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We consider the chiral model of twisted bilayer graphene introduced by Tarnopolsky-
Kruchkov-Vishwanath (TKV). TKV have proved that for inverse twist angles a such
that the effective Fermi velocity at the moiré K point vanishes, the chiral model has
a perfectly flat band at zero energy over the whole Brillouin zone. By a formal expan-
sion, TKV found that the Fermi velocity vanishes at a &~ .586. In this work we prove
the Fermi velocity vanishes at a ~ .586, and put rigorous minimum and maximum
bounds on the location of this zero, by rigorously justifying TKV’s formal expansion
of the Fermi velocity over a sufficiently large interval of a values. The idea of the
proof is to project the TKV Hamiltonian onto a finite dimensional subspace, and then
expand the Fermi velocity in terms of explicitly computable linear combinations of
modes in the subspace, while controlling the error. The proof relies on two assump-
tions which can be checked numerically: a bound below on the smallest eigenvalue of
a positive semi-definite, Hermitian 81 x 81 matrix which is essentially the square of
the projected Hamiltonian, and an assumption on the validity of the negative value
of a real 18th order polynomial approximating the numerator of the Fermi velocity
when evaluated at a specific value of a. Since these assumptions can be verified up
to high precision using standard numerical methods, together with TKV’s work our

result proves existence of at least one perfectly flat band of the chiral model.
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I. INTRODUCTION

A. Outline

Twisted bilayer graphene (TBG) is formed by stacking one layer of graphene on top of
another in such a way that the Bravais lattices of the layers are twisted relative to each other.
For generic twist angles, the atomic lattices will be incommensurate so that the resulting
structure will not have periodic structure. Bistritzer-MacDonald (BM)! have introduced
an approximate model (BM model) for the electronic states of TBG which is periodic over
the scale of the bilayer moiré pattern, where the twist angle enters as a parameter. Using
this model, BM showed that the Fermi velocity, the velocity of electrons at the Fermi level,
vanishes at particular twist angles known as “magic angles.” The largest of these angles,
known as the first magic angle, is at # ~ 1.1 degrees. Numerical computations on the BM
model show the stronger result that at magic angles the Bloch band of the BM model at zero
energy is approximately flat over the whole Brillowin zone'?. The flatness of the zero energy
Bloch band is thought to be a critical ingredient for recently observed superconductivity of

TBGS3, although the precise mechanism for superconductivity in TBG is not yet settled.

Aiming at a simplified model which explains the nearly-flat band of TBG, Tarnopolsky-
Kruchkov-Vishwanath (TKV)? have introduced a simplification of the BM model which has
an additional “chiral” symmetry, known as the chiral model. TKV showed analytically
that at magic angles (of the chiral model, still defined by vanishing of the Fermi velocity),
the chiral model has exactly flat bands over the whole Brillouin zone. Using a formal
perturbation theory (for the chiral model the natural parameter is the reciprocal of twist
angle up to a constant) TKV have derived approximate values for the magic angles of the
chiral model. It is worth noting that the first magic angles of the chiral model and the
BM model are nearby, but the higher magic angles are not very close. Becker et al.> have
introduced a spectral characterization of magic angles of the TKV model where the role of

a non-normal operator is emphasized (the operator D* appearing in (I1.1)).

In this work we study the chiral model introduced by TKV and consider the problem of
(1) rigorously proving existence of the first magic angle and (2) putting error bounds on its
value. We do this by justifying the formal perturbation theory of TKV to make a rigorous

expansion of the Fermi velocity to high enough order so that we can prove existence of a zero.
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By numerically verifying that the resulting expansion attains a negative value (Assumption
I1.1), we obtain existence of the magic angle (Theorem I1.2). By computing numerical values
of the zero at extreme values of the error, we obtain non-trivial maximum and minimum
possible values of the magic angle.

The proof of validity of the expansion is challenging because the reciprocal of the twist
angle at the zero of the Fermi velocity is large relative to the spectral gap of the Hamiltonian,
which means that the magic angle is outside of the range of validity of naive perturbation
theory of a simple eigenvalue. To overcome this difficulty, we start by representing the chiral
model Hamiltonian in a basis which takes full advantage of model symmetries. Then, using
a rigorous bound on the high frequency components of the error, we reduce the error analysis
to analysis of the eigenvalues of the chiral model projected onto finitely many low frequencies.
The error analysis (Theorem II.1) is then complete under an assumption on the eigenvalues

of the projected chiral model which can easily be checked numerically (Assumption IV.1).

II. STATEMENT OF RESULTS
A. Tarnopolsky-Kruchkov-Vishwanath’s chiral model

The chiral model, like the Bistritzer-MacDonald model (B-M model) from which it is
derived, is a formal continuum approximation to the atomistic tight-binding model of twisted
bilayer graphene. The BM and chiral models aim to capture physics over the length-scale
of the bilayer moiré pattern, which is, for small twist angles, much longer than the length-
scale of the individual graphene layer lattices. Crucially, even when the graphene layers are
incommensurate so that the bilayer is aperiodic on the atomistic scale, the chiral model and
BM model are periodic (up to phases) with respect to the moiré lattice, so that they can be
analyzed via Bloch theory.

We define the moiré lattice to be the Bravais lattice
A= {m1a1 + moas : (mq,my) € ZQ}
generated by the moiré lattice vectors

2 21
w=2(va1), =2 (—vaa),
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and denote a fundamental cell of the moiré lattice by €2. The moiré reciprocal lattice is the
Bravais lattice

A = {n1b1 +n2b2 . (nl,ng) € Z2}

generated by the moiré reciprocal lattice vectors defined by a; - b; = 2md;;, given explicitly
by
1 1
b= (v33) b=5(-va3).

We define q, = (0’ —1), which is the (re-scaled) difference of the K points (Dirac points)

of each layer, and

1 1
‘hz(o’_l)’ Q2:‘h+b1:§<\/§a1>’ q3:q1+b2:§(—\/§71)'

We write 0* for a fundamental cell of the moiré reciprocal lattice, and refer to such a cell
as the Brillouin zone.
Let ¢ := %” Tarnopolsky-Kruchkov-Vishwanath’s chiral Hamiltonian is defined as
e — 0 Dt Do —2i0 aU(T;) | (IL1)
D* 0 aU(—r) —2i0

where 0 = (9, +i0,), U(r) = e " 4 e%e~"07 4 e7Pe~s™, | denotes the adjoint
(Hermitian transpose), and « is a real parameter which we will take to be positive a >
0 throughout (see (I1.3)) The chiral Hamiltonian H® is an unbounded operator on H =
L*(R?;C*) with domain H'(R?; C*). We will write functions in H as

v(r) = (01 (), ), 68 (), 08 () ) (112)

where 17 (1) represents the electron density near to the K point (in momentum space) on
sublattice ¢ and on layer 7. The diagonal terms of D® arise from Taylor expanding the single
layer graphene dispersion relation about the K point of each layer, while the off-diagonal
terms of D® couple the A and B sublattices of layers 1 and 2. The chiral model is identical
to the BM model except that inter-layer coupling between sublattices of the same type is
turned off in the chiral model. The precise form of the interlayer coupling potential U(r)
can be derived under quite general assumptions on the real space interlayer hopping'®. The

parameter « is, up to unimportant constants, the ratio

interlayer hopping strength between A and B sublattices

o~

I1.3
twist angle (IL.3)
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Although the limit &« — 0 can be thought of as the limit of vanishing interlayer hopping
strength at fixed twist, it is physically more interesting to view the limit as modeling de-

creasing twist angle at a fixed interlayer hopping strength.

B. Rigorous justification of TKV’s formal expansion of the Fermi velocity

and proof of existence of first magic angle

Bistritzer and MacDonald studied the effective Fermi velocity of electrons in twisted
bilayer graphene modeled by the BM model, and computed values of the twist angle such
that the Fermi velocity vanishes, which they called “magic angles.” One can similarly define
an effective Fermi velocity for the chiral model, and refer to values of o such that the Fermi
velocity vanishes as “magic angles” (although technically « is related to the reciprocal of
the twist angle (I1.3)).

TKYV proved the remarkable result that, at magic angles, the chiral model has a perfectly
flat Bloch band at zero energy. Let L% denote the L? space on a single moiré cell
with moiré K point Bloch boundary conditions. The starting point of TKV’s proof is an
expression for the Fermi velocity as a function of «, v(«a), as a functional of one of the Bloch
eigenfunctions, ¥*(r) € L3, of H*:

e ) e |
o) = R ey | (114)

where (.|.) denotes the L2 inner product. We give precise definitions of L%, ¢(r), and

v(a) in Definition II1.2, Proposition I11.5, and Definition II1.3, respectively. We prove the
denominator of (II.4) is non-zero for all & in Proposition II1.7. We give a systematic formal
derivation of why (I1.4) is the effective Fermi velocity at the moiré K point in Appendix
A. To complete the proof, TKV showed that zeros of v(«) imply zeros of )*(r) at special
“stacking points” of €, and that such zeros of ¥*(r) allow for Bloch eigenfunctions with
zero energy to be constructed for all k in the moiré Brillouin zone.

To derive approximate values for magic angles, TKV computed a formal perturbation

series approximation of ¢*(r):
P(r) = V0(r) + ¥l (r) + ... (IL.5)
and then substituted this expression into the functional for v(«) to obtain an expansion of
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v(a) in powers of «:

_ 242 L oA 116 143 .8
_1 3o + « 19 @+ 5700 +

N 1+3a2+2a4+$a6+%a8+...'

v(a) (I1.6)

By setting v(a) = 0 one obtains an approximation for the smallest magic angle: « ~ .586.

Although TKV proved that flat bands occur at magic angles, they did not prove the
existence of magic angles, and hence they did not prove the existence of flat bands. The
contribution of the present work is to prove rigorous estimates on the error in the approxi-
mation (II.5) which are sufficiently high order and precise that, once substituted into (II.4),
they suffice to rigorously prove the existence of a zero of v(«), and hence, via TKV’s proof,

the existence of at least one perfectly flat band.

The first main theorem we will prove, roughly stated, is the following. See Theorem 1V.1
for the more precise statement. The theorem relies on an assumption about the smallest
eigenvalue of a 81 x 81 positive semi-definite Hermitian matrix which must be checked

numerically, see Assumption IV.1.

Theorem I1.1. The K point Bloch function ¢*(r) satisfies
8
Y(r) = " (r) + 1% (r) (IL7)
n=0

where n®(r) L S0 _ a™W(r) with respect to the L inner product, and

3a? 7
o < Il 0<a< —. I1.8
91, € g5 Jorall 0<a< o (113)
The functions W"(r) for 1 < n < 8 are derived recursively: see Appendix C. We stop
at 8th order in the expansion because this is the minimal order such that we can guarantee

existence of a zero of v(a), but the functions U"(r) are well defined by a recursive procedure

for arbitrary positive integers n, see Proposition IV.1.

Substituting (I1.7) into the functional for the Fermi velocity (II.4) and using n*(r) L
S @™ (r) we find

o) = @) (1L9)
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where
_ <Zw - >
+ <?70¢*<—'r)’ Z OznlIIn(r)> 4 <Z T (— ) Ua(r)> (I1.10)
+ (0™ (=7)[n*(r)),
and

<Za”\11” Za”\l’" > n*(r)[n*(r)).

where (.|.) denotes the L% inner product and n*(r) satisfies (I.8). The following is a

straightforward calculation.

Proposition I1.1. The following identities hold:

($oeco] Sorwin)

111 143 7536933 (IL.11)
—1—3a2 4 Ll g 8 10
sata 49 ot 294a 11957764a
4598172331 4, B 30028809212865451 , n 49750141858992227 (4

47460365316a 520327364608478700 " 12487856750603483800 "

< > amu(r g (r >

6 107 5119 (II.12)
=1 3 2 8 10
—|—04+oz—|—704+98 +—48412a
62026511 4, 355691470247 14 2481663780475871 16

356844852 113410497953025"  337509641008202400 "
We prove Proposition II.1 in Appendix F. Naively, the expansions (II.11) and (I1.12)

approximate the formal infinite series expansions of (D> o W™ (—r)| >~  a"¥"(r)) and
(302 @™ (r)| o2, U™ (7)) up to terms of order a”. We prove in Proposition F.2 that,
because of some simplifications, expansions (II.11) and (II.12) agree with the infinite series
up to terms of order a'°.

We are now in a position to state and prove our second result. This result also relies

on an assumption which must be checked numerically: that an 18th order polynomial in «

attains a negative value, see Assumption II.1.

Theorem I1.2. There exist positive numbers Qunin and Qe such that the Fermi velocity

v(a) defined by (11.4) has a zero o between Qi < @ < Qg
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Proof. Equation (I1.10) and Cauchy-Schwarz imply that

< > amu(— e (p >

Using Theorem II.1 and Proposition C.3, It follows that to prove that v(«) has a zero it

< 2| (r \\Za”|l\lf” )+ ™ ().

suffices to check that the upper bound on the numerator of (I1.9),

11 o, 143 o 7536933

20 T2 T 11057764
1598172331,  30028800212865451 ,, ~ 49750141858092227

1-3a%4+a*—

o o (I1.13)
47460365316 520327364608478700 12487856750603488300
+ &(a),
where
60 \/_ \/258 \/196883
Ela) = T — 900 <1+\/_a+\/_oz+ D) YT
V106525799 N 2/2129312323981473 . N V/183643119755214454
(8] (8] (63
31122 624696345 4997570760
90[18
520002

where we use Proposition C.3 to calculate the term in brackets, has a zero for positive a.
Noting that, upon multiplying by (15 — 20«)?, (I1.13) is an 18th order polynomial in «, it
is easy to verify numerically that this holds, see Figure II.1. We make this precise as an

assumption.

Assumption I1.1. Ezpression (I1.13), or equivalently the 18th order polynomial obtained
by multiplying (11.13) by (15 — 20c)?, has a zero for 0 < a < 3.

Note that Assumption I1.1 can be checked by merely evaluating (I1.13) at different values
of a and finding a negative value. Specifically, evaluating using double-precision we find
that at a = .646, (I1.13) attains the negative value —0.068430 (five significant figures). The
result of a forward error analysis for the round-off error and the error in the computation
of the square roots would then give a negative upper bound for the value of the polynomial

and rigorously confirm Assumption II.1.
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—— 8th order expansion of v(cv) numerator with worst-case error bound ® oot of expansion of v(«x) numerator w/ worst-case error at @ =0.60177
154 8th order expansion of v(a) numerator 0.6 root of expansion of v(a) numerator at o =0.58597
—— 8th order expansion of v(«v) numerator with best-case error bound ® oot of expansion of v(«) numerator w/ best-case error at o =0.57683
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FIG. II.1. At left, plot of the numerator va/() of the Fermi velocity approximated by the 8th
order TKV expansion (II.6) (orange), and of 8th order expansions with worst-case (II.13) (blue)
and best-case (I1.14) (green) errors. At right, detail showing roots of these functions near to

a= % ~ 57735 (five significant figures).
We denote the zero of (I1.13) by ayne.. Existence of such a zero implies the existence of

a zero, which we denote by «,,;,, of the expression obtained by bounding the error below:

143 7536933 |,

1 o 2 4  ~——— 6 intinhg __TETEeYY
3 A = g 501 T Tios7e4”
4598172331 ,  30028809212865451 , 49750141858992227 |4 (IL.14)
o — « o .
47460365316 520327364608478700 12487856750603488800
—&(a).
The result now follows. O

Numerical computation of the zeros a;, and ez gives qpi, = 0.57683 (5sf) and e =
0.60177 (5sf) respectively, where (5sf) is an abbreviation for (five significant figures), see
Figure II.1.

Our results rely on numerical computation in two places, specifically to verify Assump-
tions IV.1 and II.1. These assumptions can be checked with standard algorithms.

Using Proposition C.1 and the package Sympy” for symbolic computation we can compute
the formal expansion of v(«) up to arbitrarily high order in «. In particular, we find the

higher-order terms in the expansion (I1.6) to be

130055941435858531 Oél4 + ..

1—3a2+qt — L6 4 1438 10227257 \10 | 6881137015 12

(@) 49 294 11957764 47460365316 520327364608478700
2 4 1 6.6, 1078 , 16011, 10 . 134058653 12 | 26407145691649 14
L+ 30 +20% + 70° + Gga® + 550 + 35eeaas52 Y~ T 526820005006050 Y T -+
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Truncating after order a'* and setting the numerator equal to zero yields the estimate

a = 0.5856640 (7sf) for the first magic angle.

C. Structure of paper

We review the symmetries, Bloch theory, and symmetry-protected zero modes of TKV’s
chiral model in Section III. We prove Theorem II.1 in Section IV, postponing most details of
the proofs to the appendices. In Appendix A we show why (I1.4) corresponds to the effective
Fermi velocity at the moiré K point. In Appendix B, we construct an orthonormal basis,
which we refer to as the chiral basis, which allows for efficient computation and analysis of
TKV’s formal expansion. We re-derive TKV’s formal expansions in Appendix C. We give
details of the proof of Theorem II.1 in Appendices D and E. We prove Proposition II.1
in Appendix F. In the supplementary material, we list the basis functions of the subspace
onto which we project the TKV Hamiltonian, give the explicit forms of the higher-order
corrections in the expansion (I1.7), and present a derivation of the TKV Hamiltonian from

the Bistritzer-MacDonald model.

IIT. SYMMETRIES, BLOCH THEORY, AND ZERO MODES OF TKV’S
CHIRAL MODEL

A. Symmetries of the TKV model

Recall that ¢ = 2?” and let R, denote the matrix which rotates vectors counter-clockwise

by ¢, i.e.,
1 (-1 —/3
Ry = V3
2 V3 o1
We define

Definition II1.1. For any v € A we define a phase-shifted translation operator acting on

functions f(r) € H by
Tof(r) == diag (1,7, 1, 0Y) 7, f(r), Tuf(r) = f(r+v). (I11.1)

We define a phase-shifted version of the operator which rotates functions f(r) € H clockwise

10
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by ¢ by
Rf(r):=diag (1,1,e %, e ) Rf(r), Rf(r)= f(Ryr). (I11.2)

For any f(r) € H we finally define the “chiral” symmetry operator
Sf(r):=diag(1,1,—1,-1) f(r). (I11.3)
We then have the following.
Proposition I11.1. The operators (I11.1) and (I11.2) are symmetries in the sense that
[HY 1p) = H%Ty — o H* =0 (111.4)
for all moiré lattice vectors v € A,
[H*,R] = H*R —RH" =0,
and the operator (111.3) is a “chiral” symmetry in the sense that
{H*, 8§} = H*S + SH* = 0. (I11.5)
Proof. The first claim is a direct calculation using the facts that for any v € A
FoU(r)Fy = e U(r), 7,07, = 0.
The second claim is a direct calculation using the facts that
RWU(r)R = e @U(r), R'OR = e 0.

The final claim is trivial to check. O

The “chiral” symmetry (II1.5) implies that the spectrum of H* is symmetric about zero,

because

H* = By <= HSt) = —ESY.

The same calculation implies that zero modes of H* can always be chosen without loss of

generality to be eigenfunctions of S.
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B. Bloch theory for the TKV Hamiltonian

We now want to reduce the eigenvalue problem for H* using the symmetries just intro-
duced. The symmetry (II1.4) means that eigenfunctions of H* can be chosen without loss
of generality to be simultaneous eigenfunctions of 7, for all v € A. It therefore suffices to
seek solutions of

H) = EY
for 7 in a fundamental cell © := R?/A of the moiré lattice in the symmetry-restricted spaces
Ly ={f(r) € L*(;C) : f(r +v) = e*"diag(1,e' 0, 1,e'0") f(r) Vo € A} (IIL6)

where k is known as the quasimomentum. Since L3 o = L3 for any w € A*, it suffices to
restrict attention to k in a fundamental cell of A* which we denote Q* := R?/A* and refer
to as the Brillouin zone.

We now claim the following.
Proposition II1.2. Let f(r) € Li. Then Rf(r) € L%k.
Proof. By definition, for any v € A,
Rf(r+v) =diag(1,1,e7 e ) f(Ryr + Ryv).
By the definition of L2 we have
Rf(r+v) = RV diag(1, "ot 1 Fa )R f(r).
The conclusion now follows from Rjq; = q; + by and by - v = 0mod 27 for all v € A. [

In particular, whenever Rjk = k mod A*, we have RL: = Li. Regarding such k, the

following is a simple calculation.

Proposition II1.3. The moiré K and K' points k =0 and k = —qy, and the moiré I' point
k = q, + by satisfy Rjk =k mod A*.

The moiré K, K’, and I' points are shown in Figure III.1. Note that the moiré K, K’,
and I' points should not be confused with the single layer K, K’, and I" points. The moiré

K point corresponds to the K point of layer 1, while the moiré K’ point corresponds to the
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K point of layer 2. Interactions with the K’ points of layers 1 and 2 are formally small for

small twist angles and are hence ignored.
In this work we will be particularly interested in Bloch functions at the moiré K and K’

points. We therefore define

Definition III1.2.

L3 =1Lg, L3 = L%ql.
Let w = €. Since the spaces L2 and L%, are invariant under R they can be divided up

into invariant subspaces corresponding to the eigenvalues of R

Ly=Lk,®L%,oLy,., Lihw=L% 0Lk, &Lk

*
W™

where
Ly, ={f(r)e Lk :Rf(r)=0cf(r)} o=1lwuw"

and L;}(/’U, o = 1,w,w*, are defined similarly.
The following, which is trivial to prove, will be important for studying the zero modes of

He.

Proposition II1.4. The operator S commutes with T, and R and hence maps the L%f,a and

L%,,U spaces to themselves for o = 1, w, w*.
Since S has eigenvalues £1, we can define the spaces
Lioir = 1f(r) € Ly, : Sf(r) = £f(r)} o=1w,uw"
and spaces L, 1,0 = 1,w,w* similarly.

Remark I11.1. Note that +1 eigenspaces of S correspond to wave-functions which vanish in
their third and fourth entries, which correspond, through (11.2), to wave-functions supported
only on A sites of the layers. Similarly, —1 eigenspaces of S correspond to wave-functions
which vanish in their first and second entries, which are supported only on B sites of the

layers.
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FIG. III.1. Diagram showing locations of moiré K (blue), K’ (red), and I' (black) points within

the moiré Brillouin zone (orange).
C. Zero modes of the chiral model

We now want to investigate zero modes of H® in detail. When o = 0, there are exactly
four zero modes given by e;(r),7 = 1,2,3,4 where ¢;(r) equals 1 in its jth entry and 0 in

its other entries. It is easy to check that
e1 € Ly, e €Ljy, e3€Li ., e1€ Lk, (I1L.7)

and hence 0 is a simple eigenvalue of H* when restricted to each of these subspaces. Recall

that zero modes can always be chosen as eigenfunctions of S, and indeed we have
2 2 2 2
€1 € Lgqy, €€ Ly, e3€ Liye 1, €€ Ly
We now claim that these zero modes persist for all a.

Proposition IIL.5. There exist functions ¥*(r) in each of the spaces L%ﬂl,lf L%(’,l,lf
L e 15 Lir ey such that °(r) is as in (IIL7), o= ¢*(r) is analytic, and H*)*(r) =0
forall a. The dimension of ker H* restricted to each of the spaces L., L, L ., L -

18 always odd-dimensional.

Proof. Since S preserves each of the spaces L, L), L -, L%, and anti-commutes
with H%, the spectrum of H® restricted to each space must be symmetric about 0 for

all a. The result now follows from analyticity of the eigenvalues (note that the analytic
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choice of eigenvalue at a degeneracy may not respect eigenvalue ordering) and associated
eigenprojections® of H® as a function of a. It is clear from analyticity that the S eigenvalue

of each zero mode cannot change. O

In this work we will restrict attention to the moiré K point, and especially the family
v(r) € L%(,m- We expect that our analysis would go through with only minor modifications
if we considered instead the moiré K’ point. The zero modes in L%Ll and L% . _, arerelated

by the following symmetry.

Proposition IIL.6. Let ¢¢(r) and ¢*,(r) denote the zero modes of H* in the spaces L,
and L3 . _y respectively. Then ¢¢(r) = (%(r),0)" where *(r) € L*(Q;C?), ®*(r+v) =
diag(1, e 1*)®%(r) for allv € A, ®*(Ryr) = ®%(r) and ¢, (r) = (0, (—r)) .

Proof. Since Sy (r) = ¢ (r), the last two entries of ¥{(r) must vanish, so we can write
P2(r) = (®%(r),0)". That ®*(r) satisfies the stated symmetries follows immediately
from ¢ € L2 . It is straightforward to check using the definitions of R and 7, that
(0,8**(=7))" € L% ;. To see that (0,9°*(—r))" is a zero mode, note that ®*(r) sat-
isfies D@ (r ) = 0, which implies that D*®**(—r) = 0 by a simple manipulation. To see
that 5 (r) = (0, ®**(—7))" for all a, note that this clearly holds for a = 0 and then must

hold for all a by analyticity. ]

In Appendix A we use Proposition II1.6 to derive the effective Dirac operator with a-
dependent Fermi velocity which controls the Bloch band structure in a neighborhood of the
moiré K point. The Fermi velocity of the effective Dirac operator is given by the following.
Note that we drop the subscript +1 when referring to the zero mode of H* in L%, , since

the zero mode of H* in L% . _; plays no further role.

Definition IT1.3. Let ¢*(r) € LK1 1 be as in Proposition I11.5. Then we define

| (™ (=r)[¢*(r)) |
| (oo (r)[ e (r)) | (IL.8)

where (.|.) denotes the L% inner product.

v(a) =

Proposition II1.7. The denominator of (11.4) is non-zero for all .

Proof. Since (n®(r)|n*(r)) > 0, the result follows immediately from (II.12). O
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IV. RIGOROUS JUSTIFICATION OF TKV’S EXPANSION OF THE
FERMI VELOCITY

A. Alternative formulation of TKV’s expansion

We now turn to approximating the zero mode 1*(r) € L%, by a series expansion in

powers of a. We write H* = H® + aH' and formally expand 1%(r) as a series
P (r) = U>r) + all(r) + ... (IV.1)

where HU(r) = 0, and
HOU™ = —H' ™! (IV.2)

for all n > 1. To solve HOU%(r) = 0 we take ¥O(r) = e;(r). We prove the following in
Appendix C.

Proposition IV.1. Let P denote the projection operator in L%ﬂ onto e (r), and P+ = I—P.
The sequence of equations (IV.2) has a unique solution such that W™ (r) € L3, , for alln >0
and PU™(r) =0 for alln > 1 given by ¥O(r) = ey (r) and

\Ijn(,r) — _PL(HO)—lpLHl\Ijn—l(T)
for eachn > 1.

The expansion (IV.1) appears different from the series studied by TKV, since we work
only with the self-adjoint operators H°, H', and H® rather than the non-self-adjoint operator
D* (defined in (I1.1)). Since functions in L3, vanish in their last two components, there
is no practical difference. However, working with only self-adjoint operators allows us to use
the spectral theorem, which greatly simplifies the error analysis. We compute the first eight
terms in expansion (IV.1) in Proposition C.2 after developing some necessary machinery in

Appendix B.

B. Rigorous error estimates for the expansion of the moiré K point Bloch

function

In this section we explain the essential challenge in proving error estimates for the series

(IV.1) and explain how we overcome this challenge. Our goal is to prove the following.

16
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Theorem IV.1. Let ¥*(r) € L%, be as in Proposition II1.5. Then
8
Yo(r) =Y a""(r) +n°(r)
n=1

where n®(r) L 325 _ a™W™(r) with respect to the L% inner product, and

o 3a’ 7
||n ||L§<’1 S m fO’I" all 0 S « S 1—0
Proposition IV.1 guarantees that the series (IV.1) is well-defined up to arbitrarily many
terms. A nalve bound on the growth of terms in the series comes from the following propo-

sition.
Proposition IV.2. The spectrum of H° in Ly, is
UL%(,l(H()) = {:l:|G|7:l:’q1 + G| : G (- A*}

and hence

|PHH) T PH g g, =1 (1v.3)

We also have

1 g, oz, =3 (I.4)

Proof. This proposition is a combination of Propositions B.2, B.4, and B.7, proved in Ap-
pendix B. ]

Proposition IV.2 implies that || P+(H®) "' P+H"|| ;2 ;2 <3 which guarantees that the

series (IV.1) converges in L%ﬂ as long as o < However, this restriction is too strong

L
to prove that the Fermi velocity has a zero, which occurs at the larger value a ~ \/ig Of
course, Proposition IV.2 establishes only the most pessimistic possible bound on ¥, and
this bound appears to be far from sharp from explicit calculation of UV, see Proposition C.3.
We briefly discuss a possible route to a tighter bound in Remark C.2, but do not otherwise
pursue this approach in this work.

We now explain how to obtain error estimates over a large enough range of « values to

prove v(a) has a zero. We seek a solution of H*))* = 0 in L, ; with the form
N
V() = M) (), W) =) et (r), (IV.5)
n=0

17
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For arbitrary «, let Q* denote the projection in L3 ; onto ¢N*(r), and Q™+ := I — Q~
(note that QY = P). Note that Q* depends on N but we suppress this to avoid clutter. We
assume WLOG that Qn®(r) = 0. It follows that n® satisfies

Qa,J_HaQa,J_na — —&N+1QQ’LH1\IJN.

To obtain a bound on 7 in L%(Q2), we require a lower bound on the operator Q®+H*Q* :
Q** L, = QL% . The following Lemma gives a lower bound on this operator in terms
of a lower bound on the projection of this operator onto the finite dimensional subspace of
L3, corresponding to a finite subset of the eigenfunctions of H°. The importance of this
result is that, since H! only couples finitely many modes of H?, for fired N, by taking the

subset sufficiently large, we can always arrange that 1»™®(r) lies in this subspace.

Lemma IV.1. Let P= denote the projection onto a subset = of the eigenfunctions of H® in

L%{,u and let 1 > 0 be mazimal such that
|PeHP2|| >y, Pe:=1-Ps (IV.6)

(with this notation the operator P introduced in Proposition IV.1 corresponds to Pz with =
being the set {ei(r)} and p=1). Suppose that Q*P= = P=Q“ = Q°, i.e., that v™*(r) lies
in ran P=. Define g® by
E is an eigenvalue of the matriz Q+ PsH* P=Q**
g% :=min< |E| : :
acting Q*+PzL3 , — Q®*P=L

We note that P=Q®* is the projection onto the subspace of PEL%(’1 orthogonal to Y™N*(r).
As long as

3a < pand o Q¥ PeH' Pz || < min(g®, 1 — 3,

then
Q- HAQ | 2 (ming?, = 3a) — QU PaH! P2]) Q4. (IV.)

Note that ¢g* would be identically zero if not for the restriction that the matrix acts on
Qa’lPEL%ﬂ, since otherwise ¢V%(r) would be an eigenfunction with eigenvalue zero for all
a. Asitis, ¢° = 1 and o + g% is analytic so that g® must be positive for a non-zero interval

of positive a values.

18
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Proof. Using Q®Pz = P=Q" we have P2Q*! = Q** Pz = P2 and hence
Q¥+ H* Q™ n®|| = |Q**(P=+ P=)H*(P=+ Pz)Q% n”||
— HQa,J_PEHaPEQa,J_na =+ aQa,LPEHlpgj_na + aPEJ_HaPEQa,J_na + PEJ_HOc EJ_naH
By the reverse triangle inequality
Q™ H*Q™ | (IV.8)
> ||Q*+ PeH* P=Q*" 1™ + Pz H* Pz || — o||Q** P=H' P=0)™ + P= H* P=Q“" || .
We want to bound the second term above and the first term below. We start with the second

term
|Q** PeH' P + Pz H* P=Q™ 1 ||?
= [|Q**P=H" Poop®||* + || Pz H' P=Q* n°|?
< QP P2 (| PAn° P + 1P )
— QP P Q™ P,
where we use Pythagoras’ theorem, PELHlnga’lna = PElHlPEQO"LPEQa’Lna since P=Q“*
is a projection, and ||Q®t P=H'PZ|| = ||P2 H' P=Q“||. Hence we can bound
|Q+ P=H' P=n® + Pz H*P=Q || < Q%" P=H' Pz [[[|Q“*1°|. (IV.9)
For the first term, first note that using Proposition IV.2 and the spectral theorem
QP H* Pz Q™ 1°|| 2 [[|Q™* P= HOP= Q™ || — ]| Q™+ Pz H' P= Q™ 1"
> (1= 3a) [Pz Q™"
as long as ;1 > 3a. We now estimate
Q-+ P=H* P=Q™ )" + Pz H* Pz |?
= [|Q*P=H" P=Q™ 0" ||* + || P= H* P
> (9" 1Q ™ Pen|* + (1 — 30)?|| Pz ||
> min ((9°)%, (1 = 30)?) (1Q** Pen®|* + [|1P=n"|?)
= min ((9%)%, (k= 32)) |Q™ ||,
It follows that as long as 3a < p,

|Q®+ PeH* P=Q* 1 + Pz H* P=®|| > min(g%, pu — 3)[| Q1. (IV.10)

The conclusion now holds as long as 3a < p and «f|Q“*+P=H'PZ|| < min(g*, 4 — 3a) upon
substituting (IV.9) and (IV.10) into (IV.8). O

19



Existence of Magic Angle for Twisted Bilayer Graphene

For Lemma IV.1 to be useful, we must check that it is possible to choose = so that the
bound (IV.7) is non-trivial, i.e., so that the constant is positive. We will prove the following

in Appendix D.

Proposition IV.3. There exists a subset = of the eigenfunctions of H° such that
1. The mazimal p such that (IV.6) holds is u = 1.
2. %*(r) defined by (IV.5) lies in ran P=.
3. ||PeH'PZ|| = 1 and hence ||Q*+P=H'PZ| < 1.

The set = constructed in Proposition IV.3 is the set of L7 -eigenfunctions of H° with
eigenvalues with magnitude < 44/3, augmented with two extra basis functions to ensure
that |P=H'Pz|| = 1. Including all L j-eigenfunctions of H® with eigenvalue magnitudes
up to and including 4v/3 ensures that /% (r) lies in ran Pxz.

We require the following, which we discuss further, and check numerically, in Section E.
In particular, we show that this assumption is equivalent to a bound below on the lowest

eigenvalue of a positive semi-definite, Hermitian, 81 x81 matrix.

Assumption IV.1. Let = be as in Proposition 1V.3. Then for all 0 < a < %, we have

3
9* = 3

Assuming Proposition IV.3 and Assumption IV.1, the bound (IV.7) becomes, for all

7
OSOZSE,

3
ot = (§ - a) lomel,

We now assume the following, proved in Appendix C.
Proposition IV 4. |[H'U¥| < 2.
We can now give the proof of Theorem IV.1.

Proof of Theorem IV.1. The proof follows immediately from Lemma IV.1, Proposition IV.3,
Assumption IV.1, and Proposition IV .4. 0
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Appendix A: Derivation of expression for Fermi velocity in terms of L% |, zero

mode of H¢

The Bloch eigenvalue problem for the TKV Hamiltonian at quasi-momentum k is
H%(r) = Bt (r)
where H* is as in (II.1) and
Y(r +v) = e*V diag(1, 1, 1, D) (r) VYo € A.

By Propositions I11.5 and I11.6, 0 is a two-fold (at least) degenerate eigenvalue at the moiré
K point k = 0, with associated eigenfunctions ¥¢,(r) as in Proposition III.6. In what
follows we assume that 0 is ezactly two-fold degenerate so that ¢, (r) form a basis of the
degenerate eigenspace. This assumption is clearly true for small a but could in principle be
violated for o > 0.

Introducing x¢(r) = e *Ty2(r), we derive the equivalent Bloch eigenvalue problem

with k-independent boundary conditions

Hi Xy (1) = Eexip(r), (A1)
where
0 D¢ D, + ky +i(D, + k,) al(r)
Hp = , Dp =
Dy 0 aU(—r) D, +k, +i(Dy + ky)
where D, , := —i0,,, and

Xo(r +v) = diag(1, "1 1,1 %) xe(r) VYo € A.

Clearly ¢¢,(r) remain a basis of the zero eigenspace for the problem (A.1) at k = 0.
Differentiating the operator Dy, we find 0y, Dy = I and 0y, Dy, = il,, where I, denotes
the 2 x 2 identity matrix, so that

. [0 L . 0 —ily
O, HY = Lol Oy, Hy = — (A.2)
2 (2

By degenerate perturbation theory?, for small k we have that eigenfunctions x¢(r) of (A.1)

are given by

Xi(r) = Y cantl(r),

o==+1
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where the coefficients ¢, and associated eigenvalues Ej = ¢ are found by solving the

matrix eigenvalue problem

(vg|eviHgos) (05 |k-vrHges,)

) (v lvg) C+ik | C+1k
<w51|k‘VkH3¢f‘> <¢31|k‘ka8‘1/151> . = €k - . <A3>
AN AN - -

Using (A.2) and the explicit forms of ¢, (r) given by Proposition II1.6, we find that the
matrix on the left-hand side of (A.3) can be simplified to

0 M) (ky — iky) Aa) = (¥ (r)| v (=r))
A () (kg + k) 0 ’ (W) Ye(r)

It follows that, for small k, we have Ey ~ +v(«a)|k|, where v(a) = |A(«)]| is as in (IIL8).

Appendix B: The chiral basis of L%(,l and action of H° and H! with respect to

this basis
1. The spectrum and eigenfunctions of H® in L?%

The first task is to understand the spectrum and eigenfunctions of H° in L%. In the next

section we will discuss the spectrum and eigenfunctions of H in L% ;. Recall that

0 DOt —2i0 0
, D= _
DY 0 0 —2i0

9

where 0 = %(836 + id,). To describe the eigenfunctions of H° in L% we introduce some

notation. Let v = (Ul, fu2> be a vector in R?. Then we will write

. . vy + 109
Zp = UL+ Wa, Zp = |'v| .

Finally, let V' denote the area of the moiré cell 2.

Proposition B.1. The zero eigenspace of H° in L% is spanned by

0

()—L
X+\T _\/W

For all G # 0 in the reciprocal lattice, then

(1,0, il,O) :

1 |
XE(r) = == (1,0, iﬁjg,0> e
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are eigenfunctions with eigenvalues £|G|. For all G in the reciprocal lattice,

1 ,
V) = o= (0,1,0, 2264, ) @O

V2v

are eigenfunctions with eigenvalues +|q, +G|. The operator H® has no other eigenfunctions

in L3 other than linear combinations of these, and hence the spectrum of H® in L% is
o1 (HY) = {£|G|, £]q, + G| : G € A"}

Proof. The proof is a straightforward calculation taking into account the L% boundary
conditions given by (II.6) with k = 0. For example, e5(7) and e4(r) are zero eigenfunctions

of HY but in L%,, not L3. O

Note that (as it must be because of the chiral symmetry) the spectrum is symmetric
about 0 and all of the eigenfunctions with negative eigenvalues are given by applying S to
the eigenfunctions with positive eigenvalues.

The union of the lattices A* and A*+q, has the form of a honeycomb lattice in momentum
space, where the lattice A* corresponds to “A” sites and A* + g; corresponds to “B” sites

(or vice versa), see Figure B.1.

2. The spectrum and eigenfunctions of H° in L,
We now discuss the spectrum of H° in L ;.

Proposition B.2. The zero eigenspace of H® in L%{’l 15 spanned by

X'(r) = —=ei(r).

-

For all G # 0 in the reciprocal lattice A*,

2 2
= 1 1 (R¥)kG
G k. G o
X+ (r) = — E R*XZ (r) = —= E X+ (r)
V3= V3 &=

are eigenfunctions of H® in Ly | with associated eigenvalues +|G|. For all G in the reciprocal

lattice A*,
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FIG. B.1. Diagram showing A (blue) and B (red) sites of the momentum space lattice. Each site
corresponds to two L%{—eigenvalues of HY, given by + the distance between the site and the origin

(black). The lattice vectors b; and by are shown, as well as the A site nearest-neighbor vectors g,

qs, q3-

are eigenfunctions of H® in L%ﬂ with associated eigenvalues *+|q, + G|. The operator H°
has no other eigenfunctions in L%ﬂ other than linear combinations of these, and hence the

spectrum of H® in L{f}“ is
oz (H°) = {+|G|,£|g, + G| : G € A"}
Proof. The proof is another straightforward calculation starting from Proposition B.1. [

For an illustration of the support of the Lﬁ(’l—eigenfunctions of H° on the momentum space

lattice, see Figure B.2. It is important to note that the notation introduced in Proposition
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2 ° [ ] [ ]
°
14
b,
x x
s 0 ® °
q
1 ° °
° ®
Y

FIG. B.2. Diagram showing support of L%yl—eigenfunctions of HY superposed on the momentum
space lattice. Each eigenfunction is given by superposing an L%(-eigenfunction of HY with its
rotations by %’T and %’T. The support of the eigenfunctions XiEI (r) with eigenvalues £1 is shown
with black crosses, while the support of the eigenfunctions Xia(r) with eigenvalues ++/3 is shown

with black circles.

B.2 is not one-to-one, because for example

e~ —

W) = G ) = ()

for any G # 0 in A*.

3. The chiral basis of L3,

Recall that zero modes of H can be assumed to be eigenfunctions of the chiral symmetry

operator S. It follows that the most convenient basis for our purposes is not be the spectral
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basis just introduced but the basis of L%ﬂ consisting of eigenfunctions of S. We call this
basis the chiral basis.

Definition B.1. The chiral basis of L%(,l is defined as the union of the functions
5 1

X (r) = Vi

(Cm£x ), Ger\ ok

€1,

XEH(r) =

Sl

and

__ 1 — —
Xq1+G,ﬁ:1(,r) — <X‘11+G(r) + X—ql—l—G(fr)) , GeA".

V2

The following is straightforward.

Proposition B.3. The chiral basis is an orthonormal basis of L%ﬂ. The modes Xa(r),
Xévl('r), and qu/:r/G’l(r) are +1 eigenfunctions of S, while the modes Xé_l(r) and quljr/G’_l(r)

are —1 eigenfunctions of S.

Written out, chiral basis functions have a very simple form. We have

Oy — -,
X (r) = N 1 (B.1)

and for all G € A*\ {0},

2
s 1 i *\k P ~ 1
XG,I(,,,) _ e § :6 (RY)"G) : XG, 1(,',,) _

V3V V3V
and for all G € A*,

2
Zges Z eI M) G (B 2)
k=0

2
Gtal () — e § 61((34) (‘I1+G))'7‘7
R =
C (B.3)
G+q;,—1 r) = 2 e e—ik¢€i((R;)k(‘h+G))""_
X ( ) \/W G+q, %4 ];0:

We use the chiral basis to divide up L ; as follows.

Definition B.2. We define spaces L%(,l,:l:l to be the spans of the £1 eigenfunctions of S in

L%ﬂ , respectively.

Clearly we have

2 _ 72 2
LK,l = LK,1,1 S LK,l,fl'

We can divide up the chiral basis more finely as follows.
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Definition B.3. We define

Linna = {00 U {x®(r): G e A"\ {0}},
L%(I,IB = {Xél;l’l(r) G € A*},
{

V&) G e A\ {0}}

Remark B.1. Note that the notation A and B in Definition B.3 refers to A and B sites
of the momentum space lattice, not to the A and B sites of the real space lattice. Recalling
Remark II1.1 and comparing (B.2)-(B.3) with (IL.2), we see that L3 | ; 4 corresponds to wave-
functions supported on A sites of layer 1, Liﬂl,l, g corresponds to wave-functions supported
on A sites of layer 2, L%(,L—LA corresponds to wave-functions supported on B sites of layer

1, and L%(,L—LB corresponds to wave-functions supported on B sites of layer 2.

Clearly we have
2 _ 72 2 2 2
Ly = Lx1aa® L1138 ® Ly 149 Lk 18-

The following propositions are straightforward to prove. For the first claim, note that

(S, HY = 0.

Proposition B.4. The operator H° maps L3, oy, = L1 41, for 0 = A, B. The action

of H° on chiral basis functions is as follows

for all G € A* with G # 0
HOXé,:tl — ‘G‘Xé7:F1>
and for all G € A*

0,8:1+G,+1 _ 1 +G,F1
Hoxh = |g; + G|x* :

Proposition B.5. Let P denote the projection operator onto Xa(’r) n L%{,p and P+ =1-P.
Then the operator P+(H®)"'P* maps L3, 11 , = Ly, 1, for 0 = A, B, and
PL(HO)APLXé,ﬂ _ LXG,¥1
G
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for all G € A* with G # 0, and
— 1 —
PJ_ HO —IPJ_Xq1+G,:|:1 _ Xq1+G,:F1
i PRe]

for all G € A*.

In the coming sections we will study the action of the operator H' on Lfﬂ with respect

to the chiral basis.

4. The spectrum of H' in L} and L,

Recall that
g [ D' pi_ | 0 U
D' 0 Ul-r) 0

where U(r) = e 71" + %27 + ¢7@c 75" We claim the following.

Proposition B.6. For eachry € 2, £|U(ry)| and £|U(—r¢)| are eigenvalues of H* : L3 —
L%.. For vy such that U(rg) # 0, the +|U(rg)| eigenvectors are

U(ro) _
(0’ 1, iw(m)wo) o(r —mo).

For vy such that U(—rg) # 0, the £|U(—7)| eigenvectors are

U(=ro) —
(1.0.0. =2 ) o = 7o)

When U(rg) = 0, zero is a degenerate eigenvalue with associated eigenfunctions esd(r —
ro) and e3d(r — ry). When U(—rg) = 0, zero is a degenerate eigenvalue with associated

eigenfunctions e10(r — ro) and e 0(r — ro). Finally,
o (HY) = [=3,3). (B.4)

Proof. We prove only (B.4) since the other assertions are clear. The triangle inequality
yields the obvious bound
[U(ro)| <3,

so that the L3 spectrum of H' must be contained in the interval [—3,3]. To see that the

spectrum actually equals [—3, 3], note that if ry = <3477r§, 0) then

2

(~v3.1) mo=—3

N | —

1 2
Q1"'“0=0>(Q1+b1)'7‘0:§<\/§,1)'TOZ?,(Q1+b2)'T0:
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and hence U(ry) = 3. On the other hand, when 7y = 0 we have U(ry) = 0 so that the
spectrum of H' in L3 equals [—3,3]. O

By taking linear combinations of rotated copies of the H' eigenfunctions, just as we did
with the H° eigenfunctions, it is straightforward to prove an analogous result to Proposition

B.6 in L%ﬂl' We record only the following.
Proposition B.7.

oL%l(Hl) =[-3,3].

5. The action of H' on L7, with respect to the chiral basis

We now want to study the action of H' on L%, with respect to the chiral basis. We will

prove two propositions, which parallel Proposition B.4.

Proposition B.8. The operator H' maps L3, 4 = L, 1 p, and L, p — L, 4.

The action of H' on chiral basis functions is as follows:

H'\® = V32, x5, (B.5)
and
T 05, T i 9
For all G € A*\ {0},
H'XC! = Zgra XCT01 4 095G, (Gl | omit5o \ Gras (B.7)
For all G € A*\ {0},
BT =TS 4 STy S | T S (B

Note that H' exchanges chirality (S eigenvalue) and the A and B momentum space
sublattices, while H® only exchanges chirality. Proposition B.8 has a simple interpretation
in terms of nearest-neighbor hopping in the momentum space lattice, see Figures B.3 and

B.4.
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FIG. B.3. Illustration of the action of H' in L%Q as hopping in the momentum space lattice
described by equations (B.7) (left, starting at b;) and (B.8) (right, starting at gq; + by — bz). The

origin is marked by a black dot.

Remark B.2. At first glance, equations (B.5) and (B.6) appear different from (B.7) and

(B.8), because they appear to violate %’T rotation symmetry. But this is not the case, since

every chiral basis function individually respects this symmetry. For example, using xT ' =

31 = B! gnd ﬁ_ql = ei‘z’é_% = G*M’z@_qa, we can re-write (B.5) in a way that manifestly
respects the %’r rotation symmetry as
1,0 U= @1, i@t —i¢Z Q31
H'y :ﬁ(qux T e, X+ e i X ) (B.9)

Equation (B.6) can also be written in a manifestly rotationally invariant way but the expres-
sion is long and hence we omit it. Note that (B.6) cannot have a term proportional to Xﬁ

since X° € L%{,m and H' maps L%{,m - L%(,l,fl'

Proof of Proposition B.8. We will prove (B.7), the proofs of the other identities are similar

and hence omitted. We have

Hlxé,l _

V3V

(€17 4 ifeil@tb) T | pidgilatba)m) (eiG-r 1 (iRLG) T +6¢((R;)2c).r> en.
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FIG. B.4. Illustration of the action of H' as hopping in the momentum space lattice described by
equations (B.5) (left, starting at 0) and (B.6) (right, starting at q;). Although it appears that the
hopping in these cases does not respect %’T rotation symmetry, this is an artifact of working with

chiral basis functions which individually respect the rotation symmetry, see (B.9).

Multiplying out we have

1
V3V

+ ei(‘th(R;G))'T + ei¢ei(41+(R;G)+bl)'7‘ + 6—i¢ei(41+(R;G)+b2)""

(ei(‘h'f‘G)"" + ei¢ei(Q1+G+bl)'T + e—i¢ei(Q1+G+b2)'7’

_{_ei(ih-i-((R:;)?G))% + €i¢ei(q1+((RZ)2g)+b1).,,, + e*wei(‘h*’((R;)QG)-}-bz)‘1“)

V3V

R+ G T i iR (- Gb) T =i6 (R (@ +G))r

AR a4 Grb) T | 6 (B @y + @) e—i¢€i(<R;)2<q1+c+b1>-r) ‘
:L (ei((thG)'T‘ + e*i¢ei(R;(CI1+G))‘T + ei¢€i((R2)2(f11+G))‘7‘>

V3V
_|_

1 i (ei<q1+G+b1)-r 1 emit iRy (@t Grb) T | ei¢€i<(R;)2(q1+G+b1))-r>
V3V

1
V3V
from which (B.7) follows. O

+

o9 <ei<q1+c+b2>~r | i iRy (@1 +G b)) +€i¢ei(<R;>2<q1+G+bz>)vr>

)

s 1 2 2 2 2
Proposition B.9. The operator H* maps Ly 1 o — L1, and Ly 15 — Li11.a-
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The action of H' on chiral basis functions is as follows:

H'yav—t = Zq, (\/gxﬁ + e*id’xq/lt‘;”l + ei¢xqﬁ3’1> .
For all G € A*\ {0},

H1Xé,—1 = 3 (XC?—:q/l,l X e—iqsxc?qu,l 1 et %,1) '
For all G € A~

1. Gtray,—1 _ 2 Gl |, —it Giar—asl | id. Gras—asl
HX q; —ZG—i-ql (X +e ¢X q41—92 +€¢X 4143 )

Proof. The proof is similar to that of Proposition B.8 and is hence omitted. O

Appendix C: Formal expansion of the zero mode

We now bring to bear the developments of the preceding sections on the asymptotic
expansion of the zero mode 1*(r) € L | starting from ¥°(r) = ey (r) = XO(r). We first

give the proof of Proposition IV.1.

Proof of Proposition IV.1. We have seen that Xﬁ € L%l,l. By the calculations of the pre-

vious section, H'x0 € L%, which is orthogonal to the null space of H°. The general

solution of HOU! = —H'¥0 is
Ul(r) = —P(H")"'PYH' U (r) + CU°(r),

where C' is an arbitrary constant, which is in L%{,m by Proposition B.4. To ensure that
Ul(r) is orthogonal to ¥°(r) we take C' = 0. It is clear that this procedure can be repeated

to derive an expansion to all orders satisfying the conditions of Proposition IV.1. [

Our goal is to calculate ¥™(r) € L%{,m satisfying the conditions of Proposition B.4 up to

n = 8. This amounts to calculating, for n =1 ton =8,
P — _PJ_ (HO)flpJ_Hl\I]nfll

We do this algorithmically by repeated application of the following proposition, which com-
bines Proposition B.8 and Proposition B.5.
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Proposition C.1. The operator —P+(H°)"'P*H"' maps Ly | , — Li 11 p and Ly, | p —

L% | 4. Its action on chiral basis functions is as follows:

—PL(HO)_IPLﬂlxa _ _\/gé_quzﬁ’l» (C.1)
and ' '
_ plron=1pl ol gl _€Z¢2q1_q2 G—qs1 efmqu—q?, d1—q3.1
P-(H")""P~H'x =——— =y —L Sy ) (C.2)
lq, — q.| g, — q;|

For all G € A*\ {0},

. PL(HO)—IPLHIXé,I —

z . iz —i¢3 . C.3
_ ~G+qy (Gl ¢'*2G1q, (Gl € TZG+tas G+as,1 (C.3)
G+ q4 G + q,] |G + q3]
For all G € A*\ {0},
. 0 03, __ —i¢Z
_ ie; € 2G+q,— Z € TAGt+a1-95  G+q—ql
_PJ_(HO) 1PJ_H1XG+q171 — __XG,l_ 4192 G+q,—qy,1__ 193 +q;—qs, .
G| |G+ q, — g |G+ q, — g5
We now claim the following.
Proposition C.2. Let U™(r) be the sequence defined by Proposition IV.1. Then
W (r) = —V3i T, (C.4)
3—1 - 3+1 5
2 (r) = <\/_2 Z) Yol 4 (\/_;— Z) Yol (C.5)

U = <—ﬁ — 3\/%) oy (—_ﬁ — 3@@) o, (C.6)

14 NG 14

<—5\/?+ \/ﬁz) =TI (2\/?+ \/ﬁz> =

\:[14

- sl

14 2v/21 7

L1 (5T Vo Ly L 2V/7 — V21i N (C.7)
V21 14 2/21 7

+2\/§X—m2,1
21 ’

Proof. Equations (C.4) and (C.5) follow immediately from (C.1) and (C.2) and using q, =

g, + by and g; = q; + bs. The derivation of equation (C.6) is more involved, so we give
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details. Using linearity, and applying (C.3) twice, we find
_ PJ_(H())flPJ_Hl\IjQ —
_g 2 — gz —
(\/5 z) ( Zq,—bs NS € " 2q,+b1-bo \atbrbal ei¢2—quEr1,1>

2 lq; — by |q, + b1 — by

\/§+Z 2 b o o efid)?:« _ o
q,—b1 —by,1 z 1 q,tb2—by bo—by,1
+< P S D o e D LIRS

2 lq; — by |q, + by — by

First, the terms proportional to Y9! cancel. Next, since Ry(q, + by —by) =g, + by — by,

—

we have y91+017b21 — y@1+b2-b1.1 " Thege terms also cancel, leaving (C.6). The derivation of

(C.7) (and the higher corrections) is involved but does not depend on any new ideas, and is

therefore omitted. O
We give the explicit forms of U5(r)-¥¥(r) in the Supplementary Material.

Remark C.1. Written out, (C.4) and (C.5) become

\I/l _ _\/gz e (T 4 2T | pldsT 7
e ( )

and

1
V3V

\1/2 _ —i€i¢ e (eibl-r + ei(bg—b1)~r + e—ibg-'r) + ie—i(b e (eib2~r + e—ibl-'r + ei(bl—bg)-'r) :

1
V3V
which agree with equation (24) of Tarnopolsky et al.* up to an overall factor of VV (this

factor cancels in the Fermi velocity so there is no discrepancy).

Using orthonormality of the chiral basis functions, it is straightforward to calculate the

norms of each of the ¥"(r). We have

Proposition C.3.

V14 /258 /1968837

O =1, |0l = V2| = V2, |03 = — [T = —— ||¥°|| =

1900 = L[] = V3, [ 9% = V2, 9% = = 9] = S 1 =

10 V106525799 107 = 21/2129312323981473 109 = V/183643119755214454
31122 - 624696345 ’ N 4997570760

Remark C.2. Note that the sequence of norms of the expansion functions grows much slower
than the pessimistic bound |[PN || < 3||UN||, N = 0,1,2, ... guaranteed by Proposition IV.2.
The reason is that the bounds (IV.3) and (IV.4) are never attained. As N becomes larger,
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the bound (IV.3) is very pessimistic because UV is mostly made up of eigenfunctions of H°
with eigenvalues strictly larger than 1. The bound (IV.4) is also very pessimistic because it
18 attained only at delta functions, which can only be approrimated with a superposition of a
large number of eigenfunctions of H°. It seems possible that a sharper bound could be proved

starting from these observations, but we do not pursue this in this work.
We finally give the proof of Proposition IV.4.

Proof of Proposition IV.4. Explicit computation using Proposition B.8 and orthonormality

of the chiral basis functions gives

4 2002 42
|| = V/4855076200233765642 0.147 < 3
14992712280 20
O
Appendix D: Proof of Proposition IV.3
We choose = as
2 . . 0 .
- L ,-eigenfunctions of H” with U {quiﬁ)lj+b27i1(r) quﬂz:lb%il(r)} _
cigenvalues with magnitude < 4/3
Part 1. of Proposition IV.3 follows immediately from observing that qu—EEI/—sz,ﬂ is not in

= but |g, — 2by — 2bs| = 7. That p = 7 is optimal can be seen from Figure D.1.

Part 2. follows from the fact that ¢¥®%(r) depends only on eigenfunctions of H® with
eigenvalues with magnitude less than or equal to 4v/3. The largest eigenvalue is 4v/3,
coming from dependence of ¥¥(r) on Xf‘ﬁ’;l, since | — 4b,| = 44/3.

Part 3. can be seen from Figure D.1.

Appendix E: Numerical verification of Assumption IV.1

Assumption IV.1 is a lower bound on the smallest magnitude eigenvalues of the 81 x81

matrix Q%+ Pz H*P=Q“", formed by sandwiching the matrix P=H®P=, whose entries are

(X(r)[H*X' (1)),

where (-|-) denotes the L%-inner product, and x(r) and x'(r) denote chiral basis functions

in =, by the projection Q“*. We list the chiral basis functions in = in the supplementary
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FIG. D.1. Tllustration of = in the momentum space lattice. The circle has radius 4v/3, so that every
dot within the circle corresponds to two chiral basis vectors included in Z. Chiral basis vectors
exactly 4v/3 away from the origin, marked with black dots, are also included in Z. We also include
in Z the chiral basis vectors {XQ1_/431/+I’2¢1(7'), qufb:‘lb%ﬂ(r)}, which correspond to the dots
marked with circles, which are distance 7 (NB. 7 > 44/3) from the origin. We do not include the

9172017262 £ 1 pharked with black crosses, which are also a distance 7 from

chiral basis vectors
the origin. The reason for this is so that part 3 of Proposition IV.3 holds. With this choice, every
dot in = has at most one nearest neighbor lattice point outside of =. It follows immediately from
Propositions B.8 and B.9 (H! acts by nearest neighbor hopping in the momentum space lattice)
that ||P=H!P=|| = 1. Note that if we chose = to include qufgbxli%%ﬂ this would no longer hold

because these basis functions would have two nearest neighbors outside =, resulting in the worse

bound |PeH!PZ|| < V2.

material. Since Q% Pz H*P=Q®* anticommutes with S, its spectrum is symmetric about
0. It follows that we can lower bound its smallest magnitude with by directly computing
the eigenvalues of the matraix Q®+P=H®P=Q*" or by squaring the matrix, finding a lower
bound on the eigenvalues of the resulting Hermitian and positive semi-definite matrix, and
then taking the square root of that lower bound.

We verify Assumption IV.1 by computing the smallest magnitude eigenvalue by the heevd
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4|
3
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FIG. E.1. Plot of the eigenvalues of Q¥+ P=H*P=Q®" (blue lines), showing the first non-zero
eigenvalues are bounded away from 0 by % (red lines) when « is less than % (black line). The zero
eigenvalue corresponds to the subspace spanned by ¥®® which can be ignored since we are only

interested in bounding Q¥ H*Q** below as a map QO"LL%(’1 — Q""LL%(’I.

LAPACK routine which uses the divide and conquer algorithm', finding that at a = £,

g® = 0.81472 (5sf). The results of a computation of the eigenvalues of Q%+ P=H*P=Q*~*
without squaring are shown in Figure E.1. We obtain the identical result up to 5sf by

computing the eigenvalues of the square of the matrix.

Appendix F: Proof of Proposition II.1

We can now prove Proposition I1.1. We start by proving (I1.12).
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1. Proof of (I1.12)

We now prove (11.12). It is straightforward to derive

<Z o™ (1 g > => Z (W ()| O (1)) "
+ . <\I/8_j (r)| 8- (n=7) (’r)> alt .

(F.1)

We now make two observations which simplify the computation. First, recall that the
operator —P+(H®)"'P*H" maps Ly, 4 = L%, pand Ly, | g — L3, 4. It follows that

WO(r) € Ly V(1) € L%, | g, ¥2(7) € L1, 4, and so on, and hence
(U (r)| O¥H(r)) =0 Vi, je€{0,1,2,..}.

It follows that all terms in (F.1) with odd powers of a vanish. Second, note that since

Uo(r) € ran P while U"(r) € ran P+ for all n > 1, we have that
(U™(r)| WO(r)) = (¥O(r)| U™(r)) =0 Vne{1,2,..}.

Deriving (I1.12) is then just a matter of computation using the properties of the chiral basis.

For the leading term, we have

(0| () = (x°(r)| X)) = 1.
For the o? term the only non-zero term is
(U)W () = (VBT (r)| = VBix ™ (r)) =3,
using (C.4). For the o term, the possible non-zero terms are
(U ()| Ol () + (W2 (r) | U2 (r)) + (W' (r)| U3 (r))

but ¥3(r) and ¥'(r) depend on orthogonal chiral basis vectors (see (C.4) and (C.6)) so we
(02(r)| T2(r)

are left with

using (C.5) and orthgonality of X_bl and X_Nb%l. We omit the derivation of the higher terms

since the derivations do not require any new ideas.
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2. Proof of (II.11)

It is straightforward to derive

<Z Q" (—

"y (o > :Z ’ (W (=r)[ " (7)) a”

We now note the following.
Proposition F.1. Let x(7) be a chiral basis function in L3 . Then x*(—r) = x(r).

Proof. The proof follows immediately from the explicit forms of the chiral basis functions
in L%, given by (B.1)-(B.2)-(B.3) and the observation that for any k € R?, (e"k'(*"))* =

eik"r. O

Using Proposition F.1 and the same two observations as in the previous section we have
that the only non-zero terms in (F.2) are those with even powers of «, and that other than
the leading term, terms involving ¥°() do not contribute. The calculation is then similar

to the previous case. For the leading order term we have

(0 (=) 9°(r) = (x°()[°(r)) = 1.
The only non-zero a? term is
(U (=r)| ¥ (r)) = <\/§ixzﬁ’1(r)‘ - \/52')(217’1(7')> = —3.
The only non-zero o term is

(U (=r)| ¥3(r))

—<<@> XAIH,H_(@) Xj/bz,l
i\ (v3ei)
SCERC

We omit the derivation of the higher terms since the derivations do not require any new

ideas.

39



Existence of Magic Angle for Twisted Bilayer Graphene

Proposition IV.1 implies that the series expansion of ¢*(r) exists up to any order. We

can therefore define infinite series by

<Z Q" (—
ol

g (e > (F.3)

" (r > (F.4)
We then have the following.

Proposition F.2. The expansions (I1.11) and (I1.12) approximate the formal series (F.3)

and (F.4) up to terms of order o'°.

Proof. The series agree exactly without any simplifications up to terms of a”. However,
because the even and odd terms in the expansion of ¥*(r) are orthogonal (since they lie in
Lﬁ(’m’ 4 and L%(,Ll, p respectively), all terms with odd powers of a vanish in the expansions
(F.3)-(F.4). The series may disagree at order a!” because the infinite series includes terms

arising from inner products of U!(r) and ¥9(r). O
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Appendix G: Supplementary material

We list the chiral basis functions spanning = in Section G 1, list the higher terms in the
expansion of the K point wavefunction ¢ € L%CLI in Section G2, and derive the TKV

Hamiltonian from the Bistritzer-MacDonald model in Section G 3.

1. Chiral basis functions spanning the subspace =

The chiral basis functions spanning the subspace = are as follows. We note which of the

subspaces of H? acting on L%(’l are spanned by the chiral basis vectors at the right.

0 0 eigenspace
N Xq?rfl,il _ quzil +1 eigenspace
AL Bl Xb/—vbg,il

beg,ﬂ _ XBT,il _ Xlﬁ/bl,il +1/3 eigenspace
X’-h:b\l/'i‘bz,:l:l _ qufb\l/—bz,il _ quﬁz/—bhil +2 cigenspace
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@1—b1, 1 g +2by,E1 g +2b1—bo, k1
1 — X 1 — X 1

X
(bl qu/ml,il _ Xq1+2b2 by, +1
Xbﬁig,ﬂ ! by, 41 sz/fﬁl,ﬂ
X—Ff—/bz,il _ X2b2 (S X2b/1\—/bg,j:1
X:%/l,ﬂ S X2b/1?2/b2,:tl
sz\é,il _ Xﬁ,il _ X2b/2:5b1,i1
@y +b1—2ba, 1 g —2b1+2by,£1 gy +2bi+by, 1
X = =X
qu@izbl,ﬂ _ québxzizbl,ﬂ _ qusz/erl,ﬂ
Nz Tbi—bo, 1 qu—/tﬁigm,ﬂ _ qu+3b1 by, +1
qu:z?:l,il _ qufiﬁyz,ﬂ _ Xq1+§1Z12b2,i1
Xq??bz,ﬂ _ Xq?'?il,ﬂ _ Xq1+53212b1,i1
X—?EIIbQ,ﬂ _ XQbT:EbQ,ﬂ _ Xbﬁ‘?@,ﬂ
X7331x+/2b2,j:1 W 1 —3by,+1 _ szg,ﬂ:l
X—b/f—/zbg,il _ X—meg,il _ XSb/;\—/bg,il
X—IZ:Eb1¢1 _ X—23;T3b1¢1 _ X3b2 b1, +1
Xq1+§?112b2,i1 _ Xq1+§bx113b2,i1 _ ergmzbg,ﬂ
ngb/l,:l:l _ X%,ﬂ _ X3b/1:§b2,:t1
ngi);’ﬂ O X3b§f§b1¢1
qu—@ﬂbg,ﬂ _ Xq1+53;3b2¢1 _ quﬁizabz,ﬂ
a1—3b1+3ba,t1 _ Xq1+/be3b2¢1
qu—/zﬁ/—b%il _ Xq1+ZE12b2,il _ qu—/b}&bz,ﬂ
qu—igﬁ%bz,il — - Tbr—2by, 41 qu—pﬁzl/—bg,il
X—Eﬁfzbg,il _ X2bf—7b2¢1 _ X2bf¥2/b2¢1
X72b1 by, 41 X4b/1?2/b2,¢1 _ qubz,ﬂ
quf—\:ﬂn,il _ qu—&-Zb\l/—Bbg,:I:l _ qu/—;ﬂvg,:l:l
@1—3b1+4bg,+1 _ quf—\iﬁjg,:tl _ qu/ﬁﬁn,ﬂ
szl/l)TIbg,il _ XSb/lthg,il _ Xblffzﬁyg,ﬂ
X—4§1\+/3b2,:|:1 _ Xbl/—\zﬁm,ﬂ _ X3b/1:-/b2,ﬁ:1

42

+/7 eigenspace

+3 eigenspace

+2v/3 eigenspace

++v/13 eigenspace

+4 eigenspace

+v19 eigenspace

++v/21 eigenspace

+5 eigenspace

+3v/3 elgenspace

+2V/7 eigenspace

++/31 eigenspace

+6 eigenspace

++v/ 37 eigenspace
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—3b1—bo, 41 _ 4b1—3ba,+1 . —bi+4by,+1
X =X =X

X—3b1+4b2,:|:1 — X_b —3ba,+1 — X4b —bo,+1 :l: /39 eigenspace
@1 —4b1+2bs, k1 _ g, +3b1—4bo,£1 _ _q,+2b;+3bs,+1

Xt = X" = X"

DAy L a2 by 1y 436142 1 +1/43 eigenspace
T4bi 41 Aby—dbs,+1 _  Aby,+1

X =X =X
—Abi+4bo,+1 . —4bo 1 . 4by 41 V3 e

X =X =X +4+/3 eigenspace.

We finally add four out of the six modes which span the £7 eigenspace

@1 —4b1+bo,£1 _ g +4bi—4by,t1 _ g +bi+4by 1

X X X

th—mllbz,ﬂ:l _ Xq1+’blv—4b2¢1 _ Xq14:l_gf+b2ui1

2. Terms U5-¥8 in the expansion

Here we list terms W>-¥8 in the expansion of ¢® in powers of a. The calculations were

assisted by Sympy”’.

-
V2L (V2L +2VTi\ g0, V2L (V2L 2VT
12 7 AT 7 A
2\/§ixlh-‘:b\1/—b2,1 _ 4\/§ZXZE71 _ @qu_/b\;_bl’l
21 21 42
L VI (VI AVOL g i, V399 (2399 - LIVISS | apa,
546 01 798 133
V273 <5V A+ AVOL\ o oana . V399 [ —2V399 — 11VI33i\
" 546 01 X 708 133 X ’
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Ul =
VO (9v273 —11V91i \ | 4VIT29 [ —A5VBIRT — 20V1T290\ 35,
42 182 X 5187 3458 X
N V1 [ 9v/273 + 111/91i LB @ij;b%l N V133 (9399 — 174/133i =
42 182 26 2394 266
N V57 [ 59v/19 — 9v/57i N e V13 [ —17/39 — 41V/13i b
798 266 546 182
VBT [(59V19 +9VETi\ o AVIT29 [ 455187 4 29v1729i \ i,
+ X 1 2, + X 2,
798 266 5187 3458
V133 (9v399+17V133i \ 5., . VI3 [ —17V39 +41V13i\ ,—a
X T+ X
2394 266 546 182
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U=
V1032213 ( —97v1032213 — 562v/344071i \ .~ V3i &
10374 344071 X IR
| V/3519G37 (—2621/3549637 + 1563/ 106489117 =
217854 7099274
| VITSOST ( ~241V/T78087 + 467V/534261i o T
24206 356174
| V1032213 (97V/1032213 — 562/344071i =
10374 344071
| VITSOST (241178087 + 4675342611\ o, 55720,
24206 356174
| VA9L (~53v/A921 - T5VIATE3 | o,
88578 9842
| 2V2T (2157247 + 27V T I et
15561 3458
VIT67 [ —10V/1767 — 1691/589i Tt | V3 2V/3i b b
24738 4123 2793 %

19110

24738 4123

. V3549637 (2621\/ 3549637 + 15631064891 12) byl

217854 7099274
V4921 (534921 — 75V/14763i \ 5.,
88578 9842

+_2\/247 215v/247 + 27V/741i N

15561 3458
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231
— =X

273
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U8 =
V160797 [ —206+/53599 — 614/1607974 N
10374 53599
%_\/169425129 16249+/564750433 — 100121/1694251299; =
1307124 564750433
3173 e 1%_\/16079 —206v/53599 + 61v/160797: N
11466 10374 53599

* 16758 620046 279091
n V997694607 (5849\/33256486 20785\/9976946072) b b1
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3. Derivation of the TKV Hamiltonian from the Bistritzer-MacDonald model

The Bistritzer-MacDonald model of bilayer graphene, with relative twist angle 6, is as

follows!

. Starting from two graphene layers laid exactly on top of each other (i.e., AA
stacking configuration), we rotate one layer (call this layer 1) clockwise by g, and the other
layer (call this layer 2) counter-clockwise by g. Making the standard Dirac approximation
for wavefunctions at the Dirac points, we are lead to the following Hamiltonian describing
electrons near to the K-points of the respective layers which are coupled through an “inter-

layer coupling potential” T'(r)

—ivodg/g -V T(’l”)
T (r) —igo _g2 - V

H = , (G.1)
where oy = ¢ 3%g¢'i? and o = (01,09) is the vector of Pauli matrices, acting on
L?*(R?%* C*) with domain H'(R?;C*). Note that H ignores possible interactions between elec-
trons with quasi-momentum away from the K-points of each layer, e.g., with the K’-points
of each layer. Since the Fermi level occurs at the Dirac energy and interactions between
K and K’ points are small for small twist angles®, this is a reasonable simplification. The

Hamiltonian (G.1) acts on wavefunctions

v(r) = (41 (r), 0P (), 62 (r), 05 (1)

where 17 (r) represents the electron density near to the K point (in momentum space) on
sublattice ¢ and on layer 7.
Under quite general assumptions, the inter-layer coupling has the following formS5:
Tr) - Waa(eT" DT 47T £ e BT) gy p(eT T e TeTI? 4 e M Tl |
wap(e T 4 e 2Tl e MsTeTIO) (eI T 4 T T 4 g7
(G.2)
where
q, = ko (O, —1> v Qa3 = % (i\/g, 1) .
Here ky = 2kpsin(0/2) is the distance between the K points of the different layers, and
kp = |Ki| = |K,| is the distance from the origin to the K point of either layer. Let ¢ := 2,
then g, = R4q, and q3 = R4q, where Ry is the matrix which rotates counterclockwise by

¢. Note that (G.2) is written in such a way as to show clearly which couplings are between
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the A lattices of the layers (proportional to waa and occuring on the diagonal) and between

the A and B lattices (proportional to wsp and occuring off the diagonal).

a. Translation and rotation symmetries of the Bistritzer-MacDonald model

The operator H essentially describes coupling on the scale of the bilayer moiré pattern.

The moiré lattice vectors are

We denote the moiré lattice generated by these vectors as A. It is straightforward to check

that H commutes with the “phase-shifted” moiré translation operators
o f(r) = diag(1, 1,0 1), f(r), Tof(r) = f(r+wv),

for all v € A.
The operator also has rotational symmetry. Let R, be the matrix which rotates vectors

by ¢ counter-clockwise

_1 _ V3

R — 2 2
4 V3 1
2 2

Then H commutes with the “phase-shifted” rotation operator

Rf(r) = diag(l,e”, 1,e "R f(r), Rf(r)= f(Ryr).

b. Deriving TKV from BM

The first step to deriving Tarnopolsky-Kruchkov-Vishwanath’s chiral model is to set
waa = 0 in the Bistritzer-MacDonald model. Physically, this assumption is motivated by
the observation that relaxation effects penalize the AA-stacking configuration, so that one
expects™! Jwaa| < |wagl.

With this simplification, conjugating H — Vo H V}; (here t represents the adjoint/Hermitian
transpose) by

‘/9 = diag(€i€/476—1’0/4’6—1'0/47 ei0/4>
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removes the explicit § dependence of the Hamiltonian (although H still depends on 6 through

q1,9qs;q3) so that
H o —10009/2 . V TAB(T')
T;‘B(T) —iUQU,Q/Q -V
where
0 wAB(efiql-r + efiqg-refiqﬁ + efiq3-rei¢)

Trin =
AB w ( —igqr —iqqy-T L1 —ig3-T ,—ip 0
ag(e +e e’ +e e '?)

Conjugating once more H — pHp' by

1000
0010
0100
0001

yields
0 Df b —2ive0  wapU(r)
D 0 wapU(—7) —2ivy0
where 0 = (9, +i0,) and U(r) = e 01" 4 e 10T 4 ¢ 0 157,
After changing variables » — kg7 and re-scaling the g, — Z—;,i =1,2,3, we derive
0 Dt —2ivokg0  wapU(r)

, D= _
D 0 wapU(—7) —2ivgky0

H =

Finally dividing by vgky and defining

WAB
voko

o =

yields the TKV Hamiltonian stated in the main text.
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