxp, ELxP*=P

from left to right (g,y) — gexp(y). Note that with this identification we have B, = B X u,. Let
(9,y) € P and z € p,,. Define the action

(9,y).x = Adg(z +y) (1)

From this definition it is easy to see that if u < v and x € p* we have the containment B,z C B,x.
More precisely, suppose u = sov < v. Then Byz = J,cx Bu(z +teg) where § = v (a).

Lemma 3.10 (Lemma 4.2, [3]). Let v € W¥. Then the map Bye — Buvexp(e)L/L is an order
isomorphism between the B,-orbits in p,, and the B-orbits in BuP/L.

We have the following formula regarding the dimensions:
Lemma 3.11 (Lemma 4.2, [3]). Let v € W¥ and e an element in p,. Then the following formula holds
dim Bvexp(e)L/L = l(v) + dim B,e
Theorem 3.12. Let x,y € p, with B,z C Byy. Then Bvexp(z)v~'B C Buvexp(y)v—!B.

Proof. Consider z € B,y and apply the exponential. We get exp(z) € B,.exp(y) where By, C B, acts

by inner automorphisms and U, = Hae(‘y\¢+ ) U, acts by multiplication. We then have

B,.exp(y) € Br exp(y)U,Br, = Br exp(y)B, C v ' Bvexp(y)v ' Bv
where we used the fact that B, C v~!Bv. Then
vexp(z)v~! € Bvexp(y)v—1B

and S
Bvexp(z)v™'B C Bvexp(y)v—1B O

Now fix v € W and S C ®*(v) orthogonal. Define g,(sy = vexp(es)v™' and consider the double
coset Bg,(s)B. The roots in v(S) are negative, so g_,(s) € B.

Bgy(s)B = Bg_y(5)9v(8)9—v(s)B = Boys)B

where the last equality holds because v(5) is orthogonal and the root vectors e, verify

exp(e_q)exp(eq) exple_o)T/T = s € W



Theorem 3.13. Fizv € W and S,T C ®*(v) orthogonal subsets. Then Byes = Byer implies S =T.

Proof. By Theorem [3.12] we get
Bugsv™'B = Bugrv™'B

and by the discussion above this implies
BO‘U(S)B = BO‘U(T)B

using the characterization of the order in the flag variety we get v(S) = v(T'), hence S = T by Lemma
B.8 O

Given a simple root a € A we can define a parabolic subgroup P, which is the subgroup generated
by B and U_,. It is minimal among the parabolic subgroups that strictly contain B and every such
subgroup is obtained this way.

Now fix a B-orbit BzL/L in G/L and a simple root &« € A. The minimal parabolic subgroup P, acts
on G/L, so the B-orbit BxL/L is contained in the P,-orbit PyaL/L.

Proposition 3.14. The Borel subgroup B acts on P,xL/L with finitely many orbits, in fact there are
at most 3 B-orbits in PyxL/L.

There must be a unique B-orbit O in P,vzg such that O = P,vzg. We will call O the open orbit of
P,vzxg.

The dimension of P, is dim B + 1, so dim Bvxgs < dim Pyvxgs < dim Bvxg + 1. This implies that if
O and O’ are distinct B-orbits in P,vxg then they are comparable if and only if one of them is the open
orbit.

4 The simply laced case

Suppose from now on that G is a connected, reductive, linear algebraic group and that the root system
® of G is of type ADE. Then if o,8 € ® and (o, ) = 0 we know that o + 8, — 8 ¢ ® because
(a+B,a+ ) = (o, ) + (B, 8) and all the roots must have the same length. It follows from Lemma [3.1]
that

uq(t).eg = eg + ateq+p

where a is a constant that depends only on oo and 8 and is non-null if and only if o+ 3 is a root in .
For every v € W we can consider the action of B, on the nilpotent radical p*. We have the following
result which is the parametrization of the orbits we were looking for.

Theorem 4.1. For every v € WT there is a correspondence

{S € ®*(v) orthogonal} <+ {B-orbits in p"}
S — B,es

Proof. We have already seen in Theorem that such a map is injective. We will show by induction
on [ = I(v) that every B,-orbit admits an element of the form eg where S is orthogonal.

Suppose | = 0, then v = Id and the action of Byg is transitive on p*.

Now suppose [ > 0 and consider an orbit O in p“. Fix a € A for which u = s,v < v and 8 = v~ (—a).
By induction there is an orthogonal set S such that B,O = B,egs.

If S = SU{B} is orthogonal then

Byes = By(es + teﬁ) = B,es U B,egs

so it must be either O = Byeg or O = B,eg.



If S’ = SU{B} is not orthogonal then there must be v € S such that (y,8) > 0. We know that
must be maximal so 6 = 3 — -y is a positive root in ®p and the one parameter subgroup Uy is contained
in By, C B,. If we let such subgroup act on eg + teg we get

us(s).(es +teg) = us(s).(es\ {4} + €y +tep) = eg\(y} + €y +ases +tesg = es + (as + t)eg

where we used the fact that us(s) fixes all e; with 7 € S\ {7} and v+ § = 5. Note that a # 0, so there
is s € K such that us(s).(es + teg) = es. Hence, By,(es + teg) = Byeg.
In both cases, the claim follows. ([l

Note that this proof could work as well in any characteristic. Actually, this works in characteristic
different from 2 with minimal changing even for non simply laced root system. For, the central assumption
is that if @« < 8 € ¥ and («, 3) # 0, then there is v € ®* such that the support of u(t).e, contains .
As we said, this is true for simply laced root systems in any characteristic and for all root systems if the
characteristic is not 2. If the characteristic is indeed 2 and the root system is not simply laced, not only
the proof fails, but the claim is false. We will see this in the chapters dedicated to type BC root systems.

This result easily implies the following parametrization.

Theorem 4.2. There is a correspondence:

{S orthogonal | S C ¥} <> B-orbits in p*
S — Beg

Proof. We know that the B-orbits and the Br-orbits coincide and By, = B,r where w? is the longest
element in W¥. By definition ®*(w?) = ¥ and the claim follows. |

Remember that a parametrization of the B,-orbits also gives a parametrization of the B-orbits in the
Hermitian symmetric variety G/L:

Theorem 4.3. There is a correspondence

{(v,9) |ve WF S C &t (v),S orthogonal} «» B-orbits in G/L
(v, S) — Bvxg

In the setting of simply laced root systems we will say that a pair (v,S) with v € WF and S C ®*(v)
is admissible if S is orthogonal. We will denote the set of admissible pairs with V. From the theorem
above and [3, Proposition 4.7] the admissible pairs parametrize the B-orbits in G/L regardless of the
characteristic of the base field K.

It is now natural to ask if the Bruhat order on the B-orbits depends on the characteristic. The answer
is no, but instead of proving the characterization directly, we will show that both orders agree as orders
on V. In the last part of this chapter, most proofs will mirror the equivalent proofs in [3]. The most
important original result is Lemma [.6] which in [3] derives from the existence of an involution that fixes
L which we do not have in characteristic 2.

To start, fix a simple root @ € A. Consider the minimal parabolic subgroup Ps where S = {a} which
we will denote for simplicity with P,. Recall that we can let P, act on Bvxg on the left, obtaining
P,vxgr which is the union of, at most, three B-orbits, one of which is open and dense in P,vzrp.

Definition 4.4. Consider P,vxg O Bvxg and define

ma (v, S) = (u,T) if and only if Buzr is open in Pyvzs
Ea(0,8) ={(u,T) # (v,S) admissible | mq(u,T) = (v,5)}

Notice that from the correspondence between subsets of A and parabolic subgroups containing B
we know that P, = B U Bs,B which can also be written as P, = Bs, U BU_, where U_, is the one
parameter subgroup associated to —a.

Theorem 4.5. Letv € WF and S, T C ®*(v) be orthogonal subsets. If Byes 2 Byer then Ty(S) = Ou(T)-



Proof. By Theorem B.I2 we have Bugrv™'B C Bvgsv=!B. Hence, Bg,(ryB C Bg,(s)B and that implies
To(1) < Ty(s)- g

Notice that with the correspondence B,eg <— Bvxg which preserves the Bruhat order we also get
that Bvxg C Bvxr implies Ou(S) < Oy(T)-

We will use for simplicity a property that is true only in the simply laced case. Suppose that a, 5 € &
are not orthogonal. Then it must be

(o, B) = (B, ) = £1

So we have 3 if (8,a) >0
—a i , o) >
sa(ﬂ)ﬂ%@a{ B+a if(B,a)<0

We will need a technical lemma.

Lemma 4.6. Let (v,S) be an admissible pair and o € A a simple root. If sa0,(5) < 0ys) then
Ea(v,8) #£@.

Proof. Recall that sq0,(s) < 0y(s) if and only if vogv™"(a) = 0,(s)(@) < 0. Denote 8 = v~ *(a). There
are three cases:

Case 3 € U: Note that 8 ¢ ®T(v) because v(3) = a > 0. Consider

X={aecS|s.08)#8}={a1,...,an}

Then vog(8) =vox(8) =v(8 — a1 — -+ — ap) because elements of ¥ can’t be summed. But now
v(—a1— - —ay) =a—v(ag)—- - —v(ay) and v(e;) < 0 for every i, so v(f—ag — - —ay) > 0.
This contradicts the hypothesis;

Case 3 € —¥: Note that — € & (v). If we define X as above we have

vas(ﬂ)vox(ﬂ){ ZE?;)er...nLom):a+v(a1)+...+v(an) g :gig

It follows that vog(8) < 0 if and only if X # @.
Consider P, = Bs, UBU_,. Then

Pyvxg = Bsavxg U BU_jvxg
= Bsqavrs U BvU_gxg
= Bsavxg U Bozg U U Bou_g(t)zs
teK*
We have s,v < v and sqv € WF so Bs,vrg can’t be the open orbit.
Note that u_g(t) = exp(te_g), so u_g(t)zs = exp(es + te_g).

Now if —f € S, then
o Bves if t 75 -1
Bv (65 T teiﬁ) o { Bves\{,ﬂ} if t=-—1

So if we set S' =S\ {5}
P,vxs = Bsyvrgs U Bvxrg: LU Bvxg

Then the open B-orbit in P,vzgs is Bvzg and {(sqv,S5’), (v,5")} = Ea(v, S).
Suppose —3 ¢ S. We know that there is o € S such that (o, —3) > 0. But —f3 is maximal in &7 (v)
so there exist v € Ap such that — = o+ . So for every t € K there is an s € K such that
u(s).es = exp(es +te_g)
Hence
Pyvzs = Bsqvzs U Bursy—gy
and Byegu{—py = Byes is the open orbit. We obtain {(s,v,S)} = Ea(v, S).



Case € Ap: As a first thing, note that this is the only remaining case. In fact if § € ®p, then
must be positive and if 8 =~ + -+ 4+ 7, is the decomposition in simple roots, then v(8) = o =
v(y) + -+ + v(yn) and this is absurd because v(y;) > 0 for every i € {1,...,n}.

We have s,v = vsg 50 [s,v]" = v where [s,v] is the representative in W of the coset s,vWp in
w.

There are four subcases depending on if S can be added or subtracted to roots in S. Remember
that S can be added or subtracted at most to a single root and it can’t be added and subtracted
to the same root.

£ can’t be added nor subtracted to any root in S
In this case g is orthogonal to S. So vog(8) = v(5) > 0. Hence, this case is impossible;
£ can be added but not subtracted to a root in S

Denote with v the root such that v+ 8 € ®. We have vog(8) = v(y + ) and v+ 3 € T (v)
follows. Write P, = Bs, U BU_,

P,vaxg = Bsavrs U BuU_gxg
= Bux,,(s) U Burs U U Buvexp(u_g(t).es)
teK*

where we used the fact that sg € L and U_g C L.

We have Bvexp(u_g(t).es) = Bvxg for every ¢ and sg(S) = S" U{y + B} where S’ = S\ {7},
so sg(S) # S.

If we compute the involutions we get

Ovsg(S) = Osqu(S) = Salu(S)Sa = Sa © 0y(S)
The orbits Bvzs and Bvw,,(s) must be comparable. Using Theorem 3] we find that Bvxzs 2
B’Uzsg(S) SO {(Uv Sﬁ(S))} = Sa(’U, S)a
£ can be subtracted but not added to a root in S

Denote with « the root such that v — 8 € ®. As before we have vog(8) = v(8 — v), but then
both v(8) = o and v(—+) are positive, so this case is impossible.

8 can be subtracted and added to two roots in S

Denote with v the root such that vy + 3 € ® and with y_ the root such that y_ — 3 € ®. We
have vog(8) = v(B + v+ —y-) < 0 so the root 8 + 4 — - which is in ®p must be negative.
The orbit P,vxg can be again decomposed as

Pyvzs = Bur, sy U Burg U U Buvexp(u_g(t).es)
teK*

Consider B,u_g(t).es. Given that 6 = y_ — 8 — v is positive we have
ué(t)e’)/+ = ey, T atey_—p)

where a # 0 is a constant. Note that u_g(t).es = es + ate(,__gy as well. It follows that for
every to € K* there is a t such that

u(;(t)es = U_B(to).es

Again, in Pyvzs we have two orbits Bvzg and Bvz,,(s) and they must be comparable.
They are different because sg(S) = S’" U {y4+ + 8,7- — 8} where S’ = S\ {y4,7-} and
Vi + B F V-

By computing the involutions we obtain as before

Ovsg(S) = Sa0uy(S)Sa = Sa © Oy(5) < Ty(S)

So by Theorem [L.5] Buzg is the open orbit and {(v, sg(5))} = (v, S). O
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From this we can compute the dimension of the orbits.
Lemma 4.7. Let (v,S) € Vi,. Then dim Bvxg = #V + L(0y(s))-
Proof. We know by that

oyu(s)(@) <0=Eu(v,S) #@

Now take an orbit Bvrs and suppose 0,(s) = Id which means S = &. Then B,es = B,.0 is the minimal
By-orbit in p* and it is easy to see that is dimension is #W¥ — #®&7 (v). It follows that dim Bvxg = #V¥
and Bvzg is also a minimal orbit in G/ L.

Now suppose L(o,(gy) =1 > 0 and fix o € A such that £, (v, S) # @ which we know exists. Then by
induction if (u, R) € &, (v, S) we have

dim Bvrxg = dim Buzg + 1 = #V + L(O’u(R)> +1=#VU+ L(Uu(S)) [l

Note that this coincide with the dimension formula in [3]

We see that the set Vi of admissible pairs for a simply laced root system doesn’t depend on the
characteristic of the base field. This set already admits an order which was given by Gandini and Maffei
in [3] and that we will repeat here.

Definition 4.8. Let (u, R), (v,S) € V. We say that (u, R) < (v,S5) if and only if o,r) < oy(s) and
[vog] < [uogr]f <u<w.

Note that the inequality [ucg]?” < u is always true because u(R) < 0. By [3, Theorem 1.3] the order
is equivalent to the Bruhat order of the respective orbits if the characteristic is not 2.

From now until the end of this section, we will write (u, S) < (v, R) for the definition above, (u, S) <,
(v, R) for the order induced on V7, by the Bruhat order in characteristic 2 and (u, S) <x2 (v, R) for the
order induced on Vi, by the Bruhat order in characteristic different from 2 We have the following result:

Theorem 4.9 (Theorem 1.3, [3]).
(u,R) < (v,8) & (u,R) <42 (v,5)

Following [4] we can let A act on Vi, by stipulating that m(«).(v,S) = ma(v,S). Note that this is
visually the same definition as in the characteristic different from 2 case, but right now we don’t know if
the mq (v, S) coincide. Thankfully, they do.

Lemma 4.10. Suppose that we have no limitation on char(K). Fiz (v,S) € Vi, and o € A. Denote
B =v"1(a). We have:

1. if oygy(a) <0, then mqo (v, S) = (v, 5).
2. if sqv < v, then my(v, S) = (v,8") where 8" = SU{—=8} if =8 and S are orthogonal and S’ = S

otherwise;

3. if v < squ € WE then ma(v,8) = (54v,8") where S' = SU{B} if S and B3 are orthogonal and
S’ = S otherwise;

4. if B € Ap and o,g)(a) > 0, then mq(v,S) = (v, 5") where

5 :{ 55(5) if 55(S) # S

the representative of the By-orbit of u_g(1).es otherwise

Moreover, in the last case the result doesn’t depend on the characteristic of the base field,

Proof. 1. If char(K) = 2 the result follows from Lemma 6l If char(K) # 2 it follows from [4, Lemma
7.4].
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2. Note that this implies —3 € ®T(v). Consider P, = Bs, U BU_,. Then

P,vrs = Bsyvrs U BU_,vxs
= Bsqvrs U BuvU_gxg

= Bsavxs U Bvxg U U Bou_g(t)zs
teK*

Now Bsavrs < Buxrg because sqv < v and u_g(t)xg = exp(eg + te_g). If —f € S the last orbit
is equal to Bvxg except when t = 1 in which case is Bvu_g(1)zs = Bvrg\ ;—py. This last orbit is
clearly smaller than Bvzg.

If instead —8 ¢ S suppose that —8 and S are orthogonal. Then it is clear that Bvu_g(t)zs =
Bvzgy(_py for every t € K* and the claim follows because Bvxsy(_gy > Bvzs.

Suppose now —3 ¢ S and that there is v such that —8 — v = § € ®p (note that —f is maximal
in ®*(v)). Then us(s) acts as the identity in S\ {7} and sends e, to e, + ase_z where a # 0. It
follows that for every ¢ there is s € K such that u;s(t).(es + te_g) = es and the claim follows.

3. Note that 8 is minimal in ¥\ ®*(v) and maximal in ®*(s,v). Consider P, = B U BsaU, Then

P,vrs = Bvxs U Bs,Ujvxg

= Bvzg U Bsyavzs U U Bsqug(t)vas
teK*

= Bvzg U Busaxs U U Bsqvug(t)zs
teK*

We have s,v > v and sqv € WF so Buxg can’t be the open orbit.
As before ug(t)zs = exp(es + teg). By reasoning as in the point above, the claim follows.

P = v where [s4v] is the representative in W of the coset s,uWp in

4. We have s,v = vsg 50 [$q]
wr.
Write P, = Bs, U BU_,,
Pyvxs = Bsgvrs U BvU_gxs

= Bvz,,(s) U Bozg U U Buvexp(u—g(t).es)
teK~

where we used the facts that sg can be represented by an element in L and U_g C L.

Suppose s5(S) # S. Then 0,,(s) > 0y(s) and by Lemma L7 Bvz,, (s) must be the open orbit in
P,vxs given that its dimension is higher then the dimension of Bvzg.

Hence, suppose sg(S) = S. As a first thing, note that the support of u_g(1).eg is S if there
is no v € S such that v — 8 € ® and it is S U {y — §} otherwise. We claim that, in this last
case, the support uniquely determines the orthogonal subsets S’ that parametrizes the B,-orbit. In
particular, the result is independent from the characteristic of K.

To see this note that u_g(t).es = es + ke,—g where k € K* depends on ¢ and our choices of base
vectors in the root spaces. Now, + is certainly not orthogonal to v — 8 and there is at most another
root § € S that is not orthogonal to v — /3. In this last case, it must be § + 8 € ®, so (4,8) < 0
and (y — f,0) > 0. Suppose at first that such § doesn’t exist and let ug(s) act on eg + ke,—_g. It
must be ug(s). (es) = es, so there is s € K* such that ug(s). (es + key—5) = eg\(y} + key—p. The
set (S'\ {7}) U{~ — B} is orthogonal and the claim follows.

Suppose then that such a § isin S. Then 7 =~v— 5 —§ € ®p. If 7 is positive U, C B, so we can
act with u,(s) on eg + ke,_pg without changing the B-orbit. Note that 7 is orthogonal to all roots
in S except  and v. Moreover, clearly § +7 =~ — 8 € ®*, so 7 can be added to 7, which implies
that it cannot be added to ~. It follows that w,(s) acts as the identity on the root spaces of every
root in S\ {0}. It is then easy to see that there is an s € K* such that u,(s). (es + key—g) = es.
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Suppose at last T negative, so —7 positive. We still have s € K* such that ug(s). (ey + key—g) =
ke,_g, but for such an s it must be ug(s).e; = es+k’es for some k' € K*. Then ug(s). (es + key—g) =
es\{y} + key—p + K'esip. If we now let u_-(r) act on eg\ (4} + key_p + k’esp we see that it is
actually the identity on eg\ (4} and even on k’es; g because 7 can be added to § + 3, so it can’t be
subtracted. We then can easily find » € K* such that

u_r(r)uy (). (es + key—p) = es + key_p + K'esyp
where §' = S\ {v,d}. The set S’ U{vy — 8,6 + B} is orthogonal because
(v = 8,6+ 8) = (v,0) + (=5,0) + (7, 8) = (8, ) = 0

This completes the proof. O

This lemma clearly proves that the value of m,(v,S) doesn’t depend on the base field.

We can also define a length function I: Vi, — Nas (v, S) = dim Bvzs—d where d = min, g)cv, dim Bvzs.
By Lemma 7 and [3, Formula 1], this definition doesn’t depend on the characteristic of the base field.

To conclude, we need a definition from [4]. Let < be an order on V7.

Definition 4.11 (One-step property). Let 2 € Vi, and o € A such that m(a).z # . Then y < m(a).z
if and only if at least one of the following is true:

Ly=2uaz
2. there is z such that m(«a).z = m(a).y and z < x;
We also need this important result.

Theorem 4.12. Let < be an order on Vi, such that:
1. © < m(a).x;
2. if x Xy then m(a).x < m(a).y;
3. ifx 2y and l(y) < l(x), thenx =y

In this case we say that =< agrees with the action of A. Suppose also that =< has the one-step property.
Then
(u,R) % (v,8) < (u,R) < (v, 5)

Proof. By Section 6 of [4] the order =< coincides with what Richardson and Springer call the standard
order, which in turn ( [4] Theorem 7.11]) coincides with the order <.s on Vz. We use Theorem [£9 to
conclude. 0

Finally, we need a general result from [6].

Lemma 4.13 (Lemma 2, [0]). Let G act on a variety V. Suppose H C G is closed and U C'V be a
closed subset of V' invariant under H. If G/H is complete, then G.U is closed.

We can finally obtain the characterization of the Bruhat order in G/L we were looking for:
Theorem 4.14. Let (u, R), (v, S) € Vi. Then
(U7R> < (’U,S) A (U,R) <2 (’U,S)

Proof. We want to prove the correspondence with Theorem Then, we need to show that <, agrees
with the action of A and that it has the one-step property. The first part is clear, because the action of
A is exactly the action of the minimal parabolic subgroups and the length function [ is the dimension up
to a constant. We need to show that <o, which is the Bruhat order, verifies the one-step property. From
Theorem .13 with G = P, and H = B we obtain that P,O is closed. But O = Jp, <, O, s0

P.O=P,0= | P.O'
0’<0
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Then take (v,S) and « such that mq(v,S) # (v,S) and fix (u, R) <g mq(v,S). This means Buzg C
P,vxs. By what we said above this implies that there is Bv'zs: € Bvxrg such that Burg C Pyv'zg:.
Hence, mq,(u, R) = mq(v',S’). This proves the one-step property and the theorem. O

It follows that the characterization of the Bruhat order doesn’t depend on the characteristic. The
final result is the following:

Theorem 4.15.

Buxp < Bvxs < oy(r) < 0y(s) and [’Uo‘s]P < [uaR]P <u<w

5 The parametrization in the type B case

Let K be an algebraically closed field of characteristic 2 and GG a connected, reductive, linear algebraic
group over K with a type B root system.

We can define a realization of this root system in the following way: take in R™ the sets of vectors
{£e1,..., Ten} i, and {£e; L e;},, ., where ¢; is the canonical base. We may choose as a base
{e1 —ea,...,en—1 — €n,en}. The highest root 0 is e; + e = (e1 — e3) + 2(e2 — e3) + -+ - + 2e,, so the
subset U is

U={e1+eityeic, Uier}

Note that roots in ¥ are always comparable and that there is a unique short root ag = e;. Moreover,
no root in ¥ is orthogonal to o while if « is long then there is a unique root o that is orthogonal to
a. If o < ot we have a < ag < a*.

Thanks to Lemma [3.1] we know that if «q is the short root in ¥ and 3 € ®p, then

ug(t).eqy = €q, for every t € K
If, instead, @ € ¥, a # ap and 5 € ® then

ug(t).eq = eq + ag ateats + b57af2€a+2ﬂ

where ag . # 0 (respectively, bg 4 # 0) if and only if o + 5 € ®(respectively, a + 25 € P).

Recall that if 2 = ) .y @aa € p* the set Supp(z) = {a € ¥ | ay # 0} is called the support of x. If
M is a subset of p,,, the support of M is the union of Supp(z) for every x € M. If we are talking about B,,-
orbits, with a slight abuse of notation we will write Supp(Q) while meaning Supp(O)\{«a € ¥ | v(a) > 0}.
In fact, by the action of the subgroups B,, {a € ¥ | v(«) > 0} C Supp(O) for every orbit O.

Theorem 5.1. Fiz v € WT and consider the family
H, ={S C®*(v) | S is orthogonal or S = {ag, 0 + 7} with ag short and v € ®}}
Then there is a bijection

H, <— {B,-orbits in p,}
S +— Byeg

Proof. We will first show that the map is surjective. Fix an orbit O and an element z € O. Then
S = Supp(z) has a minimal root a. If S = {a} we are done, because if x = z, = te, for some t € K*,
then e, € T.x,. The same is true if S is orthogonal, because orthogonal roots are indipendent.

Suppose #S # 1.

If « is long, then for every root 8 € (S\ {a}) it is either 8 = a or there is v € ®F with 8 = a + 7.
Ifts= {a, on-}, then S is orthogonal.

So, suppose we are not in this situation and consider the minimal 8 € (S'\ {a}) such that 8 = a+ 7.
Then it is either u,(t).q = €4 + ateg or uy(t).€q = €4 + ateg + bt?eq+2, where in both cases a # 0. In
both cases, there is ¢t € K* such that 8 ¢ Supp(u,(t).x) and, to be more precise

Supp(us (t).x) N W<p = (Supp(z) N Y<p) \ {B}
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We can then inductively eliminate all roots such that (8, @) # 0 until we are left with an element € O
such that S = Supp(x) is orthogonal. Now acting with T as before we get that es € O.

Suppose instead « short. If 3 is the minimum root in S\ {a}, then 8 = a + v for some v € ®5. If
S = {a, B}, then a and § are linearly indipendent as vectors in R™ so, like before, there is ¢ € T with
t.x = eg.

If S 2 {a, 8} note that (BN L).eq = eq. In fact for every v € ®}, for which ag + v € ®, then also
ag — v € ® and Lemma Bl implies that every element in B* N L acts trivially. Note that this is true
only in characteristic 2.

Hence, just like the case above, for every 8’ € (S \ {a, 8}) we can find v € ®}, and t € K* such that
Supp(u(t).z) = S\ {#'}. It follows that O = B,eg with S = {«, 8}.

We will now show the injectivity. Suppose S, R € H, and O = B,es = B,er. Note that it must be

min S = min R = min Supp(O)

Denote o = min Supp(O). If « is not the short root, then both S and R must be orthogonal and, by
Theoremm BUU(S)B = BO’U(R)B, SO UU(S) = UU(R) and S = R.

Now suppose « short and Supp(Q) # {a} or we would celarly have S = R = {a}. Then we may
consider 8 = min {Supp(O) \ {a}}. Given that Span(e,) is (B N L)-stable, it follows that g € S and
B € R, so it must be

S={a,8} =R O

6 The parametrization in the type C case

Let K be an algebraically closed field of characteristic 2. Suppose that GG is a connected, reductive, linear
algebraic group over K with a type C root system. Fix T" C B a maximal torus and a Borel subgroup.
For our examples, we will take G = Sp(2n,K), T the diagonal matrices in G and B the upper triangular
matrices in G. With these choices, the only parabolic subgroup that verifies the hypothesis is

P = {<%’%) € Sp(2n,K) | A,B,C € M(n,K)}

We will make use of the following realization of the root system in R™

® = {£e; £ej | i # j}U{H2e}

where e1, ..., e, is the canonical base of R™. As a (ordered) base of such root system we choose the
set A =(e1 —ea,...,en—1 — €p,2€,).

If we label the roots of A as (aq,...,an—1,q,) the longest root is 2a1 + 22 + -+ + 25, —1 + Q. It
follows that

U = {ei + ej}1§i<j§n @] {261'}19'571
As before we have that if u,(t) is the one-parameter subgroup of «, then
Ua(t).xp = 25 + atrgia + bt2Ts1 20

for some a,b € F and a =0 if and only if 8+ a ¢ ® or both S+« € ® and 8 — « € ®. Note that in both
cases b = 0, too.
Moreover, note that if 5 is long and « is short and there is vy € @; with a4+ = 3, then also a—~ € ®.
In fact, so(a+7v) = a+v—(a,a+7)a and (o, a+v) = 2,50 7 —a = s4(B) € ®. This implies («,y) = 0.
In our example, the algebra p* is the set

pY = {< 8 1\04 ) esp(Qn,KHMeM(n,K)}

M
It is easy to see that (%’T) € sp(2n,K) if and ounly if M is symmetric with respect to the anti-

diagonal, that is M; ; = My,_j41 n—i+1. For this reason, we will represent the matrix M with only the
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upper-left entries in the following way (here is n=5)

[enl Bl Ran)

1
0
1
1

=
|
‘r—r—r—or—

Every root space is generated by an element with 0 € K in every square but one, e.g.

0/1/0]0]0
0/0/0]0
M=]0/0]0
00
0]

In particular, if we number the row and the column starting from the upper right vertex

1
0

SOOI

(el Renl Nen) JUV]

O OO

‘OOOOOOT
T W N~

then the root space whose generator has a 1 € K in row ¢ and column j with respect to this numbering is
relative to the root e; + e; while if the 1 is in position (7,4) it corresponds to the root 2e;. For simplicity,
from now on an empty square will mean a square with the zero element of K while a e will mean every
element different from the zero element. The previous matrix will then become

Note that this notation shouldn’t generate ambiguity because in our examples the roots will be linearly
independent, so the B-orbit will not depend on the specific values of e.

Given that there are one to one correspondences between roots in ¥, root spaces in p* and generators
of root spaces up to multiplication by scalars, we will often denote a root with the correspondent diagram,
for example if M is the diagram above, then M = e; + e4.

A first result that we can prove thanks to the realization is the next one.

Proposition 6.1. Let S C U be a subset of short roots. Then for every b € B the support Supp(b.eg)
contains only short roots.

Proof. Note that if S = {f1,...,8n}, then Supp(b.es) C |J;_, Supp(b.es,). It follows that we can suppose
that S = {f} and § =e; +e; with ¢ < j.

We can write b = tzq, - o, Witht € T and x4, € U,,. Note that the action of ¢ doesn’t change the
support, so we can suppose t = Id. We will prove the claim by induction on n.

Suppose n = 1, then b = uq(t). But now 8 + « is a long root if and only if @ = e; — ¢; and
B —a=2e; €D, s0b.esg=ep by LemmaBIl Now suppose n > 1 and consider V' = zq, - - Zq, . By
induction we have that Supp(d'.eg) contains no long root and for every (short) root 5’ € Supp(b'.eg) we
have that Supp(z,,.eg) contains no long root. It follows that Supp(b.es) contains only short roots as
well. O
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For every short root a = e; +e; € ¥ there are only two long roots in ¥ that are not orthogonal with
o, namely 2e; and 2e;. Of them, one is bigger and one is smaller than . We will denote the former with
s(«). In the cases where « is long we will define s(a) = a.

Now, fix an element v € WF. We will now define a family of representatives for the B,-orbits on p,.

Definition 6.2. Let ®*(v) = {a € ¥ | v(a) < 0} and S C ®*(v). Then S is admissible (for v) if S can
be partitioned as X (S) U Z(S) where:

(i) X(S) is orthogonal;

(ii) every element of Z(S) is a long root B and for every 8 € Z(S) exists a o in X(S) and v € &}
verifying 8 = a + 7. This element is unique, so define p(8) = «;

It is quite clear that the partition S = X (S)UZ(S) must be unique. For, X (S) = S;U{B € S; | B and S are orthogo
Moreover, if 8 € Z(5), the element p(3) must be unique because if «, v are both short roots that are not
orthogonal to § it must be («, ) # 0.

Now, fix a root o € W. With the notation above, the roots smaller than « are on the lower left
(symbol -) while the roots that are bigger are on the upper right (symbol o).

o|O|O ‘

® | O

To keep the diagrams simple, we will always make our examples by fixing v = w” the longest element in
wr.
Now analyse the following diagrams

X 21| X
Xa| |2, Xa| |2,
al) a2)

X1 Zl ‘ Xl
X2 X2
b1) b2)

where we denoted with X; the roots that are in X (S) and with Z; the roots in Z(S). It is easy to see
that they are all admissible. Moreover al) and a2) generate the same B,-orbit and the same can be said
for b1) and b2). To see this we will show that there is b € By, that sends a2) to al) . Recall that with
our conventions we have:

X1:€1+65 Z1:2€1 X2:€2+64 Z2:262

Then e, —c,(t) acts as the identity on X and sends efx, z,} t0 €{x, z,} + at€e, e, + btec, e, + CtPeae,
for fixed non-zero a,b,c € K*. Now the subgroups u,—.,(s) for i = 2,4 act as the identity on all the
roots except X; and we can use it to delete the components along ec, 1., and e, te,.
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Schematically

>
T~

Ueq—19 (t) Uey—15 (8)7'“9.2765 (T)
SR

For b1) and b2) the reasoning is similar. It follows that to get the uniqueness we need to be stricter.

Definition 6.3. Let S = X(5) U Z(S) be admissible for v. Then S is full admissible if the following is
true:

for every 8 € S long and v € S short with s(vy) € ®*(v) and s(vy) > 3 either s(y) € Z(S) or 8 € Z(S)
and p(B) < 7.

Now it is easy to see that al) and b1) verify Definition [6.3] while a2) and b2) don’t. Moreover, we can
complete an admissible set S to a full admissible one by adding all the long roots of the form 8 = s(«) for
a € S, for which there is v € S; with v < 8 and either v € X(5) or p(y) £ a. Actually, that is exactly
how we can obtain, respectively, al) from a2) and b1) from b2). In fact, the example above which can be
easily extended to generic admissible sets shows us the following:

Lemma 6.4. Let S be admissible for v and S its full admissible completion. Then Byeg = Byeg.

Now, if S = X U Z is full admissible we will say that a root 8 € Z is essential if S\ {8} is still full
admissible. From the construction above it is easy to see that if 8 is not essential then S\ {£} is still
admissible and the elements eg and eg\ (5} are in the same orbit. In fact, in this case S is the completion
of S\ {8} in the sense above.

Moreover, note that if 5 € S is essential in S and 8 < a € ¥, then S is essential also in S N
{yev|y<al

Now suppose S admissible. The following easy lemma will be useful later.

Lemma 6.5. Let S be admissible for v and 8 € ®*(v) maximal. Then the elements of S U {B} are
linearly independent in ® @ R.

Proof. For every 3; € Z(S) there is ; € ® such that p(3;) +7; = ;. Then S is linearly independent if
and only if S = (S\ U{B:}) UU{r:} is linearly independent. But this is clear because the elements of
S’ are all pairwise orthogonal.

Now, if 5 = 2e; is long the claim is clear because at most a root in S is not orthogonal to 8. Suppose
now 3 = e; +e; with ¢ < j. Note that 2e; > S, so 2e; ¢ S. It follows that there are at most three roots
in S which are not orthogonal to 5. They must be of the form e; + e, ej + e and 2e; and it is clear that
these are independent. [l

The following lemma is the key to prove that the full admissible pairs parametrize the orbits. It
basically gives us an algorithm to obtain an admissible representative of an orbit. Then, we saw above
that we can complete it to a full admissible representative for the same orbit. Note that if R C ® and
a € ¢ we will write R > o meaning that 8 > « for every g € R.

Lemma 6.6. Suppose 3 € ®T(v) and S admissible such that for every a € S, 8 ¢ a.. Moreover, suppose
that S U{B} is not admissible . Then there is u € By, such that

Supp(uesuqsy —es) > B

Proof. Note that if v € Supp(x) is minimal, then v € Supp(ux) for every u € By,. It follows that the
thesis is equivalent to proving the existence of u € By, such that

Supp(ues — esugpy) > B
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to see this, simply apply u~! € By.

Now put X = X(S), Z = Z(S) and S’ = SU {8} . It must be X U {S} not orthogonal or S’ would
be admissible with partitions X (S") = X U{8} and Z(S’) = Z. Similarly 8 must be short or X(S') = X
and Z(S') = Z U {B} would be an admissible partition for S’. Then there exists v € ®}, and o € X such
that 8 = a+ . Note that o/ + v ¢ ® for every o/ € X \ {a}.

If « ¢ p(Z), then u,(t).es = es +ateg + bt*eg1~ for some constant a € K* and b € K. It follows that
there is t € K* for which

Supp(u(t).es — esuipy) > B

If there is 6 € Z with o = p(d), we can have u,(t).e5 # es if v+ ¢ € ®. But then the support of
u(t).e5 is {9,6 + 7,0 +2v} and both f =a+v < d+ and 5 < § + 2, so we can still find ¢ € K* such
that u,(t).es as the same properties as before. O

Theorem 6.7. Every orbit O contains an element of the form es where S is admissible.

Proof. Take an element z € 0. We can assume without loss of generality that S = Supp(z) C &1 (v). If
S is admissible, there is an element ¢ in the torus 7" such that t.x = eg, so the claim is proved. Suppose
S not admissible and define an ascending chain in S

S = min(S)
Sz'+1 = Sz U mln(S \ SZ)

Put z =) g aata-

Given that S; is orthogonal, there must be an iy such that S; is admissible for every i < ig but
Sio+1 is not. Note that at most one long root can be in (S;,+1 \ Si,) because the long roots are always
comparable. So, if S = {8 € (Siy+1 \ Siy) | (Si, U{B}) is admissible} then S;, US is also admissible. We
may then suppose that S = &. Given that S;, is admissible, we can suppose (by acting with the torus
T) that a, =1 for every a € §;,.

Now if 8 € (Siy+1 \ Siy) we know by Lemma that there is u € By such that u.eg, sy differs
from eg, by elements in root spaces relative to roots greater then f3.

Then u.x is such that S;(u.xz) = S;(x) for every j < ip, but 8 does not appear in Supp(u.z). Moreover,
every root in Supp(u.z) \ Supp(z) is greater than 8. By induction we obtain the thesis. O

We have an easy corollary that comes directly from the proof of Theorem [6.7] and will be useful later.

Corollary 6.8. Let O be a B,-orbit and x € O. Suppose S C Supp(z) admissible such that for every
a € (Supp(z) \ S) and for every v € S we have o & . Then, if § € min (Supp(z) \ S) and S U{B} is
admissible there is T 2 S U {8} admissible such that O = Byer.

Proof. 1t is sufficient to apply the proof of Theorem[6.7]to x. For, if R = Supp(x) we have that S C R; for
some j and given that (S U {f}) is admissible there is 2’ € O with (SU{5}) C S;+1(2’) admissible. O

Even in characteristic 2 is well defined a P-equivariant map
exp: p* — P"

Recall that B, = By, x U,, hence if x # y € O we have Bvexp(x)v™'B = Bvexp(y)v~ !B and that if
S = Supp(w) is orthogonal, then Bvexp(x)v™ !B = Bvosv™'B where 05 = [],.q Sa is the involution
related to S.

Consider S = X UZ admissible and recall that for every element o € S there is at most another g € S
such that (a, 8) # 0. In this case, we can suppose a < § and we have a« € X, 8 € Z. Denote v = § — «.
We have sq(a+7) =7 —a € =@ (v) and sqa44(a) = —y € 5. Note that this follows only from the
relative length of the roots involved, so it is true even in type B.

aes

Lemma 6.9. Fiz an orbit O = Byeg where S = X U Z is admissible for v. Then,

Buexp(es)v ' B = Bvoxv™'B = Bo,(x)B
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Proof. We have Bvexp(es)v™ !B = Bvexp(ez)exp(ex)v tB. By hypothesis, v(S) < 0 so both v(—X)
and v(—Z) are in B. Recall that we can chose x, such that
exp(—Z—_q) exXp(Ta) eXp(—T_a) = Sa

where s, is a representative in the normalizer Ng(T') for the reflection relative to «. The sets X and Z
are orthogonal (relatively to themselves), so we can write:

Bvexp(ez)explex)v B = Buszexp(e_z)exp(e_x)sxv ' B
Note that the terms exp(e_z) and exp(e_x) commute so

Buszexp(e_z)exp(e_x)sxv 'B = Busgexp(e_x)exp(e_z)sxv 'B
= Buexp(e_s,(x))Sz5x exple_s, (7))v ' B
Note now that —vsz(X) > 0 because an element of X is either fixed by sz or mapped in ®5 by the
discussion above and —vsx(Z) < 0 because every element in Z is mapped in —®*(v). We have
Buvexp(e_s,(x))5z5x exp(e_sX(Z))vle = Bvszsx exp(esX(Z))sSX(Z)vle
= Busy exp(ez)sXsSX(Z)vle
= Bv exp(e,z)sstsSX(z)v_lB =

= BstsXssX(Z)vle
because —v(Z) > 0. The claim follows from szsxs,, (z) = sz5x(sx5z5x) = 5x. O

It follows from Corollary that if Byes = Byer with S and T admissible then X (S) = X(T). To
prove the last part of the classification we will need the following technical lemma.

Lemma 6.10. Let S C ®T(v) be admissible and e; + €j,2e; € T (v) \ S such that
1. 5 < 2e;
2. SU{2e;,e; +e;} is admissible and 2e; is essential.

Suppose that there is b € B, such that S U {2e;} € Supp(b.es). Then there is o € Supp(b.es) \ S such
that o < 2e; and o % e; + e;.

Proof. Write 8 = 2e;, p(8) =e; +¢; and T = SU{e; +¢;}.
Consider the set
K ={be B, | SU{2e} € Supp(b.es)}

which by assumption is non-empty. Given that T U {3} is admissible, 8 must be orthogonal to S, so
S U {B} must be admissible, too. By Corollary and Lemma for every b € K there must be a
minimal root ap € Supp(beg) such that S|J{as} is not admissible and ap < 5.

Then the claim is equivalent to saying that

K'={beK|a>erej} =0

Suppose by contradiction that K’ # @& and fix by € K’ such that «yp, is maximal among the «; for
b € K'. Finally, denote for simplicity oo = .

Note that « # e; + e; because S U {e; + ¢;} is admissible. Then o = e; + e, with j > k > i. The
situation can be represented with the following diagram.

p(B) | « 5]
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where the elements in S are not drawn, but we know they can’t be on the upper row. There must be
7 € X(5) that is not orthogonal to a.. More precisely, there is v € @JIS such that o = 7 4+ v. We will sign
with a % the possible positions of T

p(B) | a B |
*
* * *

We claim that the one-parameter subgroup u.(t) acts as the identity on eg\(r}. This is clear if
s(1) ¢ Z(S), so suppose s(7) € Z(S). It must be s(7) = 2ex and 7 = ey, + e;, with h > j because 2e; is
essential inS U {2e¢;, e; + ¢;} and that’s the only way to have 7 < e; + ¢;. Then v = e; — ¢}, and is again
the identity on ege,. In our diagram this means that if s(7) € Z(S) then we cannot be in the following

situation
p(3) | «a 5]
T | s(7)

because then § wouldn’t be essential.

Note that given how we defined «, every root in Supp(bg.es) that is smaller than g is either greater
than «, « itself or in S, so u,(t) must act as the identity on every such root different from 7. Hence,
there is ¢ € K* such that 2e; € Supp(u(t)b.es) and S C Supp(u~(t)bo.es), so b’ = u,(t)by € K. But
ap > o and that’s absurd because o = g was maximal. O

Theorem 6.11. Let S, T C ®+(v) be full admissible. Then
Byes = Byer if and only if S =T

Proof. Consider b € B,, such that besg = er. By Lemma [6.9] it must be X (S) = X (T)).

Suppose by contradiction that Z(T) # Z(S) and consider g € Z(T) \ Z(S) such that if Mg =
{a € U | a< B}, then SN Mg =TnN Mg = M. The existence of such a root is assured without loss of
generality by switching S and T if needed.

Now, (3 is long, so it must be of the form S = 2e; and if p(8) = e; +¢; € X(T), then e; + ¢; € X(S5)
also. Moreover, 8 must be essential. Denote M’ = M \ {e; +e;}. Then 2e; € Supp(benr) and 2e; ¢
Supp(bee, +¢,;) by Lemma It follows by Lemma that there is @ € Supp(ber) \ M such that
a < B and a # e; + ej. From this we obtain that o € Supp (bes) and this gives a contradiction because
a¢ M. O

7 The dimension of the B, -orbits

We want to calculate the dimension of a B,-orbit in p,, or equivalently B-orbits in G/L.
We need the equivalent of Lemma for the type B case.

Lemma 7.1. Let G be a connected, reductive, linear algebraic group with root system ® of type B.
Suppose S € H, and 3 € ®(v) mazimal, B ¢ S. Then S U{B} is linearly independent.

Proof. We know that S is either a single root, two orthogonal roots or of the type {ag, g +~v}. In the
first case, there is nothing to prove. Suppose now S = {a, oﬂ-}. Then at = a + 2 for some v € ®*(v),
S0 suppose we have an equation

B=asa+ag (@ +27)=a+2a,17y

where we used the fact that the coefficient with respect to ap is 1 both for § and for a and it is 0 for .
This implies 8 = a® or B = a4+ v = o and that’s absurd.
If S = {ap, a9 + v} a similar reasoning brings to § = ag + 7. O
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In the next couple of paragraphs, we drop the hypothesis that the field K has characteristic 2.

Definition 7.2. For every v € W¥ let U = {S?}, be a family of subsets 5P C ®*(v) that parametrizes
the B,-orbits in p* through the map S} +— B,esy. Let S be the family of these parametrizations. We
know that S parametrizes the B-orbits in G/L.

We will say that S is a good parametrization if:

1. for every u < v the map
SY — S
SY — SY N @1 (u)
is well-defined;
2. B maximal in ®*(v) implies S” U {3} independent for every SV € SY;

3. Byegsygsy = Byesv implies that there is b € By, such that
Supp(besw — egeusy) > B

Lemma 7.3. The following are good parametrizations:
1. the parametrization for the type B-case given in [5.1;
2. the parametrization for the type C-case given in [L1;
3. the parametrization for the non-characteristic-2 cases given in [3]
We can now prove the dimension formula.

Theorem 7.4. Let S be a good parametrization and, with the notation above, fit v € WF and S € SV.
Then, the dimension of Bvxg is

dim Bvzg = #V + #Y (v, S)
where Y (v, S) = {8 € ®*(v) | 3b € By, such that Supp(besys) — es) > B}.

Proof. We will show the claim by induction on I(v). If i(v) = 0, then Y = @ and Bvzg = BL/L =
B/By, & p,, so the formula holds.

Now suppose [(v) > 0 and « € A such that s,v < v. Denote 8 = v~1(—a). Then P, = Bs, U BU_,,
S0

Pvxg = Bsavzs\{ﬁ} U BU_jvzg

= Bsavxg\ (53 U U Buug(t)zs
tek
= Bsavrg\ (53 U Bvrs U U Buug(t)rs
teK*
= Bsavzs\{g} L B’UJSSU{I(;} L BUZ'S\{B}

where we used the fact that 8 ¢ ®*(s,v) and that S U {3} is independent.

The B-orbit Bs,vrg\ (s} can’t be the open one because if Bs,vrg\(sp 2 Bvrs then it follows
Bs,vP O BvP and that’s impossible because s,v < v.

We show at first that g € Y(v,S) if and only if Bvas = Bvxgyggy. It is clear that if we take the
element b € By, for which Supp(besu(sy — es) > 3, then Supp(besu(sy —es) € ¥\ ®F(v) which means
that Byes = Byegu(sy and that’s the same as Bvrg = Bvagy(sy. On the other hand by B in definition
[C2 we have Bvrs = Bvrsu(gy = Byes = Byegupy = B € Y (v,5).

It follows that, if 5 € Y (v, S) then Bvxg is the open orbit and

dim Bsavxsy {5y = dim Bvzrg — 1
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By inductive hypothesis dim Bs,vz s\ 5y = #V+#Y (540, S). We conclude by noting that Y (sav, S) =

Y (v, S)\ {8}
If instead S ¢ Y (v, S), then Bvexp(eg + teg) # Bvxg and it is the open orbit. It follows

dim Bsavzg\ {5y = dim Bvrg
as before dim Bs,vz g\ gy = #Y + #Y (540, 5), but now Y (s,v,5) = Y (v, 5) and we are done. O

Corollary 7.5.
dim Byeg = # (U \ @*(v)) + #Y (v, S)

Proof. Tt is sufficient to note that #®&* (v) = I(v). O

Now consider the (good) parametrization of [3] in admissible pairs. We have two different ways of
computing the dimension, that is

dim(Bvzg) = #VU + L(UU(S))

and
dim(Bvzg) = #VU + #Y (v, S)

This means that if the characteristic is different from 2 it must be

#Y (v, 5) = L(oys))

It follows that studying how Y (v, S) varies for similar orbits when the characteristic is (or isn’t) 2 should
give us a more explicit formula.

We will study at first the case where the characteristic of the base field K is not 2. Then we will be
able to give another description of Y (v, S) that is more combinatoric

Lemma 7.6. If charK # 2 we have
Y(v,S) = {6 € ®T(v) | B€S orthereis a € S such that B — a € <I>+}

Proof. The containment D is clear whenever 3 € S, while if there is o € S such that 8 —a € ®*, then
B—a € ®f, sous_q(t) C By and there is ¢ € K such that Supp(us—a(t).esuisy — €s) > B. Note that
ug—q(t) fixes all e, with v € S,y # a because of orthogonality.

For the converse, suppose 8 € Y (v, S) but 5 ¢ S and for every o € S either f— « is not a root or it is a
negative root. Then denote with vs € W the smallest element for which 8 is maximal, or, equivalently,
the only element for which § is the maximum of ®*(vg) and put Sg = SN @ (vz). By the fact that
B €Y(v,S) we have b € By, such that Supp(besygsy — es) > B, but By, C B,, so By,es, = Byses,u(8)
and that’s a contradiction because /3 is orthogonal to all a € Sg. O

We saw that when the root system is of type B, the set of orbit is small enough to make viable a case
by case analysisis. Concordantly, it is possible to have a similar analysis for the dimension of the orbits.

Corollary 7.7 (Dimension formula for type B). If char(K) = 2 and the root system is of type B then
dim(Bvzg) = #V + H (v, S)
where

L(oy(s)) if S is orthogonal and S # {ap}
H(v,5) =13 L(oys,,)) — #{aw <a<v} if S ={a0,7}
L(Uv(sao)) - # {a € q)Jr(v) | ap < Oé} ZfS = {050}

We also have a similar result for the orbits in type C.

Theorem 7.8 (Dimension formula for type C). Fiz v € W¥ and S full admissible for v. Then:

dim(Bst) = #U 4+ L(Uu(X(S))) — #S + #Z(S)
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Proof. We can then apply theorem [.4] to get
dim(Bvzg) = #VU + #Y (v, S)
We want to give another description on Y (v, S). We claim that
Y (v,9)={B€®"(v)|B €S or S is short and there is & € X(S) such that 8 —a € T}

The containment D is clear if § € S, so suppose § short and « € X(S) such that v = 8 — « is a positive
root. Note that ug_q(t) fixes all e, with v € X(5),v # « because of orthogonality and if s(«) € S than
Supp(ug—a(t).es(a) — €s(a)) > B. Then there is ¢ € K such that Supp(ug_o(t).esuqsy —es) > B.

On the other hand suppose 8 € Y (v,S), and suppose at first by contradiction that 8 ¢ S, 3 long.
Then, S being full admissible SU{S} is admissible and its full admissible completion represent a different
orbit, so 8 ¢ Y (v, 5).

Suppose instead 8 short and for every a € X(S) either § — « is not a root or it is a negative root.
Then for every a € X(S) either (o, 3) = 0 or 8 < a. So, consider vg € W7 the element such that
the unique maximal root in ®*(vg) is 8. By the fact that § € Y (v,S) we have b € By, such that
Supp(beguipy —es) > B, but b € B,, so By,es = By,esuqsy and that’s a contradiction because f is
orthogonal to all & € X (S) N ®* (vg).

We now recall that, by lemma [.0]

L(oyx(sy)) = # {6 € ®T(v) | B € S or thereis a € S such that 8 — a € <I>+}

It follows that in this case #Y (v, S) is exactly L(oy,(x(s)y)) minus the number of long roots 3 ¢ S such
that there is « € S and 8 — a € ®T. This is exactly the number of short roots « in S for which s(a) ¢ S
or alternatively, the number of all short roots in S minus the number of roots in Z(.5). O
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