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Abstract

We present an improved approach for generating a set of optimized frontier orbitals
(HOMO and LUMO) that minimizes the energy of one double configuration. We
further benchmark the effect of including such a double within a CIS or TD-DFT
configuration interaction Hamiltonian for a set of test cases. We find that, although
we cannot achieve quantitative accuracy, the algorithm is quite robust and routinely
delivers an enormous qualitative improvement to standard single-reference electronic

structure calculations.

1 Introduction

The need for accurate and computationally inexpensive potential energy surfaces has led to
the development of a host of electronic structure methods over the last century. In general,
accounting for both static and dynamic correlation requires a careful analysis and a delicate
methodology as these effects which add together (in one sense) cannot be disentangled™™ (in

another sense). On the one hand, for chemical processes that involve bond making/breaking,
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electronic or energy transfer, static correlation is crucial, as one will strongly mix the ground
with a few excited states; the true eigenstates of the Hamiltonian will be combinations of a
few nearly degenerate determinants. On the other hand, dynamical correlation describes the
weak mixing of one electronic state with many other electronic states; one usually imagines
the MP2 energy® as a conventional method to recover dynamical correlation correction.
Nowadays, for the most part, if one wishes to account for dynamic correlation, the most
common (inexpensive) approach is to use DFT/TDDFT. The successes of DFT are almost
uncountable®® even if one must always be hesitant about choosing a functional® and overfit-
ting is clearly a problem.® And yet, despite the formal foundation of DFT as an exact theory
(in principle), in practice there is no question that DFT and TD-DFT do not recover static
correlation correctly. For instance, consider the case of conical intersections,” ™ where two or
more electronic states become degenerate. Simulating conical intersections is of great interest

given that they are known to mediate many photochemical processes such as internal con-
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version, charge transfer, and isomerization.'® For conical intersections between the
ground state (Sp) and the first excited state (S7), conventional electronic structure methods
(including Hartree-Fock (HF)/CIS and DFT/TD-DFT) recover the wrong dimensionality
of the seam. More specifically, if a system has N nuclear degrees of freedom, the conical
intersection seam should have dimension N — 2, but HF/CIS and DFT/TD-DFT theory
both predict a seam of dimension N — 1 on account of Brillouin’s theorem.™ In the end,
it is clear that even if we are prepared to use a DFT Hamiltonian as an approximation to
accommodate dynamic correlation, such an ansatz must still be corrected to accommodate
static correlation. In other words, to treat problems with bond-making/breaking, we require
a DFT/TD-DFT ansatz with a more balanced treatment of ground state and excited states.

Now, even if we are prepared to use the DFT Fock operator and the TD-DFT linear
response operator as matrix elements of a large configuration interaction Hamiltonian, there

are many possibilities for including static correlation. For instance, within a wave function

picture, static correlation is most easily treated with multi-reference methods whereby one



optimizes the energy of one many-body state (or a collection of many-body states) by both
diagonalizing a large matrix and optimizing orbitals at the same time. To that end, Gagliardi
et al.*¥19 have proposed multiconfigurational pair-DFT where a reference wave function of
multiconfigurational nature is used for obtaining the static component of the total energy,
which is then combined with the energy from a density functional for the calculation of
the remainder of the total energy (i.e. the dynamic correlation energy). Semiempirical
DFT-MRCI methods were proposed by |Grimme and Waletzke?” and allow calculation of
excited states of large molecules.?! Recently, quite a few methods have been proposed to
rectify the specific failure of DFT/TDDFT““ 50 as to recover static correlation and the
correct topology of a conical intersection, while retaining the fundamental density functional
formulation. For example, Truhlar et al proposed introducing a non-zero coupling between
the DFT ground state and single-excitation TD-DFT response states by artificially using
two different functionals within a DET/TDA calculation ( the so-called DF-TDA and CIC-
TDA“Y methods). Spin flip DFT methods*** that start from a high-spin triplet state as a
reference and produce the ground and excited states using a spin-flip excitation operator have

U3 Through the route presented by

shown strong success in describing conical intersections.
constrained DFT®% one can calculate diabatic representations and excitation energies in
the vicinity of conical intersections.®® Recently, [Mei and YangP* have put forth the QE-
DFT method that calculates excited state energies starting from a system deficient by one
electron. This list is not exhaustive.®*3% In short, there are many approaches today that
seek to achieve a more balanced treatment of static and dynamic correlation effects within
a DFT/TD-DFT framework.

From our perspective, unfortunately, many of the methods above are not ideal for run-
ning nonadiabatic dynamics. In particular, because some of these methods require a pre-
determined set of orbitals in the active space, dynamics using such methods are prone to

user error if the user chooses the wrong set of orbitals (and this error is not corrected until

after a long simulation). Moreover, whenever one chooses a set of active orbitals, there is



no guarantee that one can generate a smooth set of orbitals (and therefore energies) as a
function of nuclear geometry; it is well known that CASSCF potential energy surfaces can
have strange discontinuities.®“” In the end, the ideal merger of DFT theory with static
correlation theory would occur in a black box fashion, such that the user need not choose
orbitals, the relevant potential energy surfaces are smooth (or as smooth as possible), and
the relevant active space should include the standard DFT ground state.

With this goal in mind, recently we introduced the CIS-1D and TDDFT-1D method*’
inspired by the idea of calculating states of double excitation character in linear response
TD-DFT by Maitra et al.*! The CIS-1D method works as a configuration interaction method
whose Hamiltonian has a basis of the following states: the Hartree-Fock (HF') ground state
|1o), the set of singly excited states [¢¢) as in a CIS Hamiltonian, and finally one opti-
mized doubly excited state ‘¢ZE>’ where a pair of electrons are excited from an orbital |h)
to |l). As a matter of notation, throughout this manuscript {i,j,k,...} denote occupied
orbitals, {a,b,c,...} denote virtual orbitals, and {p,q,r,...} denote general orbitals. The

configuration interaction Hamiltonian in CIS-1D is
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Within the Tamm-Dancoff Approximation (TDA),##44 one can construct a configuration
interaction Hamiltonian built on top of a set of Kohn-Sham (KS) reference orbitals in direct
analogy to the CIS methodology. This gives rise to the TDDFT-1D method. For this ansatz,
in Ref. |40, using stilbene as an example, we showed that smooth potential energies can be
obtained along the torsional coordinate along the double bond, especially around the avoided
crossing (where TD-DFT fails). Furthermore, for the conical intersection between the Sy and

S state of the water molecule, TDDFT-1D recovered the correct topology as well.



Despite the aforementioned successes, over the past few months, we have run TD-DFT-
1D and CIS-1D calculations for a host of molecules and found that the algorithm presented
in Ref. |40/ for finding the optimal double excited state does not always converge, and the
results were not necessarily stable. To that end, the objectives of this manuscript are twofold.
First, we will present a new, robust algorithm for calculating the minimum energy doubly
excited state that is nearly guaranteed to converge (and thus isolate the correct optimized
HOMO and LUMO). Second, we will benchmark the CIS-1D/TD-DFT-1D approach on a set
of representative examples where one will quickly be able to assess the relative strengths and
weaknesses of the ansatz. Overall, our finding is that though the method is not quantitatively
accurate, the inclusion of a single double can offer an outstanding, qualitative correction to

single-reference methods like DFT.

2 Theory

The TDDFT-1D method hinges on selecting one doubly excited state to account for electron
correlation. We choose this doubly excited state to be the excitation of a pair of electrons
from the HOMO |h) to the LUMO [I). In doing so we seek the optimal |h) and |l) orbitals,
chosen from the occupied and the virtual space respectively, that minimize the energy for the
double excitation. This doubly excited state is denoted as ’¢ZE>‘ In Ref. [40, the optimized
|h) and |I) orbitals were isolated by self-consistently finding occupied-occupied and virtual-
virtual unitary matrices that independently rotated the occupied and virtual subspaces so as
to minimize the energy of the double excitation F4(= ( Z—Z\H Wff%}) While we won’t repeat
the procedure here, it is important to emphasize that the minimization procedure effectively
used information from the first derivative of the F; (as differentiated with respect to orbital
rotations). Unfortunately, after applying the procedure in Ref. [40] for bigger molecules, we
have found that the method has shortcomings (see Section {4 below). To that end, we will

now present an improved algorithm for computing optimized orbitals which is based on a



Newton-Raphson optimization technique.
The energy of the doubly excited state Fy is a function of the “inactive” (non-frontier)
orbitals as well as the |h) and |l) orbitals. Starting from an HF reference state, it is straight-

forward to show that
Ey= (WL H[WLY = By — 2fun + 2fu + (hh|hh) + (|11 + 2(hl|ik) — 4(hAJI).  (2)

Here, f,, are the elements of the Fock matrix, and terms of the form (pg|rs) stand for
two-electron integrals in the chemist’s notation. FEj is the ground state energy. Within CIS-
1D/TDDFT-1D, the optimized orbitals |h) and |I) are generated from independent rotations
of the orbitals in the occupied and virtual spaces, respectively. We emphasize that such
rotations keep the energy of the ground state unchanged, and so one can effectively consider
E; to be a function of |h) and |I) only. Thus, if the relevant rotation matrices have the form
e® (where © is an anti-symmetric matrix), we must compute only the optimized HOMO

and the LUMO so that the © matrix takes the following simple form:
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For infinitesimally small rotations, the orbitals |h) and |I) after rotation are

) = = 3 ot~ 32 %y (42)

%

D= - bl - 3 ). (40)

Using these so-called “exponential” coordinates, E; (which is now a function of ’iz> and
)l~ >) can be written as a function of {6,,} and {6, }. We will now apply the Newton-Raphson
optimization as a function of the variables {{6;,}, {0u}}. According to such an approach, we
will take steps in © that are informed from the gradient and Hessian of E;. These quantities

are given by
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000, 4(iallh) + 4(il|ah) — 16(ih|al). (5e)

We may now summarize our algorithm for computing the optimized frontier molecular

orbitals:

1. Solve the self-consistent field equations to obtain the cannonical HF molecular orbital

(MO) coefficient matrix C.

O0E4
90;in
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2. Calculate the gradient vector g = and the Hessian H.




0;
3. Solve for 6;, and 6, using the equation H# = —g. Here 0 = "
eal

4. Construct the ® matrix as described in eq 3]
5. Obtain the new MO coefficients C = Ce®.

6. If |é — CJ is below a threshold then the optimization has converged. Else go to setp 2
with C = C.

Note that, for the algorithm above, the Hessian is only of size N — 2, where NN is the size of
the atomic basis. For the most part, inversion of H carries minimal cost.

Extending the method above to work with TDDFT-1D is also straightforward. One works
with the KS orbitals as if they were real orbitals and one defines a key double excitation
of the KS ground state wave function from the HOMO to the LUMO. The energy of this

doubly excited state is

Eq=Elpd =2 hi+2) " (iiljj) — cur(ijlji) + (1 = cur)Exclpd) (6)
i ij
The electron density obtained by exciting a pair of electrons from orbital |h) to |I) is denoted
by pq. hi; refers to the one-electron interaction terms. The summation in the expression is
primed to indicate that the summation is over the orbitals 1,2,...,h — 1,1 (orbital |h) is
omitted and [I) is included). For a hybrid xc functional ¢y is the factor of the Hartree-Fock
exchange. F,.[p] is the xc energy functional for a given density p. Just as for the CIS-1D
case, in order to find the optimized doubly excited state we rotate the KS orbitals using a
rotation operator of the form e®. As compared with the expressions for the gradient and

Hessian above (Eq. , besides the factor of cyp, the gradient and Hessian have the following



additional terms from differentiating the xc functional:

OF,| aEm
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3 Results

We have implemented the schemes above so as to apply the CIS-1D and the TDDFT-1D

formalisms to reasonably sized molecules. We will now discuss our findings.

3.1 PYCM

Our first example is the molecule 2-(4-(propan-2-ylidene)- cyclohexylidene)malononitril), or
PYCM. PYCM is a donor-acceptor molecule that possesses two low-lying excited states,
one of which is of charge transfer (CT) character and the other one has local excitation
character.¥ Its photoemission spectrum indicates that the CT state fluoresces whereas the
non-CT state undergoes a radiationless decay. The twisting of the double bond between the
cyclohexane ring and the cyano groups purportedly gives rise to an avoided crossing between
the S; and S5 states, which mediates photochemical processes. Previous work has analyzed
the S5/S; crossing at angles ~ 40°% but has not directly addressed a potential crossing at
90° when the molecule fully distorts (and the double bond breaks). Presumably, one can
expect that twisting PYCM should behave something like twisting ethylene.

In Fig. [1} we present the potential energy curves of PYCM starting from its ground state
minimum geometry and following along the torsional angle of the double bond. We evaluate
the performance of the TDDFT-1D/B3LYP method against that of the TDA/B3LYP using
a basis set of 6-31G*. For the TDDFT-1D calculation, the key doubly excited state is easily
found using the algorithm described above in Sec. [2} convergence details will be provided in

Sec. ] below. The TDDFT-1D calculation yields smooth curves that will allow nonadiabatic



simulations of the photodynamics of this molecule (with at least qualitative accuracy, on par
with usual TD-DFT excited-state calculations).

Lastly, in Fig. [1, we also plot the dipole moments of the individual excited states. Here,
one can learn a great deal about the nature of photo-chemistry for the present system. Note
that there is a true crossing between Sy and S;—the dipole moments of these states switch
character around 62°. However, there is no such crossing between the dipole moments of S;
and Sy. Moreover, although not plotted here, we find that a variety of diabatization schemes
(including Boys,*® etc.) do not predict a meaningful diabatic crossing according to this
degree of freedom—which has clear consequences for nonadiabatic dynamics. Presumably, as
for the case of ethylene,” there will be a conical intersection between Sy and S; at some

distorted geometry, but we cannot yet isolate such a geometry without gradients.
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Figure 1: Potential energy curves for the PYCM molecule (left) and diploe moments |u|
(right) along the torsional angle 7. On the left, the Sy, S, S2, S3 energies for TDDFT-1D
B3LYP/6-31G* are plotted using solid lines in red, green, blue and black respectively. The
dashed lines represent the energies for the same states calculated using B3LYP/TDA. The
dipole moments of the TDDFT-1D states S; and Sy cross around 62°. The torsional angle
T is represented in the inset in the plot on the right. Note that there is no avoided crossing
between Sy — S; states at 90° according to an analysis of their dipole moments.
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3.2 Thiophene

Our next example is the thiophene molecule whose oligomers have drawn attention as mate-
rials useful for energy conversion technology.*®®Y The photo-decay for a standard thiophene
molecule is dominated by internal conversion through a conical intersection, whereas higher
chain oligothiophenes show a significant rate of intersystem crossing (ISC).”! The photo-
deactivation pathway for bithiophene (occurring through ISC as well as through Sy/S; con-
ical intersection) was investigated in Ref [51] using EOM-CCSD. Here we investigate the
potential energy curves of bithiophene using the TDDFT-1D method. For this molecule,
an optimized ground state geometry at the B3LYP/6-311G** level was reported in Ref. [51l
Furthermore, there are two S; minimum structures at the CASSCF/6-31G* level, S;-min-a
and S;-min-b, which are closed- and open-ring structures respectively. There are some low-
lying conical intersection geometries between Sy and S; identified at the CASSCEF level in
Ref. 511

In Fig. potential energy curves are plotted along a linear interpolation coordinate
starting from the Sy minimum structure to the S;-min-a, and continuing on to the open ring
S1-min-b. In Fig. , we plot data for DFT/TDA and in [3p we plot data for TD-DFT-1D.
The vertical excitation energies to S; at the Franck Condon point for the BSLYP/TDA,
TDDFT-1D and CASPT2 methods are 4.36 eV,4.40 eV, and 4.51 eV®Y respectively. These
energies agree reasonably well with the experimental value of 4.24 eV®? (from an absorption
spectrum at room temperature for the molecule in the gas phase).

According to Fig. [3} both B3LYP/TDA and TD-DFT-1D predict a Sy/S; crossing as we
interpolate between S;-min-a and S;-min-b. However, for the B3LYP/TDA, this crossing is
unphysical: because we employ a restricted DFT calculation, the S; (TDA) energy drops
below the Sy (DFT) energy around = 1.9, corresponding to a negative excitation energy.
In Fig. , we zoom in on this spurious behavior. Note that for such TD-DFT/DFT crossings,
it is well known that the topology of an Sy/S; crossing is incorrect; the branching plane has

the wrong dimensionality™ (whether or not we use a restricted or unrestricted KS scheme).
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Finally, note that all of these incorrect features are fixed up (at least qualitatively) using the
TDDFT-1D calculation; for the present case, including one double introduces a small S;-S5,
gap and presumably shifts the location of the conical intersection slightly. The TD-DFT-1D

potential energy curves compare reasonably well with the EOM-CCSD surfaces reported in

Ref. 511

Sp-min S1-min-a S1-min-b

Figure 2: The structures of the optimized bithiophene molecule from Ref [51. The Sy mini-
mum geometry is calculated using B3LYP/6-311G** and the two S; minima, S;-min-a and
Si-min-b, are calculated using CASSCF/6-31G*.
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Figure 3: Potential energy curve of the Sy, S; and S states of the bithiophene molecule
along the linear interpolation coordinate ¢ calulated using BSLYP/TDA (left) and TDDFT-
1D (right). Here £ = 0 corresponds to the the Sy minimum geometry, £ = 1 corresponds to
the S;-min-a geometry, and £ = 2 to the S;-min-b geometry.

3.3 LiF

Our last example is the dissociation curve of the LiF molecule, for which restricted Hartree-
Fock (RHF) solution is known to be inadequate as far as dissociating into neutral Li and F

fragments is concerned. The ground state RHF curve leaves the Li and F atoms in a closed
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Figure 4: A zoom in on the Sy/S; potential energy curves plotted in Fig The B3LYP/TDA
calculation (left) predicts a spurious crossing of the Sy/S states. This behavior is corrected
in the TDDFT-1D calculation, and a small gap is introduced between the Sy and S; states.

shell state with some ionic character; this state becomes degenerate with the first excited
CIS state as LiF dissociates. Although LiF is reasonably small, LiF represents a difficult
case for CIS-1D/TD-DFT-1D calculations because, at long distances, the true ground state
is very different from the RHF solution; dissociating LiF is not like twisting the double bond
of PYCM, whereby the doubles correction is important only at various intermediate angles
(close to 90°).

In Fig. [Bh, we plot RHF vs CIS-1D potential energy curves. We find that, by including
one double only, the CIS-1D method is able to substantially correct for the static correlation
errors and dissociate the molecule. We plot the ground state Sy and first excited state S; en-
ergy curves. Admittedly, the CIS-1D ground state curve is not completely size-consistent;*”
the Sy curve does not reach the sum of the individual Li and F energies (here, energy 0)
when the molecule dissociates. Nevertheless, qualitatively, the behavior of the Sy and S
states is correct and far improved over RHF. Although not plotted here, note that while the
spin contaminated unrestricted Hartree-Fock (UHF) solution does recover the correct zero

energy dissociation limit (i.e. the method is size-consistent), as is well known, the UHF 5

curve shows a kink®® at the point where RHF and UHF solutions diverge. Furthermore,
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Figure 5: Potential energy curves of the lowest two singlet states for the dissociation of LiF
molecule calculated using (a) RHF/CIS and CIS-1D, (b) B3LYP/TDA and TDDFT-1D, (c)
wB97X/TDA and TDDFT-1D, and (d) SA(2)-CASSCF(2,2) and SA(2)-CASSCF(6,6). All
the calculations were performed using the 6-31G* basis set.
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UCIS energies computed on top of a UHF reference are wildly discontinuous. By contrast,
the CIS-1D solution is spin-pure, smoother, and at least qualitatively correct.

Next, in Fig. [pp, a calculation of BBLYP/TDDFT-1D is compared with that of BSLYP/TDA.
The restricted KS method is unable to dissociate the molecule correctly and actually shows
an unphysical crossing with the TDA state around 4.3 A. By contrast, according to TDDFT-
1D, the ground state Sy and excited state S; solutions are well separated. Note, however,
that when we employ the B3LYP ground state reference, TD-DFT-1D predicts (incorrectly)
an artificial barrier in the dissociation curve. One must wonder whether such an artifact
arises from the familiar problem of DFT self-interaction error,”® which can severely limit
the ability of standard DFT to dissociate bonds. To test such a hypothesis, in Fig. [k, we
plot potential energy surfaces using the wB97X®” functional, which is a long-range corrected
functional with minimal self-interaction energy (at least at long range). Note that, if we use
a range-corrected restricted KS wave function, the Sy curve becomes flat as the molecule
dissociates and yields the correct physics (at least qualitatively). Clearly, the take-home
message is that including one double can capture a good amount of correlation and fix many
problems in DFT but at the same time, one is still strongly limited by the choice of an
approximate exchange-correlation functional.

Lastly, let us address the nature of the CIS-1D solution and its relationship to more es-
tablished multi-reference methods. CIS-1D does not optimize the ground state orbitals, but
rather builds a configuration interaction Hamiltonian by including all single excitations and
one (optimized) double excitation. A more standard approach is to optimize the orbitals for
an active space in a self-consistent manner, i.e. CASSCF. One might wonder how CIS-1D
compares with CASSCF method. In Fig. pd, we plot the results for SA(2)-CASSCF(2,2) and
SA(2)-CASSCF(6,6) methods performed using OpenMolcas.”® In the (2e,20) active space no
symmetry was considered. For the (6e,60) calculation the Cs, symmetry was enforced and
the active space had 2 orbitals each of symmetry species aq, b, and by. We find that SA-

CASSCF(2,2) produces potential energy surfaces with strange discontinuities. In the calcula-
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tion with larger active space the correct physics is recovered qualitatively but discontinuities
still exist. As far as energetics are concerned, high-level quantum chemical calculations®? as
well as experiments® show that the bond dissociation energy is about 6.0 eV, which is clearly
underestimated by all calculations. Admittedly our calculations were not at the complete

basis set limit.
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Figure 6: (a)CIS-1D Energy F and (b) dipole moments for the lowest two adiabatic states
(the Sy and S states) and diabatic states for LiF. In (c) the dipole moment of the lowest
two adabatic states from RHF /CIS calculation is plotted as a function of LiF bond distance.
Note that while the CIS-1D adiabats show a crossing in their dipole moment (indicating
a change in their charge character), the RHF /CIS adiabats do not cross, and predict the
wrong charge character as LiF dissociates.

Finally, one of the biggest advantages of a multireference method is the capacity to

generate diabatic states for Sy/.S; crossings. Since CIS-1D has some multi-reference character
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— e.g., the states produced from CIS-1D (TDDFT-1D) are a linear combinations of the
reference HF (KS) wave function, the CIS (TDA) states, and one doubly excited state — one
would hope that CIS-1D can produce meaningful diabats. After all, the method produces
ground and excited states on a reasonably equal footing. This state of affairs stands in
contrast to any diabatization scheme based on mixing the HF ground state and CIS states.
In the latter case, one expects that all results will be far less meaningful on account of
Brillouin’s theorem such that, e.g., there is no guarantee of smooth diabatic surfaces.

In Fig. @, we plot CIS-1D diabats as produced using the Boys localization method.*°
Applying Boys diabatization to CIS-1D (TDDFT-1D) states is fairly straightforward and
requires only the dipole moment matrix elements, which are calculated explicitly in the
Appendix. In Fig. [6h, we plot the two lowest CIS-1D adiabatic and diabatic energies for the
LiF molecule; in Fig. [6b, we plot the relevant dipole moments in the avoided crossing region.
Clearly, CIS-1D is able to reproduce smooth, qualitatively correct diabatic states. The dipole
moment of the CIS-1D ground state is ionic at equilibrium bond distances but correctly
vanishes as the LiF molecule dissociates into neutral fragments. The CIS-1D diabatic states
have fixed charge character and correctly interpolate between the Sy and S;. Note that the

RHF and CIS dipole moments, plotted in Fig. [6, are (of course) completely invalid.

4 Discussion

The data above has demonstrated that, when converged, TD-DFT-1D can predict a large
qualitative change in practical electronic structure calculations by including one double con-
figuration. Having found such a result, let us now show how convergence can be difficult
and why the present algorithm is necessary. In Fig. we demonstrate that the previous
minimization algorithm (described in Ref. [40)) fails to converge for the PYCM molecule. In
particular, note that Newton-Raphson minimization converges in 8 iterations, while the old

method at first increases in energy and eventually simply oscillates back and forth along the
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incorrect asymptote. We have also found that the algorithm in Ref. [40) can fail to converge to
the correct set of orbitals for certain LiF geometries. In general, by coordinating the occ-occ
and virt-virt rotations through the Hessian H, the Newton-Raphson method is clearly quite

a few steps ahead with regards to the stability of optimization.
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Figure 7: Energy of the doubly excited state E,; at each iteration step of the minimization
process for PYCM molecule at 7 = 40°. The old method of minimization in Ref [40 is unable
to find the optimized frontier orbitals as Fy oscillates around a value that is higher than
that obtained from the initial set of orbitals. In contrast, the new method outlined in this
manuscript finds a solution that converges fairly quickly to the correct minimum.

At this point, the key item remaining is the question of efficiency and computational
time: how expensive is it to construct the orbital Hessian above in Sec. To answer this
question, at the moment it is essential to distinguish between CIS-1D and TD-DFT-1D.
First, we address CIS-1D. For the present implementation, the cost of the algorithm comes
out to be 1.3 s CPU time per iteration (for the case of the PYCM molecule), whereas the
algorithm in Ref. 40/ takes 0.3 s per iteration for the same molecule — but note that the latter
algorithm never converges. Overall, the algorithm from Ref. 40 requires the diagonalization
of two matrices (one of size N, x N,, another of size N, x N,)). By contrast, the present

algorithm requires the inversion of one matrix (of size N x N). Here, N, is the number
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of occupied orbitals, N, is the number of virtual orbitals, and N = N, + N, is the total
basis size. Thus, the present algorithm should be some constant factor more expensive than
the previous algorithm (per iterative step). Note that the present algorithm also requires
computing three sets of density matrix times electron repulsion integrals (so-called J/K
subroutines), whereas the previous algorithm required only one such call. In the end, one
might expect that, per iteration, the present algorithm will be three times as expensive as
the previous approach — though requiring far fewer iterations and also converging in a far
more robust fashion.

Next, we turn to TD-DFT-1D, for which the bottleneck for the minimization algorithm

is the calculation of the matrix elements of the exchange-correlation kernel in the adiabatic

A?E,c

approximation f*(r,r’) = Bp(r)0p(r")

(Eq. . In particular, in order to minimize a doubly
excited configuration in a molecular orbital basis, we require matrix elements of the form
inins Jinarr and fay - Unfortunately, within current computational codes (e.g. Q-Chem™?),
such matrix elements are not readily available and we have currently implemented a painful
(and slow) approach towards calculating these ~ N? matrix elements. Future work will

necessarily need to construct these matrix elements in a timely and efficient fashion in order

for the TD-DFT-1D approach to be fast and competitive. This project is now ongoing.

5 Conclusion

We have shown that Newton-Raphson optimization is stable as far as finding the optimal
doubly excited state for the CIS-1D and the TDDFT-1D method, and these configuration in-
teraction Hamiltonian can successfully recover electronic potential energy surfaces states cor-
responding to bond making/breaking processes. Furthermore, one can use such approaches
to produce meaningful diabatic states through adiabatic-to-diabatic transformations (e.g.
the Boys diabatization method). We have shown that in situations where DFT/TD-DFT

recovers an Sy/S; crossing incorrectly, TDDFT-1D method can recover qualitatively correct
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energy curves. Finally, once the necessary matrix elements of f*¢ are computed efficiently,
the present method should be applicable to quite large molecules and act as an alternative to
spin-flip methods.?*V Lastly, if one can successfully apply the techniques of Ref. [61] for CIS-
1D analytical derivatives®® to the TDDFT-1D method, simulating nonadiabatic chemical

dynamics® within such an ansatz should be in the near horizon.
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A Dipole moments of CIS-1D/TDDFT-1D states

Here, we provide the relevant equations for obtaining dipole moments in a CIS-1D calcula-

tion. A CIS-1D state is a linear combination of its basis states:

["ors-1p) = colgo) + Z i (16f) + 167)) + ca ’ l;f;;> : (9)

Note that the ground state HF wave function is restricted, and the CIS states are singlets.

The dipole moment between two CIS-1D states is then given by
(W1 X |97 = cleg Xo + Z V2(chet! + ¢)e") Xia

+ g et X+ E e Xy — g c?IC?JXij
ia

iab ija

+ Z V2(d el + el Xy + ched (Xo + 22X — 2Xn). (10)

Here X is the ground state dipole moment, and X,, are the elements of the dipole moment

matrix.
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