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We consider the chiral model of twisted bilayer graphene introduced by Tarnopolsky-

Kruchkov-Vishwanath (TKV). TKV have proved that for inverse twist angles α such

that the effective Fermi velocity at the moiré K point vanishes, the chiral model has

a perfectly flat band at zero energy over the whole Brillouin zone. By a formal expan-

sion, TKV found that the Fermi velocity vanishes at α ≈ .586. In this work we prove

the Fermi velocity vanishes at α ≈ .586, and put rigorous minimum and maximum

bounds on the location of this zero, by rigorously justifying TKV’s formal expansion

of the Fermi velocity over a sufficiently large interval of α values. The idea of the

proof is to project the TKV Hamiltonian onto a finite dimensional subspace, and then

expand the Fermi velocity in terms of explicitly computable linear combinations of

modes in the subspace, while controlling the error. The proof relies on two assump-

tions which can be checked numerically: a bound below on the smallest eigenvalue of

a positive semi-definite, Hermitian 81× 81 matrix which is essentially the square of

the projected Hamiltonian, and an assumption on the validity of the negative value

of a real 18th order polynomial approximating the numerator of the Fermi velocity

when evaluated at a specific value of α. Since these assumptions can be verified up

to high precision using standard numerical methods, together with TKV’s work our

result proves existence of at least one perfectly flat band of the chiral model.
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I. INTRODUCTION

A. Outline

Twisted bilayer graphene (TBG) is formed by stacking one layer of graphene on top of

another in such a way that the Bravais lattices of the layers are twisted relative to each other.

For generic twist angles, the atomic lattices will be incommensurate so that the resulting

structure will not have periodic structure. Bistritzer-MacDonald (BM)1 have introduced

an approximate model (BM model) for the electronic states of TBG which is periodic over

the scale of the bilayer moiré pattern, where the twist angle enters as a parameter. Using

this model, BM showed that the Fermi velocity, the velocity of electrons at the Fermi level,

vanishes at particular twist angles known as “magic angles.” The largest of these angles,

known as the first magic angle, is at θ ≈ 1.1 degrees. Numerical computations on the BM

model show the stronger result that at magic angles the Bloch band of the BM model at zero

energy is approximately flat over the whole Brillouin zone1,2. The flatness of the zero energy

Bloch band is thought to be a critical ingredient for recently observed superconductivity of

TBG3, although the precise mechanism for superconductivity in TBG is not yet settled.

Aiming at a simplified model which explains the nearly-flat band of TBG, Tarnopolsky-

Kruchkov-Vishwanath (TKV)4 have introduced a simplification of the BM model which has

an additional “chiral” symmetry, known as the chiral model. TKV showed analytically

that at magic angles (of the chiral model, still defined by vanishing of the Fermi velocity),

the chiral model has exactly flat bands over the whole Brillouin zone. Using a formal

perturbation theory (for the chiral model the natural parameter is the reciprocal of twist

angle up to a constant) TKV have derived approximate values for the magic angles of the

chiral model. It is worth noting that the first magic angles of the chiral model and the

BM model are nearby, but the higher magic angles are not very close. Becker et al.5 have

introduced a spectral characterization of magic angles of the TKV model where the role of

a non-normal operator is emphasized (the operator Dα appearing in (II.1)).

In this work we study the chiral model introduced by TKV and consider the problem of

(1) rigorously proving existence of the first magic angle and (2) putting error bounds on its

value. We do this by justifying the formal perturbation theory of TKV to make a rigorous

expansion of the Fermi velocity to high enough order so that we can prove existence of a zero.

2



Existence of Magic Angle for Twisted Bilayer Graphene

By numerically verifying that the resulting expansion attains a negative value (Assumption

II.1), we obtain existence of the magic angle (Theorem II.2). By computing numerical values

of the zero at extreme values of the error, we obtain non-trivial maximum and minimum

possible values of the magic angle.

The proof of validity of the expansion is challenging because the reciprocal of the twist

angle at the zero of the Fermi velocity is large relative to the spectral gap of the Hamiltonian,

which means that the magic angle is outside of the range of validity of näıve perturbation

theory of a simple eigenvalue. To overcome this difficulty, we start by representing the chiral

model Hamiltonian in a basis which takes full advantage of model symmetries. Then, using

a rigorous bound on the high frequency components of the error, we reduce the error analysis

to analysis of the eigenvalues of the chiral model projected onto finitely many low frequencies.

The error analysis (Theorem II.1) is then complete under an assumption on the eigenvalues

of the projected chiral model which can easily be checked numerically (Assumption IV.1).

II. STATEMENT OF RESULTS

A. Tarnopolsky-Kruchkov-Vishwanath’s chiral model

The chiral model, like the Bistritzer-MacDonald model (B-M model) from which it is

derived, is a formal continuum approximation to the atomistic tight-binding model of twisted

bilayer graphene. The BM and chiral models aim to capture physics over the length-scale

of the bilayer moiré pattern, which is, for small twist angles, much longer than the length-

scale of the individual graphene layer lattices. Crucially, even when the graphene layers are

incommensurate so that the bilayer is aperiodic on the atomistic scale, the chiral model and

BM model are periodic (up to phases) with respect to the moiré lattice, so that they can be

analyzed via Bloch theory.

We define the moiré lattice to be the Bravais lattice

Λ =
{
m1a1 +m2a2 : (m1,m2) ∈ Z2

}
generated by the moiré lattice vectors

a1 =
2π

3

(√
3, 1
)
, a2 =

2π

3

(
−
√

3, 1
)
,
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and denote a fundamental cell of the moiré lattice by Ω. The moiré reciprocal lattice is the

Bravais lattice

Λ∗ =
{
n1b1 + n2b2 : (n1, n2) ∈ Z2

}
generated by the moiré reciprocal lattice vectors defined by ai · bj = 2πδij, given explicitly

by

b1 =
1

2

(√
3, 3
)
, b2 =

1

2

(
−
√

3, 3
)
.

We define q1 =
(

0,−1
)

, which is the (re-scaled) difference of the K points (Dirac points)

of each layer, and

q1 =
(

0,−1
)
, q2 = q1 + b1 =

1

2

(√
3, 1
)
, q3 = q1 + b2 =

1

2

(
−
√

3, 1
)
.

We write Ω∗ for a fundamental cell of the moiré reciprocal lattice, and refer to such a cell

as the Brillouin zone.

Let φ := 2π
3

. Tarnopolsky-Kruchkov-Vishwanath’s chiral Hamiltonian is defined as

Hα =

 0 Dα†

Dα 0

 , Dα =

 −2i∂ αU(r)

αU(−r) −2i∂

 , (II.1)

where ∂ = 1
2
(∂x + i∂y), U(r) = e−iq1·r + eiφe−iq2·r + e−iφe−iq3·r, † denotes the adjoint

(Hermitian transpose), and α is a real parameter which we will take to be positive α ≥
0 throughout (see (II.3)) The chiral Hamiltonian Hα is an unbounded operator on H =

L2(R2;C4) with domain H1(R2;C4). We will write functions in H as

ψ(r) =
(
ψA1 (r), ψA2 (r), ψB1 (r), ψB2 (r)

)
, (II.2)

where ψστ (r) represents the electron density near to the K point (in momentum space) on

sublattice σ and on layer τ . The diagonal terms of Dα arise from Taylor expanding the single

layer graphene dispersion relation about the K point of each layer, while the off-diagonal

terms of Dα couple the A and B sublattices of layers 1 and 2. The chiral model is identical

to the BM model except that inter-layer coupling between sublattices of the same type is

turned off in the chiral model. The precise form of the interlayer coupling potential U(r)

can be derived under quite general assumptions on the real space interlayer hopping1,6. The

parameter α is, up to unimportant constants, the ratio

α ∼ interlayer hopping strength between A and B sublattices

twist angle
. (II.3)
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Although the limit α → 0 can be thought of as the limit of vanishing interlayer hopping

strength at fixed twist, it is physically more interesting to view the limit as modeling de-

creasing twist angle at a fixed interlayer hopping strength.

B. Rigorous justification of TKV’s formal expansion of the Fermi velocity

and proof of existence of first magic angle

Bistritzer and MacDonald studied the effective Fermi velocity of electrons in twisted

bilayer graphene modeled by the BM model, and computed values of the twist angle such

that the Fermi velocity vanishes, which they called “magic angles.” One can similarly define

an effective Fermi velocity for the chiral model, and refer to values of α such that the Fermi

velocity vanishes as “magic angles” (although technically α is related to the reciprocal of

the twist angle (II.3)).

TKV proved the remarkable result that, at magic angles, the chiral model has a perfectly

flat Bloch band at zero energy. Let L2
K denote the L2 space on a single moiré cell Ω

with moiré K point Bloch boundary conditions. The starting point of TKV’s proof is an

expression for the Fermi velocity as a function of α, v(α), as a functional of one of the Bloch

eigenfunctions, ψα(r) ∈ L2
K , of Hα:

v(α) :=
| 〈ψα∗(−r)|ψα(r)〉 |
| 〈ψα(r)|ψα(r)〉 | , (II.4)

where 〈 .| .〉 denotes the L2
K inner product. We give precise definitions of L2

K , ψα(r), and

v(α) in Definition III.2, Proposition III.5, and Definition III.3, respectively. We prove the

denominator of (II.4) is non-zero for all α in Proposition III.7. We give a systematic formal

derivation of why (II.4) is the effective Fermi velocity at the moiré K point in Appendix

A. To complete the proof, TKV showed that zeros of v(α) imply zeros of ψα(r) at special

“stacking points” of Ω, and that such zeros of ψα(r) allow for Bloch eigenfunctions with

zero energy to be constructed for all k in the moiré Brillouin zone.

To derive approximate values for magic angles, TKV computed a formal perturbation

series approximation of ψα(r):

ψα(r) = Ψ0(r) + αΨ1(r) + ... (II.5)

and then substituted this expression into the functional for v(α) to obtain an expansion of

5
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v(α) in powers of α:

v(α) =
1− 3α2 + α4 − 111

49
α6 + 143

294
α8 + ...

1 + 3α2 + 2α4 + 6
7
α6 + 107

98
α8 + ...

. (II.6)

By setting v(α) = 0 one obtains an approximation for the smallest magic angle: α ≈ .586.

Although TKV proved that flat bands occur at magic angles, they did not prove the

existence of magic angles, and hence they did not prove the existence of flat bands. The

contribution of the present work is to prove rigorous estimates on the error in the approxi-

mation (II.5) which are sufficiently high order and precise that, once substituted into (II.4),

they suffice to rigorously prove the existence of a zero of v(α), and hence, via TKV’s proof,

the existence of at least one perfectly flat band.

The first main theorem we will prove, roughly stated, is the following. See Theorem IV.1

for the more precise statement. The theorem relies on an assumption about the smallest

eigenvalue of a 81 × 81 positive semi-definite Hermitian matrix which must be checked

numerically, see Assumption IV.1.

Theorem II.1. The K point Bloch function ψα(r) satisfies

ψα(r) =
8∑

n=0

αnΨn(r) + ηα(r) (II.7)

where ηα(r) ⊥∑8
n=0 α

nΨn(r) with respect to the L2
K inner product, and

‖ηα‖L2
K
≤ 3α9

15− 20α
for all 0 ≤ α ≤ 7

10
. (II.8)

The functions Ψn(r) for 1 ≤ n ≤ 8 are derived recursively: see Appendix C. We stop

at 8th order in the expansion because this is the minimal order such that we can guarantee

existence of a zero of v(α), but the functions Ψn(r) are well defined by a recursive procedure

for arbitrary positive integers n, see Proposition IV.1.

Substituting (II.7) into the functional for the Fermi velocity (II.4) and using ηα(r) ⊥∑8
n=1 α

nΨn(r) we find

v(α) =
vN (α)

vD(α)
(II.9)
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where

vN (α) :=

〈
8∑

n=0

αnΨn∗(−r)

∣∣∣∣∣
8∑

n=0

αnΨn(r)

〉

+

〈
ηα∗(−r)|

8∑
n=0

αnΨn(r)

〉
+

〈
8∑

n=0

Ψn∗(−r)

∣∣∣∣∣ ηα(r)

〉
+ 〈ηα∗(−r)| ηα(r)〉 ,

(II.10)

and

vD(α) :=

〈
8∑

n=0

αnΨn(r)

∣∣∣∣∣
8∑

n=0

αnΨn(r)

〉
+ 〈ηα(r)| ηα(r)〉 .

where 〈 .| .〉 denotes the L2
K inner product and ηα(r) satisfies (II.8). The following is a

straightforward calculation.

Proposition II.1. The following identities hold:〈
8∑

n=0

αnΨn∗(−r)

∣∣∣∣∣
8∑

n=0

αnΨn(r)

〉
= 1− 3α2 + α4 − 111

49
α6 +

143

294
α8 − 7536933

11957764
α10

+
4598172331

47460365316
α12 − 30028809212865451

520327364608478700
α14 +

49750141858992227

12487856750603488800
α16,

(II.11)

〈
8∑

n=0

αnΨn(r)

∣∣∣∣∣
8∑

n=0

αnΨn(r)

〉
= 1 + 3α2 + 2α4 +

6

7
α6 +

107

98
α8 +

5119

48412
α10

+
62026511

356844852
α12 +

355691470247

113410497953025
α14 +

2481663780475871

337509641908202400
α16.

(II.12)

We prove Proposition II.1 in Appendix F. Näıvely, the expansions (II.11) and (II.12)

approximate the formal infinite series expansions of 〈∑∞n=0 α
nΨn∗(−r)|∑∞n=0 α

nΨn(r)〉 and

〈∑∞n=0 α
nΨn(r)|∑∞n=0 α

nΨn(r)〉 up to terms of order α9. We prove in Proposition F.2 that,

because of some simplifications, expansions (II.11) and (II.12) agree with the infinite series

up to terms of order α10.

We are now in a position to state and prove our second result. This result also relies

on an assumption which must be checked numerically: that an 18th order polynomial in α

attains a negative value, see Assumption II.1.

Theorem II.2. There exist positive numbers αmin and αmax such that the Fermi velocity

v(α) defined by (II.4) has a zero α∗ between αmin ≤ α∗ ≤ αmax.
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Proof. Equation (II.10) and Cauchy-Schwarz imply that∣∣∣∣∣vN (α)−
〈

8∑
n=0

αnΨn∗(−r)

∣∣∣∣∣
8∑

n=0

αnΨn(r)

〉∣∣∣∣∣ ≤ 2‖ηα(r)‖
8∑

n=0

αn ‖Ψn(r)‖+ ‖ηα(r)‖2.

Using Theorem II.1 and Proposition C.3, It follows that to prove that v(α) has a zero it

suffices to check that the upper bound on the numerator of (II.9),

1− 3α2 + α4 − 111

49
α6 +

143

294
α8 − 7536933

11957764
α10

+
4598172331

47460365316
α12 − 30028809212865451

520327364608478700
α14 +

49750141858992227

12487856750603488800
α16

+ E(α),

(II.13)

where

E(α) :=
6α9

15− 20α

(
1 +
√

3α +
√

2α2 +

√
14

7
α3 +

√
258

42
α4 +

√
1968837

3458
α5

+

√
106525799

31122
α6 +

2
√

2129312323981473

624696345
α7 +

√
183643119755214454

4997570760
α8

)

+
9α18

(15− 20α)2
,

where we use Proposition C.3 to calculate the term in brackets, has a zero for positive α.

Noting that, upon multiplying by (15 − 20α)2, (II.13) is an 18th order polynomial in α, it

is easy to verify numerically that this holds, see Figure II.1. We make this precise as an

assumption.

Assumption II.1. Expression (II.13), or equivalently the 18th order polynomial obtained

by multiplying (II.13) by (15− 20α)2, has a zero for 0 < α < 3
4
.

Note that Assumption II.1 can be checked by merely evaluating (II.13) at different values

of α and finding a negative value. Specifically, evaluating using double-precision we find

that at α = .646, (II.13) attains the negative value −0.068430 (five significant figures). The

result of a forward error analysis for the round-off error and the error in the computation

of the square roots would then give a negative upper bound for the value of the polynomial

and rigorously confirm Assumption II.1.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

α

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

v
(α

)

8th order expansion of v(α) numerator with worst-case error bound

8th order expansion of v(α) numerator

8th order expansion of v(α) numerator with best-case error bound

0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675

α

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

v
(α

)

root of expansion of v(α) numerator w/ worst-case error at α =0.60177

root of expansion of v(α) numerator at α =0.58597

root of expansion of v(α) numerator w/ best-case error at α =0.57683

FIG. II.1. At left, plot of the numerator vN (α) of the Fermi velocity approximated by the 8th

order TKV expansion (II.6) (orange), and of 8th order expansions with worst-case (II.13) (blue)

and best-case (II.14) (green) errors. At right, detail showing roots of these functions near to

α = 1√
3
≈ .57735 (five significant figures).

We denote the zero of (II.13) by αmax. Existence of such a zero implies the existence of

a zero, which we denote by αmin, of the expression obtained by bounding the error below:

1− 3α2 + α4 − 111

49
α6 +

143

294
α8 − 7536933

11957764
α10

+
4598172331

47460365316
α12 − 30028809212865451

520327364608478700
α14 +

49750141858992227

12487856750603488800
α16

− E(α).

(II.14)

The result now follows.

Numerical computation of the zeros αmin and αmax gives αmin = 0.57683 (5sf) and αmax =

0.60177 (5sf) respectively, where (5sf) is an abbreviation for (five significant figures), see

Figure II.1.

Our results rely on numerical computation in two places, specifically to verify Assump-

tions IV.1 and II.1. These assumptions can be checked with standard algorithms.

Using Proposition C.1 and the package Sympy7 for symbolic computation we can compute

the formal expansion of v(α) up to arbitrarily high order in α. In particular, we find the

higher-order terms in the expansion (II.6) to be

v(α) =
1− 3α2 + α4 − 111

49
α6 + 143

294
α8 − 10227257

11957764
α10 + 6881137015

47460365316
α12 − 130055941435858531

520327364608478700
α14 + ...

1 + 3α2 + 2α4 + 6
7
α6 + 107

98
α8 + 16011

48412
α10 + 134058653

356844852
α12 + 26407145691649

226820995906050
α14 + ...

.
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Truncating after order α14 and setting the numerator equal to zero yields the estimate

α = 0.5856640 (7sf) for the first magic angle.

C. Structure of paper

We review the symmetries, Bloch theory, and symmetry-protected zero modes of TKV’s

chiral model in Section III. We prove Theorem II.1 in Section IV, postponing most details of

the proofs to the appendices. In Appendix A we show why (II.4) corresponds to the effective

Fermi velocity at the moiré K point. In Appendix B, we construct an orthonormal basis,

which we refer to as the chiral basis, which allows for efficient computation and analysis of

TKV’s formal expansion. We re-derive TKV’s formal expansions in Appendix C. We give

details of the proof of Theorem II.1 in Appendices D and E. We prove Proposition II.1

in Appendix F. In the supplementary material, we list the basis functions of the subspace

onto which we project the TKV Hamiltonian, give the explicit forms of the higher-order

corrections in the expansion (II.7), and present a derivation of the TKV Hamiltonian from

the Bistritzer-MacDonald model.

III. SYMMETRIES, BLOCH THEORY, AND ZERO MODES OF TKV’S

CHIRAL MODEL

A. Symmetries of the TKV model

Recall that φ = 2π
3

and let Rφ denote the matrix which rotates vectors counter-clockwise

by φ, i.e.,

Rφ =
1

2

−1 −
√

3
√

3 −1

 .

We define

Definition III.1. For any v ∈ Λ we define a phase-shifted translation operator acting on

functions f(r) ∈ H by

τvf(r) := diag
(
1, eiq1·v, 1, eiq1·v

)
τ̃vf(r), τ̃vf(r) = f(r + v). (III.1)

We define a phase-shifted version of the operator which rotates functions f(r) ∈ H clockwise

10
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by φ by

Rf(r) := diag
(
1, 1, e−iφ, e−iφ

)
R̃f(r), R̃f(r) = f(Rφr). (III.2)

For any f(r) ∈ H we finally define the “chiral” symmetry operator

Sf(r) := diag (1, 1,−1,−1) f(r). (III.3)

We then have the following.

Proposition III.1. The operators (III.1) and (III.2) are symmetries in the sense that

[Hα, τv] = Hατv − τvHα = 0 (III.4)

for all moiré lattice vectors v ∈ Λ,

[Hα,R] = HαR−RHα = 0,

and the operator (III.3) is a “chiral” symmetry in the sense that

{Hα,S} = HαS + SHα = 0. (III.5)

Proof. The first claim is a direct calculation using the facts that for any v ∈ Λ

τ̃−vU(r)τ̃v = e−iq1·vU(r), τ̃−v∂τ̃v = ∂.

The second claim is a direct calculation using the facts that

R̃−1U(r)R̃ = e−iφU(r), R̃−1∂R̃ = e−iφ∂.

The final claim is trivial to check.

The “chiral” symmetry (III.5) implies that the spectrum of Hα is symmetric about zero,

because

Hαψ = Eψ ⇐⇒ HαSψ = −ESψ.

The same calculation implies that zero modes of Hα can always be chosen without loss of

generality to be eigenfunctions of S.

11
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B. Bloch theory for the TKV Hamiltonian

We now want to reduce the eigenvalue problem for Hα using the symmetries just intro-

duced. The symmetry (III.4) means that eigenfunctions of Hα can be chosen without loss

of generality to be simultaneous eigenfunctions of τv for all v ∈ Λ. It therefore suffices to

seek solutions of

Hαψ = Eψ

for r in a fundamental cell Ω := R2/Λ of the moiré lattice in the symmetry-restricted spaces

L2
k :=

{
f(r) ∈ L2(Ω;C4) : f(r + v) = eik·v diag(1, eiq1·v, 1, eiq1·v)f(r) ∀v ∈ Λ

}
(III.6)

where k is known as the quasimomentum. Since L2
k+w = L2

k for any w ∈ Λ∗, it suffices to

restrict attention to k in a fundamental cell of Λ∗ which we denote Ω∗ := R2/Λ∗ and refer

to as the Brillouin zone.

We now claim the following.

Proposition III.2. Let f(r) ∈ L2
k. Then Rf(r) ∈ L2

R∗φk
.

Proof. By definition, for any v ∈ Λ,

Rf(r + v) = diag(1, 1, e−iφ, e−iφ)f(Rφr +Rφv).

By the definition of L2
k we have

Rf(r + v) = ei(R
∗
φk)·v diag(1, ei(R

∗
φq1)·v, 1, ei(R

∗
φq1)·v)Rf(r).

The conclusion now follows from R∗φq1 = q1 + b2 and b2 · v = 0 mod 2π for all v ∈ Λ.

In particular, whenever R∗φk = k mod Λ∗, we have RL2
k = L2

k. Regarding such k, the

following is a simple calculation.

Proposition III.3. The moiré K and K ′ points k = 0 and k = −q1, and the moiré Γ point

k = q1 + b1 satisfy R∗φk = k mod Λ∗.

The moiré K, K ′, and Γ points are shown in Figure III.1. Note that the moiré K, K ′,

and Γ points should not be confused with the single layer K, K ′, and Γ points. The moiré

K point corresponds to the K point of layer 1, while the moiré K ′ point corresponds to the

12
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K point of layer 2. Interactions with the K ′ points of layers 1 and 2 are formally small for

small twist angles and are hence ignored.

In this work we will be particularly interested in Bloch functions at the moiré K and K ′

points. We therefore define

Definition III.2.

L2
K := L2

0, L2
K′ := L2

−q1
.

Let ω = eiφ. Since the spaces L2
K and L2

K′ are invariant under R they can be divided up

into invariant subspaces corresponding to the eigenvalues of R

L2
K = L2

K,1 ⊕ L2
K,ω ⊕ L2

K,ω∗ , L2
K′ = L2

K′,1 ⊕ L2
K′,ω ⊕ L2

K′,ω∗ ,

where

L2
K,σ :=

{
f(r) ∈ L2

K : Rf(r) = σf(r)
}

σ = 1, ω, ω∗

and L2
K′,σ, σ = 1, ω, ω∗, are defined similarly.

The following, which is trivial to prove, will be important for studying the zero modes of

Hα.

Proposition III.4. The operator S commutes with τv and R and hence maps the L2
K,σ and

L2
K′,σ spaces to themselves for σ = 1, ω, ω∗.

Since S has eigenvalues ±1, we can define the spaces

L2
K,σ,±1 =

{
f(r) ∈ L2

K,σ : Sf(r) = ±f(r)
}

σ = 1, ω, ω∗

and spaces L2
K′,σ,±1, σ = 1, ω, ω∗ similarly.

Remark III.1. Note that +1 eigenspaces of S correspond to wave-functions which vanish in

their third and fourth entries, which correspond, through (II.2), to wave-functions supported

only on A sites of the layers. Similarly, −1 eigenspaces of S correspond to wave-functions

which vanish in their first and second entries, which are supported only on B sites of the

layers.

13
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FIG. III.1. Diagram showing locations of moiré K (blue), K ′ (red), and Γ (black) points within

the moiré Brillouin zone (orange).

C. Zero modes of the chiral model

We now want to investigate zero modes of Hα in detail. When α = 0, there are exactly

four zero modes given by ej(r), j = 1, 2, 3, 4 where ej(r) equals 1 in its jth entry and 0 in

its other entries. It is easy to check that

e1 ∈ L2
K,1, e2 ∈ L2

K′,1, e3 ∈ L2
K,ω∗ , e4 ∈ L2

K′,ω∗ , (III.7)

and hence 0 is a simple eigenvalue of Hα when restricted to each of these subspaces. Recall

that zero modes can always be chosen as eigenfunctions of S, and indeed we have

e1 ∈ L2
K,1,1, e2 ∈ L2

K′,1,1, e3 ∈ L2
K,ω∗,−1, e4 ∈ L2

K′,ω∗,−1.

We now claim that these zero modes persist for all α.

Proposition III.5. There exist functions ψα(r) in each of the spaces L2
K,1,1, L2

K′,1,1,

L2
K,ω∗,−1, L2

K′,ω∗,−1 such that ψ0(r) is as in (III.7), α 7→ ψα(r) is analytic, and Hαψα(r) = 0

for all α. The dimension of kerHα restricted to each of the spaces L2
K,1, L2

K′,1, L2
K,ω∗, L

2
K,ω∗

is always odd-dimensional.

Proof. Since S preserves each of the spaces L2
K,1, L2

K′,1, L2
K,ω∗ , L

2
K,ω∗ and anti-commutes

with Hα, the spectrum of Hα restricted to each space must be symmetric about 0 for

all α. The result now follows from analyticity of the eigenvalues (note that the analytic

14
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choice of eigenvalue at a degeneracy may not respect eigenvalue ordering) and associated

eigenprojections8 of Hα as a function of α. It is clear from analyticity that the S eigenvalue

of each zero mode cannot change.

In this work we will restrict attention to the moiré K point, and especially the family

ψα(r) ∈ L2
K,1,1. We expect that our analysis would go through with only minor modifications

if we considered instead the moiréK ′ point. The zero modes in L2
K,1,1 and L2

K,ω∗,−1 are related

by the following symmetry.

Proposition III.6. Let ψα1 (r) and ψα−1(r) denote the zero modes of Hα in the spaces L2
K,1,1

and L2
K,ω∗,−1 respectively. Then ψα1 (r) = (Φα(r), 0)> where Φα(r) ∈ L2(Ω;C2), Φα(r+v) =

diag(1, eiq1·v)Φα(r) for all v ∈ Λ, Φα(Rφr) = Φα(r) and ψα−1(r) = (0,Φα∗(−r))>.

Proof. Since Sψα1 (r) = ψα1 (r), the last two entries of ψα1 (r) must vanish, so we can write

ψα1 (r) = (Φα(r), 0)>. That Φα(r) satisfies the stated symmetries follows immediately

from ψα1 ∈ L2
K,1. It is straightforward to check using the definitions of R and τv that

(0,Φα∗(−r))> ∈ L2
K,ω∗,−1. To see that (0,Φα∗(−r))> is a zero mode, note that Φα(r) sat-

isfies DαΦα(r) = 0, which implies that Dα†Φα∗(−r) = 0 by a simple manipulation. To see

that ψα2 (r) = (0,Φα∗(−r))> for all α, note that this clearly holds for α = 0 and then must

hold for all α by analyticity.

In Appendix A we use Proposition III.6 to derive the effective Dirac operator with α-

dependent Fermi velocity which controls the Bloch band structure in a neighborhood of the

moiré K point. The Fermi velocity of the effective Dirac operator is given by the following.

Note that we drop the subscript +1 when referring to the zero mode of Hα in L2
K,1,1 since

the zero mode of Hα in L2
K,ω∗,−1 plays no further role.

Definition III.3. Let ψα(r) ∈ L2
K,1,1 be as in Proposition III.5. Then we define

v(α) :=
| 〈ψα∗(−r)|ψα(r)〉 |
| 〈ψα(r)|ψα(r)〉 | (III.8)

where 〈 .| .〉 denotes the L2
K inner product.

Proposition III.7. The denominator of (II.4) is non-zero for all α.

Proof. Since 〈ηα(r)| ηα(r)〉 ≥ 0, the result follows immediately from (II.12).

15
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IV. RIGOROUS JUSTIFICATION OF TKV’S EXPANSION OF THE

FERMI VELOCITY

A. Alternative formulation of TKV’s expansion

We now turn to approximating the zero mode ψα(r) ∈ L2
K,1,1 by a series expansion in

powers of α. We write Hα = H0 + αH1 and formally expand ψα(r) as a series

ψα(r) = Ψ0(r) + αΨ1(r) + ... (IV.1)

where H0Ψ0(r) = 0, and

H0Ψn = −H1Ψn−1 (IV.2)

for all n ≥ 1. To solve H0Ψ0(r) = 0 we take Ψ0(r) = e1(r). We prove the following in

Appendix C.

Proposition IV.1. Let P denote the projection operator in L2
K,1 onto e1(r), and P⊥ = I−P .

The sequence of equations (IV.2) has a unique solution such that Ψn(r) ∈ L2
K,1,1 for all n ≥ 0

and PΨn(r) = 0 for all n ≥ 1 given by Ψ0(r) = e1(r) and

Ψn(r) = −P⊥(H0)−1P⊥H1Ψn−1(r)

for each n ≥ 1.

The expansion (IV.1) appears different from the series studied by TKV, since we work

only with the self-adjoint operators H0, H1, and Hα rather than the non-self-adjoint operator

Dα (defined in (II.1)). Since functions in L2
K,1,1 vanish in their last two components, there

is no practical difference. However, working with only self-adjoint operators allows us to use

the spectral theorem, which greatly simplifies the error analysis. We compute the first eight

terms in expansion (IV.1) in Proposition C.2 after developing some necessary machinery in

Appendix B.

B. Rigorous error estimates for the expansion of the moiré K point Bloch

function

In this section we explain the essential challenge in proving error estimates for the series

(IV.1) and explain how we overcome this challenge. Our goal is to prove the following.

16
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Theorem IV.1. Let ψα(r) ∈ L2
K,1,1 be as in Proposition III.5. Then

ψα(r) =
8∑

n=1

αnΨn(r) + ηα(r)

where ηα(r) ⊥∑8
n=1 α

nΨn(r) with respect to the L2
K inner product, and

‖ηα‖L2
K,1
≤ 3α9

15− 20α
for all 0 ≤ α ≤ 7

10
.

Proposition IV.1 guarantees that the series (IV.1) is well-defined up to arbitrarily many

terms. A näıve bound on the growth of terms in the series comes from the following propo-

sition.

Proposition IV.2. The spectrum of H0 in L2
K,1 is

σL2
K,1

(H0) = {±|G|,±|q1 +G| : G ∈ Λ∗}

and hence

‖P⊥(H0)−1P⊥‖L2
K,1→L

2
K,1

= 1. (IV.3)

We also have

‖H1‖L2
K,1→L

2
K,1

= 3. (IV.4)

Proof. This proposition is a combination of Propositions B.2, B.4, and B.7, proved in Ap-

pendix B.

Proposition IV.2 implies that ‖P⊥(H0)−1P⊥H1‖L2
K,1→L

2
K,1
≤ 3 which guarantees that the

series (IV.1) converges in L2
K,1 as long as α < 1

3
. However, this restriction is too strong

to prove that the Fermi velocity has a zero, which occurs at the larger value α ≈ 1√
3
. Of

course, Proposition IV.2 establishes only the most pessimistic possible bound on ΨN , and

this bound appears to be far from sharp from explicit calculation of ΨN , see Proposition C.3.

We briefly discuss a possible route to a tighter bound in Remark C.2, but do not otherwise

pursue this approach in this work.

We now explain how to obtain error estimates over a large enough range of α values to

prove v(α) has a zero. We seek a solution of Hαψα = 0 in L2
K,1,1 with the form

ψα(r) = ψN,α(r) + ηα(r), ψN,α(r) :=
N∑
n=0

αnΨn(r). (IV.5)

17
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For arbitrary α, let Qα denote the projection in L2
K,1 onto ψN,α(r), and Qα,⊥ := I − Qα

(note that Q0 = P ). Note that Qα depends on N but we suppress this to avoid clutter. We

assume WLOG that Qαηα(r) = 0. It follows that ηα satisfies

Qα,⊥HαQα,⊥ηα = −αN+1Qα,⊥H1ΨN .

To obtain a bound on ηα in L2(Ω), we require a lower bound on the operator Qα,⊥HαQα,⊥ :

Qα,⊥L2
K,1 → Qα,⊥L2

K,1. The following Lemma gives a lower bound on this operator in terms

of a lower bound on the projection of this operator onto the finite dimensional subspace of

L2
K,1 corresponding to a finite subset of the eigenfunctions of H0. The importance of this

result is that, since H1 only couples finitely many modes of H0, for fixed N , by taking the

subset sufficiently large, we can always arrange that ψN,α(r) lies in this subspace.

Lemma IV.1. Let PΞ denote the projection onto a subset Ξ of the eigenfunctions of H0 in

L2
K,1, and let µ ≥ 0 be maximal such that

‖P⊥Ξ H0P⊥Ξ ‖ ≥ µ, P⊥Ξ := I − PΞ (IV.6)

(with this notation the operator P introduced in Proposition IV.1 corresponds to PΞ with Ξ

being the set {e1(r)} and µ = 1). Suppose that QαPΞ = PΞQ
α = Qα, i.e., that ψN,α(r) lies

in ranPΞ. Define gα by

gα := min

{
|E| :

E is an eigenvalue of the matrix Qα,⊥PΞH
αPΞQ

α,⊥

acting Qα,⊥PΞL
2
K,1 → Qα,⊥PΞL

2
K,1

}
.

We note that PΞQ
α,⊥ is the projection onto the subspace of PΞL

2
K,1 orthogonal to ψN,α(r).

As long as

3α ≤ µ and α‖Qα,⊥PΞH
1P⊥Ξ ‖ < min(gα, µ− 3α),

then

‖Qα,⊥HαQα,⊥ηα‖ ≥
(
min(gα, µ− 3α)− α‖Qα,⊥PΞH

1P⊥Ξ ‖
)
‖Qα,⊥ηα‖. (IV.7)

Note that gα would be identically zero if not for the restriction that the matrix acts on

Qα,⊥PΞL
2
K,1, since otherwise ψN,α(r) would be an eigenfunction with eigenvalue zero for all

α. As it is, g0 = 1 and α 7→ gα is analytic so that gα must be positive for a non-zero interval

of positive α values.
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Proof. Using QαPΞ = PΞQ
α we have P⊥Ξ Q

α,⊥ = Qα,⊥P⊥Ξ = P⊥Ξ and hence

‖Qα,⊥HαQα,⊥ηα‖ = ‖Qα,⊥(PΞ + P⊥Ξ )Hα(PΞ + P⊥Ξ )Qα,⊥ηα‖

= ‖Qα,⊥PΞH
αPΞQ

α,⊥ηα + αQα,⊥PΞH
1P⊥Ξ η

α + αP⊥Ξ H
αPΞQ

α,⊥ηα + P⊥Ξ H
αP⊥Ξ η

α‖.
By the reverse triangle inequality

‖Qα,⊥HαQα,⊥ηα‖ (IV.8)

≥
∣∣‖Qα,⊥PΞH

αPΞQ
α,⊥ηα + P⊥Ξ H

αP⊥Ξ η
α‖ − α‖Qα,⊥PΞH

1P⊥Ξ η
α + P⊥Ξ H

αPΞQ
α,⊥ηα‖

∣∣ .
We want to bound the second term above and the first term below. We start with the second

term

‖Qα,⊥PΞH
1P⊥Ξ η

α + P⊥Ξ H
αPΞQ

α,⊥ηα‖2

= ‖Qα,⊥PΞH
1P⊥Ξ η

α‖2 + ‖P⊥Ξ H1PΞQ
α,⊥ηα‖2

≤ ‖Qα,⊥PΞH
1P⊥Ξ ‖2

(
‖P⊥Ξ ηα‖2 + ‖PΞQ

α,⊥ηα‖2
)

= ‖Qα,⊥PΞH
1P⊥Ξ ‖2‖Qα,⊥ηα‖2,

where we use Pythagoras’ theorem, P⊥Ξ H
1PΞQ

α,⊥ηα = P⊥Ξ H
1PΞQ

α,⊥PΞQ
α,⊥ηα since PΞQ

α,⊥

is a projection, and ‖Qα,⊥PΞH
1P⊥Ξ ‖ = ‖P⊥Ξ H1PΞQ

α,⊥‖. Hence we can bound

‖Qα,⊥PΞH
1P⊥Ξ η

α + P⊥Ξ H
αPΞQ

α,⊥ηα‖ ≤ ‖Qα,⊥PΞH
1P⊥Ξ ‖‖Qα,⊥ηα‖. (IV.9)

For the first term, first note that using Proposition IV.2 and the spectral theorem

‖Qα,⊥P⊥Ξ H
αP⊥Ξ Q

α,⊥ηα‖ ≥ |‖Qα,⊥P⊥Ξ H
0P⊥Ξ Q

α,⊥ηα‖ − α‖Qα,⊥P⊥Ξ H
1P⊥Ξ Q

α,⊥ηα‖|

≥ (µ− 3α)‖P⊥Ξ Qα,⊥ηα‖
as long as µ ≥ 3α. We now estimate

‖Qα,⊥PΞH
αPΞQ

α,⊥ηα + P⊥Ξ H
αP⊥Ξ η

α‖2

= ‖Qα,⊥PΞH
αPΞQ

α,⊥ηα‖2 + ‖P⊥Ξ HαP⊥Ξ η
α‖2

≥ (gα)2‖Qα,⊥PΞη
α‖2 + (µ− 3α)2‖P⊥Ξ ηα‖2

≥ min
(
(gα)2, (µ− 3α)2

) (
‖Qα,⊥PΞη

α‖2 + ‖P⊥Ξ ηα‖2
)

= min
(
(gα)2, (µ− 3α)2

)
‖Qα,⊥ηα‖2.

It follows that as long as 3α ≤ µ,

‖Qα,⊥PΞH
αPΞQ

α,⊥ηα + P⊥Ξ H
αP⊥Ξ η

α‖ ≥ min(gα, µ− 3α)‖Qα,⊥ηα‖. (IV.10)

The conclusion now holds as long as 3α ≤ µ and α‖Qα,⊥PΞH
1P⊥Ξ ‖ ≤ min(gα, µ− 3α) upon

substituting (IV.9) and (IV.10) into (IV.8).
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For Lemma IV.1 to be useful, we must check that it is possible to choose Ξ so that the

bound (IV.7) is non-trivial, i.e., so that the constant is positive. We will prove the following

in Appendix D.

Proposition IV.3. There exists a subset Ξ of the eigenfunctions of H0 such that

1. The maximal µ such that (IV.6) holds is µ = 7.

2. ψ8,α(r) defined by (IV.5) lies in ranPΞ.

3. ‖PΞH
1P⊥Ξ ‖ = 1 and hence ‖Qα,⊥PΞH

1P⊥Ξ ‖ ≤ 1.

The set Ξ constructed in Proposition IV.3 is the set of L2
K,1-eigenfunctions of H0 with

eigenvalues with magnitude ≤ 4
√

3, augmented with two extra basis functions to ensure

that ‖PΞH
1P⊥Ξ ‖ = 1. Including all L2

K,1-eigenfunctions of H0 with eigenvalue magnitudes

up to and including 4
√

3 ensures that ψ8,α(r) lies in ranPΞ.

We require the following, which we discuss further, and check numerically, in Section E.

In particular, we show that this assumption is equivalent to a bound below on the lowest

eigenvalue of a positive semi-definite, Hermitian, 81×81 matrix.

Assumption IV.1. Let Ξ be as in Proposition IV.3. Then for all 0 ≤ α ≤ 7
10

, we have

gα ≥ 3
4
.

Assuming Proposition IV.3 and Assumption IV.1, the bound (IV.7) becomes, for all

0 ≤ α ≤ 7
10

,

‖Qα,⊥HαQα,⊥ηα‖ ≥
(

3

4
− α

)
‖Qα,⊥ηα‖.

We now assume the following, proved in Appendix C.

Proposition IV.4. ‖H1Ψ8‖ ≤ 3
20

.

We can now give the proof of Theorem IV.1.

Proof of Theorem IV.1. The proof follows immediately from Lemma IV.1, Proposition IV.3,

Assumption IV.1, and Proposition IV.4.
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Appendix A: Derivation of expression for Fermi velocity in terms of L2
K,1,1 zero

mode of Hα

The Bloch eigenvalue problem for the TKV Hamiltonian at quasi-momentum k is

Hαψαk(r) = Ekψ
α
k(r)

where Hα is as in (II.1) and

ψαk(r + v) = eik·v diag(1, eiq1·v, 1, eiq1·v)ψαk(r) ∀v ∈ Λ.

By Propositions III.5 and III.6, 0 is a two-fold (at least) degenerate eigenvalue at the moiré

K point k = 0, with associated eigenfunctions ψα±1(r) as in Proposition III.6. In what

follows we assume that 0 is exactly two-fold degenerate so that ψα±1(r) form a basis of the

degenerate eigenspace. This assumption is clearly true for small α but could in principle be

violated for α > 0.

Introducing χαk(r) := e−ik·rψαk(r), we derive the equivalent Bloch eigenvalue problem

with k-independent boundary conditions

Hα
kχ

α
k(r) = Ekχ

α
k(r), (A.1)

where

Hα
k :=

 0 Dα†
k

Dα
k 0

 , Dα
k =

Dx + kx + i(Dy + ky) αU(r)

αU(−r) Dx + kx + i(Dy + ky)

 ,

where Dx,y := −i∂x,y, and

χαk(r + v) = diag(1, eiq1·v, 1, eiq1·v)χαk(r) ∀v ∈ Λ.

Clearly ψα±1(r) remain a basis of the zero eigenspace for the problem (A.1) at k = 0.

Differentiating the operator Dα
k we find ∂kxD

α
k = I2 and ∂kyD

α
k = iI2, where I2 denotes

the 2× 2 identity matrix, so that

∂kxH
α
k =

 0 I2

I2 0

 , ∂kyH
α
k =

 0 −iI2

iI2 0

 . (A.2)

By degenerate perturbation theory9, for small k we have that eigenfunctions χαk(r) of (A.1)

are given by

χαk(r) ≈
∑
σ=±1

cσ,kψ
α
σ (r),
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where the coefficients cσ,k and associated eigenvalues Ek ≈ εk are found by solving the

matrix eigenvalue problem 〈ψ
α
1 |k·∇kH

α
0 ψ

α
1 〉

〈ψα1 |ψα1 〉
〈ψα1 |k·∇kH

α
0 ψ

α
−1〉

〈ψα1 |ψα1 〉
〈ψα−1|k·∇kH

α
0 ψ

α
1 〉

〈ψα−1|ψα−1〉
〈ψα−1|k·∇kH

α
0 ψ

α
−1〉

〈ψα−1|ψα−1〉


c+1,k

c−1,k

 = εk

c+1,k

c−1,k

 . (A.3)

Using (A.2) and the explicit forms of ψα±1(r) given by Proposition III.6, we find that the

matrix on the left-hand side of (A.3) can be simplified to 0 λ(α)(kx − iky)
λ∗(α)(kx + iky) 0

 , λ(α) :=
〈ψα1 (r)|ψα∗1 (−r)〉
〈ψα1 (r)|ψα1 (r)〉 .

It follows that, for small k, we have Ek ≈ ±v(α)|k|, where v(α) = |λ(α)| is as in (III.8).

Appendix B: The chiral basis of L2
K,1 and action of H0 and H1 with respect to

this basis

1. The spectrum and eigenfunctions of H0 in L2
K

The first task is to understand the spectrum and eigenfunctions of H0 in L2
K . In the next

section we will discuss the spectrum and eigenfunctions of H0 in L2
K,1. Recall that

H0 =

 0 D0†

D0 0

 , D0 =

−2i∂ 0

0 −2i∂

 ,

where ∂ = 1
2
(∂x + i∂y). To describe the eigenfunctions of H0 in L2

K we introduce some

notation. Let v =
(
v1, v2

)
be a vector in R2. Then we will write

zv = v1 + iv2, ẑv =
v1 + iv2

|v| .

Finally, let V denote the area of the moiré cell Ω.

Proposition B.1. The zero eigenspace of H0 in L2
K is spanned by

χ0
±(r) =

1√
2V

(
1, 0,±1, 0

)
.

For all G 6= 0 in the reciprocal lattice, then

χG
± (r) =

1√
2V

(
1, 0,±ẑG, 0

)
eiG·r
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are eigenfunctions with eigenvalues ±|G|. For all G in the reciprocal lattice,

χ
q1+G
± (r) =

1√
2V

(
0, 1, 0,±ẑG+q1

)
ei(q1+G)·r

are eigenfunctions with eigenvalues ±|q1 +G|. The operator H0 has no other eigenfunctions

in L2
K other than linear combinations of these, and hence the spectrum of H0 in L2

K is

σL2
K

(H0) = {±|G|,±|q1 +G| : G ∈ Λ∗} .

Proof. The proof is a straightforward calculation taking into account the L2
K boundary

conditions given by (III.6) with k = 0. For example, e2(r) and e4(r) are zero eigenfunctions

of H0 but in L2
K′ , not L2

K .

Note that (as it must be because of the chiral symmetry) the spectrum is symmetric

about 0 and all of the eigenfunctions with negative eigenvalues are given by applying S to

the eigenfunctions with positive eigenvalues.

The union of the lattices Λ∗ and Λ∗+q1 has the form of a honeycomb lattice in momentum

space, where the lattice Λ∗ corresponds to “A” sites and Λ∗ + q1 corresponds to “B” sites

(or vice versa), see Figure B.1.

2. The spectrum and eigenfunctions of H0 in L2
K,1

We now discuss the spectrum of H0 in L2
K,1.

Proposition B.2. The zero eigenspace of H0 in L2
K,1 is spanned by

χ0̃(r) :=
1√
V
e1(r).

For all G 6= 0 in the reciprocal lattice Λ∗,

χG̃
± (r) :=

1√
3

2∑
k=0

RkχG
± (r) =

1√
3

2∑
k=0

χ
(R∗φ)kG

± (r)

are eigenfunctions of H0 in L2
K,1 with associated eigenvalues ±|G|. For all G in the reciprocal

lattice Λ∗,

χ±G̃+q1(r) =
1√
3

2∑
k=0

Rkχ
G+q1
± (r) =

1√
3

2∑
k=0

χ
(R∗φ)k(G+q1)

± (r)
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FIG. B.1. Diagram showing A (blue) and B (red) sites of the momentum space lattice. Each site

corresponds to two L2
K-eigenvalues of H0, given by ± the distance between the site and the origin

(black). The lattice vectors b1 and b2 are shown, as well as the A site nearest-neighbor vectors q1,

q2, q3.

are eigenfunctions of H0 in L2
K,1 with associated eigenvalues ±|q1 +G|. The operator H0

has no other eigenfunctions in L2
K,1 other than linear combinations of these, and hence the

spectrum of H0 in L2
K,1 is

σL2
K,1

(H0) = {±|G|,±|q1 +G| : G ∈ Λ∗} .

Proof. The proof is another straightforward calculation starting from Proposition B.1.

For an illustration of the support of the L2
K,1-eigenfunctions ofH0 on the momentum space

lattice, see Figure B.2. It is important to note that the notation introduced in Proposition
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FIG. B.2. Diagram showing support of L2
K,1-eigenfunctions of H0 superposed on the momentum

space lattice. Each eigenfunction is given by superposing an L2
K-eigenfunction of H0 with its

rotations by 2π
3 and 4π

3 . The support of the eigenfunctions χ±q̃1(r) with eigenvalues ±1 is shown

with black crosses, while the support of the eigenfunctions χ±b̃1(r) with eigenvalues ±
√

3 is shown

with black circles.

B.2 is not one-to-one, because for example

χ±G̃(r) = χ±R̃
∗
φG(r) = χ±

˜(R∗φ)2G(r)

for any G 6= 0 in Λ∗.

3. The chiral basis of L2
K,1

Recall that zero modes of Hα can be assumed to be eigenfunctions of the chiral symmetry

operator S. It follows that the most convenient basis for our purposes is not be the spectral
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basis just introduced but the basis of L2
K,1 consisting of eigenfunctions of S. We call this

basis the chiral basis.

Definition B.1. The chiral basis of L2
K,1 is defined as the union of the functions

χ0̃(r) =
1√
V
e1,

χG̃,±1(r) :=
1√
2

(
χG̃(r)± χ−G̃(r)

)
, G ∈ Λ∗ \ {0},

and

χq̃1+G,±1(r) :=
1√
2

(
χq̃1+G(r)± χ−q̃1+G(r)

)
, G ∈ Λ∗.

The following is straightforward.

Proposition B.3. The chiral basis is an orthonormal basis of L2
K,1. The modes χ0̃(r),

χG̃,1(r), and χq̃1+G,1(r) are +1 eigenfunctions of S, while the modes χG̃,−1(r) and χq̃1+G,−1(r)

are −1 eigenfunctions of S.

Written out, chiral basis functions have a very simple form. We have

χ0̃(r) =
1√
V
e1, (B.1)

and for all G ∈ Λ∗ \ {0},

χG̃,1(r) =
1√
3V

e1

2∑
k=0

ei((R
∗
φ)kG)·r, χG̃,−1(r) =

1√
3V

ẑGe3

2∑
k=0

e−ikφei((R
∗
φ)kG)·r, (B.2)

and for all G ∈ Λ∗,

χG̃+q1,1(r) =
1√
3V

e2

2∑
k=0

ei((R
∗
φ)k(q1+G))·r,

χG̃+q1,−1(r) =
1√
3V

ẑG+q1
e4

2∑
k=0

e−ikφei((R
∗
φ)k(q1+G))·r.

(B.3)

We use the chiral basis to divide up L2
K,1 as follows.

Definition B.2. We define spaces L2
K,1,±1 to be the spans of the ±1 eigenfunctions of S in

L2
K,1, respectively.

Clearly we have

L2
K,1 = L2

K,1,1 ⊕ L2
K,1,−1.

We can divide up the chiral basis more finely as follows.
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Definition B.3. We define

L2
K,1,1,A :=

{
χ0̃(r)

}
∪
{
χG̃,1(r) : G ∈ Λ∗ \ {0}

}
,

L2
K,1,1,B :=

{
χG̃+q1,1(r) : G ∈ Λ∗

}
,

L2
K,1,−1,A :=

{
χG̃,−1(r) : G ∈ Λ∗ \ {0}

}
,

L2
K,1,−1,B :=

{
χG̃+q1,−1(r) : G ∈ Λ∗

}
.

Remark B.1. Note that the notation A and B in Definition B.3 refers to A and B sites

of the momentum space lattice, not to the A and B sites of the real space lattice. Recalling

Remark III.1 and comparing (B.2)-(B.3) with (II.2), we see that L2
K,1,1,A corresponds to wave-

functions supported on A sites of layer 1, L2
K,1,1,B corresponds to wave-functions supported

on A sites of layer 2, L2
K,1,−1,A corresponds to wave-functions supported on B sites of layer

1, and L2
K,1,−1,B corresponds to wave-functions supported on B sites of layer 2.

Clearly we have

L2
K,1 = L2

K,1,1,A ⊕ L2
K,1,1,B ⊕ L2

K,1,−1,A ⊕ L2
K,1,−1,B.

The following propositions are straightforward to prove. For the first claim, note that

{S, H0} = 0.

Proposition B.4. The operator H0 maps L2
K,1,±1,σ → L2

K,1,∓1,σ for σ = A,B. The action

of H0 on chiral basis functions is as follows

H0χ0̃ = 0,

for all G ∈ Λ∗ with G 6= 0

H0χG̃,±1 = |G|χG̃,∓1,

and for all G ∈ Λ∗

H0χq̃1+G,±1 = |q1 +G|χq̃1+G,∓1.

Proposition B.5. Let P denote the projection operator onto χ0̃(r) in L2
K,1, and P⊥ = 1−P .

Then the operator P⊥(H0)−1P⊥ maps L2
K,1,±1,σ → L2

K,1,∓1,σ for σ = A,B, and

P⊥(H0)−1P⊥χG̃,±1 =
1

|G|χ
G̃,∓1
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for all G ∈ Λ∗ with G 6= 0, and

P⊥(H0)−1P⊥χq̃1+G,±1 =
1

|q1 +G|χ
q̃1+G,∓1

for all G ∈ Λ∗.

In the coming sections we will study the action of the operator H1 on L2
K,1 with respect

to the chiral basis.

4. The spectrum of H1 in L2
K and L2

K,1

Recall that

H1 =

 0 D1†

D1 0

 , D1 =

 0 U(r)

U(−r) 0

 ,

where U(r) = e−iq1·r + eiφe−iq2·r + e−iφe−iq3·r. We claim the following.

Proposition B.6. For each r0 ∈ Ω, ±|U(r0)| and ±|U(−r0)| are eigenvalues of H1 : L2
K →

L2
K. For r0 such that U(r0) 6= 0, the ±|U(r0)| eigenvectors are(

0, 1,± U(r0)
|U(r0)| , 0

)
δ(r − r0).

For r0 such that U(−r0) 6= 0, the ±|U(−r0)| eigenvectors are(
1, 0, 0,± U(−r0)

|U(−r0)|

)
δ(r − r0).

When U(r0) = 0, zero is a degenerate eigenvalue with associated eigenfunctions e2δ(r −
r0) and e3δ(r − r0). When U(−r0) = 0, zero is a degenerate eigenvalue with associated

eigenfunctions e1δ(r − r0) and e4δ(r − r0). Finally,

σL2
K

(H1) = [−3, 3]. (B.4)

Proof. We prove only (B.4) since the other assertions are clear. The triangle inequality

yields the obvious bound

|U(r0)| ≤ 3,

so that the L2
K spectrum of H1 must be contained in the interval [−3, 3]. To see that the

spectrum actually equals [−3, 3], note that if r0 =
(

4π
3
√

3
, 0
)

then

q1 · r0 = 0, (q1 + b1) · r0 =
1

2

(√
3, 1
)
· r0 =

2π

3
, (q1 + b2) · r0 =

1

2

(
−
√

3, 1
)
· r0 = −2π

3
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and hence U(r0) = 3. On the other hand, when r0 = 0 we have U(r0) = 0 so that the

spectrum of H1 in L2
K equals [−3, 3].

By taking linear combinations of rotated copies of the H1 eigenfunctions, just as we did

with the H0 eigenfunctions, it is straightforward to prove an analogous result to Proposition

B.6 in L2
K,1. We record only the following.

Proposition B.7.

σL2
K,1

(H1) = [−3, 3].

5. The action of H1 on L2
K,1 with respect to the chiral basis

We now want to study the action of H1 on L2
K,1 with respect to the chiral basis. We will

prove two propositions, which parallel Proposition B.4.

Proposition B.8. The operator H1 maps L2
K,1,1,A → L2

K,1,−1,B, and L2
K,1,1,B → L2

K,1,−1,A.

The action of H1 on chiral basis functions is as follows:

H1χ0̃ =
√

3ẑq1
χq̃1,−1, (B.5)

and

H1χq̃1,1 = eiφẑq1−q2
χq̃1−q2,−1 + e−iφẑq1−q3

χq̃1−q3,−1 (B.6)

For all G ∈ Λ∗ \ {0},

H1χG̃,1 = ẑG+q1
χG̃+q1,−1 + eiφẑG+q2

χG̃+q2,−1 + e−iφẑG+q3
χG̃+q3,−1 (B.7)

For all G ∈ Λ∗ \ {0},

H1χG̃+q1,1 = ẑGχ
G̃,−1 + eiφẑG+q1−q2

χ
˜G+q1−q2,−1 + e−iφẑG+q1−q3

χ
˜G+q1−q3,−1. (B.8)

Note that H1 exchanges chirality (S eigenvalue) and the A and B momentum space

sublattices, while H0 only exchanges chirality. Proposition B.8 has a simple interpretation

in terms of nearest-neighbor hopping in the momentum space lattice, see Figures B.3 and

B.4.
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FIG. B.3. Illustration of the action of H1 in L2
K,1 as hopping in the momentum space lattice

described by equations (B.7) (left, starting at b1) and (B.8) (right, starting at q1 + b1 − b2). The

origin is marked by a black dot.

Remark B.2. At first glance, equations (B.5) and (B.6) appear different from (B.7) and

(B.8), because they appear to violate 2π
3

rotation symmetry. But this is not the case, since

every chiral basis function individually respects this symmetry. For example, using χq̃1,−1 =

χq̃2,−1 = χq̃3,−1 and ẑq1
= eiφẑq2

= e−iφẑq3
, we can re-write (B.5) in a way that manifestly

respects the 2π
3

rotation symmetry as

H1χ0̃ =
1√
3

(
ẑq1
χq̃1,−1 + eiφẑq2

χq̃2,−1 + e−iφẑq3
χq̃3,−1

)
. (B.9)

Equation (B.6) can also be written in a manifestly rotationally invariant way but the expres-

sion is long and hence we omit it. Note that (B.6) cannot have a term proportional to χ0̃

since χ0̃ ∈ L2
K,1,1 and H1 maps L2

K,1,1 → L2
K,1,−1.

Proof of Proposition B.8. We will prove (B.7), the proofs of the other identities are similar

and hence omitted. We have

H1χG̃,1 =
1√
3V

(
eiq1·r + eiφei(q1+b1)·r + e−iφei(q1+b2)·r) (eiG·r + ei(R

∗
φG)·r + ei((R

∗
φ)2G)·r

)
e4.
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FIG. B.4. Illustration of the action of H1 as hopping in the momentum space lattice described by

equations (B.5) (left, starting at 0) and (B.6) (right, starting at q1). Although it appears that the

hopping in these cases does not respect 2π
3 rotation symmetry, this is an artifact of working with

chiral basis functions which individually respect the rotation symmetry, see (B.9).

Multiplying out we have

1√
3V

(
ei(q1+G)·r + eiφei(q1+G+b1)·r + e−iφei(q1+G+b2)·r

+ ei(q1+(R∗φG))·r + eiφei(q1+(R∗φG)+b1)·r + e−iφei(q1+(R∗φG)+b2)·r

+ei(q1+((R∗φ)2G))·r + eiφei(q1+((R∗φ)2G)+b1)·r + e−iφei(q1+((R∗φ)2G)+b2)·r
)

=
1√
3V

(
ei(q1+G)·r + eiφei(q1+G+b1)·r + e−iφei(q1+G+b2)·r

ei(R
∗
φ(q1+G+b1))·r + eiφei(R

∗
φ(q1+G+b2))·r + e−iφei(R

∗
φ(q1+G))·r

+ei((R
∗
φ)2(q1+G+b2))·r + eiφei((R

∗
φ)2(q1+G))·r + e−iφei((R

∗
φ)2(q1+G+b1)·r

)
.

=
1√
3V

(
ei(q1+G)·r + e−iφei(R

∗
φ(q1+G))·r + eiφei((R

∗
φ)2(q1+G))·r

)
+

1√
3V

eiφ
(
ei(q1+G+b1)·r + e−iφei(R

∗
φ(q1+G+b1))·r + eiφei((R

∗
φ)2(q1+G+b1))·r

)
+

1√
3V

e−iφ
(
ei(q1+G+b2)·r + e−iφei(R

∗
φ(q1+G+b2))·r + eiφei((R

∗
φ)2(q1+G+b2))·r

)
,

from which (B.7) follows.

Proposition B.9. The operator H1 maps L2
K,1,−1,A → L2

K,1,1,B, and L2
K,1,−1,B → L2

K,1,1,A.
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The action of H1 on chiral basis functions is as follows:

H1χq̃1,−1 = ẑq1

(√
3χ0̃ + e−iφχq̃1−q2,1 + eiφχq̃1−q3,1

)
.

For all G ∈ Λ∗ \ {0},

H1χG̃,−1 = ẑG

(
χG̃+q1,1 + e−iφχG̃+q2,1 + eiφχG̃+q3,1

)
.

For all G ∈ Λ∗,

H1χG̃+q1,−1 = ẑG+q1

(
χG̃,1 + e−iφχ

˜G+q1−q2,1 + eiφχ
˜G+q1−q3,1

)
.

Proof. The proof is similar to that of Proposition B.8 and is hence omitted.

Appendix C: Formal expansion of the zero mode

We now bring to bear the developments of the preceding sections on the asymptotic

expansion of the zero mode ψα(r) ∈ L2
K,1,1 starting from Ψ0(r) = e1(r) = χ0̃(r). We first

give the proof of Proposition IV.1.

Proof of Proposition IV.1. We have seen that χ0̃ ∈ L2
K,1,1. By the calculations of the pre-

vious section, H1χ0̃ ∈ L2
K,1,−1 which is orthogonal to the null space of H0. The general

solution of H0Ψ1 = −H1Ψ0 is

Ψ1(r) = −P⊥(H0)−1P⊥H1Ψ0(r) + CΨ0(r),

where C is an arbitrary constant, which is in L2
K,1,1 by Proposition B.4. To ensure that

Ψ1(r) is orthogonal to Ψ0(r) we take C = 0. It is clear that this procedure can be repeated

to derive an expansion to all orders satisfying the conditions of Proposition IV.1.

Our goal is to calculate Ψn(r) ∈ L2
K,1,1 satisfying the conditions of Proposition B.4 up to

n = 8. This amounts to calculating, for n = 1 to n = 8,

Ψn = −P⊥(H0)−1P⊥H1Ψn−1.

We do this algorithmically by repeated application of the following proposition, which com-

bines Proposition B.8 and Proposition B.5.
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Proposition C.1. The operator −P⊥(H0)−1P⊥H1 maps L2
K,1,1,A → L2

K,1,1,B and L2
K,1,1,B →

L2
K,1,1,A. Its action on chiral basis functions is as follows:

−P⊥(H0)−1P⊥H1χ0̃ = −
√

3ẑq1
χq̃1,1, (C.1)

and

−P⊥(H0)−1P⊥H1χq̃1,1 = −e
iφẑq1−q2

|q1 − q2|
χq̃1−q2,1 − e−iφẑq1−q3

|q1 − q3|
χq̃1−q3,1. (C.2)

For all G ∈ Λ∗ \ {0},

− P⊥(H0)−1P⊥H1χG̃,1 =

− ẑG+q1

|G+ q1|
χG̃+q1,1 − eiφẑG+q2

|G+ q2|
χG̃+q2,1 − e−iφẑG+q3

|G+ q3|
χG̃+q3,1.

(C.3)

For all G ∈ Λ∗ \ {0},

−P⊥(H0)−1P⊥H1χG̃+q1,1 = − ẑG|G|χ
G̃,1− eiφẑG+q1−q2

|G+ q1 − q2|
χ

˜G+q1−q2,1− e−iφẑG+q1−q3

|G+ q1 − q3|
χ

˜G+q1−q3,1.

We now claim the following.

Proposition C.2. Let Ψn(r) be the sequence defined by Proposition IV.1. Then

Ψ1(r) = −
√

3iχq̃1,1, (C.4)

Ψ2(r) =

(√
3− i
2

)
χ−̃b1,1 +

(√
3 + i

2

)
χ−̃b2,1, (C.5)

Ψ3 =
1√
7

(√
7− 3

√
21i

14

)
χq̃1−b2,1 +

1√
7

(
−
√

7− 3
√

21i

14

)
χq̃1−b1,1, (C.6)

Ψ4 =
1√
21

(
−5
√

7 +
√

21i

14

)
χ−̃b2,1 +

1

2
√

21

(
2
√

7 +
√

21i

7

)
χ−̃2b2,1

+
1√
21

(
−5
√

7−
√

21i

14

)
χ−̃b1,1 +

1

2
√

21

(
2
√

7−
√

21i

7

)
χ−̃2b1

+
2
√

3

21
χ

˜−b1−b2,1,

(C.7)

Proof. Equations (C.4) and (C.5) follow immediately from (C.1) and (C.2) and using q2 =

q1 + b1 and q3 = q1 + b2. The derivation of equation (C.6) is more involved, so we give
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details. Using linearity, and applying (C.3) twice, we find

− P⊥(H0)−1P⊥H1Ψ2 =(√
3− i
2

)(
ẑq1−b2

|q1 − b2|
χq̃1−b2,1 +

eiφẑq1+b1−b2

|q1 + b1 − b2|
χ

˜q1+b1−b2,1 + e−iφẑq1
χq̃1,1

)

+

(√
3 + i

2

)(
ẑq1−b1

|q1 − b1|
χq̃1−b1,1 + eiφẑq1

χq̃1,1 +
e−iφẑq1+b2−b1

|q1 + b2 − b1|
χ

˜q1+b2−b1,1

)
.

First, the terms proportional to χq̃1,1 cancel. Next, since Rφ(q1 + b1 − b2) = q1 + b2 − b1,

we have χ
˜q1+b1−b2,1 = χ

˜q1+b2−b1,1. These terms also cancel, leaving (C.6). The derivation of

(C.7) (and the higher corrections) is involved but does not depend on any new ideas, and is

therefore omitted.

We give the explicit forms of Ψ5(r)-Ψ8(r) in the Supplementary Material.

Remark C.1. Written out, (C.4) and (C.5) become

Ψ1 = −
√

3i
1√
3V

e2

(
eiq1·r + eiq2·r + eiq3·r

)
,

and

Ψ2 = −ieiφ 1√
3V

e1

(
eib1·r + ei(b2−b1)·r + e−ib2·r

)
+ ie−iφ

1√
3V

e1

(
eib2·r + e−ib1·r + ei(b1−b2)·r) ,

which agree with equation (24) of Tarnopolsky et al.4 up to an overall factor of
√
V (this

factor cancels in the Fermi velocity so there is no discrepancy).

Using orthonormality of the chiral basis functions, it is straightforward to calculate the

norms of each of the Ψn(r). We have

Proposition C.3.

‖Ψ0‖ = 1, ‖Ψ1‖ =
√

3, ‖Ψ2‖ =
√

2, ‖Ψ3‖ =

√
14

7
, ‖Ψ4‖ =

√
258

42
, ‖Ψ5‖ =

√
1968837

3458

‖Ψ6‖ =

√
106525799

31122
, ‖Ψ7‖ =

2
√

2129312323981473

624696345
, ‖Ψ8‖ =

√
183643119755214454

4997570760
.

Remark C.2. Note that the sequence of norms of the expansion functions grows much slower

than the pessimistic bound ‖ΨN+1‖ ≤ 3‖ΨN‖, N = 0, 1, 2, ... guaranteed by Proposition IV.2.

The reason is that the bounds (IV.3) and (IV.4) are never attained. As N becomes larger,
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the bound (IV.3) is very pessimistic because ΨN is mostly made up of eigenfunctions of H0

with eigenvalues strictly larger than 1. The bound (IV.4) is also very pessimistic because it

is attained only at delta functions, which can only be approximated with a superposition of a

large number of eigenfunctions of H0. It seems possible that a sharper bound could be proved

starting from these observations, but we do not pursue this in this work.

We finally give the proof of Proposition IV.4.

Proof of Proposition IV.4. Explicit computation using Proposition B.8 and orthonormality

of the chiral basis functions gives

‖H1Ψ8‖ =

√
4855076200233765642

14992712280
≈ 0.147 ≤ 3

20
.

Appendix D: Proof of Proposition IV.3

We choose Ξ as

Ξ :=

{
L2
K,1-eigenfunctions of H0 with

eigenvalues with magnitude≤ 4
√

3

}⋃{
χ

˜q1−4b1+b2,±1(r), χ
˜q1+b1−4b2,±1(r)

}
.

Part 1. of Proposition IV.3 follows immediately from observing that χ
˜q1−2b1−2b2,±1 is not in

Ξ but |q1 − 2b1 − 2b2| = 7. That µ = 7 is optimal can be seen from Figure D.1.

Part 2. follows from the fact that ψ8,α(r) depends only on eigenfunctions of H0 with

eigenvalues with magnitude less than or equal to 4
√

3. The largest eigenvalue is 4
√

3,

coming from dependence of Ψ8(r) on χ−̃4b2,1, since | − 4b2| = 4
√

3.

Part 3. can be seen from Figure D.1.

Appendix E: Numerical verification of Assumption IV.1

Assumption IV.1 is a lower bound on the smallest magnitude eigenvalues of the 81×81

matrix Qα,⊥PΞH
αPΞQ

α,⊥, formed by sandwiching the matrix PΞH
αPΞ, whose entries are

〈χ(r)|Hαχ′(r)〉 ,

where 〈·| ·〉 denotes the L2
K-inner product, and χ(r) and χ′(r) denote chiral basis functions

in Ξ, by the projection Qα,⊥. We list the chiral basis functions in Ξ in the supplementary
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FIG. D.1. Illustration of Ξ in the momentum space lattice. The circle has radius 4
√

3, so that every

dot within the circle corresponds to two chiral basis vectors included in Ξ. Chiral basis vectors

exactly 4
√

3 away from the origin, marked with black dots, are also included in Ξ. We also include

in Ξ the chiral basis vectors
{
χ

˜q1−4b1+b2,±1(r), χ
˜q1+b1−4b2,±1(r)

}
, which correspond to the dots

marked with circles, which are distance 7 (NB. 7 > 4
√

3) from the origin. We do not include the

chiral basis vectors χ
˜q1−2b1−2b2,±1, marked with black crosses, which are also a distance 7 from

the origin. The reason for this is so that part 3 of Proposition IV.3 holds. With this choice, every

dot in Ξ has at most one nearest neighbor lattice point outside of Ξ. It follows immediately from

Propositions B.8 and B.9 (H1 acts by nearest neighbor hopping in the momentum space lattice)

that ‖PΞH
1P⊥Ξ ‖ = 1. Note that if we chose Ξ to include χ

˜q1−2b1−2b2,±1 this would no longer hold

because these basis functions would have two nearest neighbors outside Ξ, resulting in the worse

bound ‖PΞH
1P⊥Ξ ‖ ≤

√
2.

material. Since Qα,⊥PΞH
αPΞQ

α,⊥ anticommutes with S, its spectrum is symmetric about

0. It follows that we can lower bound its smallest magnitude with by directly computing

the eigenvalues of the matraix Qα,⊥PΞH
αPΞQ

α,⊥ or by squaring the matrix, finding a lower

bound on the eigenvalues of the resulting Hermitian and positive semi-definite matrix, and

then taking the square root of that lower bound.

We verify Assumption IV.1 by computing the smallest magnitude eigenvalue by the heevd
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FIG. E.1. Plot of the eigenvalues of Qα,⊥PΞH
αPΞQ

α,⊥ (blue lines), showing the first non-zero

eigenvalues are bounded away from 0 by 3
4 (red lines) when α is less than 7

10 (black line). The zero

eigenvalue corresponds to the subspace spanned by ψ8,α which can be ignored since we are only

interested in bounding Qα,⊥HαQα,⊥ below as a map Qα,⊥L2
K,1 → Qα,⊥L2

K,1.

LAPACK routine which uses the divide and conquer algorithm10, finding that at α = 7
10

,

gα = 0.81472 (5sf). The results of a computation of the eigenvalues of Qα,⊥PΞH
αPΞQ

α,⊥

without squaring are shown in Figure E.1. We obtain the identical result up to 5sf by

computing the eigenvalues of the square of the matrix.

Appendix F: Proof of Proposition II.1

We can now prove Proposition II.1. We start by proving (II.12).
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1. Proof of (II.12)

We now prove (II.12). It is straightforward to derive〈
8∑

n=0

αnΨn(r)

∣∣∣∣∣
8∑

n=0

αnΨn(r)

〉
=

8∑
n=0

n∑
j=0

〈
Ψj(r)

∣∣Ψn−j(r)
〉
αn

+
7∑

n=0

n∑
j=0

〈
Ψ8−j(r)

∣∣Ψ8−(n−j)(r)
〉
α16−n.

(F.1)

We now make two observations which simplify the computation. First, recall that the

operator −P⊥(H0)−1P⊥H1 maps L2
K,1,1,A → L2

K,1,1,B and L2
K,1,1,B → L2

K,1,1,A. It follows that

Ψ0(r) ∈ L2
K,1,1,A, Ψ1(r) ∈ L2

K,1,1,B, Ψ2(r) ∈ L2
K,1,1,A, and so on, and hence〈

Ψ2i(r)
∣∣Ψ2j+1(r)

〉
= 0 ∀i, j ∈ {0, 1, 2, ...}.

It follows that all terms in (F.1) with odd powers of α vanish. Second, note that since

Ψ0(r) ∈ ranP while Ψn(r) ∈ ranP⊥ for all n ≥ 1, we have that〈
Ψn(r)|Ψ0(r)

〉
=
〈

Ψ0(r)
∣∣Ψn(r)

〉
= 0 ∀n ∈ {1, 2, ...}.

Deriving (II.12) is then just a matter of computation using the properties of the chiral basis.

For the leading term, we have〈
Ψ0(r)

∣∣Ψ0(r)
〉

=
〈
χ0̃(r)

∣∣∣χ0̃(r)
〉

= 1.

For the α2 term the only non-zero term is〈
Ψ1(r)

∣∣Ψ1(r)
〉

=
〈
−
√

3iχq̃1,1(r)
∣∣∣−√3iχq̃1,1(r)

〉
= 3,

using (C.4). For the α4 term, the possible non-zero terms are〈
Ψ3(r)

∣∣Ψ1(r)
〉

+
〈

Ψ2(r)
∣∣Ψ2(r)

〉
+
〈

Ψ1(r)
∣∣Ψ3(r)

〉
,

but Ψ3(r) and Ψ1(r) depend on orthogonal chiral basis vectors (see (C.4) and (C.6)) so we

are left with〈
Ψ2(r)

∣∣Ψ2(r)
〉

=

〈(√
3− i
2

)
χ−̃b1,1 +

(√
3 + i

2

)
χ−̃b2,1

∣∣∣∣∣
(√

3− i
2

)
χ−̃b1,1 +

(√
3 + i

2

)
χ−̃b2,1

〉
= 2,

using (C.5) and orthgonality of χ−̃b1,1 and χ−̃b2,1. We omit the derivation of the higher terms

since the derivations do not require any new ideas.
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2. Proof of (II.11)

It is straightforward to derive〈
8∑

n=0

αnΨn∗(−r)

∣∣∣∣∣
8∑

n=0

αnΨn(r)

〉
=

8∑
n=0

n∑
j=0

〈
Ψj∗(−r)

∣∣Ψn−j(r)
〉
αn

+
7∑

n=0

n∑
j=0

〈
Ψ8−j∗(−r)

∣∣Ψ8−(n−j)(r)
〉
α16−n.

(F.2)

We now note the following.

Proposition F.1. Let χ(r) be a chiral basis function in L2
K,1,1. Then χ∗(−r) = χ(r).

Proof. The proof follows immediately from the explicit forms of the chiral basis functions

in L2
K,1,1 given by (B.1)-(B.2)-(B.3) and the observation that for any k ∈ R2,

(
eik·(−r)

)∗
=

eik·r.

Using Proposition F.1 and the same two observations as in the previous section we have

that the only non-zero terms in (F.2) are those with even powers of α, and that other than

the leading term, terms involving Ψ0(r) do not contribute. The calculation is then similar

to the previous case. For the leading order term we have

〈
Ψ0∗(−r)

∣∣Ψ0(r)
〉

=
〈
χ0̃(r)

∣∣∣χ0̃(r)
〉

= 1.

The only non-zero α2 term is

〈
Ψ1∗(−r)

∣∣Ψ1(r)
〉

=
〈√

3iχq̃1,1(r)
∣∣∣−√3iχq̃1,1(r)

〉
= −3.

The only non-zero α4 term is〈
Ψ2∗(−r)

∣∣Ψ2(r)
〉

=

〈(√
3 + i

2

)
χ−̃b1,1 +

(√
3− i
2

)
χ−̃b2,1

∣∣∣∣∣
(√

3− i
2

)
χ−̃b1,1 +

(√
3 + i

2

)
χ−̃b2,1

〉

=

(√
3− i
2

)2

+

(√
3 + i

2

)2

= 1.

We omit the derivation of the higher terms since the derivations do not require any new

ideas.
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Proposition IV.1 implies that the series expansion of ψα(r) exists up to any order. We

can therefore define infinite series by〈
∞∑
n=0

αnΨn∗(−r)

∣∣∣∣∣
∞∑
n=0

αnΨn(r)

〉
(F.3)

〈
∞∑
n=0

αnΨn(r)

∣∣∣∣∣
∞∑
n=0

αnΨn(r)

〉
. (F.4)

We then have the following.

Proposition F.2. The expansions (II.11) and (II.12) approximate the formal series (F.3)

and (F.4) up to terms of order α10.

Proof. The series agree exactly without any simplifications up to terms of α9. However,

because the even and odd terms in the expansion of ψα(r) are orthogonal (since they lie in

L2
K,1,1,A and L2

K,1,1,B respectively), all terms with odd powers of α vanish in the expansions

(F.3)-(F.4). The series may disagree at order α10 because the infinite series includes terms

arising from inner products of Ψ1(r) and Ψ9(r).
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Appendix G: Supplementary material

We list the chiral basis functions spanning Ξ in Section G 1, list the higher terms in the

expansion of the K point wavefunction ψα ∈ L2
K,1,1 in Section G 2, and derive the TKV

Hamiltonian from the Bistritzer-MacDonald model in Section G 3.

1. Chiral basis functions spanning the subspace Ξ

The chiral basis functions spanning the subspace Ξ are as follows. We note which of the

subspaces of H0 acting on L2
K,1 are spanned by the chiral basis vectors at the right.

χ0̃ 0 eigenspace

χq̃1,±1 = χq̃1+b1,±1 = χq̃1+b2,±1 ±1 eigenspace

χ−̃b1,±1 = χb̃2,±1 = χb̃1−b2,±1

χ−̃b2,±1 = χb̃1,±1 = χb̃2−b1,±1 ±
√

3 eigenspace

χ
˜q1+b1+b2,±1 = χ

˜q1+b1−b2,±1 = χ
˜q1+b2−b1,±1 ±2 eigenspace
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χq̃1−b1,±1 = χ
˜q1+2b2,±1 = χ

˜q1+2b1−b2,±1

χq̃1−b2,±1 = χ
˜q1+2b1,±1 = χ

˜q1+2b2−b1,±1 ±
√

7 eigenspace

χb̃1+b2,±1 = χ
˜b1−2b2,±1 = χ

˜b2−2b1,±1

χ
˜−b1−b2,±1 = χ

˜2b2−b1,±1 = χ
˜2b1−b2,±1 ±3 eigenspace

χ−̃2b1,±1 = χ2̃b2,±1 = χ
˜2b1−2b2,±1

χ−̃2b2,±1 = χ2̃b1,±1 = χ
˜2b2−2b1,±1 ±2

√
3 eigenspace

χ
˜q1+b1−2b2,±1 = χ

˜q1−2b1+2b2,±1 = χ
˜q1+2b1+b2,±1

χ
˜q1+b2−2b1,±1 = χ

˜q1−2b2+2b1,±1 = χ
˜q1+2b2+b1,±1 ±

√
13 eigenspace

χ
˜q1−b1−b2,±1 = χ

˜q1−b1+3b2,±1 = χ
˜q1+3b1−b2,±1 ±4 eigenspace

χ
˜q1−2b1,±1 = χ

˜q1+3b2,±1 = χ
˜q1+3b1−2b2,±1

χ
˜q1−2b2,±1 = χ

˜q1+3b1,±1 = χ
˜q1+3b2−2b1,±1 ±

√
19 eigenspace

χ
˜−3b1+b2,±1 = χ

˜2b1−3b2,±1 = χ
˜b1+2b2,±1

χ
˜−3b1+2b2,±1 = χ

˜b1−3b2,±1 = χ
˜2b1+b2,±1

χ
˜−b1−2b2,±1 = χ

˜−2b1+3b2,±1 = χ
˜3b1−b2,±1

χ
˜−b2−2b1,±1 = χ

˜−2b2+3b1,±1 = χ
˜3b2−b1,±1 ±

√
21 eigenspace

χ
˜q1+2b1+2b2,±1 = χ

˜q1+2b1−3b2,±1 = χ
˜q1−3b1+2b2,±1 ±5 eigenspace

χ−̃3b1,±1 = χ3̃b2,±1 = χ
˜3b1−3b2,±1

χ−̃3b2,±1 = χ3̃b1,±1 = χ
˜3b2−3b1,±1 ±3

√
3 eigenspace

χ
˜q1−3b1+b2,±1 = χ

˜q1+3b1−3b2,±1 = χ
˜q1+b1+3b2,±1

χ
˜q1−3b1+3b2,±1 = χ

˜q1+b1−3b2,±1 ±2
√

7 eigenspace

χ
˜q1−2b1−b2,±1 = χ

˜q1+4b1−2b2,±1 = χ
˜q1−b1+4b2,±1

χ
˜q1−2b1+4b2,±1 = χ

˜q1−b1−2b2,±1 = χ
˜q1+4b1−b2,±1 ±

√
31 eigenspace

χ
˜−4b1+2b2,±1 = χ

˜2b1−4b2,±1 = χ
˜2b1+2b2,±1

χ
˜−2b1−2b2,±1 = χ

˜4b1−2b2,±1 = χ
˜−2b1+4b2,±1 ±6 eigenspace

χ
˜q1−3b1,±1 = χ

˜q1+4b1−3b2,±1 = χ
˜q1+4b2,±1

χ
˜q1−3b1+4b2,±1 = χ

˜q1−3b2,±1 = χ
˜q1+4b1,±1 ±

√
37 eigenspace

χ
˜−4b1+b2,±1 = χ

˜3b1−4b2,±1 = χ
˜b1+3b2,±1

χ
˜−4b1+3b2,±1 = χ

˜b1−4b2,±1 = χ
˜3b1+b2,±1
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χ
˜−3b1−b2,±1 = χ

˜4b1−3b2,±1 = χ
˜−b1+4b2,±1

χ
˜−3b1+4b2,±1 = χ

˜−b1−3b2,±1 = χ
˜4b1−b2,±1 ±

√
39 eigenspace

χ
˜q1−4b1+2b2,±1 = χ

˜q1+3b1−4b2,±1 = χ
˜q1+2b1+3b2,±1

χ
˜q1−4b1+3b2,±1 = χ

˜q1+2b1−4b2,±1 = χ
˜q1+3b1+2b2,±1 ±

√
43 eigenspace

χ−̃4b1,±1 = χ
˜4b1−4b2,±1 = χ4̃b2,±1

χ
˜−4b1+4b2,±1 = χ−̃4b2,±1 = χ4̃b1,±1 ±4

√
3 eigenspace.

We finally add four out of the six modes which span the ±7 eigenspace

χ
˜q1−4b1+b2,±1 = χ

˜q1+4b1−4b2,±1 = χ
˜q1+b1+4b2,±1

χ
˜q1−4b1+4b2,±1 = χ

˜q1+b1−4b2,±1 = χ
˜q1+4b1+b2,±1.

2. Terms Ψ5-Ψ8 in the expansion

Here we list terms Ψ5-Ψ8 in the expansion of ψα in powers of α. The calculations were

assisted by Sympy7.

Ψ5 =
√

21

42

(√
21 + 2

√
7i

7

)
χq̃1−b2,1 +

√
21

42

(
−
√

21 + 2
√

7i

7

)
χq̃1−b1,1

+
2
√

3i

21
χ

˜q1+b1−b2,1 − 4
√

3i

21
χq̃1,1 −

√
3i

42
χ

˜q1−b2−b1,1

+

√
273

546

(
5
√

273 + 4
√

91i

91

)
χ

˜q1+b1−2b2,1 +

√
399

798

(
2
√

399− 11
√

133i

133

)
χ

˜q1−2b2,1

+

√
273

546

(
−5
√

273 + 4
√

91i

91

)
χ

˜q1+b2−2b1,1 +

√
399

798

(
−2
√

399− 11
√

133i

133

)
χ

˜q1−2b1,1,
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Ψ6 =
√

91

42

(
9
√

273− 11
√

91i

182

)
χ−̃b1,1 +

4
√

1729

5187

(
−45
√

5187− 29
√

1729i

3458

)
χ−̃2b1,1

+

√
91

42

(
9
√

273 + 11
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Ψ7 =
√

1032213

10374

(
−97
√

1032213− 562
√

344071i

344071

)
χq̃1−b1,1 −

√
3i

42
χq̃1,1 − 2

√
3i

273
χ

˜q1−b1+b2,1

+

√
3549637

217854

(
−2621

√
3549637 + 1563

√
10648911i

7099274

)
χ

˜q1−2b1,1

+

√
178087

24206

(
−241

√
178087 + 467

√
534261i

356174

)
χ

˜q1−2b1+b2,1

+

√
1032213

10374

(
97
√

1032213− 562
√

344071i

344071

)
χq̃1−b2,1

+

√
178087

24206

(
241
√

178087 + 467
√

534261i

356174

)
χ

˜q1−2b1+2b2,1

+

√
4921

88578

(
−53
√

4921− 75
√

14763i

9842

)
χ

˜q1−3b1,1

+
2
√

247

15561

(
−215

√
247 + 27

√
741i

3458

)
χ

˜q1−3b1+b2,1

+

√
1767

24738

(
−10
√

1767− 169
√

589i

4123

)
χ

˜q1−2b1−b2,1 +
2
√

3i

2793
χ

˜q1−b1−b2,1

+
29
√

3i

19110
χ

˜q1−3b1+2b2,1 +

√
1767

24738

(
10
√

1767− 169
√

589i

4123

)
χ

˜q1−b1−2b2,1

+

√
3549637

217854

(
2621
√

3549637 + 1563
√

10648911i

7099274

)
χ

˜q1−2b2,1

+

√
4921

88578

(
53
√

4921− 75
√

14763i

9842

)
χ

˜q1−3b2,1

+
2
√

247

15561

(
215
√

247 + 27
√

741i

3458

)
χ

˜q1+b1−3b2,1,

45



Existence of Magic Angle for Twisted Bilayer Graphene
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3. Derivation of the TKV Hamiltonian from the Bistritzer-MacDonald model

The Bistritzer-MacDonald model of bilayer graphene, with relative twist angle θ, is as

follows1. Starting from two graphene layers laid exactly on top of each other (i.e., AA

stacking configuration), we rotate one layer (call this layer 1) clockwise by θ
2
, and the other

layer (call this layer 2) counter-clockwise by θ
2
. Making the standard Dirac approximation

for wavefunctions at the Dirac points, we are lead to the following Hamiltonian describing

electrons near to the K-points of the respective layers which are coupled through an “inter-

layer coupling potential” T (r)

H =

−iv0σθ/2 ·∇ T (r)

T †(r) −iv0σ−θ/2 ·∇

 , (G.1)

where σθ = e−i
θ
2
σ3σei

θ
2
σ3 and σ = (σ1, σ2) is the vector of Pauli matrices, acting on

L2(R2;C4) with domain H1(R2;C4). Note that H ignores possible interactions between elec-

trons with quasi-momentum away from the K-points of each layer, e.g., with the K ′-points

of each layer. Since the Fermi level occurs at the Dirac energy and interactions between

K and K ′ points are small for small twist angles6, this is a reasonable simplification. The

Hamiltonian (G.1) acts on wavefunctions

ψ(r) =
(
ψA1 (r), ψB1 (r), ψA2 (r), ψB2 (r)

)
where ψστ (r) represents the electron density near to the K point (in momentum space) on

sublattice σ and on layer τ .

Under quite general assumptions, the inter-layer coupling has the following form6:

T (r) =

 wAA(e−iq1·r + e−iq2·r + e−iq3·r) wAB(e−iq1·r + e−iq2·re−iφ + e−iq3·reiφ)

wAB(e−iq1·r + e−iq2·reiφ + e−iq3·re−iφ) wAA(e−iq1·r + e−iq2·r + e−iq3·r)

 ,

(G.2)

where

q1 = kθ

(
0,−1

)
, q2,3 =

kθ
2

(
±
√

3, 1
)
.

Here kθ = 2kD sin(θ/2) is the distance between the K points of the different layers, and

kD = |K1| = |K2| is the distance from the origin to the K point of either layer. Let φ := 2π
3

,

then q2 = Rφq1 and q3 = Rφq2 where Rφ is the matrix which rotates counterclockwise by

φ. Note that (G.2) is written in such a way as to show clearly which couplings are between
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the A lattices of the layers (proportional to wAA and occuring on the diagonal) and between

the A and B lattices (proportional to wAB and occuring off the diagonal).

a. Translation and rotation symmetries of the Bistritzer-MacDonald model

The operator H essentially describes coupling on the scale of the bilayer moiré pattern.

The moiré lattice vectors are

a1 =
2π

3kθ

(√
3, 1
)
, a2 =

2π

3kθ

(
−
√

3, 1
)
.

We denote the moiré lattice generated by these vectors as Λ. It is straightforward to check

that H commutes with the “phase-shifted” moiré translation operators

τvf(r) := diag(1, 1, eiq1·v, eiq1·v)τ̃vf(r), τ̃vf(r) = f(r + v),

for all v ∈ Λ.

The operator also has rotational symmetry. Let Rφ be the matrix which rotates vectors

by φ counter-clockwise

Rφ =

−1
2
−
√

3
2

√
3

2
−1

2

 .

Then H commutes with the “phase-shifted” rotation operator

R̃f(r) := diag(1, e−iφ, 1, e−iφ)Rf(r), Rf(r) = f(Rφr).

b. Deriving TKV from BM

The first step to deriving Tarnopolsky-Kruchkov-Vishwanath’s chiral model is to set

wAA = 0 in the Bistritzer-MacDonald model. Physically, this assumption is motivated by

the observation that relaxation effects penalize the AA-stacking configuration, so that one

expects11 |wAA| � |wAB|.
With this simplification, conjugatingH → VθHV

†
θ (here † represents the adjoint/Hermitian

transpose) by

Vθ := diag(eiθ/4, e−iθ/4, e−iθ/4, eiθ/4)
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removes the explicit θ dependence of the Hamiltonian (although H still depends on θ through

q1, q2, q3) so that

H =

−iv0σθ/2 · ∇ TAB(r)

T †AB(r) −iv0σ−θ/2 · ∇


where

TAB =

 0 wAB(e−iq1·r + e−iq2·re−iφ + e−iq3·reiφ)

wAB(e−iq1·r + e−iq2·reiφ + e−iq3·re−iφ) 0

 .

Conjugating once more H → ρHρ† by

ρ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


yields

H =

 0 D†

D 0

 , D =

 −2iv0∂ wABU(r)

wABU(−r) −2iv0∂

 ,

where ∂ = 1
2
(∂x + i∂y) and U(r) = e−iq1·r + eiφe−iq2·r + e−iφe−iq3·r.

After changing variables r → kθr and re-scaling the qi → qi
kθ
, i = 1, 2, 3, we derive

H =

 0 D†

D 0

 , D =

 −2iv0kθ∂ wABU(r)

wABU(−r) −2iv0kθ∂

 .

Finally dividing by v0kθ and defining

α :=
wAB
v0kθ

yields the TKV Hamiltonian stated in the main text.
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