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ZERO-INERTIA LIMIT: FROM PARTICLE SWARM OPTIMIZATION TO
CONSENSUS BASED OPTIMIZATION

CRISTINA CIPRIANI, HUI HUANG, AND JINNIAO QIU

ABSTRACT. Recently a continuous description of the particle swarm optimization (PSO) based on a system
of stochastic differential equations was proposed by Grassi and Pareschi in where the authors formally
showed the link between PSO and the consensus based optimization (CBO) through zero-inertia limit. This
paper is devoted to solving this theoretical open problem proposed in by providing a rigorous derivation
of CBO from PSO through the limit of zero inertia, and a quantified convergence rate is obtained as well.
The proofs are based on a probabilistic approach by investigating the weak convergence of the corresponding
stochastic differential equations (SDEs) of Mckean type in the continuous path space and the results are

illustrated with some numerical examples.

Keywords: Swarm optimization, consensus based optimization, Laplace’s principle, tightness.

1. INTRODUCTION

Over the last decades, large systems of interacting particles are widely used in the investigation of com-
plex systems that model collective behaviour (or swarming), an area that has attracted a great deal of
attention; see for instance and references therein. Such complex systems frequently appear
in modeling phenomena such as biological swarms 7 crowd dynamics [5], self-assembly of nanoparticles
28], and opinion formation . In the field of global optimization, similar particle models are also used in
metaheuristics [1,3}[7,[24], which provide empirically robust solutions to tackle hard optimization problems
with fast algorithms. Metaheuristics are methods that orchestrate an interaction between local improvement
procedures and global/high level strategies, and combine random and deterministic decisions, to create a
process capable of escaping from local optima and performing a robust search of a solution space. In the

sequel, we consider the following optimization problem
z* € argmingcpa&(x), (1.1)

where £(z) : R? — R is a given continuous cost function.

Omne noble example of metaheuristics is the so-called Particle Swarm Optimization (PSO), which was
initially introduced to model the intelligent collective behavior of complex biological systems such as flocks
of birds or schools of fish , and it is now widely recognized as an efficient method for tackling
complex optimization problems . The PSO method solves optimization problem by considering
a group of candidate solutions, which are represented by particles. Then the algorithm moves those particles
in the search space according to certain mathematical relationships on the particle position and velocity.
Each particle is driven to its best known local location, which is updated once the particles find better

positions. However the mathematical understanding of PSO is still in its infancy. Recently Grassi and
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Pareschi [25] took a significant first step towards a mathematical theory for PSO based on a continuous
description in the form of a system of stochastic differential equations:
dX;™ = V",

. , , ‘ (1.2)
AV} = = 2V (X (V) = Xt + SD(XG () = XPB], =1, N,

where the R?valued functions Xti ™ and Vti’m denote the position and velocity of the i-th particle at time
t, m > 0 is the inertia weight, v =1 — m > 0 is the friction coefficient, A > 0 is the acceleration coefficient,
o > 0 is the diffusion coefficient, and {(B});>0}Y; are N independent d-dimensional Brownian motions. We

also use the notations for the diagonal matrix
D(X) = diag{(X¢)1,...,(X¢)a} € R,

where (X;)y is the k-th component of X;, and the weighted average is given by

Jo w1 ()N (1 )

Xa N,m = 1.3
O e @ ) -
with the empirical measure p™V'" (¢, dz) 1= & Zf\il 6X;i,7n (dz). So we can rewrite
DX (pN™) = X;™dB =y (X7 (pV™) = X" wd(Bf) e, (1.4)
k=1
where ey, is the unit vector in the k-th dimension for k = 1,...,d. Furthermore, the initial data (X§, Vi)N

are independent and identically distributed (i.i.d.) with the common distribution fy € P4(R??), where
P,4(R24) denotes the space of probability measures with finite forth moment, endowed with the Wasserstein
distance [2]. The choice of the weight function

wE () == exp(—aé(x))

comes from the well-known Laplace’s principle [17,/39], a classical asymptotic method for integrals, which

states that for any probability measure p € P(R?), there holds

lim —llog Wi(z)p(dr)) ) = inf E(x). (1.5)
a—+00 e /]Rd zesupp(p)

Thus for « large enough, one expects that
X (pN™) = argmin {E(X}™), ..., E(X™)},

which means that X (p™™) is a global best location at time t.
Before starting our analysis of the PSO dynamics (|1.2), let us illustrate numerically the behavior of the
dynamics for the benchmark Ackley function

S(I)QOexp( f|x7:17 >exp< Zcos 2 ( kxk))>+e+20

in the case of d = 2, and with the global minimizer z* = (0,0)7. In Figure ! and we initialize the particles
with a normal distribution around x* and then apply a discretization scheme (which will be explained in
Section [4)) to the system . We can see that all the particles successfully find the global minimizer x*,
and particles’ velocity converges to zero.

As it has been shown in [25], in the zero-inertia limit (m — 0), one may expect to obtain the recent
developed Consensus Based Optimization (CBO) dynamics [11},23,/26,41] satisfying

dXi = NXP(pV) = X{)dt + o D(X(p™) — X})dBj, i=1,--- N, (L6)
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® Initial positions
® Final positions

FIGURE 1. Left: the Ackley function for d = 2 with the unique global minimum at the point
x* = (0,0)T. Right: Particles trajectories of the PSO model (1.2) along the simulation for

the 2-d Ackley function with the global minimizer z*. The simulation parameters are: time
discretization 0.01, number of particles 103, A =1, o = %, a = 30, m = 0.1. The initial

data are sampled from a normal bi-dimensional distribution.
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FIGURE 2. Application of the PSO dynamics to the 2-d Ackley function £(x) with
the global minimizer z* = (0,0)”. Particles initially have a normal distribution around
x*. Then all particles converge to one point, the global minimizer z*, and they stop moving
eventually, i.e. velocity converges to zero. The simulation parameters are the ones described
below Figure

where

Xta (pN) N f]Rd .ng (x)pN (ta d:l?)

" Jpawh(2)pN (¢, dx)

It has been proved that CBO is a powerful and robust method to solve many interesting non-convex high-

N
1
with p™ (t, dz) = N Z dx:(dzr).
i=1

dimensional optimization problems in machine learning . By now, CBO methods have also been gener-
alized to optimization over manifolds . The objective of the present paper is to complete a theory
gap suggested in by providing a rigorous proof of the zero-inertia limit.

On the one hand, as N — oo, the mean-field limit results (see for instance) indicate
that our PSO dynamics converge to the solutions of following mean-field nonlinear Mckean systems:

dx] =V} at, (1.7a)
~—m Y =m A ol .m ~m g /. .m m
vy = _Evt dt + E(Xt (p™) = Xy )dt + ED(Xt (p™) = Xy )dB, (1.7b)

where

aw () p™ (¢, dz
Xp () = ff e ) = [ ), (18)
Rd o 9 d

and the initial data (X, V) is the same as in (1.2). Here f™(t,z,v) is the distribution of (X, , V") at time
t , which makes the set of equations ((1.7) nonlinear. We refer to for a proof the well-posedness of PSO
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particle system (|1.2]) and its mean-field dynamic ((1.7). A direct application of the It6-Doeblin formula yields
that the law f™ := f™(t,-,-) at time t is a weak solution to the following nonlinear Vlasov-Fokker-Plank

Et]t :IJtm ’y -j1 A (:[ ‘<1 ()C ))J 2 2[ (:[ ‘<1 ()C )) Jim Y (1 E)
v v mv m m v

with the initial data fJ*(z,v) = Law(X,Vp). On the other hand, taking N — oo in (1.6) leads to the
mean-field CBO dynamic of the form

0%, = \(X2(p) — Xp)dt + o D(X2(p) — X,)dB, (1.10)
with p; = Law(X,) satisfying the corresponding CBO equation

d
02 82

Orpt + AV - (pe( X (p) — 7)) = 5 292
i=1 9%

(b (a5 = (X2 (0)),)?) - (1.11)

In this paper, we prove that in the zero-inertia limit, as m — 0%, the processes {ym} satisfying SDEs (|1.7))
converge weakly to the solution X to SDE (T.10] in the continuous path space C([0,7];R?). A convergence
rate is obtained and the generalizations to cases with memory effects are also addressed. This is related to
the study of the overdamped limit [141/18,|36], or large friction limit [9,/19,{31] for Vlasov type equations.
However, the nolinear term X*(p™) here makes our model very different from theirs, which is nonstandard
in the literature. Moreover all of those results mentioned earlier are obtained through the investigation of
PDEs like and , while in the present paper we adopt a probabilistic approach by investigating
the weak convergence of the non-Markovian stochastic processes {Ym} satisfying SDE to the solution
{X} to SDE ([1.10)) in the continuous path space.

The rest of the paper is organized as follows: In Section 2 we verify the tightness of the PSO model
through Aldous criteria, which allows us to obtain the zero-inertia limit from the PSO model
towards the CBO model as m — 0; see Theorem Then in Section 3 we generalize the result to
the PSO model with memory effects of the local best positions. Lastly we conclude this paper in Section 4

by reporting a few instructive numerical experiments on validating the zero-inertia limit.

2. ZERO-INERTIA LIMIT

Throughout this work, the letter C' denotes a generic constant whose value may vary from line to line and
its dependence on certain model parameters will be specified whenever needed. We start this section with

the standing assumption on the cost function £.

Assumption 1. The given cost function £ : R — R is locally Lipschitz continuous and satisfies the properties:

1. There exists some constant L > 0 such |E(x) — E(y)| < L(|z| + |y|)|z — y| for all z,y € R%;
2. & is uniformly bounded, i.e. —00o < £ :=inf& < & <sup& =: £ < 400, and define Coce = e(E-8)

The following theorem gives the well-posedness of the mean-field PSO and CBO dynamics ((1.7)) and (1.10))
whose proofs are analogous to [29, Theorem 2.3] and [11, Theorem 3.1], and thus omitted.

Theorem 2.1. Let Assumption[1] hold. For each T > 0, there hold the following assertions.

() If (X', Vy) = (Xo,Vo) is distributed according to fo with fo € Py(R24), then for each m € (0,1],
the nonlinear SDE admits a unique solution up to time T with the initial data (YS”,V?) and it holds
further that

sup E[IX][*+ 7)) < T E[[Xol* + Vo] , (2.1)
t€[0,T]
where C' depends only on A,m,o, and Cy¢.
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(ii) If Xo is distributed according to py € P4(R?), then SDE (1.10) admits a unique solution up to time
T with the initial data X and it holds further that

sup E [|X|*] <e“T-E[|Xo|*], (2.2)
te(0,T)

where C depends only on \,0 and Cq ¢.
Solving (L.7D) for V" gives
—m Y= A t ol —m
Vi e Em ok o [ e EeI ) - X s + / =) D(X2 (o) — X1")dB,
m Jo m

which implies that

t
X" —X0—|—/ v dT—X0+/ e mTVOdT—i—m// (=) (XX (p™) — X, )dsdr

m// e m T DX (p™) — X )dBydr . (2.3)

Then X, has the law pJ" for each ¢t > 0. Denote by C([0,7];R%) the space of all R%valued continuous
functions on [0, T] equipped with the usual uniform norm ||- ||o. Each continuous stochastic process X = may
be seen as a C([0, T]; R%)-valued random function and it induces a probability measure (or law, denoted by
p™) on C([0, T); RY). We shall use the weak convergence in the space of probability measures on C([0, 7]; R?).

In what follows, we write X =~ — X or p™ — p with p being the law of X, if {p™} as a sequence of

m>0
probability measures on C([0,T; Rd), converges weakly to p, i.e., for each bounded cont>inu0us functional ¢
on C([0,T]; R%), there holds lim,,_,o+ E [@(Ym)} =E [@(Y)] The weak convergence X = — X is stronger
than and actually implies the convergence of {p7*},,,~0 to p; with p; being the law of X for each t > 0, while
the converse need not hold. Moreover, due to the separability and completeness of the space C([0, T]; R?),
Prohorov’s theorem implies that the relative compactness is equivalent to the tightness; see [6] for more
details.

The proof of zero-inertia limit will proceed in two steps:

e The tightness of the sequence of probability distributions {p™ }o<m<1 of {Ym}kmgl is justified by
using Aldous tightness criteria.

e We will check that all the limit points of {ym}kmgl as m — 0 satisfy mean-field CBO dynamic
(1.10) which in fact admits a unique solution.

For the sake of completeness, let us recall Aldous tightness criteria.

Lemma 2.1. Let {X"},en be a sequence of random variables defined on a probability space (2, F,P) and val-
ued in C([0, T);RY). The sequence of probability distributions {jixn }nen of {X ™ }nen is tight on C([0,T]; R?)
if the following two conditions hold.

(Conl) For allt >0, the set of distributions of X{', denoted by {pxp fnen, is tight in R?.

(Con2) For all e > 0, n > 0, there exists §o > 0 and ng € N such that for all n > ng and for all
discrete-valued o(X1; s € [0,T])-stopping times 8 such that 0 < 469 < T,

sup P (| X5 5 —Xj[>n) <e. (2.4)
§€[0,80]

Theorem 2.2 (Tightness). Let Assumption 1| hold and (X{",V]™)icjo,r) satisfy the system (L.7). For

each countable subsequence {my}ren C [0,1] with limy_oo my = 0, the sequence of probability distributions
{p"* Yhen of {X " }ren is tight.
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Proof. By Lemma it is sufficient to justify conditions (Conl) and (Con2) in Aldous tightness criteria .
e Step 1: Checking (Conl). First, for 0 < m < %, recalling (2.3]), we have by Fubini’s theorem (see
[16, Theorem 4.33] for the stochastic version)

X" —X0+/ e m Vodr + = // w (T (XX (p™) — X1 )dsdT
m
/ / w T DX(p™) — X1 )dBydr
m
_X0+/ e m Vodr + = //e w (T dr (X (p™) — X1 )ds
m

/ / “w T drD(XE (™) — X )dBy
m

~m

PR ,
=X+ T - F o+ ;/ (1— e H0=9)(X(pm) — X™)ds
0

¢
+2 [= e (m) - X)ab (2.5)
Y Jo

Here the assumption on 0 < m < % ensures that vy =1—-—m € [%, 1), so % is well defined. It follows from

Hoélder’s inequality that

—m L 6dmt ., 6aN [t 640 o —m *
X, |t < 64| X"+ - [Vol|*+ A /Ole(pm) o [*ds +7’/0 (1— e m=NDXX(p™) — X2 )dBs|

where we have used the fact that for any sequence {a;}?_; > 0 and p > 2, there holds

n p n
E a; | <nP7! E al.
i—1 i—1

Using the moment inequality for stochastic integrals as in |38 Theorem 7.1] yields that

t 4

B||[ (e B NDe () - X0ds,
0
d t L 4

<d’E lZ /(1—6 N (X (™) - X )kdBley,
k=110

t d —m t —m

§36d3t/ E 31X (™) - X2l ds§36d3t/ E[|X§(pm)—xs |4] ds.

0 k=1 0
Thus,
- - 64m* | — 64\ + 36d3tat) (7 “rm
BT < GBIl + 2BVl + ) [ hgxem) - X 4as.

Notice that

xwé (z) p™ ,dx J(x— w‘g pm T !
s A I e N R s 2 S
Rd d Rdw X
f]Rd f]Rd |.7J - |4 S( ) m(t dl‘)pm(t,dy) < 160Q,SEHYT|4]7 (26)

Jra W (2)p™ (8, dx)

where Jensen’s inequality is applied in the first inequality. Thus we have

—m — 64m? 1024C,, ¢ (N3 + 36d3te?) [t . —m
BXV") < 048] Kol + S5-BTol + £ - ) / E[[X7 ds
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Using Gronwall’s inequality leads to

—m — 64m 1024C,. ¢ (MNT3 + 36d3To*
B, 1Y < (S4B%ol!] + S E(Tal] ) exp (H2Co T, 7). tepT. @D
Recalling 0 < m < % and 5 1_1m < 2, from estimate (2.7)) we obtain the boundedness:
E[IX; ") < CE[Xo|", E[[Vo|"), Cae, A d, 0, T). (2.8)

Next we consider the case when % < m < 1. It is obvious that
RN = ol 4 [ RVPRE Vs < X714 48 [ [RYPORL P+ 7P
< Ryp e [ ORI (2.9
Applying It6-Doeblin formula to gives

—m - 4\ ¢ T5M 9T5M a/.m -~m 40 t =M 9=5M ar . m ~m
VI = Wl 5 [ VIRV (X = XDds+ 32 [ VIRV DX m) - X1,

60'2 t —m o m —_—m
—2/ VRXe () - X |2ds—/ B 7m g
<|V0|4+O( +)/ v 4d$—|—C< +>/ |X2(p™) — X1 [Ads

2 [pT b - X2a.. (2.10)
Collecting estimates and and recalling % <m <1, we have
EIX/ + V)
Bl + Val'|+ 0 [ BIXL 4+ 70 s+ [ Bz () - X s
<E[[Xo|* + [Vol*] + C(1 + 8Cae) /Ot E[IX,* + [V 1)ds, (2.11)
where the estimate is used in the last inequality. Applying Gronwall’s inequality yields that
E[IX,|* + V3] < E[[Xo|* + Vol exp (C- (L +8Cae)t), te€[0,T]. (2.12)
Finally, combining (2.8 and (| - yields that

sup  sup E[|X; Y] < C(E[|X0o]Y],E[|[Vo[*],Cag, A, 0,d,T) =: C, (2.13)
me(0,1] te[0,T]
where the constant C; > 0 is independent of m. Therefore, for any € > 0, there exists a compact subset
K.:={z: |z|* < %} such that by Markov’s inequality

Gy

Cuy _ <EIXPIY
)<

o (K.)°) = POX™* > c <e VO<m<1. (2.14)

This means that for each t € [0,T], each countable subset of {p}*}o<m<1 is tight, which verifies condition
(Conl) in Lemma

e Step 2: Checking (Con2). Let 8 be a o(X";s € [0,T])-stopping time with discrete values such that
B+ 6 < T. Without any loss of generality, we may assume that the concerned countable subsequence
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{mi}ren C [0,1] satisfies my, <  for all k € N; thus, we may just consider the case of 0 < m < 1 which
indicates 3 < < 1. Recall (2.3) and compute

Xivs — X5
B+s _ B+6 B+5 o
:/ V. dr / e”m Vodr + = / / (T (X (p™) = X2 )dsdr
B
/ / m (T D(XE(p™) — X )dBadr
m
B+s B+5 . N B+ 8BS -
:/ e_;TVodT—FE/ / e m T dr (X2 (p™) — X )ds+a/ / e m T dr (X (™) — X1 )ds
B 0 B B s
B+3 . o [BHS pBHs .
/ / e T drD(X S (p™) - X )st+—/ / e W T drD(XY(p™) — XI)dB,
m mJg
— 7( —mB _ e ;(54—5))‘/
e B+48 —m
’\/ — e m T (X2(p7) - XL )ds+%/ (1—e mPH=) (X% (p™) = X7")ds
B

o B+3 .
5 / (7O RO D () = XTaB+ [ (= e RO ) DO (") - XTB..
Y Jo Y Jg
(2.15)

Note that there holds |[e™* — e Y| < |z — y| A 1 for all x,y € [0,00). Basic computations further indicate
that for each ¢ > 1 and 7 € [0, T1,

T T
1G] _a(r+5-s) |4 1 Ca)) _rts—s) m _ s m _ar _a(=+8)
/‘e m —e m dsg/ (e m —e m )ds:—<1—e m)——(em—e m )
0 0 v Y
m vy
cm.s
vy m
= 6,

and in particular,

B+d 5 NN B+4
/ (1 —e” e )) ds < / lds =6.
B B

m2 262

G

Then, it is obvious that

E Um(e%ﬁ _ e*%(ﬁﬂi))VO’ (]EHVO‘ D% (E[|V0| ])%

E[
B ’YB ’765 B ~m 2

S]E[/ le™m (B=9) _ gmm (B 5|ds~/ |X§‘(pm)—X5|ds}
0 0

<5-T sup (E[IXS(0™) - X1) 2,

s€[0,T]
2 B+o _a(B+d=5) 2 p+s a; m ~m |2
SIE/ 1—e m ds-/ | X (p™) — X |ds
B B

B+5 .
<6E [/ XS (o) — X7 |2ds}
B

Next, it follows that

B <-m
[ (O RO (2 (7 - X ds
0

and analogously,

B+o -
V (1— e m PP (X (p™) - X1')ds

S(ST sup (]E “X?(pm)_YTIAJ:])l/Q’
s€[0,T]
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Further, applying It6’s isometry gives
2

B
B (| [ (09 - e EOr ) D () - X)),

s
0

— S

3 1/2 3 1/2
Sd(IE U |e—7n<ﬁ—3>—e—%<5+5—3>|4dsD ~<E V |Xg(pm)—xj‘|4dsD
0 0

1/2
< as'? (T sup E[X3<pM>—XZ”4]> 7
s€[0,T]

ﬁ ——m
< dE l/ |e—%(5—s) - e—%(ﬂ+6—s)|2|xg(pm) -X |2ds]
0

and analogously,

9 1/2
E < ds'/? (T sup E[IX?(p’")—X?I“D :

s€[0,T]

B+6 i -m
/ﬂ (1—e w P ND(X(p™) — X, )dB,

Therefore, summing up the above estimates and recalling 0 < m < mg = %, % < 2, and the relations ([2.6))
and (2.13)), we arrive at

ik 2 5 o 17141\ % 10 2 2 1/2 af,.m M4 1/2
E[X,s — X5 ] < S0 EVoD} + 5y - (VT + 0% (01)"%) sup (E[|X3 (™)~ X7
Y Y s€[0,T]
< C (B[[Xo|*). EIVo |, Cae A0, d, T) (63 + 5+ 6%) .
Hence, for any € > 0, nn > 0, there exists some &g > 0 such that for all 0 < m < % it holds that
. . E Ym _ Y'm 2
sup P(|Xg.5 — Xp 2>n) < sup (X510 5 1] <e. (2.16)
5€[0,50] 5€[0,60] n
This justifies condition C'on2 in Lemma [2.1 |

Next we shall identify the limit process, before which we recall a lemma on the stability estimate of the

nonlinear term X<(p).

Lemma 2.2. |11, Lemma 3.2] Assume that p,p € P4s(R%). Then the following stability estimate holds
X(p) - X°(5)] < CWalp, 7). (2.17)

where Wy is the 2-Wasserstein distance, and C' depends only on o, L, [p. |z|*p(dz), and [5, |z]|*p(dz).

Theorem 2.3 (Zero-inertia limit). Let Assumption |1| hold and (X{",Vi™)cpo,1) satisfy the system (L.7).
Then as m — 0T, the sequence of stochastic processes {Ym}kmgl converge weakly to X, which is the

unique solution to the following SDE:

t t
X, =Xy + )\/ (XS(p) — Ys)ds + O’/ D(X(p) — Ys)alBS . (2.18)
0 0
Moreover it holds that
sup E[[X; — X 2] <Cm, (2.19)
te[0,T]

where the constant C' depends only on E[|Xo|*],E[|Vo|*], Ca.e, A\, 0,d, and T.
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Remark 2.1. Tt follows from the definition of Wasserstein distance that

sup WE(pi",pr) < sup E[X] =X, < Cm, (2.20)
te[0,T] te[0,T]

which in a way is consistent with the result obtained in |14, Theorem 1.3], where the authors obtained a
quantified overdamped limit (with the same rate m) of the singular Vlasov-Poisson-Fokker-Planck system
to the aggregation-diffusion equation. Besides, the obtained weak convergence of X™ — X is in the path
space C([0,T]; R?), which implies and is obviously stronger than the convergence of {p"},,~0 to p; for each
time ¢ > 0.

Proof. By Theorem each subsequence {Ymk}keN with mo < 1/2 and my, converging to 0 as k — oo
admits a subsequence (denoted w.l.o.g. by itself) that converges weakly. By Skorokhod’s lemma (see [6, The-
orem 6.7 on page 70]), we may find a common probability space (€2, F,P) on which the processes {Ymk treen
converge to some process X as random variables valued in C ([0, T]; RY) almost surely. In particular, we have

P (klim X" — X, = 0) =1, Vte[0,T]. (2.21)
bde el

We shall verify that the limit X is indeed the unique solution X to SDE (2.18).
Recall the SDE satisfied by X in (2.5)

X X, “my Y/, A ! ——I(t—s —m
Xt * :X0+%(1—6 ":rkt)VO—Ff/ (]_—e T;Zk(t ))(Xg(pmk)—XS k)ds
v v Jo
o [ — g (t—s) <Mk
+*/ (1—e ™" NDXY(p™) — X. " )dBs . (2.22)
Y Jo

By the estimates in (2.13)) and (ii) of Theorem there exists a constant C being independent of my, such
that

sup sup E[|YT’“|4] + sup ]E[mﬂ < Oy = CE[ X0, E[[Vo|Y], Cae, N, 0,d, T) < 0o, (2.23)
keNte[0,T) t€[0,T]

Letting p(t,dx) be the probability distribution of X for ¢ € [0, 7], we have

fRd xwg(m)p(tvdx) / ~ 471\ L
X = < C, t,dr) < Cye(E[|X 1,
XE 0 = |y | < O [, oot d) < Coe (BT
and
sup sup |XE(p"™)| € Cap(C)¥, and  sup |X(p)] < Cae(Ca)} (2.24)
keNte[0,T] te[0,T]

Then we compare the SDEs ([2.18)) and (2.22)) term by term. By Lemma we have

|[XP(p™) = XP(p)]P < CWE(p}"™, pi) < CE[IX}™ = X/,
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and thus,
)\ ¢ —i(t—s) af mpg ~ Mk ! @ D' ’
E - (1 —e Tk )(Xs (ps ) - Xs )dS A (Xs (pg) - XG)dS
Y Jo 0
2
=% \1 / (1= TN KD (I = Xi (o) + Ko = X" )ds ]
—m 2
t 1—e k(f s) —
2F —1| (X%(ps) — X
+ T 1—my (X< (ps) s)ds
_ 2
Mo a2, ] , [Pl —e e 70 T
gCE X, — X" ds| +CA - 1| ds-E | X (ps) — Xs| ds
0 | 0 1—my 0
" (1) ?
t _ —m 2 ] t 1 T Tmg s 1 _
gCE/ X, - X ds +c/ - —d=ml)
0 ] lfmk
_ —mi|2 ] 2(17’mk)(t_s)
SCE XS—XS ds| +C |mg|® + e~ 7 ds
0 i
N m
< CE X,— X" d tlmel + —r 2.2
<c / : s_+0(|mk o), (2.25)

where the constants Cs are independent of k. For the stochastic integrals, it holds analogously that

o 2
E[

t t
> / (1—e ™ TNDXE () - X0 )dBs — o / D(X2(ps) — X)dB,
0 0

d

1 ¢ S - m t J— 2

<d*Y R \W [ = e N o) - X dBlen - [ (X2 (o) - X)udBLe, ]

n=1 0 0

d X (t—s) 2
9 1—e ™ o m —my o —

=do” ) E (X = X = (X2 () = Ko ds

n=1 0

t 1_e*ﬁ(t75) 2

5 (<X§“<p;”k> — X0 = (X2 (ps) —Ys)n) ds

d
< 2do? Z E /
n=1 0

2

d t 1— 6—7,%]6(1&—3) o
+2do” Z E / < y - 1) (X;l(ps) - Xs)n ds
n=1 0
Clome = |2 — |2 1— e mr %) ’
< CE [/ ‘XS - X, d8:|+2d02 sup E“(Xg(ps)—Xs)‘ }/ " 1) ds
0 s€[0,t] 0 Y
t
< CE ‘YS X tma)? + k) 2.2
<C [/0 < }+C<|mk| +2(1_mk) (2.26)

In addition, it is obvious that

R

‘m’“ < Cmy |V (2.27)
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Therefore, recalling m; < %, combining the estimates (2.25))-(2.27)) and subtracting both sides of SDEs ([2.18)
from those of (2.22)), we have

¢
E[X™ X, < c/ E[X™ - X,[2ds + Cmy, ¢ €0, T).
0
By Gronwall’s inequality it implies that

sup E[[ X" — X2 < Cmy — 0, as k — oo, (2.28)

te[0,7]
where C' depends only on E[|X|*],E[[Vo|%],Ca.e, A, 0,d, and T. In view of both the convergences
and (2:28), we must have X = X. Finally, due to the arbitrariness of the subsequence {X " }yen and the
uniqueness of X, we conclude that as m — 0%, the sequence of stochastic processes {Ym}o@ngl converge
weakly to the unique solution X to SDE , with the estimate following in the same way as ([2.28)).
|

Remark 2.2. When proving the convergence of {X '} satisfying SDEs to the solution X of (L.10)),
we cannot expect the convergence of the associated velocity processes {Vm} due to the indifferentiability
of the limit {X;};>o with respect to time t if & # 0. Therefore, we do not investigate convergence of
the joint Markovian process {(X ,V' )} and consider instead solely the process {X  } which satisfies a
stochastic integral equation of Volterra type, being path-dependent and thus non-Markovian. This
non-Markovianity prevents us from using the usual techniques for weak convergence with martingale problems
but prompts us to identify the limit by measuring directly the distance between X™ and X in the above

proof.

3. GENERALIZATION TO THE CASE WITH MEMORY EFFECTS

In [25], the authors considered a PSO model which involves the memory of the local best positions, and
it is of the form

dX;" =V, dt, (3.1)
v =v(X; -Y") s (X Y]") dt, (3.2)
av; = - Lviar+ all Y - X:")dt+ A2 (Y2 (p™) — X{") dt

m m m

+ %D (V)" —X") dB} + %D (V2 (p™) = X/") dB?, (3.3)

where B' and B? are two mutually independent d-dimensional Wiener processes and similarly to the previous section,

we introduce the following regularization of the global best position
_ Jeaywa(y)p™ (¢, dy)

fRd Wa (y)ﬁm(t’ dy)
Here the equation (3.2)) of Y™ is the time continuous approximation to the evolution of the local best position, and
S# with 8> 1 is hyperbolic tangent S?(z, ) = tanh(8(£(z) — £(y)). The corresponding mean-field PSO equation is

Ve ™) C =[] e, (3.4)

O +0- Vol + 9y (e = )8 @) ") = Vo ( Zofi + 2o =) 7"+ 220 - ¥ G

2 2
02 o f—my\2 01 2 m
+ (2 Dle = Yo" + 5 Do~ ) V7). (35)
We want to prove that the zero-inertia limit (m — 0) leads to the following mean-field CBO dynamic
Xi=Xo+M [j(Ye—X.)ds+ 01 [, DYs — X.)dB + X2 [ (Y2 (p) — Xo)ds + o2 [ D(YE(P) — Xs)dB2,
-Y,

?t :?O‘i’l/fot (Ys )SB (Y&?S) dS,
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and its corresponding partial differential equation is

Oipr + Vo My —x) + (YD) —x)pt) + Vy - (V(m - y)SB(a:,y))pt)
d
S e o) (36)

where p(t,y) = [ou plt, dz,1).

Since the proof of the zero-inertia limit for the PSO dynamics with memory effects follows similar arguments as
developed in the previous section and no essential innovation is needed to be explained, we only sketch the proof for
the tightness.

Theorem 3.1 (Tightness). Let Assumption hold and (Y?,??,V?)te[o,ﬂ satisfy the system (3.1)-(3.3]). For each
countable subsequence {my}ren C [0,1] with limg—oo mi = 0, the sequence of probability distributions {p™* }ren of
{(Ymk,Ymk)}kEN is tight.

Proof. The proof is similar to Theorem
e Step 1: Checking (Conl). For 0 <m < %, we first solve (3.3) for V"™ and obtain

t t
VI = e w4 %/ e m DT _XMds+ O [ e w9 DT — X" VdB!

0 m Jo

t t
122 [ e ye ) XMds+ 2 [ e m I Dye () - XTdB?
m Jo m Jo

Here p™ (t,y) = f]Rd p™(t,dz,y). By Fubini’s theorem, similar arguments as in (2.5 yield that
t t
X' =Xo+ Z(1—e m)Vo+ ﬁ/ (1—e m N T —X)ds + ﬂ/ (1—e wNDYT - XT)dB!
Y Y Jo Y Jo
t t
#22 [ e N - X+ 2 [ (1= e F0) D (") - XT)dBE. (3.7)
Y Jo Y Jo
Following the same computations as in Theorem [2:2] gives

t t
E[[X7"|) < CE[o|* + [Vol'] + C / E[YS (p™) — X7|")ds + C / YT — X7 4ds,
0 (0]

where C depends only on A1, 02, X2, 02,d, and T. Put p™(t,z) = [0 p™ (¢, z,dy). In a similar way to (2.6) we have

_ Ewp(thdy) | Joa (y — @) ()P (¢, dy) [
EIVE (5™ _Xm4 :/ fRdywa(ylp (7 I t,dI :/ Rd af ) ~m t,dl’
FEE =Xl = | gy Y 7 = T ey | P B
Jaa Jra |z — y[*0S (y)p™ (¢, dy)p™ (t, dx) —ma —ma
< 4 < 8C. E[I X, *+ VY.
Jpa wE(y)p™ (¢, dy) EIXT YT
Thus it yields that
- = ey t <M -m
E[|IX/"[] < CE[[Xo|* + Vo] +C/ E[[YY "+ X, Y)ds, (3-8)
0

where C depends only on A1, 02, A2,02,d,T and Cq .
Recall that

t

VI =Totv [ (X -VT)ST (XTVT) ds
0

with S?(z,y) = tanh(8(E(x) — E(y)). Using the fact that |S?| < 1 then it follows

x-m Xr t XM ~-m
E[[Y,"|"] < CE[[Yo|"] +C/ E[YS" + X5 "ds,
0
where C' depends only on v and T'. This together with (3.8 implies

t
E[XT[ + 771 < CE[Xol* + [Vol* + Vol + C / E[VT[* + X "ds
0
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By Gronwall’s inequality it yields that

sup EHY?‘AL + |?;n|4] < C((EHYM4 + |?0|4 + |V0|4L )‘11 02, )‘27027 d7 Ta Ca,57 V) ’ (39)
te[0,7]

which verifies (Conl) for the case of 0 < m < 1. We omit the discussions for the case of 1+ <m < 1.
e Step 2: Checking (Con2). Let 8 be ao(X[";s € [0,T])-stopping time with discrete values such that 8+d0 < T
Set mg = % w.l.o.g.. Then for all 0 < m < myg, one has % < v < 1. Similar to (2.15)), one has

X35 - X5
=Dl — e m BTN,
5
s — B+6 o
22 [ RO Ry e ) S X ds + 22 [T 1 e RO ) - X ds
Y Jo Y JB
02 s — X (B—s) — X (B+5—s) a—m ~m 2 02 e — L (B+5—s) a/—m ~m 2
+ 2 [ (em P —emm )D(Y2(p™) ~X)dB2+ 2 [ (- )D(YS(p™) — X.')dB?
Y Jo Y JB
+ ﬂ/ (e m =) _ emmBH=y (YT _ X Vds + il / (1— e mBH=) T _X7)ds
Y Jo Y Js
+ 2 (e m B e m B DY — X ™dBL + 2L (1—e mPH=NDYT —X™MdBl. (3.10)
Y Jo 7 Js

Using the estimate (3.9)) it follows from the same computations in Theorem that
E[[X5ys - X571 < C (8% +6+67) (3.11)

where C' depends only on E[|Xo|* + [Yo|* 4+ [Vo|*], A1, 02, A2, 02,d, T, Cu g, and v.
Having a look at
B+
g y/ (X0 - 7Y 8 (X077 ds,
B

we have
m

T
Vo VoL < 1/2(5/ X7 VTR
0

By estimate (3.9)), we have

T
E[V5.s - V51 <o% [ BIXT - V21Ra < o, (3.12)
0
where C depends on IE[|Y0|4 + |?0|4 + |Vo|4],)\1702,)\2,02,d, T,Cq,c and v. This together with (3.11) justifies
(Con2). O
Let us recall
t t
X =Fot D- e E ok 2 [ - FHENET X+ [ (1 RO DET - X!
Y Y Jo Y Jo
A K — L (t—s a/—m ~m k — L (t—s a/—m ~m
+2 [ (= w e - XL >ds+9/<1—e w DY (™) - X\ )dB: (3.13)
7Y Jo Y Jo
and
t
Y = YVo+u / (X0 -7 87 (X070 ds. (3.14)
0

Then following the lines of the proof in Theorem [3:2] one can easily obtain

Theorem 3.2 (Zero-inertia limit). Let Assumption |1 hold and (Xi ,Y7 icjo,r) satisfy the system (3.13)—(3-14).
Then as m — 07, the sequence of stochastic processes {(Ym,?m)}0<m§1 converge weakly to (X,Y) which is the
unique solution to the following coupled SDE:

t t t t
X :YH,\l/ (?sfys)deral/ D(?Sfys)stlJr)\g/ (Y;‘(p)fYS)dHUQ/ D(Y™(p) — X.)dB2,
0 0 0 0

t
?t:?ﬁu/ (X, — V) 8° (X., V) ds.
0
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Moreover it holds that

sup E[’Y;nfyt|2+|??17?t’2] <Cm, (3.15)
t€(0,T]

where the constant C depends only on E[|Xo|* + [Yo|* + [Vo|*], A1, 02, X2, 02,d, 8, T, Cae, and v.

4. NUMERICAL EXAMPLES ON THE ZERO-INERTIA LIMIT

We conclude this paper with a few instructive numerical experiments on validating the zero-inertia limit. We will
focus on the mono-dimensional case since it allows us to see more clearly how the distribution of particles evolves in
time depending on the inertia parameter m, and hence show the zero-inertia limit. Different benchmark functions
have been used and tested, but we will report here the case of the Ackley function shown in Figure[3] Following the
same structure of the paper, we will first analyze the case without memory effect and then we will generalize as in
Section [3| to the case with memory. Extensive discussions on other numerical implementations and experiments are

presented in [25].

Ackley Function in big domain Ackley Functien in small domain

FIGURE 3. Ackley function in a big (left) and small (right) domain with its many local

minima.

4.1. Small inertia limit without memory. Given the system of stochastic differential equations in (1.2]), the

particle system can be solved by using a semi-implicit discretization scheme

X0 = XM+ AtV

'nH B i AAL i VAt i i (4.1)
n,m m i,m a,m i,m o a,m 1,m\pt s __
Vn+1_m+'yAtVn +m+'yAt(X" — X, )+m+'yAtD(X" - X6, i=1,---,N,

where X%™ and V™ are, respectively, the position and velocity of the i-th particle at the discrete time nAt with At
being the time discretization, and the diagonal matrix D(X2™ — X5™) simply coincides with X2™ — X-™ as we are
considering the mono-dimensional case. Moreover, X,;""" is defined as in and 0}, ~ N(0,1) Vi,n. We compare
this particle system with the CBO dynamic of the form , which can be solved using the Euler-Maruyama scheme

Xig1 = Xp + AINXS — X))+ VAte(XS — X),)07 . (4.2)

As already mentioned, we consider the minimization of the Ackley function with minimum at = 0 and, starting
from the same initial distribution of particles, we solve the PSO system for different inertia values. Then, we
compare the evolution of the distribution of particles with the one of the particles moving according to CBO system

(4.2). In order to be able to compare the results, we fix the parameters A = 1, ¢ = % and o = 30, while 6,
are sampled from A(0,1) and fixed for each i = 1,..., N and n € [0,T/At]. Moreover, T is set to 1 and the time
discretization is At = 0.01, with a total number of particles N = 10*.

Figure [4 shows in each row the evolution of the CBO distribution and the one of the PSO system with m fixed that
is decreasing over rows. The initial particles are always sampled from the same distribution, which is in this case a
Gaussian centered in 0 with variance 1. Clearly, the PSO system with m = 0.8 leads to the correct minimum in 0 at
the final time step ¢ = 1, but the distribution of the particles is different from the one of the CBO. While, for any
t € [0,T], if the inertia value is decreased to 0.1, or even to 0.001, the two distributions, namely the one obtained via
CBO and the PSO one, are indistinguishable, as the last two rows of Figure [4] show.

These considerations are confirmed in Figure [5] where we compare the distributions obtained in Figure [4 using
the Wasserstein 2 distance between the CBO distribution and the PSO distribution. On the left of Figure |5} the
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25 Distribution, t = 0.0 a5 Distribution, t = 0.2 25 Distribution, t = 0.5 25 Distribution, t = 0.7 a5 Distribution, t = 1
— @0 — o i — o — &0 — @0
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20 20 20 20 20
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1S 15 15 15 15
£
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F .
00 0o 00 +—— — 00 0o — -
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PSO, m=0.5 PSO, m=05 PSO, m=05 PSO, m=05 PSO, m=0.5
20 20 20 20 20
o
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0s 05 0s 0s 05
0o 00 00 - 00 — 00 = -
= 2 1 0 1 2 = 2 a1 0 1 2 = 2 1 0 1 2 = 2 -1 o0 1 2 = 2 -1 0 1 2
Distribution, t = 0.0 Distribution, t = 0.2 Distribution, t = 0.5 Distribution, t = 0.7 Distribution, t = 1
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PSO, m=0.1 PSO, m=01 PSO, m=0.1 PSO, m=0.1 PSO, m=0.1
20 20 20 20 20
S
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2
1 05 0s 1 05
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o
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F1GURE 4. Comparison of the CBO and PSO (4.1)) dynamics for different inertia
values (which are changing over the rows) and at many time steps (changing over columns),

starting from a normal distribution.

Wasserstein distance is plotted for each time step. Moreover, since we want to show the influence of the inertia
parameter, we take the mean value of the Wasserstein distance over all time steps and plot it as a function of the
inertia values. This is shown on the right of Figure [f] where we also add the mean value of the Kullback-Leibler
divergence since the latter is a well-known measure used to compare distributions, especially in statistics. Moreover,
since it is necessary to start with an initial distribution that is close to the global minimizer, we also try to see what
happens when the initial distribution is a uniform distribution between —3 and 3 and compare the evolution of its
particles according to the CBO and PSO dynamics, with varying inertia parameters. The result is shown in Figure
[6] In this case, the difference between the CBO distribution and the one of the PSO dynamics is way higher in the

case of big inertia value, but, as before, goes to zero as soon as m converges to 0.
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Wasserstein distance between CBO and PSO distributions over time Comparison of CBO and PSO distributions over inertia
0175 | — Metiam =08 s — Mean Wasserstein distance:
Inertia m =05 —— Mean KL-divergence
— Ineriam=01 0150
0150 1 — Inertia m = 0.001
0125
0125 N\
0100 0100
0075 N\ o078
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0025 0025
0000 0000
0 B “ E] &0 00 10 Y] 06 04 0z 00
time inertia values

FI1GURE 5. Left: Wasserstein distance over time ; Right: Wasserstein distance and Kullback-

Leibler divergence (in mean) over the inertia values.
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FIGURE 6. Evolution of an initial uniform distribution according to CBO and PSO
dynamics and their comparison for different time steps (on the columns) and different

inertia values (on the rows).
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CBO att =00 CBOatt =02 CBOatt=05 CBO att=08 CBO att =099
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Inertia m:
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PSO with m 0.001 at t = 0.0 PSO with m 0.001 at t = 0.2 PSO with m 0.001 att = 0.5 PSO with m 0.001 att =08 PSO with m 0.001 at t = 0.99
- -2 0 2 -2 [ 2

F1GURE 7. First Row: evolution in time of the initial gaussian distribution according to
CBO dynamics ; Second Row: evolution in time of the initial Gaussian distribution
according to PSO dynamics with m = 0.8; Third Row: evolution produced by the
PSO dynamics with m = 0.001.

= 0.001

Inertia m:

3
2
1
0
1
2
3
L PsOwithm 0.8 att =00 PSO with m 0.8 att = 0.2 PSOwithm08att=05 PSO withm 0.8att=08 PSO with m 0.8 att = 0.99
2
1
0
1
2
3
3
2
1
0
1
2
3

a-

4.2. Small inertia limit with memory effect. The PSO model which involves the memory of the local and global

best positions, underlying (3.1)—(3.3)), can similarly be solved via
Xy =Xy AV, =1, N
Vit = vAYXLT = Y SE (XL Ve,

i,m m i,m A1 AL im i,m A At a,m __ i,m
V’ﬂ+1 T m+yAt V” + m—+yAt (Yn X'” ) + m—+yAt (Yn X'” )

+ S DY = Xm0 + 2RI DY — X0

m—+yAt m—+yAt

(4.3)

where Y,"™ is the local best that the i-th particle has memory of, and ;%™ is the regularized global best, defined
as in (3.4). Clearly, the corresponding CBO dynamics is the following

Xi = X5+ MALYE — X5 4+ M ALY — XE) + o1 VALD(YE — XD)0L" 4 oo/ ALY — X1)02°

. v . v C (4.4)
Y =Y+ vAUX; - Y SH (X5, Vo)

Once again, since we want to show the convergence of the PSO distribution obtained from (4.3) with a small inertia
value to the one attained via the CBO system (4.4]), we need to set some of the parameters to the same values in
order to be able to compare the results. Their values are the following

1 1
)\12)\221 g1 =02 = —= a =30 5230 l/=§ (45)

V3

and, as before, the effect of the Brownian motion leads to 6% 6% which are sampled from a normal distribution
and set to a fixed value Vi = 1,.., N and Vn € [0,7/At]. The time discretization and number of particles are set to
the same values as in the case without memory, namely 7 = 1, At = 0.01, and N = 10*. The difference with the
previous case is that now the distribution of which we want to show convergence, is actually a function of both the
particles’ position and their local best and, as such, it is bi-dimensional. The result of the evolution of the particles
according to the CBO dynamics is shown in the first row of Figure while the second row represents the
evolution according to the PSO dynamics with a big inertia parameter, e.g. m = 0.8. This is compared with
the evolution presented in the third row in which the inertia is set to a very low value, e.g. m = 0.001.

In the case without memory, it is easy to see the convergence at each time step of the PSO system with small inertia
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FIGURE 8. Left: mean particles’ position with their standard deviation; Center: mean
particles’ local best with the standard deviation too; Right: plot of the Wasserstein distance
and Kullback—Leibler divergence between the distribution obteined via CBO dynamics
and the one obtained through PSO system with small inertia value, i.e. 0.001.

to the CBO, but it’s not as clear now that the distribution we are interested in is bi-dimensional. To be able to

compare the evolution and to check how similar the distributions are at every time step, we show in Figure [§ different

plots: we look at the particles’ mean positions (left) and their local best (center) for each time step and, in both

cases, show their standard deviation as a colored area around the mean. It is interesting to see how the particles are

moving and where they are attracted to, especially because the pattern of the PSO dynamics with small inertia is the

same as the one of CBO. Finally, on the right plot of Figure we show how both our similarity measures, namely the

Wasserstein distance and the Kullback-Leibler divergence, are decreasing along with the inertia parameter, validating

the small inertia limit also in the general case with memory.

(1]

2

3]

=

9)
[10]
[11]
[12]
[13]
[14]

(15]

REFERENCES

Emile Aarts and Jan Korst, Simulated annealing and boltzmann machines: A stochastic approach to combinatorial opti-
mization and nmeural computing, John Wiley & Sons, Inc., New York, NY, USA, 1989.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows: In metric spaces and in the space of probability
measures, Springer Science & Business Media, 2008.

Thomas Back, David B. Fogel, and Zbigniew Michalewicz (eds.), Handbook of evolutionary computation, 1st ed., IOP
Publishing Ltd., Bristol, UK, UK, 1997.

Nicola Bellomo, Abdelghani Bellouquid, and Damian Knopoff, From the microscale to collective crowd dynamics, Multiscale
Modeling & Simulation 11 (2013), no. 3, 943-963.

Nicola Bellomo and Christian Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and
perspectives, SIAM review 53 (2011), no. 3, 409-463.

Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, 1999.

Christian Blum and Andrea Roli, Metaheuristics in combinatorial optimization: Overview and conceptual comparison,
ACM Comput. Surv. 35 (September 2003), no. 3, 268-308.

Frangois Bolley, José A Canizo, and José A Carrillo, Stochastic mean-field limit: non-Lipschitz forces and swarming,
Mathematical Models and Methods in Applied Sciences 21 (2011), no. 11, 2179-2210.

José A Carrillo and Young-Pil Choi, Quantitative error estimates for the large friction limit of Vlasov equation with
nonlocal forces, Annales de 'institut henri poincaré c, analyse non linéaire, 2020, pp. 925-954.

José A Carrillo, Young-Pil Choi, and Samir Salem, Propagation of chaos for the Vlasov—Poisson—Fokker—Planck equation
with a polynomial cut-off, Communications in Contemporary Mathematics 21 (2019), no. 04, 1850039.

José A Carrillo, Young-Pil Choi, Claudia Totzeck, and Oliver Tse, An analytical framework for consensus-based global
optimization method, Mathematical Models and Methods in Applied Sciences 28 (2018), no. 06, 1037-1066.

José A Carrillo, Massimo Fornasier, Jesis Rosado, and Giuseppe Toscani, Asymptotic flocking dynamics for the kinetic
Cucker—Smale model, SIAM Journal on Mathematical Analysis 42 (2010), no. 1, 218-236.

José A Carrillo, Shi Jin, Lei Li, and Yuhua Zhu, A consensus-based global optimization method for high dimensional
machine learning problems, ESAIM: Control, Optimisation and Calculus of Variations (2019).

Young-Pil Choi and Oliver Tse, Quantified overdamped limit for kinetic vlasov-fokker-planck equations with singular in-
teraction forces, arXiv preprint arXiv:2012.00422 (2020).

Felipe Cucker and Steve Smale, Emergent behavior in flocks, IEEE Transactions on automatic control 52 (2007), no. 5,
852-862.



20
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
28]
[29]
[30]
[31]
[32]
133
[34]

(35]

(36]
37]
(38]
39]
[40]

[41]

42]
(43]

[44]

CRISTINA CIPRIANI, HUI HUANG, AND JINNIAO QIU

Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Cambridge university press, 2014.
Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, Springer-Verlag Berlin Heidelberg, 2010.
Manh Hong Duong, Agnes Lamacz, Mark A Peletier, and Upanshu Sharma, Variational approach to coarse-graining of
generalized gradient flows, Calculus of variations and partial differential equations 56 (2017), no. 4, 1-65.

RC Fetecau and Weiran Sun, First-order aggregation models and zero inertia limits, Journal of Differential Equations 259
(2015), no. 11, 6774-6802.

Massimo Fornasier, Hui Huang, Lorenzo Pareschi, and Philippe Siinnen, Consensus-based optimization on hypersurfaces:
Well-posedness and mean-field limit, Mathematical Models and Methods in Applied Sciences 30 (2020), no. 14, 2725-2751.
Massimo Fornasier, Hui Huang, Lorenzo Pareschi, and Philippe Siinnen, Consensus-based optimization on the sphere II:
Convergence to global mininizers and machine learning, arXiv:2001.11988v3 (2020).

Massimo Fornasier, Hui Huang, Lorenzo Pareschi, and Philippe Siinnen, Anisotropic diffusion in consensus-based opti-
mization on the sphere, arXiv preprint arXiv:2104.00420 (2021).

Massimo Fornasier, Timo Klock, and Konstantin Riedl, Consensus-based optimization methods converge globally in mean-
field law, arXiv preprint arXiv:2103.15130 (2021).

Michel Gendreau and Jean-Yves Potvin, Handbook of metaheuristics, 2nd ed., Springer Publishing Company, Incorporated,
2010.

Sara Grassi and Lorenzo Pareschi, From particle swarm optimization to consensus based optimization: stochastic modeling
and mean-field limit, Mathematical Models and Methods in Applied Sciences (To appear).

Seung-Yeal Ha, Shi Jin, and Doheon Kim, Convergence of a first-order consensus-based global optimization algorithm,
Mathematical Models and Methods in Applied Sciences 30 (2020), no. 12, 2417-2444.

Seung-Yeal Ha and Eitan Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic & Related
Models 1 (2008), no. 3, 415.

Darryl D Holm and Vakhtang Putkaradze, Formation of clumps and patches in self-aggregation of finite-size particles,
Physica D: Nonlinear Phenomena 220 (2006), no. 2, 183-196.

Hui Huang, A note on the mean-field limit for the particle swarm optimization, Applied Mathematics Letters (2021),
107133.

Hui Huang, Jian-Guo Liu, and Peter Pickl, On the mean-field limit for the Viasov—Poisson—Fokker—Planck system, Journal
of Statistical Physics 181 (2020), no. 5, 1915-1965.

Pierre-Emmanuel Jabin, Macroscopic limit of Vlasov type equations with friction, Annales de I'institut henri poincare (c)
non linear analysis, 2000, pp. 651-672.

Pierre-Emmanuel Jabin and Zhenfu Wang, Mean field limit for stochastic particle systems, Active particles, volume 1,
2017, pp. 379-402.

James Kennedy, The particle swarm: social adaptation of knowledge, Proceedings of 1997 IEEE International Conference
on Evolutionary Computation, 1997, pp. 303-308.

James Kennedy and Russell Eberhart, Particle swarm optimization, Proceedings of 1995 IEEE International Conference
on Neural Networks, 1995, pp. 1942-1948.

Jeongho Kim, Myeongju Kang, Dohyun Kim, Seung-Yeal Ha, and Insoon Yang, A stochastic consensus method for non-
conver optimization on the Stiefel manifold, 2020 59th ieee conference on decision and control (cdc), 2020, pp. 1050—
1057.

Hendrik Anthony Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7
(1940), no. 4, 284-304.

Shih-Wei Lin, Kuo-Ching Ying, Shih-Chieh Chen, and Zne-Jung Lee, Particle swarm optimization for parameter determi-
nation and feature selection of support vector machines, Expert systems with applications 35 (2008), no. 4, 1817-1824.
Xuerong Mao, Stochastic differential equations and applications, Elsevier, 2007.

Peter David Miller, Applied asymptotic analysis, Vol. 75, American Mathematical Soc., 2006.

Sebastien Motsch and Eitan Tadmor, Heterophilious dynamics enhances consensus, SIAM review 56 (2014), no. 4, 577—
621.

René Pinnau, Claudia Totzeck, Oliver Tse, and Stephan Martin, A consensus-based model for global optimization and its
mean-field limit, Mathematical Models and Methods in Applied Sciences 27 (2017), no. 01, 183-204.

Riccardo Poli, James Kennedy, and Tim Blackwell, Particle swarm optimization, Swarm intelligence 1 (2007), no. 1, 33-57.
Yuhui Shi and Russell Eberhart, A modified particle swarm optimizer, Proceedings of 1998 IEEE international conference
on evolutionary computation, 1998, pp. 69-73.

Alain-Sol Sznitman, Topics in propagation of chaos, Ecole d’été de probabilités de Saint-Flour XIX-—1989, 1991, pp. 165—
251.



ZERO-INERTIA LIMIT FOR PSO

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY MUNICH, MUNICH, GERMANY

Email address: cristina.cipriani@ma.tum.de

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF CALGARY, CALGARY, CANADA

Email address: hui.huangl@ucalgary.ca

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF CALGARY, CALGARY, CANADA

Email address: jinniao.qiu@ucalgary.ca

21



	1. Introduction
	2. Zero-inertia limit
	3. Generalization to the case with memory effects
	4. Numerical examples on the zero-inertia limit
	4.1. Small inertia limit without memory
	4.2. Small inertia limit with memory effect

	References

