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Abstract. Recently a continuous description of the particle swarm optimization (PSO) based on a system

of stochastic differential equations was proposed by Grassi and Pareschi in [25] where the authors formally

showed the link between PSO and the consensus based optimization (CBO) through zero-inertia limit. This

paper is devoted to solving this theoretical open problem proposed in [25] by providing a rigorous derivation

of CBO from PSO through the limit of zero inertia, and a quantified convergence rate is obtained as well.

The proofs are based on a probabilistic approach by investigating the weak convergence of the corresponding

stochastic differential equations (SDEs) of Mckean type in the continuous path space and the results are

illustrated with some numerical examples.
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1. Introduction

Over the last decades, large systems of interacting particles are widely used in the investigation of com-

plex systems that model collective behaviour (or swarming), an area that has attracted a great deal of

attention; see for instance [4, 12, 27, 40] and references therein. Such complex systems frequently appear

in modeling phenomena such as biological swarms [15], crowd dynamics [5], self-assembly of nanoparticles

[28], and opinion formation [40]. In the field of global optimization, similar particle models are also used in

metaheuristics [1, 3, 7, 24], which provide empirically robust solutions to tackle hard optimization problems

with fast algorithms. Metaheuristics are methods that orchestrate an interaction between local improvement

procedures and global/high level strategies, and combine random and deterministic decisions, to create a

process capable of escaping from local optima and performing a robust search of a solution space. In the

sequel, we consider the following optimization problem

x∗ ∈ argminx∈RdE(x) , (1.1)

where E(x) : Rd → R is a given continuous cost function.

One noble example of metaheuristics is the so-called Particle Swarm Optimization (PSO), which was

initially introduced to model the intelligent collective behavior of complex biological systems such as flocks

of birds or schools of fish [33, 34, 43], and it is now widely recognized as an efficient method for tackling

complex optimization problems [37,42]. The PSO method solves optimization problem (1.1) by considering

a group of candidate solutions, which are represented by particles. Then the algorithm moves those particles

in the search space according to certain mathematical relationships on the particle position and velocity.

Each particle is driven to its best known local location, which is updated once the particles find better

positions. However the mathematical understanding of PSO is still in its infancy. Recently Grassi and
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Pareschi [25] took a significant first step towards a mathematical theory for PSO based on a continuous

description in the form of a system of stochastic differential equations: dXi,m
t = V i,mt dt,

dV i,mt = − γ
mV

i,m
t dt+ λ

m (Xα
t (ρN,m)−Xi,m

t )dt+ σ
mD(Xα

t (ρN,m)−Xi,m
t )dBit, i = 1, · · · , N ,

(1.2)

where the Rd-valued functions Xi,m
t and V i,mt denote the position and velocity of the i-th particle at time

t, m > 0 is the inertia weight, γ = 1−m ≥ 0 is the friction coefficient, λ > 0 is the acceleration coefficient,

σ > 0 is the diffusion coefficient, and {(Bit)t≥0}Ni=1 are N independent d-dimensional Brownian motions. We

also use the notations for the diagonal matrix

D(Xt) := diag{(Xt)1, . . . , (Xt)d} ∈ Rd×d ,

where (Xt)k is the k-th component of Xt, and the weighted average is given by

Xα
t (ρN,m) :=

∫
Rd xω

E
α(x)ρN,m(t, dx)∫

Rd ω
E
α(x)ρN,m(t, dx)

(1.3)

with the empirical measure ρN,m(t, dx) := 1
N

∑N
i=1 δXi,mt

(dx). So we can rewrite

D(Xα
t (ρN,m)−Xi,m

t )dBit =

d∑
k=1

(Xα
t (ρN,m)−Xi,m

t )kd(Bit)
kek , (1.4)

where ek is the unit vector in the k-th dimension for k = 1, . . . , d. Furthermore, the initial data (Xi
0, V

i
0 )Ni=1

are independent and identically distributed (i.i.d.) with the common distribution f0 ∈ P4(R2d), where

P4(R2d) denotes the space of probability measures with finite forth moment, endowed with the Wasserstein

distance [2]. The choice of the weight function

ωEα(x) := exp(−αE(x))

comes from the well-known Laplace’s principle [17, 39], a classical asymptotic method for integrals, which

states that for any probability measure ρ ∈ P(Rd), there holds

lim
α→∞

(
− 1

α
log

(∫
Rd
ωEα(x)ρ(dx)

))
= inf
x∈supp(ρ)

E(x) . (1.5)

Thus for α large enough, one expects that

Xα
t (ρN,m) ≈ argmin {E(X1,m

t ), . . . , E(XN,m
t )} ,

which means that Xα
t (ρN,m) is a global best location at time t.

Before starting our analysis of the PSO dynamics (1.2), let us illustrate numerically the behavior of the

dynamics for the benchmark Ackley function

E(x) = −20 exp

(
− 0.2√

d
|x− x∗|

)
− exp

(
1

d

d∑
k=1

cos (2π (xk − x∗k))

)
+ e+ 20

in the case of d = 2, and with the global minimizer x∗ = (0, 0)T . In Figure 1 and 2, we initialize the particles

with a normal distribution around x∗ and then apply a discretization scheme (which will be explained in

Section 4) to the system (1.2). We can see that all the particles successfully find the global minimizer x∗,

and particles’ velocity converges to zero.

As it has been shown in [25], in the zero-inertia limit (m → 0), one may expect to obtain the recent

developed Consensus Based Optimization (CBO) dynamics [11,23,26,41] satisfying

dXi
t = λ(Xα

t (ρN )−Xi
t)dt+ σD(Xα

t (ρN )−Xi
t)dB

i
t, i = 1, · · · , N , (1.6)
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Figure 1. Left: the Ackley function for d = 2 with the unique global minimum at the point

x∗ = (0, 0)T . Right: Particles trajectories of the PSO model (1.2) along the simulation for

the 2-d Ackley function with the global minimizer x∗. The simulation parameters are: time

discretization 0.01, number of particles 103, λ = 1, σ = 1√
3
, α = 30, m = 0.1. The initial

data are sampled from a normal bi-dimensional distribution.

Figure 2. Application of the PSO dynamics (1.2) to the 2-d Ackley function E(x) with

the global minimizer x∗ = (0, 0)T . Particles initially have a normal distribution around

x∗. Then all particles converge to one point, the global minimizer x∗, and they stop moving

eventually, i.e. velocity converges to zero. The simulation parameters are the ones described

below Figure 1.

where

Xα
t (ρN ) :=

∫
Rd xω

E
α(x)ρN (t, dx)∫

Rd ω
E
α(x)ρN (t, dx)

with ρN (t, dx) :=
1

N

N∑
i=1

δXit (dx) .

It has been proved that CBO is a powerful and robust method to solve many interesting non-convex high-

dimensional optimization problems in machine learning [13]. By now, CBO methods have also been gener-

alized to optimization over manifolds [20–22,35]. The objective of the present paper is to complete a theory

gap suggested in [25] by providing a rigorous proof of the zero-inertia limit.

On the one hand, as N → ∞, the mean-field limit results (see [8, 10, 29, 30, 32, 44] for instance) indicate

that our PSO dynamics (1.2) converge to the solutions of following mean-field nonlinear Mckean systems:dX
m

t = V
m

t dt, (1.7a)

dV
m

t = − γ
m
V
m

t dt+
λ

m
(Xα

t (ρm)−Xm

t )dt+
σ

m
D(Xα

t (ρm)−Xm

t )dBt , (1.7b)

where

Xα
t (ρm) =

∫
Rd xω

E
α(x)ρm(t, dx)∫

Rd ω
E
α(x)ρm(t, dx)

, ρm(t, x) =

∫
Rd
fm(t, x, dv) , (1.8)

and the initial data (X0, V 0) is the same as in (1.2). Here fm(t, x, v) is the distribution of (X
m

t , V
m

t ) at time

t , which makes the set of equations (1.7) nonlinear. We refer to [29] for a proof the well-posedness of PSO
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particle system (1.2) and its mean-field dynamic (1.7). A direct application of the Itô-Doeblin formula yields

that the law fmt := fm(t, ·, ·) at time t is a weak solution to the following nonlinear Vlasov-Fokker-Plank

equation

∂tf
m
t + v · ∇xfmt = ∇v ·

(
γ

m
vfmt +

λ

m
(x−Xα

t (ρm)) f +
σ2

2m2
D (x−Xα

t (ρm))
2∇vfmt

)
, (1.9)

with the initial data fm0 (x, v) = Law(X0, V 0). On the other hand, taking N → ∞ in (1.6) leads to the

mean-field CBO dynamic of the form

dXt = λ(Xα
t (ρ)−Xt)dt+ σD(Xα

t (ρ)−Xt)dBt (1.10)

with ρt = Law(Xt) satisfying the corresponding CBO equation

∂tρt + λ∇x · (ρt(Xα
t (ρ)− x)) =

σ2

2

d∑
j=1

∂2

∂x2j

(
ρt (xj − (Xα

t (ρ))j)
2
)
. (1.11)

In this paper, we prove that in the zero-inertia limit, as m→ 0+, the processes {Xm} satisfying SDEs (1.7)

converge weakly to the solution X to SDE (1.10) in the continuous path space C([0, T ];Rd). A convergence

rate is obtained and the generalizations to cases with memory effects are also addressed. This is related to

the study of the overdamped limit [14, 18, 36], or large friction limit [9, 19, 31] for Vlasov type equations.

However, the nolinear term Xα
t (ρm) here makes our model very different from theirs, which is nonstandard

in the literature. Moreover all of those results mentioned earlier are obtained through the investigation of

PDEs like (1.9) and (1.11), while in the present paper we adopt a probabilistic approach by investigating

the weak convergence of the non-Markovian stochastic processes {Xm} satisfying SDE (1.7) to the solution

{X} to SDE (1.10)) in the continuous path space.

The rest of the paper is organized as follows: In Section 2 we verify the tightness of the PSO model

(1.7) through Aldous criteria, which allows us to obtain the zero-inertia limit from the PSO model (1.7)

towards the CBO model (1.10) as m → 0; see Theorem 2.3. Then in Section 3 we generalize the result to

the PSO model with memory effects of the local best positions. Lastly we conclude this paper in Section 4

by reporting a few instructive numerical experiments on validating the zero-inertia limit.

2. Zero-inertia limit

Throughout this work, the letter C denotes a generic constant whose value may vary from line to line and

its dependence on certain model parameters will be specified whenever needed. We start this section with

the standing assumption on the cost function E .

Assumption 1. The given cost function E : Rd → R is locally Lipschitz continuous and satisfies the properties:

1. There exists some constant L > 0 such |E(x)− E(y)| ≤ L(|x|+ |y|)|x− y| for all x, y ∈ Rd;
2. E is uniformly bounded, i.e. −∞ < E := inf E ≤ E ≤ sup E =: E < +∞, and define Cα,E := eα(E−E) .

The following theorem gives the well-posedness of the mean-field PSO and CBO dynamics (1.7) and (1.10)

whose proofs are analogous to [29, Theorem 2.3] and [11, Theorem 3.1], and thus omitted.

Theorem 2.1. Let Assumption 1 hold. For each T > 0, there hold the following assertions.

(i) If (X
m

0 , V
m

0 ) = (X0, V 0) is distributed according to f0 with f0 ∈ P4(R2d), then for each m ∈ (0, 1],

the nonlinear SDE (1.7) admits a unique solution up to time T with the initial data (X
m

0 , V
m

0 ) and it holds

further that

sup
t∈[0,T ]

E
[
|Xm

t |4 + |V mt |4
]
≤ eCT · E

[
|X0|4 + |V 0|4

]
, (2.1)

where C depends only on λ,m, σ, and Cα,E .
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(ii) If X0 is distributed according to ρ0 ∈ P4(Rd), then SDE (1.10) admits a unique solution up to time

T with the initial data X0 and it holds further that

sup
t∈[0,T ]

E
[
|Xt|4

]
≤ eCT · E

[
|X0|4

]
, (2.2)

where C depends only on λ, σ and Cα,E .

Solving (1.7b) for V
m

t gives

V
m

t = e−
γ
m tV 0 +

λ

m

∫ t

0

e−
γ
m (t−s)(Xα

s (ρm)−Xm

s )ds+
σ

m

∫ t

0

e−
γ
m (t−s)D(Xα

s (ρm)−Xm

s )dBs ,

which implies that

X
m

t = X0 +

∫ t

0

V τdτ = X0 +

∫ t

0

e−
γ
m τV 0dτ +

λ

m

∫ t

0

∫ τ

0

e−
γ
m (τ−s)(Xα

s (ρm)−Xm

s )dsdτ

+
σ

m

∫ t

0

∫ τ

0

e−
γ
m (τ−s)D(Xα

s (ρm)−Xm

s )dBsdτ . (2.3)

Then X
m

t has the law ρmt for each t ≥ 0. Denote by C([0, T ];Rd) the space of all Rd-valued continuous

functions on [0, T ] equipped with the usual uniform norm ‖ ·‖0. Each continuous stochastic process X
m

may

be seen as a C([0, T ];Rd)-valued random function and it induces a probability measure (or law, denoted by

ρm) on C([0, T ];Rd). We shall use the weak convergence in the space of probability measures on C([0, T ];Rd).
In what follows, we write X

m
⇀ X or ρm ⇀ ρ with ρ being the law of X, if {ρm}m>0, as a sequence of

probability measures on C([0, T ];Rd), converges weakly to ρ, i.e., for each bounded continuous functional Φ

on C([0, T ];Rd), there holds limm→0+ E
[
Φ(X

m
)
]

= E
[
Φ(X)

]
. The weak convergence X

m
⇀ X is stronger

than and actually implies the convergence of {ρmt }m>0 to ρt with ρt being the law of Xt for each t ≥ 0, while

the converse need not hold. Moreover, due to the separability and completeness of the space C([0, T ];Rd),
Prohorov’s theorem implies that the relative compactness is equivalent to the tightness; see [6] for more

details.

The proof of zero-inertia limit will proceed in two steps:

• The tightness of the sequence of probability distributions {ρm}0<m≤1 of {Xm}0<m≤1 is justified by

using Aldous tightness criteria.

• We will check that all the limit points of {Xm}0<m≤1 as m → 0 satisfy mean-field CBO dynamic

(1.10) which in fact admits a unique solution.

For the sake of completeness, let us recall Aldous tightness criteria.

Lemma 2.1. Let {Xn}n∈N be a sequence of random variables defined on a probability space (Ω,F ,P) and val-

ued in C([0, T ];Rd). The sequence of probability distributions {µXn}n∈N of {Xn}n∈N is tight on C([0, T ];Rd)
if the following two conditions hold.

(Con1) For all t ≥ 0, the set of distributions of Xn
t , denoted by {µXnt }n∈N, is tight in Rd.

(Con2) For all ε > 0, η > 0, there exists δ0 > 0 and n0 ∈ N such that for all n ≥ n0 and for all

discrete-valued σ(Xn
s ; s ∈ [0, T ])-stopping times β such that 0 ≤ β + δ0 ≤ T ,

sup
δ∈[0,δ0]

P
(
|Xn

β+δ −Xn
β | ≥ η

)
≤ ε . (2.4)

Theorem 2.2 (Tightness). Let Assumption 1 hold and (Xm
t , V

m
t )t∈[0,T ] satisfy the system (1.7). For

each countable subsequence {mk}k∈N ⊂ [0, 1] with limk→∞mk = 0, the sequence of probability distributions

{ρmk}k∈N of {Xmk}k∈N is tight.
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Proof. By Lemma 2.1, it is sufficient to justify conditions (Con1) and (Con2) in Aldous tightness criteria .

• Step 1: Checking (Con1). First, for 0 < m ≤ 1
2 , recalling (2.3), we have by Fubini’s theorem (see

[16, Theorem 4.33] for the stochastic version)

X
m

t = X0 +

∫ t

0

e−
γ
m τV 0dτ +

λ

m

∫ t

0

∫ τ

0

e−
γ
m (τ−s)(Xα

s (ρm)−Xm

s )dsdτ

+
σ

m

∫ t

0

∫ τ

0

e−
γ
m (τ−s)D(Xα

s (ρm)−Xm

s )dBsdτ

= X0 +

∫ t

0

e−
γ
m τV 0dτ +

λ

m

∫ t

0

∫ t

s

e−
γ
m (τ−s)dτ(Xα

s (ρm)−Xm

s )ds

+
σ

m

∫ t

0

∫ t

s

e−
γ
m (τ−s)dτD(Xα

s (ρm)−Xm

s )dBs

= X0 +
m

γ
(1− e−

γ
m t)V 0 +

λ

γ

∫ t

0

(1− e−
γ
m (t−s))(Xα

s (ρm)−Xm

s )ds

+
σ

γ

∫ t

0

(1− e−
γ
m (t−s))D(Xα

s (ρm)−Xm

s )dBs . (2.5)

Here the assumption on 0 < m ≤ 1
2 ensures that γ = 1 −m ∈ [ 12 , 1), so 1

γ is well defined. It follows from

Hölder’s inequality that

|Xm

t |4 ≤ 64|X0|4+
64m4

γ4
|V 0|4+

64λ4t3

γ4

∫ t

0

|Xα
s (ρm)−Xm

s |4ds+
64σ4

γ4

∣∣∣∣∫ t

0

(1− e−
γ
m (t−s))D(Xα

s (ρm)−Xm

s )dBs

∣∣∣∣4 ,
where we have used the fact that for any sequence {ai}ni=1 ≥ 0 and p ≥ 2, there holds(

n∑
i=1

ai

)p
≤ np−1

n∑
i=1

api .

Using the moment inequality for stochastic integrals as in [38, Theorem 7.1] yields that

E

[∣∣∣∣∫ t

0

(1− e−
γ
m (t−s))D(Xα

s (ρm)−Xm

s )dBs

∣∣∣∣4
]

≤d3E

[
d∑
k=1

∣∣∣∣∫ t

0

(1− e−
γ
m (t−s))(Xα

s (ρm)−Xm

s )kdB
k
s ek

∣∣∣∣4
]

≤36d3t

∫ t

0

E

[
d∑
k=1

|(Xα
s (ρm)−Xm

s )k|4
]
ds ≤ 36d3t

∫ t

0

E
[
|Xα

s (ρm)−Xm

s |4
]
ds .

Thus,

E[|Xm

t |4] ≤ 64E[|X0|4] +
64m4

γ4
E[|V 0|4] +

64(λ4t3 + 36d3tσ4)

γ4

∫ t

0

E[|Xα
s (ρm)−Xm

s |4]ds .

Notice that

E[|Xα
t (ρm)−Xm

t |4] =

∫
Rd

∣∣∣∣∣
∫
Rd xω

E
α(x)ρm(t, dx)∫

Rd ω
E
α(x)ρm(t, dx)

− y

∣∣∣∣∣
4

ρm(t, dy) =

∫
Rd

∣∣∣∣∣
∫
Rd(x− y)ωEα(x)ρm(t, dx)∫

Rd ω
E
α(x)ρm(t, dx)

∣∣∣∣∣
4

ρm(t, dy)

≤
∫
Rd
∫
Rd |x− y|

4ωEα(x)ρm(t, dx)ρm(t, dy)∫
Rd ω

E
α(x)ρm(t, dx)

≤ 16Cα,EE[|Xm

t |4] , (2.6)

where Jensen’s inequality is applied in the first inequality. Thus we have

E[|Xm

t |4] ≤ 64E[|X0|4] +
64m4

γ4
E[|V 0|4] +

1024Cα,E(λ
4t3 + 36d3tσ4)

γ4

∫ t

0

E[|Xm

s |4]ds .
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Using Gronwall’s inequality leads to

E[|Xm

t |4] ≤
(

64E[|X0|4] +
64m4

γ4
E[|V 0|4]

)
exp

(
1024Cα,E(λ

4T 3 + 36d3Tσ4)

γ4
T

)
, t ∈ [0, T ] . (2.7)

Recalling 0 ≤ m ≤ 1
2 and 1

γ = 1
1−m ≤ 2, from estimate (2.7) we obtain the boundedness:

E[|Xm

t |4] ≤ C(E[|X0|4],E[|V 0|4], Cα,E , λ, d, σ, T ) . (2.8)

Next we consider the case when 1
2 ≤ m ≤ 1. It is obvious that

|Xm

t |4 = |X0|4 + 4

∫ t

0

|Xm

s |2X
m

s · V
m

s ds ≤ |X
m

0 |4 + 8

∫ t

0

|Xm

s |2(|Xm

s |2 + |V ms |2)ds

≤ |Xm

0 |4 + C

∫ t

0

(|Xm

s |4 + |V ms |4)ds . (2.9)

Applying Itô-Doeblin formula to (1.7b) gives

|V mt |4 = |V 0|4 +
4λ

m

∫ t

0

|V ms |2V
m

s · (Xα
s (ρm)−Xm

s )ds+
4σ

m

∫ t

0

|V ms |2V
m

s ·D(Xα
s (ρm)−Xm

s )dBs

+
6σ2

m2

∫ t

0

|V ms |2|Xα
s (ρm)−Xm

s |2ds−
∫ t

0

4γ

m
|V ms |4ds

≤ |V 0|4 + C

(
λ

m
+
σ2

m2

)∫ t

0

|V ms |4ds+ C

(
λ

m
+
σ2

m2

)∫ t

0

|Xα
s (ρm)−Xm

s |4ds

+
4σ

m

∫ t

0

|V ms |2V
m

s ·D(Xα
s (ρm)−Xm

s )dBs . (2.10)

Collecting estimates (2.10) and (2.9) and recalling 1
2 ≤ m ≤ 1, we have

E[|Xm

t |4 + |V mt |4]

≤E[|X0|4 + |V 0|4] + C

∫ t

0

E[|Xm

s |4 + |V ms |4]ds+ C

∫ t

0

E[|Xα
s (ρm)−Xm

s |4]ds

≤E[|X0|4 + |V 0|4] + C(1 + 8Cα,E)

∫ t

0

E[|Xm

s |4 + |V ms |4]ds , (2.11)

where the estimate (2.6) is used in the last inequality. Applying Gronwall’s inequality yields that

E[|Xm

t |4 + |V mt |4] ≤ E[|X0|4 + |V 0|4] exp (C · (1 + 8Cα,E)t) , t ∈ [0, T ] . (2.12)

Finally, combining (2.8) and (2.12) yields that

sup
m∈(0,1]

sup
t∈[0,T ]

E[|Xm

t |4] ≤ C(E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, T ) =: C1 (2.13)

where the constant C1 > 0 is independent of m. Therefore, for any ε > 0, there exists a compact subset

Kε := {x : |x|4 ≤ C1

ε } such that by Markov’s inequality

ρmt ((Kε)
c) = P(|Xm

t |4 >
C1

ε
) ≤ εE[|Xm

t |4]

C1
≤ ε, ∀ 0 < m ≤ 1 . (2.14)

This means that for each t ∈ [0, T ], each countable subset of {ρmt }0<m≤1 is tight, which verifies condition

(Con1) in Lemma 2.1.

• Step 2: Checking (Con2). Let β be a σ(Xm
s ; s ∈ [0, T ])-stopping time with discrete values such that

β + δ0 ≤ T . Without any loss of generality, we may assume that the concerned countable subsequence
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{mk}k∈N ⊂ [0, 1] satisfies mk ≤ 1
2 for all k ∈ N; thus, we may just consider the case of 0 < m ≤ 1

2 which

indicates 1
2 ≤ γ < 1. Recall (2.3) and compute

X
m
β+δ −X

m
β

=

∫ β+δ

β

V τdτ =

∫ β+δ

β

e−
γ
m
τV 0dτ +

λ

m

∫ β+δ

β

∫ τ

0

e−
γ
m

(τ−s)(Xα
s (ρm)−Xm

s )dsdτ

+
σ

m

∫ β+δ

β

∫ τ

0

e−
γ
m

(τ−s)D(Xα
s (ρm)−Xm

s )dBsdτ

=

∫ β+δ

β

e−
γ
m
τV 0dτ +

λ

m

∫ β

0

∫ β+δ

β

e−
γ
m

(τ−s)dτ(Xα
s (ρm)−Xm

s )ds+
λ

m

∫ β+δ

β

∫ β+δ

s

e−
γ
m

(τ−s)dτ(Xα
s (ρm)−Xm

s )ds

+
σ

m

∫ β

0

∫ β+δ

β

e−
γ
m

(τ−s)dτD(Xα
s (ρm)−Xm

s )dBs +
σ

m

∫ β+δ

β

∫ β+δ

s

e−
γ
m

(τ−s)dτD(Xα
s (ρm)−Xm

s )dBs

=
m

γ
(e−

γ
m
β − e−

γ
m

(β+δ))V 0

+
λ

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))(Xα
s (ρm)−Xm

s )ds+
λ

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))(Xα
s (ρm)−Xm

s )ds

+
σ

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))D(Xα
s (ρm)−Xm

s )dBs +
σ

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))D(Xα
s (ρm)−Xm

s )dBs .

(2.15)

Note that there holds |e−x − e−y| ≤ |x− y| ∧ 1 for all x, y ∈ [0,∞). Basic computations further indicate

that for each q ≥ 1 and τ ∈ [0, T ],∫ τ

0

∣∣∣e− γ(τ−s)m − e−
γ(τ+δ−s)

m

∣∣∣q ds ≤ ∫ τ

0

(
e−

γ(τ−s)
m − e−

γ(τ+δ−s)
m

)
ds =

m

γ

(
1− e−

γδ
m

)
− m

γ

(
e−

γτ
m − e−

γ(τ+δ)
m

)
≤ m

γ
· γδ
m

= δ,

and in particular, ∫ β+δ

β

(
1− e−

γ(β+δ−s)
m

)q
ds ≤

∫ β+δ

β

1 ds = δ.

Then, it is obvious that

E

[∣∣∣∣mγ (e−
γ
m
β − e−

γ
m

(β+δ))V 0

∣∣∣∣2
]
≤ m2

γ2
· γ

2δ2

m2

(
E[|V 0|4]

) 1
2 ≤ δ2 (E[|V 0|4]

) 1
2 .

Next, it follows that

E

[∣∣∣∣∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))(Xα
s (ρm)−Xm

s )ds

∣∣∣∣2
]

≤ E
[∫ β

0

|e−
γ
m

(β−s) − e−
γ
m

(β+δ−s)|2ds ·
∫ β

0

|Xα
s (ρm)−Xm

s |2ds
]

≤ δ · T sup
s∈[0,T ]

(
E
[
|Xα

s (ρm)−Xm
s |4
])1/2

,

and analogously,

E

[∣∣∣∣∫ β+δ

β

(1− e−
γ
m

(β+δ−s))(Xα
s (ρm)−Xm

s )ds

∣∣∣∣2
]
≤ E

[∫ β+δ

β

(
1− e−

γ(β+δ−s)
m

)2

ds ·
∫ β+δ

β

|Xα
s (ρm)−Xm

s |2ds

]

≤ δ · E
[∫ β+δ

β

|Xα
s (ρm)−Xm

s |2ds
]

≤ δ · T sup
s∈[0,T ]

(
E
[
|Xα

s (ρm)−Xm
s |4
])1/2

, .
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Further, applying Itô’s isometry gives

E

∣∣∣∣∣
∫ β

0

(e−
γ
m (β−s) − e−

γ
m (β+δ−s))D(Xα

s (ρm)−Xm

s )dBs

∣∣∣∣∣
2


≤ dE

[∫ β

0

|e−
γ
m (β−s) − e−

γ
m (β+δ−s)|2|Xα

s (ρm)−Xm

s |2ds

]

≤ d

(
E

[∫ β

0

|e−
γ
m (β−s) − e−

γ
m (β+δ−s)|4ds

])1/2

·

(
E

[∫ β

0

|Xα
s (ρm)−Xm

s |4ds

])1/2

≤ dδ1/2
(
T sup
s∈[0,T ]

E
[
|Xα

s (ρm)−Xm

s |4
])1/2

,

and analogously,

E

∣∣∣∣∣
∫ β+δ

β

(1− e−
γ
m (β+δ−s))D(Xα

s (ρm)−Xm

s )dBs

∣∣∣∣∣
2
 ≤ dδ1/2(T sup

s∈[0,T ]

E
[
|Xα

s (ρm)−Xm

s |4
])1/2

.

Therefore, summing up the above estimates and recalling 0 < m ≤ m0 = 1
2 , 1

γ ≤ 2, and the relations (2.6)

and (2.13), we arrive at

E[|Xm

β+δ −X
m

β |2] ≤ 5

γ2
δ2(E[|V 0|4])

1
2 +

10

γ2
·
(
λ2δT + σ2d (δT )

1/2
)

sup
s∈[0,T ]

(
E
[
|Xα

s (ρm)−Xm

s |4
])1/2

≤ C
(
E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, T

) (
δ

1
2 + δ + δ2

)
.

Hence, for any ε > 0, η > 0, there exists some δ0 > 0 such that for all 0 < m ≤ 1
2 it holds that

sup
δ∈[0,δ0]

P(|Xm

β+δ −X
m

β |2 ≥ η) ≤ sup
δ∈[0,δ0]

E[|Xm

β+δ −X
m

β |2]

η
≤ ε . (2.16)

This justifies condition Con2 in Lemma 2.1. �

Next we shall identify the limit process, before which we recall a lemma on the stability estimate of the

nonlinear term Xα(ρ).

Lemma 2.2. [11, Lemma 3.2] Assume that ρ, ρ̂ ∈ P4(Rd). Then the following stability estimate holds

|Xα(ρ)−Xα(ρ̂)| ≤ CW2(ρ, ρ̂) , (2.17)

where W2 is the 2-Wasserstein distance, and C depends only on α,L,
∫
Rd |x|

4ρ(dx), and
∫
Rd |x|

4ρ̂(dx).

Theorem 2.3 (Zero-inertia limit). Let Assumption 1 hold and (Xm
t , V

m
t )t∈[0,T ] satisfy the system (1.7).

Then as m → 0+, the sequence of stochastic processes {Xm}0<m≤1 converge weakly to X, which is the

unique solution to the following SDE:

Xt = X0 + λ

∫ t

0

(Xα
s (ρ)−Xs)ds+ σ

∫ t

0

D(Xα
s (ρ)−Xs)dBs . (2.18)

Moreover it holds that

sup
t∈[0,T ]

E[|Xm

t −Xt|2] ≤ Cm , (2.19)

where the constant C depends only on E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, and T .
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Remark 2.1. It follows from the definition of Wasserstein distance that

sup
t∈[0,T ]

W 2
2 (ρmt , ρt) ≤ sup

t∈[0,T ]

E[|Xm

t −Xt|2] ≤ Cm , (2.20)

which in a way is consistent with the result obtained in [14, Theorem 1.3], where the authors obtained a

quantified overdamped limit (with the same rate m) of the singular Vlasov-Poisson-Fokker-Planck system

to the aggregation-diffusion equation. Besides, the obtained weak convergence of X
m
⇀ X is in the path

space C([0, T ];Rd), which implies and is obviously stronger than the convergence of {ρmt }m>0 to ρt for each

time t ≥ 0.

Proof. By Theorem 2.2, each subsequence {Xmk}k∈N with m0 ≤ 1/2 and mk converging to 0 as k → ∞
admits a subsequence (denoted w.l.o.g. by itself) that converges weakly. By Skorokhod’s lemma (see [6, The-

orem 6.7 on page 70]), we may find a common probability space (Ω,F ,P) on which the processes {Xmk}k∈N
converge to some process X̂ as random variables valued in C([0, T ];Rd) almost surely. In particular, we have

P
(

lim
k→∞

|Xmk
t − X̂t| = 0

)
= 1, ∀ t ∈ [0, T ]. (2.21)

We shall verify that the limit X̂ is indeed the unique solution X to SDE (2.18).

Recall the SDE satisfied by X
mk

in (2.5)

X
mk
t = X0 +

mk

γ
(1− e−

γ
mk

t
)V 0 +

λ

γ

∫ t

0

(1− e−
γ
mk

(t−s)
)(Xα

s (ρmk)−Xmk
s )ds

+
σ

γ

∫ t

0

(1− e−
γ
mk

(t−s)
)D(Xα

s (ρmk)−Xmk
s )dBs . (2.22)

By the estimates in (2.13) and (ii) of Theorem 2.1, there exists a constant C2 being independent of mk such

that

sup
k∈N

sup
t∈[0,T ]

E
[
|Xmk

t |4
]

+ sup
t∈[0,T ]

E
[∣∣Xt

∣∣4] ≤ C2 := C(E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, T ) <∞. (2.23)

Letting ρ(t, dx) be the probability distribution of Xt for t ∈ [0, T ], we have

|Xα
t (ρ)| =

∣∣∣∣∣
∫
Rd xω

E
α(x)ρ(t, dx)∫

Rd ω
E
α(x)ρ(t, dx)

∣∣∣∣∣ ≤ Cα,E
∫
Rd
|x|ρ(t, dx) ≤ Cα,E(E[|Xt|4])

1
4 ,

and

sup
k∈N

sup
t∈[0,T ]

|Xα
t (ρmk)| ≤ Cα,E(C2)

1
4 , and sup

t∈[0,T ]

|Xα
t (ρ)| ≤ Cα,E(C2)

1
4 . (2.24)

Then we compare the SDEs (2.18) and (2.22) term by term. By Lemma 2.2, we have

|Xα
t (ρmk)−Xα

t (ρ)|2 ≤ CW 2
2 (ρmkt , ρt) ≤ CE[|Xmk

t −Xt|2],
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and thus,

E

[∣∣∣∣λγ
∫ t

0

(1− e−
γ
mk

(t−s)
)(Xα

s (ρmks )−Xmk
s )ds− λ

∫ t

0

(Xα
s (ρs)−Xs)ds

∣∣∣∣2
]

≤ 2E

[∣∣∣∣ λ

1−mk

∫ t

0

(1− e−
1−mk
mk

(t−s)
)(Xα

s (ρmks )−Xα
s (ρs) +Xs −X

mk
s )ds

∣∣∣∣2
]

+ 2E


∣∣∣∣∣∣λ
∫ t

0

1− e−
1−mk
mk

(t−s)

1−mk
− 1

 (Xα
s (ρs)−Xs)ds

∣∣∣∣∣∣
2


≤ CE
[∫ t

0

∣∣∣Xs −X
mk
s

∣∣∣2 ds]+ Cλ2
∫ t

0

∣∣∣∣∣∣1− e
− 1−mk

mk
(t−s)

1−mk
− 1

∣∣∣∣∣∣
2

ds · E

[∫ T

0

∣∣Xα
s (ρs)−Xs

∣∣2 ds]

≤ CE
[∫ t

0

∣∣∣Xs −X
mk
s

∣∣∣2 ds]+ C

∫ t

0

∣∣∣∣∣∣1− e
− 1−mk

mk
(t−s) − (1−mk)

1−mk

∣∣∣∣∣∣
2

ds

≤ CE
[∫ t

0

∣∣∣Xs −X
mk
s

∣∣∣2 ds]+ C

∫ t

0

(
|mk|2 + e

− 2(1−mk)

mk
(t−s)

)
ds

≤ CE
[∫ t

0

∣∣∣Xs −X
mk
s

∣∣∣2 ds]+ C

(
t |mk|2 +

mk

2(1−mk)

)
, (2.25)

where the constants Cs are independent of k. For the stochastic integrals, it holds analogously that

E

[∣∣∣∣σγ
∫ t

0

(1− e−
γ
mk

(t−s)
)D(Xα

s (ρmks )−Xmk
s )dBs − σ

∫ t

0

D(Xα
s (ρs)−Xs)dBs

∣∣∣∣2
]

≤ dσ2
d∑

n=1

E

[∣∣∣∣ 1γ
∫ t

0

(1− e−
γ
mk

(t−s)
)(Xα

s (ρmks )−Xmk
s )ndB

n
s en −

∫ t

0

(Xα
s (ρs)−Xs)ndB

n
s en

∣∣∣∣2
]

= dσ2
d∑

n=1

E

∫ t

0

∣∣∣∣∣1− e−
γ
mk

(t−s)

γ
(Xα

s (ρmks )−Xmk
s )n − (Xα

s (ρs)−Xs)n

∣∣∣∣∣
2

ds


≤ 2dσ2

d∑
n=1

E

∫ t

0

∣∣∣∣∣1− e−
γ
mk

(t−s)

γ

(
(Xα

s (ρmks )−Xmk
s )n − (Xα

s (ρs)−Xs)n

)∣∣∣∣∣
2

ds


+ 2dσ2

d∑
n=1

E

∫ t

0

∣∣∣∣∣
(

1− e−
γ
mk

(t−s)

γ
− 1

)
(Xα

s (ρs)−Xs)n

∣∣∣∣∣
2

ds


≤ CE

[∫ t

0

∣∣∣Xmk
s −Xs

∣∣∣2 ds]+ 2dσ2 sup
s∈[0,t]

E
[∣∣(Xα

s (ρs)−Xs)
∣∣2] · ∫ t

0

∣∣∣∣∣
(

1− e−
γ
mk

(t−s)

γ
− 1

)∣∣∣∣∣
2

ds

≤ CE
[∫ t

0

∣∣∣Xs −X
mk
s

∣∣∣2 ds]+ C

(
t |mk|2 +

mk

2(1−mk)

)
. (2.26)

In addition, it is obvious that

∣∣∣∣mk

γ
(1− e−

γ
mk

t
)V 0

∣∣∣∣ ≤ Cmk

∣∣V 0

∣∣ . (2.27)
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Therefore, recalling mk ≤ 1
2 , combining the estimates (2.25)-(2.27) and subtracting both sides of SDEs (2.18)

from those of (2.22), we have

E[|Xmk
t −Xt|2] ≤ C

∫ t

0

E[|Xmk
s −Xs|2]ds+ Cmk, t ∈ [0, T ].

By Gronwall’s inequality it implies that

sup
t∈[0,T ]

E[|Xmk
t −Xt|2] ≤ Cmk → 0, as k →∞ , (2.28)

where C depends only on E[|X0|4],E[|V 0|4], Cα,E , λ, σ, d, and T . In view of both the convergences (2.21)

and (2.28), we must have X̂ = X. Finally, due to the arbitrariness of the subsequence {Xmk}k∈N and the

uniqueness of X, we conclude that as m → 0+, the sequence of stochastic processes {Xm}0<m≤1 converge

weakly to the unique solution X to SDE (2.18), with the estimate (2.19) following in the same way as (2.28).

�

Remark 2.2. When proving the convergence of {Xm} satisfying SDEs (1.7) to the solution X of (1.10),

we cannot expect the convergence of the associated velocity processes {V m} due to the indifferentiability

of the limit {Xt}t≥0 with respect to time t if σ 6= 0. Therefore, we do not investigate convergence of

the joint Markovian process {(Xm
, V

m
)} and consider instead solely the process {Xm} which satisfies a

stochastic integral equation (2.22) of Volterra type, being path-dependent and thus non-Markovian. This

non-Markovianity prevents us from using the usual techniques for weak convergence with martingale problems

but prompts us to identify the limit by measuring directly the distance between X
mk

and X in the above

proof.

3. Generalization to the case with memory effects

In [25], the authors considered a PSO model which involves the memory of the local best positions, and

it is of the form

dX
m
t = V

m
t dt, (3.1)

dY
m
t = ν

(
X
m
t − Y

m
t

)
Sβ
(
X
m
t , Y

m
t

)
dt, (3.2)

dV
m
t = − γ

m
V
m
t dt+

λ1

m

(
Y
m
t −X

m
t

)
dt+

λ2

m

(
Y αt (ρm)−Xm

t

)
dt

+
σ1

m
D
(
Y
m
t −X

m
t

)
dB1

t +
σ2

m
D
(
Y αt (ρm)−Xm

t

)
dB2

t , (3.3)

where B1 and B2 are two mutually independent d-dimensional Wiener processes and similarly to the previous section,

we introduce the following regularization of the global best position

Y αt (ρm) =

∫
Rd yωα(y)ρm(t, dy)∫
Rd ωα(y)ρm(t, dy)

, ρm(t, y) =

∫∫
Rd×Rd

fm(t, dx, y, dv) . (3.4)

Here the equation (3.2) of Y
m

is the time continuous approximation to the evolution of the local best position, and

Sβ with β � 1 is hyperbolic tangent Sβ(x, y) = tanh(β(E(x)−E(y)). The corresponding mean-field PSO equation is

∂tf
m
t + v · ∇xfmt +∇y · (ν(x− y)Sβ(x, y)fmt ) = ∇v ·

(
γ

m
vfmt +

λ1

m
(x− y)fmt +

λ2

m
(x− Y αt (ρm))fmt

+
( σ2

2

2m2
D(x− Y αt (ρm))2 +

σ2
1

2m2
D(x− y)2

)
∇vfmt

)
. (3.5)

We want to prove that the zero-inertia limit (m→ 0) leads to the following mean-field CBO dynamicXt = X0 + λ1

∫ t
0

(Y s −Xs)ds+ σ1

∫ t
0
D(Y s −Xs)dB

1
s + λ2

∫ t
0

(Y αs (ρ)−Xs)ds+ σ2

∫ t
0
D(Y αs (ρ)−Xs)dB

2
s ,

Y t = Y 0 + ν
∫ t

0

(
Xs − Y s

)
Sβ
(
Xs, Y s

)
ds ,
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and its corresponding partial differential equation is

∂tρt +∇x · (λ1(y − x) + λ2(Y αt (ρ)− x)ρt) +∇y ·
(
ν(x− y)Sβ(x, y))ρt

)
=

1

2

d∑
j=1

∂2

∂x2
j

(
ρt(σ

2
1(x− y)2

j + σ2
2(x− Y αt (ρ))2

j )
)
, (3.6)

where ρ(t, y) =
∫
Rd ρ(t, dx, y).

Since the proof of the zero-inertia limit for the PSO dynamics with memory effects follows similar arguments as

developed in the previous section and no essential innovation is needed to be explained, we only sketch the proof for

the tightness.

Theorem 3.1 (Tightness). Let Assumption 1 hold and (X
m
t , Y

m
t , V

m
t )t∈[0,T ] satisfy the system (3.1)-(3.3). For each

countable subsequence {mk}k∈N ⊂ [0, 1] with limk→∞mk = 0, the sequence of probability distributions {ρmk}k∈N of

{(Xmk , Y
mk )}k∈N is tight.

Proof. The proof is similar to Theorem 2.2.

• Step 1: Checking (Con1). For 0 < m ≤ 1
2
, we first solve (3.3) for V

m
and obtain

V
m
t = e−

γ
m
tV 0 +

λ1

m

∫ t

0

e−
γ
m

(t−s)(Y
m
s −X

m
s )ds+

σ1

m

∫ t

0

e−
γ
m

(t−s)D(Y
m
s −X

m
s )dB1

s

+
λ2

m

∫ t

0

e−
γ
m

(t−s)(Y αs (ρm)−Xm
s )ds+

σ2

m

∫ t

0

e−
γ
m

(t−s)D(Y αs (ρm)−Xm
s )dB2

s .

Here ρm(t, y) =
∫
Rd ρ

m(t, dx, y). By Fubini’s theorem, similar arguments as in (2.5) yield that

X
m
t = X0 +

m

γ
(1− e−

γ
m
t)V 0 +

λ1

γ

∫ t

0

(1− e−
γ
m

(t−s))(Y
m
s −X

m
s )ds+

σ1

γ

∫ t

0

(1− e−
γ
m

(t−s))D(Y
m
s −X

m
s )dB1

s

+
λ2

γ

∫ t

0

(1− e−
γ
m

(t−s))(Y αs (ρm)−Xm
s )ds+

σ2

γ

∫ t

0

(1− e−
γ
m

(t−s))D(Y αs (ρm)−Xm
s )dB2

s . (3.7)

Following the same computations as in Theorem 2.2 gives

E[|Xm
t |4] ≤ CE[|X0|4 + |V 0|4] + C

∫ t

0

E[|Y αs (ρm)−Xm
s |4]ds+ C

∫ t

0

E[|Y ms −X
m
s |4]ds ,

where C depends only on λ1, σ2, λ2, σ2, d, and T . Put ρ̃m(t, x) =
∫
Rd ρ

m(t, x, dy). In a similar way to (2.6) we have

E[|Y αt (ρm)−Xm
t |4] =

∫
Rd

∣∣∣∣∣
∫
Rd yω

E
α(y)ρm(t, dy)∫

Rd ω
E
α(y)ρm(t, dy)

− x

∣∣∣∣∣
4

ρ̃m(t, dx) =

∫
Rd

∣∣∣∣∣
∫
Rd(y − x)ωEα(y)ρm(t, dy)∫

Rd ω
E
α(y)ρm(t, dy)

∣∣∣∣∣
4

ρ̃m(t, dx)

≤
∫
Rd
∫
Rd |x− y|

4ωEα(y)ρm(t, dy)ρ̃m(t, dx)∫
Rd ω

E
α(y)ρm(t, dy)

≤ 8Cα,EE[|Xm
t |4 + |Y mt |4] .

Thus it yields that

E[|Xm
t |4] ≤ CE[|X0|4 + |V 0|4] + C

∫ t

0

E[|Y ms |4 + |Xm
s |4]ds , (3.8)

where C depends only on λ1, σ2, λ2, σ2, d, T and Cα,E .

Recall that

Y
m
t = Y 0 + ν

∫ t

0

(
X
m
s − Y

m
s

)
Sβ
(
X
m
s , Y

m
s

)
ds

with Sβ(x, y) = tanh(β(E(x)− E(y)). Using the fact that |Sβ | ≤ 1 then it follows

E[|Y mt |4] ≤ CE[|Y 0|4] + C

∫ t

0

E[|Y ms |4 + |Xm
s |4]ds ,

where C depends only on ν and T . This together with (3.8) implies

E[|Xm
t |4 + |Y mt |4] ≤ CE[|X0|4 + |Y 0|4 + |V 0|4] + C

∫ t

0

E[|Y ms |4 + |Xm
s |4]ds .
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By Gronwall’s inequality it yields that

sup
t∈[0,T ]

E[|Xm
t |4 + |Y mt |4] ≤ C(E[|X0|4 + |Y 0|4 + |V 0|4], λ1, σ2, λ2, σ2, d, T, Cα,E , ν) , (3.9)

which verifies (Con1) for the case of 0 < m ≤ 1
2
. We omit the discussions for the case of 1

2
< m ≤ 1.

• Step 2: Checking (Con2). Let β be a σ(Xm
s ; s ∈ [0, T ])-stopping time with discrete values such that β+δ0 ≤ T .

Set m0 = 1
2

w.l.o.g.. Then for all 0 < m ≤ m0, one has 1
2
≤ γ < 1. Similar to (2.15), one has

X
m
β+δ −X

m
β

=
m

γ
(e−

γ
m
β − e−

γ
m

(β+δ))V 0

+
λ2

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))(Y αs (ρm)−Xm
s )ds+

λ2

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))(Y αs (ρm)−Xm
s )ds

+
σ2

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))D(Y αs (ρm)−Xm
s )dB2

s +
σ2

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))D(Y αs (ρm)−Xm
s )dB2

s

+
λ1

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))(Y
m
s −X

m
s )ds+

λ1

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))(Y
m
s −X

m
s )ds

+
σ1

γ

∫ β

0

(e−
γ
m

(β−s) − e−
γ
m

(β+δ−s))D(Y
m
s −X

m
s )dB1

s +
σ1

γ

∫ β+δ

β

(1− e−
γ
m

(β+δ−s))D(Y
m
s −X

m
s )dB1

s . (3.10)

Using the estimate (3.9) it follows from the same computations in Theorem 2.2 that

E[|Xm
β+δ −X

m
β |2] ≤ C

(
δ

1
2 + δ + δ2

)
, (3.11)

where C depends only on E[|X0|4 + |Y 0|4 + |V 0|4], λ1, σ2, λ2, σ2, d, T, Cα,E , and ν.

Having a look at

Y
m
β+δ − Y

m
β = ν

∫ β+δ

β

(
X
m
s − Y

m
s

)
Sβ
(
X
m
s , Y

m
s

)
ds,

we have

|Y mβ+δ − Y
m
β |2 ≤ ν2δ

∫ T

0

|Xm
s − Y

m
s |2dt .

By estimate (3.9), we have

E[|Y mβ+δ − Y
m
β |2] ≤ ν2δ

∫ T

0

E[|Xm
s − Y

m
s |4]

1
2 dt ≤ Cδ , (3.12)

where C depends on E[|X0|4 + |Y 0|4 + |V 0|4], λ1, σ2, λ2, σ2, d, T, Cα,E and ν. This together with (3.11) justifies

(Con2). �

Let us recall

X
m
t = X0 +

m

γ
(1− e−

γ
m
t)V 0 +

λ1

γ

∫ t

0

(1− e−
γ
m

(t−s))(Y
m
s −X

m
s )ds+

σ1

γ

∫ t

0

(1− e−
γ
m

(t−s))D(Y
m
s −X

m
s )dB1

s

+
λ2

γ

∫ t

0

(1− e−
γ
m

(t−s))(Y αs (ρm)−Xm
s )ds+

σ2

γ

∫ t

0

(1− e−
γ
m

(t−s))D(Y αs (ρm)−Xm
s )dB2

s (3.13)

and

Y
m
t = Y 0 + ν

∫ t

0

(
X
m
s − Y

m
s

)
Sβ
(
X
m
s , Y

m
s

)
ds . (3.14)

Then following the lines of the proof in Theorem 3.2, one can easily obtain

Theorem 3.2 (Zero-inertia limit). Let Assumption 1 hold and (X
m
t , Y

m
t )t∈[0,T ] satisfy the system (3.13)–(3.14).

Then as m → 0+, the sequence of stochastic processes {(Xm
, Y

m
)}0<m≤1 converge weakly to (X,Y ) which is the

unique solution to the following coupled SDE:

Xt = X0 + λ1

∫ t

0

(Y s −Xs)ds+ σ1

∫ t

0

D(Y s −Xs)dB
1
s + λ2

∫ t

0

(Y αs (ρ)−Xs)ds+ σ2

∫ t

0

D(Y αs (ρ)−Xs)dB
2
s ,

Y t = Y 0 + ν

∫ t

0

(
Xs − Y s

)
Sβ
(
Xs, Y s

)
ds .
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Moreover it holds that

sup
t∈[0,T ]

E
[∣∣Xm

t −Xt

∣∣2 +
∣∣Y mt − Y t∣∣2] ≤ Cm , (3.15)

where the constant C depends only on E[|X0|4 + |Y 0|4 + |V 0|4], λ1, σ2, λ2, σ2, d, β, T, Cα,E , and ν.

4. Numerical examples on the zero-inertia limit

We conclude this paper with a few instructive numerical experiments on validating the zero-inertia limit. We will

focus on the mono-dimensional case since it allows us to see more clearly how the distribution of particles evolves in

time depending on the inertia parameter m, and hence show the zero-inertia limit. Different benchmark functions

have been used and tested, but we will report here the case of the Ackley function shown in Figure 3. Following the

same structure of the paper, we will first analyze the case without memory effect and then we will generalize as in

Section 3 to the case with memory. Extensive discussions on other numerical implementations and experiments are

presented in [25].

Figure 3. Ackley function in a big (left) and small (right) domain with its many local

minima.

4.1. Small inertia limit without memory. Given the system of stochastic differential equations in (1.2), the

particle system can be solved by using a semi-implicit discretization schemeXi,m
n+1 = Xi,m

n + ∆tV i,mn+1,

V i,mn+1 = m
m+γ∆t

V i,mn + λ∆t
m+γ∆t

(Xα,m
n −Xi,m

n ) + σ
√

∆t
m+γ∆t

D(Xα,m
n −Xi,m

n )θin, i = 1, · · · , N ,
(4.1)

where Xi,m
n and V i,mn are, respectively, the position and velocity of the i-th particle at the discrete time n∆t with ∆t

being the time discretization, and the diagonal matrix D(Xα,m
n −Xi,m

n ) simply coincides with Xα,m
n −Xi,m

n as we are

considering the mono-dimensional case. Moreover, Xα,m
n is defined as in (1.3) and θin ∼ N (0, 1) ∀i, n. We compare

this particle system with the CBO dynamic of the form (1.10), which can be solved using the Euler-Maruyama scheme

Xi
n+1 = Xi

n + ∆tλ(Xα
n −Xi

n) +
√

∆tσ(Xα
n −Xi

n)θni . (4.2)

As already mentioned, we consider the minimization of the Ackley function with minimum at x = 0 and, starting

from the same initial distribution of particles, we solve the PSO system (4.1) for different inertia values. Then, we

compare the evolution of the distribution of particles with the one of the particles moving according to CBO system

(4.2). In order to be able to compare the results, we fix the parameters λ = 1, σ = 1√
3

and α = 30, while θin

are sampled from N (0, 1) and fixed for each i = 1, ..., N and n ∈ [0, T/∆t]. Moreover, T is set to 1 and the time

discretization is ∆t = 0.01, with a total number of particles N = 104.

Figure 4 shows in each row the evolution of the CBO distribution and the one of the PSO system with m fixed that

is decreasing over rows. The initial particles are always sampled from the same distribution, which is in this case a

Gaussian centered in 0 with variance 1. Clearly, the PSO system with m = 0.8 leads to the correct minimum in 0 at

the final time step t = 1, but the distribution of the particles is different from the one of the CBO. While, for any

t ∈ [0, T ], if the inertia value is decreased to 0.1, or even to 0.001, the two distributions, namely the one obtained via

CBO and the PSO one, are indistinguishable, as the last two rows of Figure 4 show.

These considerations are confirmed in Figure 5 where we compare the distributions obtained in Figure 4 using

the Wasserstein 2 distance between the CBO distribution and the PSO distribution. On the left of Figure 5, the



16 CRISTINA CIPRIANI, HUI HUANG, AND JINNIAO QIU

Figure 4. Comparison of the CBO (4.2) and PSO (4.1) dynamics for different inertia

values (which are changing over the rows) and at many time steps (changing over columns),

starting from a normal distribution.

Wasserstein distance is plotted for each time step. Moreover, since we want to show the influence of the inertia

parameter, we take the mean value of the Wasserstein distance over all time steps and plot it as a function of the

inertia values. This is shown on the right of Figure 5 where we also add the mean value of the Kullback-Leibler

divergence since the latter is a well-known measure used to compare distributions, especially in statistics. Moreover,

since it is necessary to start with an initial distribution that is close to the global minimizer, we also try to see what

happens when the initial distribution is a uniform distribution between −3 and 3 and compare the evolution of its

particles according to the CBO and PSO dynamics, with varying inertia parameters. The result is shown in Figure

6. In this case, the difference between the CBO distribution and the one of the PSO dynamics is way higher in the

case of big inertia value, but, as before, goes to zero as soon as m converges to 0.
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Figure 5. Left: Wasserstein distance over time ; Right: Wasserstein distance and Kullback-

Leibler divergence (in mean) over the inertia values.

Figure 6. Evolution of an initial uniform distribution according to CBO (4.2) and PSO

(4.1) dynamics and their comparison for different time steps (on the columns) and different

inertia values (on the rows).
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Figure 7. First Row: evolution in time of the initial gaussian distribution according to

CBO dynamics (4.4); Second Row: evolution in time of the initial Gaussian distribution

according to PSO dynamics (4.3) with m = 0.8; Third Row: evolution produced by the

PSO dynamics (4.3) with m = 0.001.

4.2. Small inertia limit with memory effect. The PSO model which involves the memory of the local and global

best positions, underlying (3.1)–(3.3), can similarly be solved via

Xi,m
n+1 = Xi,m

n + ∆tV i,mn+1, i = 1, · · · , N

Y i,mn+1 = ν∆t(Xi,m
n+1 − Y i,mn )Sβ(Xi,m

n+1, Y
i,m
n ),

V i,mn+1 = m
m+γ∆t

V i,mn + λ1∆t
m+γ∆t

(Y i,mn −Xi,m
n ) + λ2∆t

m+γ∆t
(Y α,mn −Xi,m

n )

+ σ1
√

∆t
m+γ∆t

D(Y i,mn −Xi,m
n )θ1,i

n + σ2
√

∆t
m+γ∆t

D(Y α,mn −Xi,m
n )θ2,i

n ,

(4.3)

where Y i,mn is the local best that the i-th particle has memory of, and Y α,mn is the regularized global best, defined

as in (3.4). Clearly, the corresponding CBO dynamics is the followingXi
n = Xi

n + λ1∆t(Y in −Xi
n) + λ2∆t(Y αn −Xi

n) + σ1

√
∆tD(Y in −Xi

n)θ1,i
n + σ2

√
∆t(Y αn −Xi

n)θ2,i
n

Y in = Y in + ν∆t(Xi
n − Y in)Sβ(Xi

n, Y
i
n)

(4.4)

Once again, since we want to show the convergence of the PSO distribution obtained from (4.3) with a small inertia

value to the one attained via the CBO system (4.4), we need to set some of the parameters to the same values in

order to be able to compare the results. Their values are the following

λ1 = λ2 = 1 σ1 = σ2 =
1√
3

α = 30 β = 30 ν =
1

2
(4.5)

and, as before, the effect of the Brownian motion leads to θ1,i
n , θ2,i

n which are sampled from a normal distribution

and set to a fixed value ∀i = 1, .., N and ∀n ∈ [0, T/∆t]. The time discretization and number of particles are set to

the same values as in the case without memory, namely T = 1, ∆t = 0.01, and N = 104. The difference with the

previous case is that now the distribution of which we want to show convergence, is actually a function of both the

particles’ position and their local best and, as such, it is bi-dimensional. The result of the evolution of the particles

according to the CBO dynamics (4.4) is shown in the first row of Figure 7, while the second row represents the

evolution according to the PSO dynamics (4.3) with a big inertia parameter, e.g. m = 0.8. This is compared with

the evolution presented in the third row in which the inertia is set to a very low value, e.g. m = 0.001.

In the case without memory, it is easy to see the convergence at each time step of the PSO system with small inertia
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Figure 8. Left: mean particles’ position with their standard deviation; Center: mean

particles’ local best with the standard deviation too; Right: plot of the Wasserstein distance

and Kullback–Leibler divergence between the distribution obteined via CBO dynamics (4.4)

and the one obtained through PSO system (4.3) with small inertia value, i.e. 0.001.

to the CBO, but it’s not as clear now that the distribution we are interested in is bi-dimensional. To be able to

compare the evolution and to check how similar the distributions are at every time step, we show in Figure 8 different

plots: we look at the particles’ mean positions (left) and their local best (center) for each time step and, in both

cases, show their standard deviation as a colored area around the mean. It is interesting to see how the particles are

moving and where they are attracted to, especially because the pattern of the PSO dynamics with small inertia is the

same as the one of CBO. Finally, on the right plot of Figure 8, we show how both our similarity measures, namely the

Wasserstein distance and the Kullback-Leibler divergence, are decreasing along with the inertia parameter, validating

the small inertia limit also in the general case with memory.
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