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Abstract

We present an improved approach for generating a set of optimized frontier orbitals

(HOMO and LUMO) that minimizes the energy of one double configuration. We

further benchmark the effect of including such a double within a CIS or TD-DFT

configuration interaction Hamiltonian for a set of test cases. We find that, although

we cannot achieve quantitative accuracy, the algorithm is quite robust and routinely

delivers an enormous qualitative improvement to standard single-reference electronic

structure calculations.

1 Introduction

The need for accurate and computationally inexpensive potential energy surfaces has led to

the development of a host of electronic structure methods over the last century. In general,

accounting for both static and dynamic correlation requires a careful analysis and a delicate

methodology as these effects which add together (in one sense) cannot be disentangled1–3 (in

another sense). On the one hand, for chemical processes that involve bond making/breaking,
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electronic or energy transfer, static correlation is crucial, as one will strongly mix the ground

with a few excited states; the true eigenstates of the Hamiltonian will be combinations of a

few nearly degenerate determinants. On the other hand, dynamical correlation describes the

weak mixing of one electronic state with many other electronic states; one usually imagines

the MP2 energy4 as a conventional method to recover dynamical correlation correction.

Nowadays, for the most part, if one wishes to account for dynamic correlation, the most

common (inexpensive) approach is to use DFT/TDDFT. The successes of DFT are almost

uncountable5,6 even if one must always be hesitant about choosing a functional7 and overfit-

ting is clearly a problem.8 And yet, despite the formal foundation of DFT as an exact theory

(in principle), in practice there is no question that DFT and TD-DFT do not recover static

correlation correctly. For instance, consider the case of conical intersections,9–11 where two or

more electronic states become degenerate. Simulating conical intersections is of great interest

given that they are known to mediate many photochemical processes such as internal con-

version,12,13 charge transfer,14,15 and isomerization.16 For conical intersections between the

ground state (S0) and the first excited state (S1), conventional electronic structure methods

(including Hartree-Fock (HF)/CIS and DFT/TD-DFT) recover the wrong dimensionality

of the seam. More specifically, if a system has N nuclear degrees of freedom, the conical

intersection seam should have dimension N − 2, but HF/CIS and DFT/TD-DFT theory

both predict a seam of dimension N − 1 on account of Brillouin’s theorem.17 In the end,

it is clear that even if we are prepared to use a DFT Hamiltonian as an approximation to

accommodate dynamic correlation, such an ansatz must still be corrected to accommodate

static correlation. In other words, to treat problems with bond-making/breaking, we require

a DFT/TD-DFT ansatz with a more balanced treatment of ground state and excited states.

Now, even if we are prepared to use the DFT Fock operator and the TD-DFT linear

response operator as matrix elements of a large configuration interaction Hamiltonian, there

are many possibilities for including static correlation. For instance, within a wave function

picture, static correlation is most easily treated with multi-reference methods whereby one
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optimizes the energy of one many-body state (or a collection of many-body states) by both

diagonalizing a large matrix and optimizing orbitals at the same time. To that end, Gagliardi

et al. 18,19 have proposed multiconfigurational pair-DFT where a reference wave function of

multiconfigurational nature is used for obtaining the static component of the total energy,

which is then combined with the energy from a density functional for the calculation of

the remainder of the total energy (i.e. the dynamic correlation energy). Semiempirical

DFT-MRCI methods were proposed by Grimme and Waletzke 20 and allow calculation of

excited states of large molecules.21 Recently, quite a few methods have been proposed to

rectify the specific failure of DFT/TDDFT22–25 so as to recover static correlation and the

correct topology of a conical intersection, while retaining the fundamental density functional

formulation. For example, Truhlar et al proposed introducing a non-zero coupling between

the DFT ground state and single-excitation TD-DFT response states by artificially using

two different functionals within a DFT/TDA calculation ( the so-called DF-TDA26 and CIC-

TDA27 methods). Spin flip DFT methods28,29 that start from a high-spin triplet state as a

reference and produce the ground and excited states using a spin-flip excitation operator have

shown strong success in describing conical intersections.30,31 Through the route presented by

constrained DFT32 one can calculate diabatic representations and excitation energies in

the vicinity of conical intersections.33 Recently, Mei and Yang 34 have put forth the QE-

DFT method that calculates excited state energies starting from a system deficient by one

electron. This list is not exhaustive.35,36 In short, there are many approaches today that

seek to achieve a more balanced treatment of static and dynamic correlation effects within

a DFT/TD-DFT framework.

From our perspective, unfortunately, many of the methods above are not ideal for run-

ning nonadiabatic dynamics. In particular, because some of these methods require a pre-

determined set of orbitals in the active space, dynamics using such methods are prone to

user error if the user chooses the wrong set of orbitals (and this error is not corrected until

after a long simulation). Moreover, whenever one chooses a set of active orbitals, there is
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no guarantee that one can generate a smooth set of orbitals (and therefore energies) as a

function of nuclear geometry; it is well known that CASSCF potential energy surfaces can

have strange discontinuities.37–39 In the end, the ideal merger of DFT theory with static

correlation theory would occur in a black box fashion, such that the user need not choose

orbitals, the relevant potential energy surfaces are smooth (or as smooth as possible), and

the relevant active space should include the standard DFT ground state.

With this goal in mind, recently we introduced the CIS-1D and TDDFT-1D method40

inspired by the idea of calculating states of double excitation character in linear response

TD-DFT by Maitra et al.41 The CIS-1D method works as a configuration interaction method

whose Hamiltonian has a basis of the following states: the Hartree-Fock (HF) ground state

|ψ0〉, the set of singly excited states |ψai 〉 as in a CIS Hamiltonian, and finally one opti-

mized doubly excited state
∣∣∣ψll̄hh̄〉, where a pair of electrons are excited from an orbital |h〉

to |l〉. As a matter of notation, throughout this manuscript {i, j, k, . . .} denote occupied

orbitals, {a, b, c, . . .} denote virtual orbitals, and {p, q, r, . . .} denote general orbitals. The

configuration interaction Hamiltonian in CIS-1D is

H =


εHF 0 〈ψ0|H|ψll̄hh̄〉

0 〈ψai |H|ψbj〉 〈ψai |H|ψll̄hh̄〉

〈ψ0|H|ψll̄hh̄〉 〈ψ
ll̄
hh̄
|H|ψai 〉 〈ψll̄hh̄|H|ψ

ll̄
hh̄
〉

 . (1)

Within the Tamm-Dancoff Approximation (TDA),42,43 one can construct a configuration

interaction Hamiltonian built on top of a set of Kohn-Sham (KS) reference orbitals in direct

analogy to the CIS methodology. This gives rise to the TDDFT-1D method. For this ansatz,

in Ref. 40, using stilbene as an example, we showed that smooth potential energies can be

obtained along the torsional coordinate along the double bond, especially around the avoided

crossing (where TD-DFT fails). Furthermore, for the conical intersection between the S0 and

S1 state of the water molecule, TDDFT-1D recovered the correct topology as well.
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Despite the aforementioned successes, over the past few months, we have run TD-DFT-

1D and CIS-1D calculations for a host of molecules and found that the algorithm presented

in Ref. 40 for finding the optimal double excited state does not always converge, and the

results were not necessarily stable. To that end, the objectives of this manuscript are twofold.

First, we will present a new, robust algorithm for calculating the minimum energy doubly

excited state that is nearly guaranteed to converge (and thus isolate the correct optimized

HOMO and LUMO). Second, we will benchmark the CIS-1D/TD-DFT-1D approach on a set

of representative examples where one will quickly be able to assess the relative strengths and

weaknesses of the ansatz. Overall, our finding is that though the method is not quantitatively

accurate, the inclusion of a single double can offer an outstanding, qualitative correction to

single-reference methods like DFT.

2 Theory

The TDDFT-1D method hinges on selecting one doubly excited state to account for electron

correlation. We choose this doubly excited state to be the excitation of a pair of electrons

from the HOMO |h〉 to the LUMO |l〉. In doing so we seek the optimal |h〉 and |l〉 orbitals,

chosen from the occupied and the virtual space respectively, that minimize the energy for the

double excitation. This doubly excited state is denoted as
∣∣∣ψll̄hh̄〉. In Ref. 40, the optimized

|h〉 and |l〉 orbitals were isolated by self-consistently finding occupied-occupied and virtual-

virtual unitary matrices that independently rotated the occupied and virtual subspaces so as

to minimize the energy of the double excitation Ed(= 〈ψll̄hh̄|H|ψ
ll̄
hh̄
〉). While we won’t repeat

the procedure here, it is important to emphasize that the minimization procedure effectively

used information from the first derivative of the Ed (as differentiated with respect to orbital

rotations). Unfortunately, after applying the procedure in Ref. 40 for bigger molecules, we

have found that the method has shortcomings (see Section 4 below). To that end, we will

now present an improved algorithm for computing optimized orbitals which is based on a
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Newton-Raphson optimization technique.

The energy of the doubly excited state Ed is a function of the “inactive” (non-frontier)

orbitals as well as the |h〉 and |l〉 orbitals. Starting from an HF reference state, it is straight-

forward to show that

Ed = 〈ψll̄hh̄|H|ψ
ll̄
hh̄〉 = E0 − 2fhh + 2fll + (hh|hh) + (ll|ll) + 2(hl|lh)− 4(hh|ll). (2)

Here, fpq are the elements of the Fock matrix, and terms of the form (pq|rs) stand for

two-electron integrals in the chemist’s notation. E0 is the ground state energy. Within CIS-

1D/TDDFT-1D, the optimized orbitals |h〉 and |l〉 are generated from independent rotations

of the orbitals in the occupied and virtual spaces, respectively. We emphasize that such

rotations keep the energy of the ground state unchanged, and so one can effectively consider

Ed to be a function of |h〉 and |l〉 only. Thus, if the relevant rotation matrices have the form

eΘ (where Θ is an anti-symmetric matrix), we must compute only the optimized HOMO

and the LUMO so that the Θ matrix takes the following simple form:

Θ =



0 . . . 0 θ1h

0 . . . 0 θ2h

...
. . .

...

0 . . . 0 θh−1,h

−θ1h . . . −θh−1,1 0

0

0

0 −θl+1,l . . . −θln

θl+1,l 0 . . . 0

...
...

. . .

θnl 0 . . . 0



. (3)
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For infinitesimally small rotations, the orbitals |h〉 and |l〉 after rotation are

∣∣∣h̃〉 = |h〉 −
∑
i

θih |i〉 −
∑
i

θ2
ih

2
|h〉 , (4a)

∣∣∣l̃〉 = |l〉 −
∑
a

θal |i〉 −
∑
a

θ2
al

2
|l〉 . (4b)

Using these so-called “exponential” coordinates, Ed (which is now a function of
∣∣∣h̃〉 and∣∣∣l̃〉) can be written as a function of {θih} and {θal}. We will now apply the Newton-Raphson

optimization as a function of the variables {{θih}, {θal}}. According to such an approach, we

will take steps in Θ that are informed from the gradient and Hessian of Ed. These quantities

are given by

∂Ed
∂θih

= 4 (fih − (ih|hh) + 2(ih|ll)− (il|lh)) (5a)

∂2Ed
∂θih∂θjh

= 4δij (fhh − (hh|hh) + 2(hh|ll)− (hl|lh))

− 4 (fij − 2(hi|hj) + (hh|ij) + 2(ij|ll)− (il|lj)) (5b)

∂Ed
∂θal

= 4 (fal − (al|ll) + 2(al|hh)− (ah|hl)) (5c)

∂2Ed
∂θal∂θbl

= −4δab (fll − (ll|ll) + 2(hh|ll)− (hl|lh))

+ 4 (fab − 2(hh|ab) + (hb|ah) + 2(la|bl)− (ll|ab)) (5d)

∂2Ed
∂θal∂θih

= 4(ia|lh) + 4(il|ah)− 16(ih|al). (5e)

We may now summarize our algorithm for computing the optimized frontier molecular

orbitals:

1. Solve the self-consistent field equations to obtain the cannonical HF molecular orbital

(MO) coefficient matrix C.

2. Calculate the gradient vector g =

 ∂Ed

∂θih

∂Ed

∂θal

 and the Hessian H.
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3. Solve for θih and θal using the equation Hθ = −g. Here θ =

 θih

θal

 .

4. Construct the Θ matrix as described in eq 3.

5. Obtain the new MO coefficients C̃ = CeΘ.

6. If |C̃−C| is below a threshold then the optimization has converged. Else go to setp 2

with C = C̃.

Note that, for the algorithm above, the Hessian is only of size N − 2, where N is the size of

the atomic basis. For the most part, inversion of H carries minimal cost.

Extending the method above to work with TDDFT-1D is also straightforward. One works

with the KS orbitals as if they were real orbitals and one defines a key double excitation

of the KS ground state wave function from the HOMO to the LUMO. The energy of this

doubly excited state is

Ed = E[ρd] = 2
∑
i

′
hii + 2

∑
ij

′
(ii|jj)− cHF (ij|ji) + (1− cHF )Exc[ρd] (6)

The electron density obtained by exciting a pair of electrons from orbital |h〉 to |l〉 is denoted

by ρd. hii refers to the one-electron interaction terms. The summation in the expression is

primed to indicate that the summation is over the orbitals 1, 2, . . . , h − 1, l (orbital |h〉 is

omitted and |l〉 is included). For a hybrid xc functional cHF is the factor of the Hartree-Fock

exchange. Exc[ρ] is the xc energy functional for a given density ρ. Just as for the CIS-1D

case, in order to find the optimized doubly excited state we rotate the KS orbitals using a

rotation operator of the form eΘ. As compared with the expressions for the gradient and

Hessian above (Eq. 5), besides the factor of cHF , the gradient and Hessian have the following
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additional terms from differentiating the xc functional:

∂Exc[ρd]

∂θih
=

∫
φi(r)

∂Exc
∂ρ(r)

∣∣∣∣
ρ=ρd

φh(r)dr (7)

∂2Exc[ρd]

∂θih∂θjh
=

∫
φh(r)φi(r)

∂2Exc
∂ρ(r)∂ρ(r′)

∣∣∣∣
ρ=ρd

φh(r
′)φj(r

′)drdr′. (8)

3 Results

We have implemented the schemes above so as to apply the CIS-1D and the TDDFT-1D

formalisms to reasonably sized molecules. We will now discuss our findings.

3.1 PYCM

Our first example is the molecule 2-(4-(propan-2-ylidene)- cyclohexylidene)malononitril), or

PYCM. PYCM is a donor-acceptor molecule that possesses two low-lying excited states,

one of which is of charge transfer (CT) character and the other one has local excitation

character.44 Its photoemission spectrum indicates that the CT state fluoresces whereas the

non-CT state undergoes a radiationless decay. The twisting of the double bond between the

cyclohexane ring and the cyano groups purportedly gives rise to an avoided crossing between

the S1 and S2 states, which mediates photochemical processes. Previous work has analyzed

the S2/S1 crossing at angles ∼ 40°45 but has not directly addressed a potential crossing at

90° when the molecule fully distorts (and the double bond breaks). Presumably, one can

expect that twisting PYCM should behave something like twisting ethylene.

In Fig. 1, we present the potential energy curves of PYCM starting from its ground state

minimum geometry and following along the torsional angle of the double bond. We evaluate

the performance of the TDDFT-1D/B3LYP method against that of the TDA/B3LYP using

a basis set of 6-31G*. For the TDDFT-1D calculation, the key doubly excited state is easily

found using the algorithm described above in Sec. 2; convergence details will be provided in

Sec. 4 below. The TDDFT-1D calculation yields smooth curves that will allow nonadiabatic
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simulations of the photodynamics of this molecule (with at least qualitative accuracy, on par

with usual TD-DFT excited-state calculations).

Lastly, in Fig. 1, we also plot the dipole moments of the individual excited states. Here,

one can learn a great deal about the nature of photo-chemistry for the present system. Note

that there is a true crossing between S2 and S1–the dipole moments of these states switch

character around 62°. However, there is no such crossing between the dipole moments of S1

and S0. Moreover, although not plotted here, we find that a variety of diabatization schemes

(including Boys,46 etc.) do not predict a meaningful diabatic crossing according to this

degree of freedom–which has clear consequences for nonadiabatic dynamics. Presumably, as

for the case of ethylene,47 there will be a conical intersection between S0 and S1 at some

distorted geometry, but we cannot yet isolate such a geometry without gradients.

0 20 40 60 80
 (degrees)

0

2

4

6

En
er

gy
 (e

V)

CNNC

Figure 1: Potential energy curves for the PYCM molecule (left) and diploe moments |µ|
(right) along the torsional angle τ . On the left, the S0, S1, S2, S3 energies for TDDFT-1D
B3LYP/6-31G* are plotted using solid lines in red, green, blue and black respectively. The
dashed lines represent the energies for the same states calculated using B3LYP/TDA. The
dipole moments of the TDDFT-1D states S1 and S2 cross around 62°. The torsional angle
τ is represented in the inset in the plot on the right. Note that there is no avoided crossing
between S0 − S1 states at 90° according to an analysis of their dipole moments.
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3.2 Thiophene

Our next example is the thiophene molecule whose oligomers have drawn attention as mate-

rials useful for energy conversion technology.48–50 The photo-decay for a standard thiophene

molecule is dominated by internal conversion through a conical intersection, whereas higher

chain oligothiophenes show a significant rate of intersystem crossing (ISC).51 The photo-

deactivation pathway for bithiophene (occurring through ISC as well as through S0/S1 con-

ical intersection) was investigated in Ref 51 using EOM-CCSD. Here we investigate the

potential energy curves of bithiophene using the TDDFT-1D method. For this molecule,

an optimized ground state geometry at the B3LYP/6-311G** level was reported in Ref. 51.

Furthermore, there are two S1 minimum structures at the CASSCF/6-31G* level, S1-min-a

and S1-min-b, which are closed- and open-ring structures respectively. There are some low-

lying conical intersection geometries between S0 and S1 identified at the CASSCF level in

Ref. 51.

In Fig. 3, potential energy curves are plotted along a linear interpolation coordinate

starting from the S0 minimum structure to the S1-min-a, and continuing on to the open ring

S1-min-b. In Fig. 3a, we plot data for DFT/TDA and in 3b we plot data for TD-DFT-1D.

The vertical excitation energies to S1 at the Franck Condon point for the B3LYP/TDA,

TDDFT-1D and CASPT2 methods are 4.36 eV,4.40 eV, and 4.51 eV51 respectively. These

energies agree reasonably well with the experimental value of 4.24 eV52 (from an absorption

spectrum at room temperature for the molecule in the gas phase).

According to Fig. 3, both B3LYP/TDA and TD-DFT-1D predict a S0/S1 crossing as we

interpolate between S1-min-a and S1-min-b. However, for the B3LYP/TDA, this crossing is

unphysical: because we employ a restricted DFT calculation, the S1 (TDA) energy drops

below the S0 (DFT) energy around ξ = 1.9, corresponding to a negative excitation energy.

In Fig. 4, we zoom in on this spurious behavior. Note that for such TD-DFT/DFT crossings,

it is well known that the topology of an S0/S1 crossing is incorrect; the branching plane has

the wrong dimensionality17 (whether or not we use a restricted or unrestricted KS scheme).
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Finally, note that all of these incorrect features are fixed up (at least qualitatively) using the

TDDFT-1D calculation; for the present case, including one double introduces a small S1-S0

gap and presumably shifts the location of the conical intersection slightly. The TD-DFT-1D

potential energy curves compare reasonably well with the EOM-CCSD surfaces reported in

Ref. 51.

S1-min-a S1-min-bS0-min

Figure 2: The structures of the optimized bithiophene molecule from Ref 51. The S0 mini-
mum geometry is calculated using B3LYP/6-311G** and the two S1 minima, S1-min-a and
S1-min-b, are calculated using CASSCF/6-31G*.
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EB3LYP
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2
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0

1

2

3

4

5
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 (e
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TDDFT-1D

S0
S1
S2

Figure 3: Potential energy curve of the S0, S1 and S2 states of the bithiophene molecule
along the linear interpolation coordinate ξ calulated using B3LYP/TDA (left) and TDDFT-
1D (right). Here ξ = 0 corresponds to the the S0 minimum geometry, ξ = 1 corresponds to
the S1-min-a geometry, and ξ = 2 to the S1-min-b geometry.

3.3 LiF

Our last example is the dissociation curve of the LiF molecule, for which restricted Hartree-

Fock (RHF) solution is known to be inadequate as far as dissociating into neutral Li and F

fragments is concerned. The ground state RHF curve leaves the Li and F atoms in a closed
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Figure 4: A zoom in on the S0/S1 potential energy curves plotted in Fig 3. The B3LYP/TDA
calculation (left) predicts a spurious crossing of the S0/S1 states. This behavior is corrected
in the TDDFT-1D calculation, and a small gap is introduced between the S0 and S1 states.

shell state with some ionic character; this state becomes degenerate with the first excited

CIS state as LiF dissociates. Although LiF is reasonably small, LiF represents a difficult

case for CIS-1D/TD-DFT-1D calculations because, at long distances, the true ground state

is very different from the RHF solution; dissociating LiF is not like twisting the double bond

of PYCM, whereby the doubles correction is important only at various intermediate angles

(close to 90°).

In Fig. 5a, we plot RHF vs CIS-1D potential energy curves. We find that, by including

one double only, the CIS-1D method is able to substantially correct for the static correlation

errors and dissociate the molecule. We plot the ground state S0 and first excited state S1 en-

ergy curves. Admittedly, the CIS-1D ground state curve is not completely size-consistent;40

the S0 curve does not reach the sum of the individual Li and F energies (here, energy 0)

when the molecule dissociates. Nevertheless, qualitatively, the behavior of the S0 and S1

states is correct and far improved over RHF. Although not plotted here, note that while the

spin contaminated unrestricted Hartree-Fock (UHF) solution does recover the correct zero

energy dissociation limit (i.e. the method is size-consistent), as is well known, the UHF S0

curve shows a kink53 at the point where RHF and UHF solutions diverge. Furthermore,
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Figure 5: Potential energy curves of the lowest two singlet states for the dissociation of LiF
molecule calculated using (a) RHF/CIS and CIS-1D, (b) B3LYP/TDA and TDDFT-1D, (c)
ωB97X/TDA and TDDFT-1D, and (d) SA(2)-CASSCF(2,2) and SA(2)-CASSCF(6,6). All
the calculations were performed using the 6-31G* basis set.
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UCIS energies computed on top of a UHF reference are wildly discontinuous. By contrast,

the CIS-1D solution is spin-pure, smoother, and at least qualitatively correct.

Next, in Fig. 5b, a calculation of B3LYP/TDDFT-1D is compared with that of B3LYP/TDA.

The restricted KS method is unable to dissociate the molecule correctly and actually shows

an unphysical crossing with the TDA state around 4.3�A. By contrast, according to TDDFT-

1D, the ground state S0 and excited state S1 solutions are well separated. Note, however,

that when we employ the B3LYP ground state reference, TD-DFT-1D predicts (incorrectly)

an artificial barrier in the dissociation curve. One must wonder whether such an artifact

arises from the familiar problem of DFT self-interaction error,54 which can severely limit

the ability of standard DFT to dissociate bonds. To test such a hypothesis, in Fig. 5c, we

plot potential energy surfaces using the ωB97X55 functional, which is a long-range corrected

functional with minimal self-interaction energy (at least at long range). Note that, if we use

a range-corrected restricted KS wave function, the S0 curve becomes flat as the molecule

dissociates and yields the correct physics (at least qualitatively). Clearly, the take-home

message is that including one double can capture a good amount of correlation and fix many

problems in DFT but at the same time, one is still strongly limited by the choice of an

approximate exchange-correlation functional.

Lastly, let us address the nature of the CIS-1D solution and its relationship to more es-

tablished multi-reference methods. CIS-1D does not optimize the ground state orbitals, but

rather builds a configuration interaction Hamiltonian by including all single excitations and

one (optimized) double excitation. A more standard approach is to optimize the orbitals for

an active space in a self-consistent manner, i.e. CASSCF. One might wonder how CIS-1D

compares with CASSCF method. In Fig. 5d, we plot the results for SA(2)-CASSCF(2,2) and

SA(2)-CASSCF(6,6) methods performed using OpenMolcas.56 In the (2e,2o) active space no

symmetry was considered. For the (6e,6o) calculation the C2v symmetry was enforced and

the active space had 2 orbitals each of symmetry species a1, b1, and b2. We find that SA-

CASSCF(2,2) produces potential energy surfaces with strange discontinuities. In the calcula-
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tion with larger active space the correct physics is recovered qualitatively but discontinuities

still exist. As far as energetics are concerned, high-level quantum chemical calculations57 as

well as experiments58 show that the bond dissociation energy is about 6.0 eV, which is clearly

underestimated by all calculations. Admittedly our calculations were not at the complete

basis set limit.

Figure 6: (a)CIS-1D Energy E and (b) dipole moments for the lowest two adiabatic states
(the S0 and S1 states) and diabatic states for LiF. In (c) the dipole moment of the lowest
two adabatic states from RHF/CIS calculation is plotted as a function of LiF bond distance.
Note that while the CIS-1D adiabats show a crossing in their dipole moment (indicating
a change in their charge character), the RHF/CIS adiabats do not cross, and predict the
wrong charge character as LiF dissociates.

Finally, one of the biggest advantages of a multireference method is the capacity to

generate diabatic states for S0/S1 crossings. Since CIS-1D has some multi-reference character
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– e.g., the states produced from CIS-1D (TDDFT-1D) are a linear combinations of the

reference HF (KS) wave function, the CIS (TDA) states, and one doubly excited state – one

would hope that CIS-1D can produce meaningful diabats. After all, the method produces

ground and excited states on a reasonably equal footing. This state of affairs stands in

contrast to any diabatization scheme based on mixing the HF ground state and CIS states.

In the latter case, one expects that all results will be far less meaningful on account of

Brillouin’s theorem such that, e.g., there is no guarantee of smooth diabatic surfaces.

In Fig. 6, we plot CIS-1D diabats as produced using the Boys localization method.46

Applying Boys diabatization to CIS-1D (TDDFT-1D) states is fairly straightforward and

requires only the dipole moment matrix elements, which are calculated explicitly in the

Appendix. In Fig. 6a, we plot the two lowest CIS-1D adiabatic and diabatic energies for the

LiF molecule; in Fig. 6b, we plot the relevant dipole moments in the avoided crossing region.

Clearly, CIS-1D is able to reproduce smooth, qualitatively correct diabatic states. The dipole

moment of the CIS-1D ground state is ionic at equilibrium bond distances but correctly

vanishes as the LiF molecule dissociates into neutral fragments. The CIS-1D diabatic states

have fixed charge character and correctly interpolate between the S0 and S1. Note that the

RHF and CIS dipole moments, plotted in Fig. 6c, are (of course) completely invalid.

4 Discussion

The data above has demonstrated that, when converged, TD-DFT-1D can predict a large

qualitative change in practical electronic structure calculations by including one double con-

figuration. Having found such a result, let us now show how convergence can be difficult

and why the present algorithm is necessary. In Fig. 7, we demonstrate that the previous

minimization algorithm (described in Ref. 40) fails to converge for the PYCM molecule. In

particular, note that Newton-Raphson minimization converges in 8 iterations, while the old

method at first increases in energy and eventually simply oscillates back and forth along the
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incorrect asymptote. We have also found that the algorithm in Ref. 40 can fail to converge to

the correct set of orbitals for certain LiF geometries. In general, by coordinating the occ-occ

and virt-virt rotations through the Hessian H, the Newton-Raphson method is clearly quite

a few steps ahead with regards to the stability of optimization.
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tre
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Figure 7: Energy of the doubly excited state Ed at each iteration step of the minimization
process for PYCM molecule at τ = 40°. The old method of minimization in Ref 40 is unable
to find the optimized frontier orbitals as Ed oscillates around a value that is higher than
that obtained from the initial set of orbitals. In contrast, the new method outlined in this
manuscript finds a solution that converges fairly quickly to the correct minimum.

At this point, the key item remaining is the question of efficiency and computational

time: how expensive is it to construct the orbital Hessian above in Sec. 2? To answer this

question, at the moment it is essential to distinguish between CIS-1D and TD-DFT-1D.

First, we address CIS-1D. For the present implementation, the cost of the algorithm comes

out to be 1.3 s CPU time per iteration (for the case of the PYCM molecule), whereas the

algorithm in Ref. 40 takes 0.3 s per iteration for the same molecule – but note that the latter

algorithm never converges. Overall, the algorithm from Ref. 40 requires the diagonalization

of two matrices (one of size No × No, another of size Nv × Nv). By contrast, the present

algorithm requires the inversion of one matrix (of size N × N). Here, No is the number
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of occupied orbitals, Nv is the number of virtual orbitals, and N = No + Nv is the total

basis size. Thus, the present algorithm should be some constant factor more expensive than

the previous algorithm (per iterative step). Note that the present algorithm also requires

computing three sets of density matrix times electron repulsion integrals (so-called J/K

subroutines), whereas the previous algorithm required only one such call. In the end, one

might expect that, per iteration, the present algorithm will be three times as expensive as

the previous approach – though requiring far fewer iterations and also converging in a far

more robust fashion.

Next, we turn to TD-DFT-1D, for which the bottleneck for the minimization algorithm

is the calculation of the matrix elements of the exchange-correlation kernel in the adiabatic

approximation fxc(r, r′) = ∂2Exc
∂ρ(r)∂ρ(r′)

(Eq. 8). In particular, in order to minimize a doubly

excited configuration in a molecular orbital basis, we require matrix elements of the form

fxcih,jh, f
xc
ih,al, and fxcal,bl . Unfortunately, within current computational codes (e.g. Q-Chem59),

such matrix elements are not readily available and we have currently implemented a painful

(and slow) approach towards calculating these ∼ N2 matrix elements. Future work will

necessarily need to construct these matrix elements in a timely and efficient fashion in order

for the TD-DFT-1D approach to be fast and competitive. This project is now ongoing.

5 Conclusion

We have shown that Newton-Raphson optimization is stable as far as finding the optimal

doubly excited state for the CIS-1D and the TDDFT-1D method, and these configuration in-

teraction Hamiltonian can successfully recover electronic potential energy surfaces states cor-

responding to bond making/breaking processes. Furthermore, one can use such approaches

to produce meaningful diabatic states through adiabatic-to-diabatic transformations (e.g.

the Boys diabatization method). We have shown that in situations where DFT/TD-DFT

recovers an S0/S1 crossing incorrectly, TDDFT-1D method can recover qualitatively correct
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energy curves. Finally, once the necessary matrix elements of fxc are computed efficiently,

the present method should be applicable to quite large molecules and act as an alternative to

spin-flip methods.29,60 Lastly, if one can successfully apply the techniques of Ref. 61 for CIS-

1D analytical derivatives62 to the TDDFT-1D method, simulating nonadiabatic chemical

dynamics63 within such an ansatz should be in the near horizon.
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A Dipole moments of CIS-1D/TDDFT-1D states

Here, we provide the relevant equations for obtaining dipole moments in a CIS-1D calcula-

tion. A CIS-1D state is a linear combination of its basis states:

|ψCIS−1D〉 = c0 |φ0〉+
∑
ia

1√
2
cai (|φai 〉+ |φāī 〉) + cd

∣∣∣φll̄hh̄〉 . (9)

Note that the ground state HF wave function is restricted, and the CIS states are singlets.

The dipole moment between two CIS-1D states is then given by

〈
ψI
∣∣X∣∣ψJ〉 = cIoc

J
0X0 +

∑
ia

√
2(cIoc

aJ
i + cJo c

aI
i )Xia

+
∑
ia

caIi c
aJ
i X0 +

∑
iab

caIi c
bJ
i Xab −

∑
ija

caIi c
aJ
j Xij

+
∑
ia

√
2(clIh c

J
d + clJh c

I
d)Xhl + cIdc

J
d (X0 + 2Xll − 2Xhh). (10)

Here X0 is the ground state dipole moment, and Xpq are the elements of the dipole moment

matrix.
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