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Highlights

e Manifold-like representations arise when a set of neurons in a biological or artificial neural
network exhibits variability in response to stimuli or through internal recurrent dynamics.

e Approaches focused on analyzing geometric properties of neural populations, i.e. neural
population geometry, have emerged as a promising population-level analysis technique
connecting neural responses and task implementation.

e We highlight recent studies of neural population geometry: untangling in perception,
classification theory of manifolds, abstraction in cognitive systems, topology underlying
cognitive maps, dynamic untangling in motor systems, and a dynamic approach to cognition.

e Future directions include developing geometric measures as a population-level hypothesis,
connecting representational geometry to biophysical properties of neurons, developing
theories of neural population geometry for a larger array of tasks.

Abstract

Advances in experimental neuroscience have transformed our ability to explore the structure and
function of neural circuits. At the same time, advances in machine learning have unleashed the
remarkable computational power of artificial neural networks (ANNs). While these two fields have
different tools and applications, they present a similar challenge: namely, understanding how
information is embedded and processed through high-dimensional representations to solve
complex tasks. One approach to addressing this challenge is to utilize mathematical and
computational tools to analyze the geometry of these high-dimensional representations, i.e., neural
population geometry. We review examples of geometrical approaches providing insight into the
function of biological and artificial neural networks: representation untangling in perception, a
geometric theory of classification capacity, disentanglement and abstraction in cognitive systems,
topological representations underlying cognitive maps, dynamic untangling in motor systems, and a
dynamical approach to cognition. Together, these findings illustrate an exciting trend at the
intersection of machine learning, neuroscience, and geometry, in which neural population geometry
provides a useful population-level mechanistic descriptor underlying task implementation.
Importantly, geometric descriptions are applicable across sensory modalities, brain regions,
network architectures and timescales. Thus, neural population geometry has the potential to unify



our understanding of structure and function in biological and artificial neural networks, bridging
the gap between single neurons, populations and behavior.

Introduction

Neural circuits and artificial neural networks (ANNs) process information by constructing and
manipulating highly distributed representations [1-4]. Patterns of activity in these systems, across
either neurons or units, correspond to manifold-like representations - points [5,6], lines [7],
surfaces [8,9], trajectories [10-12], and subspaces [13] - in a high dimensional ‘neural state space’,
where coordinates represent the activities of individual neurons or units. Approaches focused on
studying geometric properties of these manifolds are becoming more widely used as advances in
experimental neuroscience expand our ability to probe large neural populations [14], and advances
in ANNs [15,16] introduce new challenges of interpretation.

In neuroscience, analysis tools have progressed from single-neuron approaches [17,18] to
population-level frameworks [1-3,19,20] that quantify and decode information represented across
many neurons. Challenges arise when we consider large neural populations involved in complex
tasks, as neurons often show mixed selectivity, i.e., selectivity to multiple coding variables [21], and
real-world tasks often require robustness to nontrivial variability [8], precluding simplistic
tuning-based analyses. Geometric analysis provides an approach suitable for addressing these
challenges.

Recently, a number of large-scale task-optimized ANNs have outperformed traditional neuronal
models in accounting for neural activity [22,23], making ANNs a promising model system for
studying neural circuits. One often-heard objection to the use of ANNs in modeling neural circuits is
that ANNs merely replaces one complicated system with an equally complicated system[24].
Indeed, the challenges in interpreting high-dimensional ANNs, containing millions of parameters,
and neural populations are shared [25]. This highlights the need for powerful population-level tools
that reveal mechanisms underlying neural network function. From this perspective, ANNs can serve
as a testbed for developing population-level analysis techniques, such as geometric approaches,
even if they are ultimately aimed at neuroscience applications.

In this review, we highlight important examples of how geometrical techniques and the insights
they provide have aided the understanding of biological and artificial neural networks. We begin
with an overview of recent theoretical developments linking neural population geometry to
categorization capacity. We then discuss theoretical work on characterizing representational
geometries across tasks and modalities, such as recognition and prediction in the sensory domain
(perceptual untangling) and abstraction in the cognitive domain (disentanglement). We also discuss
sensory or behavioral state transitions in the head direction system and hippocampus (topology
discovery). Finally, we provide examples for which dynamical analysis of neural population
geometry sheds light on representations in motor control (dynamic untangling) and complex
cognitive tasks such as Bayesian inference.
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The Geometry of Perception and Decision Making

Perceptual Untangling

It has been hypothesized that the role of ventral visual stream processing is to transform the
representations of visual objects so that they become ‘untangled’, meaning that they are
transformed into a form that is linearly separable [8,9] (Fig 1a). The concept of linear separability
goes back to the early days of ANNs [26,27], and it still plays a central role in the analysis of neural
population geometry. A task in which a subject must divide a large set of stimuli into two categories
requires the separation of the neural activity patterns evoked by these stimuli into two sets
corresponding to the two categories. We know from machine learning that this discriminability can
be achieved easily if a hyperplane can separate the two sets of activities. Such a representation is
called linearly separable. If, instead, the separating surface must be curved, dividing the two sets of
neural population activities is more difficult. This insight is central to a number of the approaches
we discuss.

The idea of untangling has been extended into the time domain [9,28]. In this case, neural
population activity corresponds to a trajectory through neural state space. These studies posit that,
at a given point in time, it is easier to predict future neural activity if this trajectory is straight than if
it is convoluted. This led to the hypothesis that visual processing also serves to straighten temporal
response trajectories [9]. This 'temporal straightening hypothesis' has been tested by measuring the
curvature of the neural trajectory of responses to natural videos in neural network models and
human perceptual space [28] (Fig 1b). Straightening of response trajectories occurs when natural
video sequences, but not artificial video sequences, are presented.

The Geometry of Abstraction

The principle of linear separability can also provide insight into more complex tasks beyond
categorization. Consider a task in which two sets of stimulus-response pairings, set A and set B,
must be learned. The task involves uncued 'context’ switches between the use of set A and set B. An
efficient solution is to represent the stimulus-response pairings in such a way that a transition
between contexts can be accomplished by the rotation and/or translation of a dividing surface in
the neural state space (Fig 1c¢). Recordings from the prefrontal cortex, hippocampus, and results
from task-trained neural networks [29] all indicate the use of ‘disentangled’ representation,
quantified by a geometric measure called the parallelism score. These studies provide direct neural
evidence on how two different contexts are involved in such a task, and thus probe the level of
abstraction and type of strategy being used by the animals and machines. An important idea here,
which will reappear in another context in the next section, is that while abstraction is achieved, the
representation does not simply discard information about other variables [29].
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Extensions from Points to Manifolds

In the research covered thus far, neural population activity during a task has been considered to be a
point (in the case of static stimuli) or a one-dimensional trajectory (in the case of time-dependent
stimuli) in the neural state space. However, the same stimulus shown repeatedly will not result in
the same point in state space being occupied; instead, neuronal variability will cause the points
from different trials to jitter. The result is that each stimulus corresponds not to a point but to a
manifold whose size and shape depend on the amplitude and form of the neuronal variability. [t may
be also useful to cluster responses into manifolds due to other sources of variability. For example, if
we want to distinguish dogs from cats, we may want to group the responses to images for different
viewing angles, sizes and animal breeds into one dog manifold and one cat manifold (Fig 1d). In this
perspective, the problem of invariant object discrimination becomes that of separating neural

manifolds [5].
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Fig 1. (a) Representation straightening for invariant object recognition (b) Temporal
straightening for temporal natural video sequences. (c) Geometry of Abstraction.
Representations encoding abstraction (i.e., cross-conditional generalization) show geometry
where coding directions can be rotated or translated between conditions, known as parallelism
(Right). (d) Neural manifolds arise as a result of stimulus variability. Population responses to
two object classes (dog vs. cat) in the presence of the stimulus variability (orientation) gives rise
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to two object manifolds. Invariant object recognition becomes the problem of classifying
between two object manifolds. Axes represent the firing rates of neurons. (e) Manifold capacity
is high if object manifolds are well separated and low when object manifolds are entangled in
neural state space. Part (a) adapted from [9]. Part (b) adapted from [28]. Part (c) adapted from
[29]. Part (e) adapted from [31].

A general theory for the classification of manifolds has been developed recently [5]. One result of
this work is that the same level of linear separability can be achieved across different combinations
of geometrical properties. For example, combinations of large/small dimensionality and
small/large size of object manifolds can lead to similar capacities, because there is a tradeoff
between the dimensionality and the radius of these manifolds. The untangling hypothesis can be
extended to the idea that visual processing aims to provide well-separated manifolds that provide
information about object identity while maintaining other image-related variables such as pose,
position and scale (Fig 1a,d).

Determining the mechanism behind invariant object discrimination requires us to decipher how the
structure across different instances of the same object are processed by the layers of the sensory
hierarchy. This raises the question of how the structure of neural object manifolds is related to the
separability of object categories. Theoretical work based on concepts from statistics physics has
shown that linear separability of object manifolds, as defined by the object manifold capacity [5], a
generalization of perceptron capacity, can be formally connected to the geometric properties of
object manifolds such as their dimension, radius and correlation structure [5,6,30].

In this framework, the notion of manifold capacity has several interpretations. While the manifold
capacity measures the linear separability of object classes, it also measures the storage capacity of
object classes in a given representation (i.e. the maximum number of object classes that can be read
out linearly). Small manifold dimensions and radii predict high manifold capacity and vice versa
(Fig 1e). This theory has been used to show how categorical information emerges across layer
hierarchy as a result of geometrical changes in ANNs implementing visual object recognition [6],
speech recognition [31], and language prediction tasks [32]. These ANN models are known to have
a high neural predictivity with corresponding brain regions in the macaque visual cortex [22,33],
human auditory cortex [34], and language processing regions [35]. The theory has also been used to
directly characterize neural data in the mouse and macaque visual cortex [36,37].

The Intrinsic Geometry of Representation

Dimensional reduction refers to manipulations used to identify the shape, location and orientation
of neural data within the neural state space. Widely used linear methods such as principal
components analysis (PCA) provide a Cartesian coordinate basis describing subspaces in which the
data lie. Itis also useful to determine the geometric properties that characterize the intrinsic space
defined by the data which, in general, requires nonlinear dimensionality reduction methods. To be
concrete, consider the responses of a population of neurons to a set of stimuli described by two
variables. We might assume that these data can be described as a function of these two stimulus
variables. If this is indeed the case, the responses lie in a two-dimensional surface, but that surface
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is not necessarily a flat plane. In fact, the surface might be convoluted and lie in a considerably
higher dimension. PCA will find this higher dimensional embedding space, whereas nonlinear
methods can find the curved surface itself.

Alarge number of nonlinear dimensionality reduction methods are available, including Isomap [40],
UMAP [41], LLE [42], tSNE [43] and MDS [44]. Although powerful, these nonlinear methods can fail
to capture the neural manifold structure if the underlying topology is complex. Computational
advances have been made in an effort to understand how brain regions encode directional or spatial
information, such as the head direction system and the hippocampus. Chaudhuri et al. [38] utilized
a technique known as Spline Parameterization for Unsupervised Decoding (SPUD) (Fig. 2a) to
discover the ring structure underlying the mammalian head direction system. This technique uses
an approach called persistent homology in which persistent features determine the intrinsic
dimension used to discover underlying topological structure in the data.

Recent work in the hippocampus introduced a topologically motivated method called Manifold
Inference from Neural Dynamics (MIND) [12] (Fig 2b) to characterize neural activity in the CA1
region of the hippocampus during a foraging and sound manipulation task. In MIND, distances
between nearby states are defined by transition probabilities, which gives rise to the notion of
intrinsic dimensions relevant for topological maps underlying task implementation.
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Fig 2. (a-b) Manifold discovery methods. (a) Spine Parameterization for Unsupervised Decoding
(SPUD). (b) Manifold Inference for Neural Dynamics (MIND). (c-d) Population dynamics as
cognition. (c) (Left) Temporal trajectories during macaque cycling task in M1 and (Right) SMA. (d)
Dorsomedial Frontal Cortex (DMFC) response profiles during Bayesian computation. Part (a)
adapted from [38]. Part (b) adapted from [12]. Part (c) adapted from [39]. Part (d) adapted from
[10].
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The Geometry of Movement and Cognition

Dynamic untangling of internally generated activities

The concept of untangling has also been applied to the neural trajectories recorded from the motor
cortex during movement. In studies of motor regions, we are interested not only in how body
movements are represented but, importantly, in how they are generated. How can we determine
whether a given region of the brain is playing a significant role in movement generation as opposed
to merely reflecting the effects of activity generated elsewhere? In a closed dynamical system, the
rate of change of any dynamic variable is a function of all the other dynamic variables. Thus, it is
impossible for a single point in the state-space to be associated with two different rates of change.
This is equivalent to the statement that state-space trajectories in such a system cannot cross over
themselves. A 'tangling index' has been introduced to identify cases when the trajectories of
recorded populations of neurons actually or come close to crossing [11]. Using this measure, it was
shown that tangling is much lower in the primary motor cortex during a cycling task than in areas
such as primary sensory cortex or in muscle activities during the same task. This supports the idea
that the motor cortex acts as a generator, whereas activity in the somatosensory system and in
muscles is a response to motor drive.

Interestingly, a follow-up study of neural activity trajectories during the cycling task in the
supplementary motor area (SMA) provided geometric evidence of the well-known role of this area
in motor sequencing [39]. Activity in the motor cortex repeated across cycles of the cycling task, but
SMA activity followed a helical trajectory, providing s neural representation of the sequence of
cycles made during the task (Fig 2c). A similar result was obtained in model recurrent neural
networks; a helical representation arose when the network was required to keep track of the
number of cycles it had generated [39]. These examples illustrate the extension of the use of
geometric analyses, which we first discussed in relation to perception, to motor systems.

Population dynamics as cognition

There is a long history of relating dynamic motifs in recurrent networks to cognitive functions: fixed
points and memory [45,46], line attractors and integration [47], and limit cycles with various
neuronal oscillation patterns [48]. These ideas have more recently been extended to a general
program linking dynamics to cognition [10,49,50].

For example, work in macaque frontal cortex during a time reproduction task, which requires
subjects to reproduce the duration of a time interval, demonstrated that experience warps neural
population representations[10]. This mechanism allows for the incorporation of prior statistics in
the map from sensory representation to motor output [10]. A geometric analysis of the activity in
recurrent neural networks trained to perform this task revealed how curvature supports an
underlying Bayesian computation (Fig 2d).
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Future Opportunities

The neural population geometry approach suggests many open problems and future opportunities
for both neuroscience and Al. First, geometric measures can serve as precise population-level
metrics. Representations with the same level of task capacity can have different geometric
configurations [5,30], speaking to the value of neural geometry in delineating the difference
between population-level hypotheses. Second, future directions should include uncovering the
relationship between population geometry and specific biophysical properties of neurons. In the
neural geometry underlying Bayesian computation [10], the curvatures of trajectories are linked to
the distributions of priors encoded by each neuron. In deep networks performing visual object
recognition, a single layer of homogenous units exhibits a tradeoff between various geometric
transformations, while common network motifs involve beneficial geometrical changes to multiple
geometric properties, suggesting the benefit of heterogeneity in neural populations [6]. More
broadly, different brain regions relevant for distinct tasks may implement optimal neural geometry
engendered by specific neuronal constraints. Given the vast heterogeneity of cell types, synaptic
connectivity patterns, neuronal activation profiles, and sparsity levels, which biological properties
constrain and shape the critical task-encoding geometry? Finally, as the list of tasks and brain
regions showing interesting population geometric structure is growing at a rapid pace [51-55],
future theoretical developments may need to address the formal connection between
representational geometric properties and the encoded task information for a larger array of tasks.
As geometric descriptions are general across modalities, regions, and timescales, the neural
population geometry approach may hold a key for unifying the descriptions of structure and
function in biological and artificial neural networks across brain regions and computational levels.
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