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Abstract

A novel forecasting combination and weighted quantile based tail risk forecast-

ing framework is proposed, aiming to reduce the impact of modelling uncertainty in

financial tail risk forecasting. The proposed approach is based on a two-step esti-

mation procedure. The first step involves the combination of Value-at-Risk (VaR)

forecasts at a grid of different quantile levels. A range of parametric and semi-

parametric models is selected as the model universe which is incorporated in the

forecasting combination procedure. The quantile forecasting combination weights

are estimated by optimizing the quantile loss. In the second step, the Expected

Shortfall (ES) is computed as a weighted average of combined quantiles. The quan-

tiles weighting structure used to generate the ES forecast is determined by minimiz-

ing a strictly consistent joint VaR and ES loss function of the Fissler-Ziegel class.

The proposed framework is applied to six stock market indices and its forecasting

performance is compared to each individual model in the model universe and a

simple average approach. The forecasting results based on a number of evaluations

support the proposed framework.
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1 Introduction

Since the introduction by J.P. Morgan in the RiskMetrics model at 1993, Value-at-

Risk (VaR) has been widely employed by financial institutions and corporations around

the world to assist their decision making in relation to capital allocation and risk man-

agement. VaR is a quantitative tool to measure and control financial risk and represents

the market risk as one number. VaR has become a standard measurement for capital

allocation and risk management. Let It be the information available at time t and

Ft(r) = Pr(rt ≤ r|It−1)

be the Cumulative Distribution Function (CDF) of return rt conditional on It−1. We

assume that Ft(.) is strictly increasing and continuous on the real line ℜ. Under this

assumption, the α level VaR (quantile) at time t can be defined as:

Qt,α = F−1
t (α), 0 < α < 1.

However, VaR has been subject to criticism because it cannot measure the ex-

pected loss for violations and is not mathematically coherent, in that it can favor non-

diversification. Expected Shortfall (ES), proposed by Artzner (1997) and Artzner et al.

(1999), gives the expected loss, conditional on returns exceeding a VaR threshold, and

is a coherent measure; thus, in recent years it has become more widely employed for tail

risk measurement and is now favored by the Basel Committee on Banking Supervision.

Within the same framework as above, the α level ES can be shown to be equal to the tail

conditional expectation of rt (see Acerbi and Tasche, 2002, among others):

ESt,α = E(rt|rt ≤ Qt,α, It−1). (1)

The Basel III Accord, which was implemented in 2019, places new emphasis on ES.

Its recommendations for market risk management are illustrated in the 2019 document

Minimum Capital Requirements for Market Risk that says: “ES must be computed on

a daily basis for the bank-wide internal models to determine market risk capital require-

ments. ES must also be computed on a daily basis for each trading desk that uses the
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internal models approach (IMA).”; “In calculating ES, a bank must use a 97.5th per-

centile, one-tailed confidence level” (Basel Committee on Banking Supervision (2019), p.

89). Therefore, in the empirical application of our paper, we focus on one-step-ahead

tail risk forecasting at the α = 2.5% quantile level. In order to simplify notation, in the

remainder, unless differently specified, the following notational conventions are adopted:

ESt,α ≡ ESt and Qt,α ≡ Qt, where α denotes the target 2.5% level for the estimation of

VaR and ES.

Forecasts of VaR and ES can be generated through a variety of different models. Some

of these, such as completely specified GARCH models, are fully parametric since they rely

on the exact specification of the conditional distribution of returns and of the volatility

dynamics. Differently, semi-parametric approaches require specific assumptions on the

risk dynamics but without a return distribution assumption. Semi-parametric models

can be applied to generate forecasts of VaR alone, that is the case of the conditional

autoregressive VaR (CAViaR) models proposed by Engle and Manganelli (2004), or joint

forecasts of the pair (VaR, ES). A joint semi-parametric model that directly estimates both

VaR and ES, referred to here as the ES-CAViaR model, is proposed by Taylor (2019).

Through incorporating an Asymmetric Laplace (AL) distribution with a time-varying

scale, a quasi-likelihood can be built to enable the joint estimation of the conditional VaR

and conditional ES in this framework.

Fissler and Ziegel (2016) develop a family of joint loss functions (or “scoring rules”)

for the associated VaR and ES series that are strictly consistent for the pair (VaR, ES),

that is, they are uniquely minimized by the true VaR and ES series. Applying specific

choices of functions in the class of joint loss functions of Fissler and Ziegel (2016), it can be

shown that such a loss function is exactly the same as the negative of the AL log-likelihood

function presented in Taylor (2019). Patton et al. (2019) propose new dynamic models

for VaR and ES, through adopting the generalized autoregressive score (GAS) framework

(Creal et al. 2013 and Harvey 2013) and utilizing the loss functions in Fissler and Ziegel

(2016).

Alternatively, a variety of semi-parametric approaches to the prediction of VaR and
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ES can be obtained by combining Quasi Maximum Likelihood (QML) estimation of the

volatility coefficients with some non-parametric estimator of the error quantiles. Widely

diffused and effective solutions rely on extreme value theory results, such as in the peaks-

over-threshold approach (Gilli et al., 2006).

Storti and Wang (2021) have recently proposed a new ES estimation and forecasting

framework, referred to as the Weighted Quantile (WQ) approach, where the ES is mod-

elled as weighted average of tail quantiles. The quantiles are produced from the CAViaR

model of Engle and Manganelli (2004) by grid search of a range of equally spaced quan-

tile levels below the target VaR level, i.e., 2.5%. An advantage of this approach is that it

sensibly reduces the impact of model uncertainty in the prediction of ES, that is modelled

according to its natural definition as an average of tail quantiles. However, the specifica-

tion of the optimal dynamic model for each quantile level is still subject to uncertainty.

In order to limit the impact of the overall model uncertainty on the generation of joint

(VaR, ES) forecasts, the WQ framework could actually be extended by replacing fore-

casts of tail quantiles from a single CAViaR model, as in Storti and Wang (2021), with

forecasts combinations from an ensemble of different models of a possibly heterogeneous

nature that includes parametric as well as semi-parametric models. Then the ES forecasts

could be generated as weighted averages of “combined” VaR predictors at different levels,

employing the WQ framework as in Storti and Wang (2021).

The main motivation for this extension of the WQ framework relies on the considera-

tion that, given the values of conditional tail quantiles, the ES is theoretically defined as

the expectation of these quantiles. So, it can be immediately recognized that most of the

modelling uncertainty is related to the modelling of tail quantiles, which will be addressed

in this paper. The only residual uncertainty affecting ES estimation is potentially related

to the identification of the grid of tail quantiles. However, as extensively discussed in

Storti and Wang (2021), the ES estimates obtained through the WQ approach are not

particularly sensitive to the selection of these hyper-parameters.

Aim of this paper is then to propose a novel approach to forecast VaR and ES based

on Forecasting Combination and Weighted Quantile (FC-WQ) techniques. The proposed
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framework can be treated as a generalization of the Weighted Quantile framework pro-

posed by Storti and Wang (2021), and its effectiveness is investigated through applications

to stock market data.

The paper is structured as follows. Section 2 introduces the notation used in the

paper. A review of strictly consistent scoring functions for joint estimation of VaR and

ES is conducted in Section 3. Section 4 presents the the proposed approach and discusses

its technical implementation details. The selected model universe for forecast combination

is shown in Section 5. The results of an empirical application to real stock market data

are presented and discussed in Section 6. Finally, Section 7 concludes.

2 Notation

In this section, to facilitate the understanding of technical details of the proposed frame-

work, we report a summary of the mathematical notation for the main quantities/variables

used in the paper.

• rt: day t to day t− 1 close-to-close log-returns.

• It: information set available at time t.

• Ft(r): CDF of returns conditional on It−1.

• M : number of quantile levels αj (j = 1, . . . ,M) included in the grid used for WQ

estimation. α is used to denote the target 2.5% quantile level for VaR and ES.

• nmod: number of individual models included in the model universe for forecasting

combination.

• T : length of the full-sample returns series. N is the in-sample size and H is the

out-of-sample size, so T = N +H .

• Q̂
(αj)
1:N,i: (N×1) time series of in-sample quantile estimates with in-sample data from

t = 1 to N , generated by model i on quantile level αj , where i = 1, . . . , nmod and

j = 1, . . . ,M .
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• Q̂
(αj)
N+1:N+H,i: (H × 1) time series of out-of-sample one-step-ahead quantile forecasts

generated by model i with out-of-sample data from t = N +1 to N +H on quantile

level αj , where i = 1, . . . , nmod, j = 1, . . . ,M .

• Q̂
(αj)
N+h,i: (1 × 1) h-th one-step-ahead quantile forecast generated by model i on

quantile level αj , where i = 1, . . . , nmod, j = 1, . . . ,M , h = 1, . . . , H .

• Q̂
(αj)
t,i : (1× 1) quantile estimate/forecast at time t generated by model i on level αj,

t = 1, . . . , N +H , i = 1, . . . , nmod, j = 1, . . . ,M .

• Q̂
(U)
1:(N+H): (T×(M×nmod)), quantile universe, matrix of quantile estimates/forecasts

generated by all nmod models included in the model universe, from t = 1 to N +H

on all M quantile levels.

• Q̂
(U,αj)
1:N+H : (T × nmod) matrix of quantile estimates/forecasts generated by all nmod

models included in the model universe, from t = 1 to N +H on quantile level αj,

where j = 1, . . . ,M .

• Q̂
(C,αj)
1:N : (N×1) time series of combined in-sample quantile estimates generated with

in-sample data from t = 1 to N on quantile level αj, where j = 1, . . . ,M .

• Q̂
(C,αj)
N+1:N+H : (H × 1) time series of combined out-of-sample one-step-ahead quantile

forecasts generated with out-of-sample data from t = N + 1 to N +H on quantile

level αj , where j = 1, . . . ,M .

• Q̂
(C,αj)
N+h : (1×1) h-th one-step-ahead combined quantile forecast on quantile level αj.

Q̂
(C,αM )
N+h = Q̂

(C,α)
N+h = Q̂

(C)
N+h is the target α = 2.5% quantile level VaR forecast.

• Q̂
(C,αj)
t : (1 × 1) combined quantile estimate/forecast at time t on quantile level αj,

t = 1, . . . , N +H , j = 1, . . . ,M .

• ÊS
(FC-WQ)

N+h : (1×1) h-th one-step-ahead ES forecast at the target α = 2.5% quantile

level employing the FC-WQ approach, h = 1, . . . , H .
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3 Strictly consistent scoring functions for joint

estimation of VaR and ES

From the main definition of ES provided in Equation (1), it follows that that ESt is

related to Ft(.) by the following integral

ESt =
1

Ft(Qt)

∫ Qt

−∞

rdFt(r) =
1

α

∫ Qt

−∞

rdFt(r), (2)

that, after a simple change of variable, can be rewritten as

ESt =
1

α

∫ α

0

Qt,pdp. (3)

In the literature, several alternative parameterizations of ESt and V aRt have been

proposed. The involved parameters can be consistently estimated from real data by

minimizing appropriately chosen strictly consistent scoring functions. If the interest is

solely in the estimation of VaR, the unknown coefficients in the dynamic specification of

Qt can be estimated by quantile regression mimizing the expected quantile loss function

QL(rt, Qt;α) = (α− It)(rt −Qt)

with It = I(rt < Qt), where I(A) is the indicator function taking value 1 if event A occurs

and 0 otherwise, for t = 1, . . . , N .

Koenker and Machado (1999) show that the quantile regression estimator is equiva-

lent to a maximum likelihood estimator when assuming that the data are conditionally

distributed as an Asymmetric Laplace (AL) with a mode at the quantile of interest. If rt

is the return on day t and Pr(rt < Qt|It−1) = α, then the parameters in the model for

Qt can be estimated by maximizing a quasi-likelihood based on:

p(rt|It−1) =
α(1− α)

σ
exp

(
−(rt −Qt)(α− I(rt < Qt))

σ

)
,

for t = 1, . . . , N and where σ is a scale parameter.

Taylor (2019) extends this result to incorporate the associated ES quantity into the

likelihood expression, noting a link between ESt and a dynamic σt, resulting in the con-

ditional density function:

p(rt|It−1) =
(α− 1)

ESt

exp

(
(rt −Qt)(α− I(rt < Qt))

αESt

)
. (4)
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This allows a likelihood function to be built and maximised, given model expressions for

(Qt, ESt). In Equation (4), rt is the daily return, Qt and ESt denote the α target level

VaR and ES on day t. Taylor (2019) notes that the negative logarithm of the resulting

likelihood function is strictly consistent for (Qt, ESt) considered jointly, i.e., it fits into the

class of jointly consistent scoring functions for VaR and ES developed by Fissler and Ziegel

(2016).

Members of this family are strictly consistent for (Qt, ESt), i.e., their expectations are

uniquely minimized by the true VaR and ES series. The general form of this functional

family is:

St(rt, Qt, ESt) = (It − α)G1(Qt)− ItG1(rt) +G2(ESt)

(
ESt −Qt +

It
α
(Qt − rt)

)

− H(ESt) + a(rt) , (5)

where G1(.) is increasing, G2(.) is strictly increasing and strictly convex, G2 = H
′

and

limx→−∞G2(x) = 0 and a(·) is a real-valued integrable function.

As discussed in Taylor (2019), assuming rt to have zero mean, making the choices:

G1(x) = 0, G2(x) = −1/x, H(x) = −log(−x) and a = 1 − log(1 − α), which satisfy the

required criteria, returns the scoring function:

St(rt, Qt, ESt) = −log

(
α− 1

ESt

)
−

(rt −Qt)(α− I(rt < Qt))

αESt

. (6)

Taylor (2019) refers to Equation (6) as the AL log score which is a strictly consistent

scoring function whose expectation is jointly minimized by the true VaR and ES series.

The negative of Equation (6) equals to the log of Equation (4) and can be treated as the

AL log-likelihood.

4 Proposed framework

4.1 The weighted quantile framework

In the Weighted Quantile (WQ) framework, α level ES forecasts from a given model are

generated in two steps. In step 1, given a grid of quantile levels αj ≤ α, j = 1, . . . ,M , with
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0 < α1 < α2 < . . . < αM = α, an ensemble of M VaR forecasts (Q̂
(αj )
t ) is produced. In

their empirical application Storti and Wang (2021) use CAViaR models for the modelling

of tail quantiles. However, it is worth remarking that any model, parametric or semi-

parametric, could be used to generate VaR forecasts for any αj ≤ α. In principle, even

different models could be used to fit quantiles at different levels. This feature makes the

WQ framework highly flexible and adaptive.

In step 2, ES forecasts are then generated as an affine function of the tail quantile

forecasts at levels αj ≤ α as in Equation (7):

ÊS
(WQ)

t = w0 +

M∑

j=1

wjQ̂
(αj)
t , (7)

where the weights wj, j = 1, . . . ,M , are generated by some flexible and parsimonious

function, such as the Beta function. Namely, for j = 1, . . . ,M , we have wj = w
(

j

M
; a, b

)

with

w(x; a, b) =
xa−1(1− x)b−1Γ(a+ b)

Γ(a)Γ(b)
. (8)

The main reasons for adopting the Beta specification to model the weights behaviour in

Equation (7) are its parsimony, since it only depends on two parameters, and flexibility.

However, as discussed in Storti and Wang (2021), other parameterizations are feasible

and, in particular, for sufficiently low values of M , the weights wj can be easily estimated

individually as “free” parameters.

The intercept w0 is estimated along with the other parameters and allows to correct

biases potentially arising from the left truncation in the chosen grid of tail quantiles, thus

further increasing the flexibility of the WQ approach.

Given first stage VaR forecasts, the unknown coefficients in Equation (7) are estimated

by optimizing some strictly consistent scoring function such as the AL (Taylor, 2019) or

some other strictly consistent scoring function in the Fissler-Ziegel class.
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4.2 A unified framework encompassing Forecast Combination

and Weighted Quantile estimation

It is important to note that model uncertainty mainly affects step 1 of the WQ procedure,

since the estimation formula used in step 2 naturally stems from the mathematical defi-

nition of ES as a function of the tail VaRs. In step 1 of the procedure, different models

could result in being optimal for different quantile levels. On the other hand, in step 2,

the ES is estimated applying its natural definition as expectation of the tail quantiles.

The only residual source of modelling uncertainty is related to the selection of the grid of

tail quantiles used for estimation in Equation (7) and, in particular, to the choice of the

lower bound α1 and of the value of M . The impact of the choice of the lower bound is, by

construction, controlled by the intercept w0 and by the data driven weighting structure of

the ES estimator, as also documented empirically by Storti and Wang (2021). Regarding

the choice of M , given the high computing power routinely available even on standard

personal computers, implementing the WQ approach with a high value of M , that virtu-

ally eliminates the discretization error, is not an issue and could be easily done while still

keeping the computing time at reasonable levels. On the other hand, Storti and Wang

(2021) show, by simulations and applications to real data, that the WQ gives remarkably

good performances even for values of M as low as 3 and that negligible improvements, in

terms of forecasting accuracy, are expected from an increase in M .

These considerations motivate a two-step approach based on a Forecast Combination

and Weighted Quantile (FC-WQ) strategy, that is the main contribution of this paper.

The technical details on the implementation of the two steps of the FC-WQ procedure

are presented as below.

Step 1: Assume that nmod different VaR forecasting methods are available and that each

of them is fitted to generate series of VaR forecasts for a set of strictly increasing quantile

orders αM = [0 < α1, . . . , αM = α]. To be consistent with the standard regulatory

prescription, we will focus on the case α = 2.5%.

Letting N be the length of the in-sample window and T >> N the length of the full-
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sample returns series, for each available model in our model universe, M VaR forecasts

series will be generated from each model

Q̂
(αj )
N+1,i, . . . , Q̂

(αj )
N+H,i (9)

for i = 1, . . . , nmod, j = 1, . . . ,M and where H = T −N is the length of the out-of-sample

period to be used for forecast evaluation. Overall, this will yield a total of M×nmod series

of VaR forecasts. For the i-th model and j-th quantile level, the generic h-th one-step-

ahead forecast Q̂
(αj)
N+h,i (h = 1, . . . , H) will be based on the model fitted to observations

from h to N +h−1. Forecast combination is then used as a technique for reducing model

uncertainty in VaR forecasting, yielding the combined quantile predictor that takes the

general form

Q̂
(C,αj)
t = c0,j +

nmod∑

i=1

ci,jQ̂
(αj )
t,i . (10)

Therefore, in step 1 VaR forecasts from different models are combined to generate a

set of “combined” VaR predictors at different αj levels. In order to overcome the potential

quantile crossing problem, the monotonization method proposed by Chernozhukov et al.

(2010) is employed.

The framework in (10) can be in principle extended to consider non-linear combina-

tion schemes. This possibility is however not investigated in this paper. The proposed

framework is highly flexible and can employ any models that could produce VaR esti-

mates and forecasts, such as GARCH (Bollerslev, 1986), CAViaR, etc. Details of the

model universe will be presented in Section 5.

Step 2: In step 2, employing the WQ approach, the conditional ES at time t is modelled

as the weighted average of the combined quantiles from step 1:

ÊS
(FC-WQ)

t = w0 +
M∑

j=1

wjQ̂
(C,αj)
t , (11)

where the weights wi, i = 1, . . . ,M , are generated by a Beta weight function as in Equation

(8)1.

1Following the implementation of WQ in (Storti and Wang, 2021), we set the number of grid points

equal to M + 1, so that the weight of the αM -quantile is not 0 by construction when using the Beta

weight function to parameterize the weights pattern.
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The combination of joint forecasts of VaR and ES has so far received scarce attention

in the literature. The only contribution in this field is, to the extent of our knowledge,

given by the paper of Taylor (2020) whose approach is however structurally different from

the one that is taken in this paper. First, Taylor (2020) optimizes an AL loss function to

combine joint (VaR,ES) models at a given target level α, while our approach uses richer

information on quantile levels falling in the tail of the distribution below α. Second, our

model universe is composed of VaR models rather than of joint (VaR, ES) models.

The next section focuses on the estimation strategy followed to estimate the ci, for

i = 1, ..., nmod, and the intercept term c0 in step 1, and the (w0,a,b) coefficients in step 2.

4.3 Implementation of the FC-WQ predictor: estimation pro-

cedure

Next, we provide a detailed description of the estimation procedures implemented in the

two steps of the proposed FC-WQ framework. Although, for ease of explanation, we focus

on the standard risk level α = 2.5%, the method can be immediately extended to other

values of α.

Estimation Step 1:

Under step 1, given the target quantile level α = 2.5%, an equally spaced grid of

quantile levels of size M is selected,

αM = [α1, α2, . . . , αM ] ,

where αj = αj−1 + η, with αM = α and η = (αM − α1)/(M − 1), for j = 2, . . . ,M . The

value of the lower bound α1 is selected as 0.005 and M is selected as 3 and 5 in this

paper, according to the findings in Storti and Wang (2021). For example, with M = 3

and α = 2.5%, fixing α1 = 0.005 we have η = 0.01 and the grid of quantile levels as

αM = [0.005, 0.015, 0.025].

Now, for each trial quantile level αj ∈ αM , nmod individual models are employed
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to produce the (N × 1) time series of conditional in-sample quantiles Q̂
(αj )
1:N,i and the 1st

one-step-ahead quantile forecasts Q̂
(αj)
N+1,i, for i = 1, . . . , nmod and j = 1, . . . ,M . The set

of in-sample quantiles for nmod models and at all trial quantile levels, from α1 to αM , is

collected in the N × (M × nmod) array Q̂1:N .

In our paper, a rolling window forecasting scheme is adopted, with T as the length of

the full-sample returns series. Therefore, for each step in the H = T − N out-of-sample

periods (still for each trial quantile level αj ∈ αM), nmod individual models are employed

to produce the time series of one-step-ahead quantile forecasts Q̂
(αj)
N+1,i, . . . , Q̂

(αj)
N+H,i, for

i = 1, . . . , nmod and j = 1, . . . ,M . This set of out-of-sample quantiles for nmod models

at all trial quantile levels, from α1 to αM , is collected in the H × (M × nmod) array

Q̂(N+1):(N+H), here N +H = T .

Concatenating the two matrices Q̂1:N (including in-sample quantile estimates) and

Q̂(N+1):(N+H) (including one-step-ahead out-of-sample quantile forecasts) produces our

quantile universe Q̂
(U)
1:(N+H) which is a matrix of size T × (M × nmod). The component of

Q̂
(U)
1:(N+H) including in-sample VaR estimates and out-of-sample VaR forecasts at level αj

will be denoted as Q̂
(U,αj)

1:(N+H), that is a T × nmod matrix.

The Q̂
(U,αj)

1:(N+H) matrix and the series of returns r1:(N+H) are then given as input to the

estimation procedure for VaR “combination” weights. Namely, as in Giacomini and Komunjer

(2005), for a given VaR level αj and a forecast origin t ≥ N , the coefficients ci,j,t used for

combining VaR forecasts at time t, for i = 0, . . . , nmod (to include the intercept term c0)

can be estimated by minimizing the quantile loss function over a rolling window of fixed

size N

QLt,N(αj, cj,t) =
1

N

N∑

k=1

QL(rt−k, Q̂
(U,αj)
t−k ;αj) (12)

=
1

N

N∑

k=1

(αj − It−k,j)
(
rt−k − X̂

(U,αj)
t−k cj,t

)
,

where cj,t = (c0,j,t, c1,j,t, . . . , cnmod,j,t)
′

, Q̂
(U,αj)
t ≡ Q̂

(U,αj)
t:t (a vector of size 1 × nmod, from

row t in matrix Q̂
(U,αj )

1:(N+H)), X̂
(U,αj)
t =

[
1 Q̂

(U,αj)
t

]
(a vector of size 1 × (nmod + 1)), It,j =

I(rt < X̂
(U,αj)
t cj,t), for each quantile level αj , j = 1, . . . ,M . Analytically, the estimated

coefficients for combining one-step-ahead VaR forecasts with origin at time N + h are
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given by

ĉj,N+h = argmin
cj,N+h

QLN+h,N(αj, cj,N+h). (13)

Combined VaR forecasts are then finally computed through substituting the fitted

ĉj,N+h coefficients in Equation (10)

Q̂
(C,αj)
N+h = X̂

(U,αj)
N+h ĉj,N+h, for h = 1, . . . , H. (14)

Step 1 of the FC-WQ generates an output matrix of combined quantile predictors

Q̂
(C)
1:T of size T ×M . Each column in this matrix is produced from combining conditional

quantile forecasts from nmod models. Rows from 1 to N are computed by estimating the

combination weights on the in-sample quantile estimates from the nmod candidate models

and then using these weights to combine the time series of in-sample quantile estimates.

The same weights, based on in-sample VaR estimates from time 1 to N , are used to

generate row N + 1 of the matrix. Row N + 2 is then generated using weights estimated

on the N × nmod time series composed of in-sample quantile estimates from time 2 to N

(for the first N − 1 rows), and by the formerly generated vector of quantile forecasts at

time N+1 (for the last row). This procedure is iterated, in a rolling window fashion, until

the end of the available sample T . A detailed step by step implementation description is

shown in the Algorithm 1 presented after the estimation step 2.

The values in column M and rows from N+1 to N+H in the matrix Q̂
(C)
1:T contain the

2.5% target level one-step-ahead quantile forecasts Q̂
(C,αM )
(N+1):(N+H), noting αM = α = 2.5%.

Estimation step 2:

In the second stage of our approach, we predict the conditional ES at time N + h

as an affine function of the elements of Q̂
(C)
N+h (row N + h in matrix Q̂

(C)
1:T ). The only

unknown parameters in Equation (11) for calculating ES(FC-WQ) estimator are (w0, a, b).

Conditioning on first stage produced VaR series Q̂
(C)
t (a vector of size 1 × M , row t in

matrix Q̂
(C)
1:T ) and letting θt = (w0,t, at, bt)

′, the values of the coefficients used for generating

the ES forecast at time t can be estimated by minimizing wrt θt the strictly consistent
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scoring function:

S̄t,N (α, θt|ct) =
1

N

N∑

k=1

St−k (α, θt|ct) ,

where

St (α, θt|ct) = −log

(
α− 1

ÊSt

)
−

(rt − Q̂
(C,α)
t )

(
α− I

(
rt ≤ Q̂

(C,α)
t

))

α ÊSt

,

and

ÊSt = X̂∗
twt, (15)

with X̂∗
t = [1 Q̂

(C)
t ] (a vector of size 1× (M+1)) and wt = (w0,t, w1,t, . . . , wM,t)

′. Q̂
(C,α)
t ≡

Q̂
(C,αM )
t is the quantile input at the target α = αM = 2.5% quantile level and produced

from the estimation step 1 (row t column M in matrix Q̂
(C)
1:T ).

The estimated coefficients for combining M one-step-ahead VaR forecasts for time

N + h are obtained as

θ̂N+h = argmin
θN+h

S̄N+h,N (α, θN+h|cN+h) , (16)

where θ̂N+h = (ŵ0,N+h, âN+h, b̂N+h). Minimization of the above AL log-score was imple-

mented using the Quasi-Newton optimizer implemented in the Matlab fminunc function.

The estimated parameters aN+H and bN+H are plugged in the Beta lag function (8)

to produce ŵ1,N+h, . . . , ŵM,N+h. Therefore, the fitted coefficients

ŵN+h = (ŵ0,N+h, ŵ1,N+h, . . . , ŵM,N+h)
′ (17)

are then employed in the weighted quantile framework as below to produce ES forecast

ÊS
(FC-WQ)

N+h = X̂∗
N+hŵN+h, for h = 1, . . . , H. (18)

For the sake of clarity, the detailed step by step description of the outlined forecasting

algorithm is presented in Algorithm 1.
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Algorithm 1 Forecast Combination and Weighted Quantile Algorithm

Input: In-sample quantile estimates Q̂
(αj )
1:N,i (i = 1, . . . , nmod, j = 1, . . . ,M); one-step-

ahead quantile forecasts Q̂
(αj)
N+1:N+h,i (i = 1, . . . , nmod, j = 1, . . . ,M , h = 1, . . . , H).

Output: One-step-ahead combined VaR forecast Q̂
(C,αj)
N+h (j = 1, . . . ,M); α = 2.5% ES

one-step-ahead forecast ÊS
(FC-WQ)

N+h , h = 1, . . . , H .

1: for h = 1, . . . , H do

2: Employ the in-sample quantile estimates Q̂
(αj )
h:N,i (i = 1, . . . , nmod, j = 1, . . . ,M),

one-step-ahead quantile forecasts Q̂
(αj)
N+1:N+h−1,i (i = 1, . . . , nmod, j = 1, . . . ,M) and

Equation (13) to estimate the quantile combination weights ĉj,N+h {In iteration 1,

only in-sample quantile estimates Q̂
(αj)
1:N,i are used};

3: Incorporate Equation (14), estimated weight ĉj,N+h, and h-th one-step-ahead quan-

tile forecasts Q̂
(αj )
N+h,i (i = 1, . . . , nmod, j = 1, . . . ,M) to produce the combined h-th

one-step-ahead quantile (VaR) forecast Q̂
(C,αj)
N+h . Here, Q̂

(C,αM )
N+h = Q̂

(C,α)
N+h is the target

2.5% quantile level h-th one-step-ahead combined VaR forecast;

4: Use the combined quantile estimators Q̂
(C)
h:N+h−1 (calculated from the in-sample

quantiles Q̂
(αj)
h:N,i (i = 1, . . . , nmod, j = 1, . . . ,M), one-step-ahead quantile forecasts

Q̂
(αj)
N+1:N+h−1,i (i = 1, . . . , nmod, j = 1, . . . ,M) and estimated combination weights

ĉj,N+h), to estimate the WQ Beta weights ŵt+h using Equation (17); {In our study

out-of-sample size H is greater than the in-sample size N , thus when h > N in-

sample quantiles are all replaced by one-step-ahead quantile forecasts when calculating

Q̂
(C)
h:N+h−1};

5: Employ Equation (18), estimated WQ Beta weights ŵt+h and combined one-step-

ahead quantile forecasts Q̂
(C)
N+h, to produce the target 2.5% ES one-step-ahead forecast

ÊS
(FC-WQ)

N+h .

6: end for
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5 The model universe

Various types of models, such as parametric and semi-parametric VaR models are

selected as candidate models in the model universe. All these models, except for the

CAViaR (Engle and Manganelli, 2004), can be also used to generate ES forecasts. These

ES forecasts will not be of interest for the implementation of the FC-WQ procedure but

will be later used as benchmarks for ES forecasts comparison. In total, nmod = 8 different

models are selected with details shown below.

GJR-GARCH-t (parametric): the GJR-GARCH model, proposed by Glosten et al.

(1993), extends the parametric GARCH model to capture the well-known leverage effect

(negative returns at time t−1 have a larger impact on the volatility at time t than positive

returns). In addition, to capture the fat-tail property of financial returns, the Student-t

distribution is employed.

EGARCH-t (parametric): as another commonly used parametric model, the EGARCH

model (Nelson, 1991) is also included as a candidate model. The EGARCH model does

not require any positivity restriction on the parameters, since its volatility equation is on

log-variance instead of variance itself. Thus the positivity of the variance is automati-

cally satisfied, which is an important advantage of the framework. Again, the Student-t

distribution is used to describe the potential leptokurtosis of the conditional return dis-

tribution.

POT-GJR-GARCH-t (semi-parametric): we also consider some semi-parametric

models as part of the model universe. The peaks-over-threshold (POT)-GJR-GARCH

combines the GJR-GARCH model with an extreme value theory (McNeil and Frey, 2000)

approach to the fitting of the tail properties of the error distribution. Namely, this is

accomplished by applying the POT approach to the returns standardized by the GJR-

GARCH-t estimated volatility; see Gilli et al. (2006) for details.

POT-EGARCH-t (semi-parametric): this approach is similar to the above described

POT-GJR-GARCH-t with the difference that the POT method is applied to returns

standardized by the EGARCH-t estimated volatility.
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GJR-GARCH-t-HS (semi-parametric): a semi-parametric filtered historical simula-

tion approach, which could potentially produce improved tail risk forecasting results, is

also included. The series of in-sample conditional variance (σ̂t) is estimated based on the

fitted GJR-GARCH-t model. The error quantiles and tail expectations are then estimated

by computing the relevant sample quantiles (q̂(α)) and tail averages (ĉ(α)) of standardized

returns rt/σ̂t. Finally, level-α VaR and ES forecasts are obtained by multiplying q̂(α) and

ĉ(α), respectively, by the forecast σ̂N+1 from the fitted GJR-GARCH model.

EGARCH-t-HS (semi-parametric): this approach employs a similar procedure as the

GJR-GARCH-t-HS, by replacing GJR-GARCH-t with EGARCH-t for volatility estima-

tion and forecasting.

We would like to emphasise that, for the above models which rely on parametric

volatility estimates and forecasts, we do not need to re-estimate the model for each trial

quantile level αj; j = 1, . . . ,M , regarding the VaR and ES calculation. Differently, the

remaining two models rely on direct modelling of VaR dynamics. Therefore, they need to

be re-estimated for each trial quantile level αj.

CAViaR-AS (semi-parametric): the CAViaR models proposed by Engle and Manganelli

(2004) are estimated using quantile regression. Although the CAViaR framework does not

directly produce ES estimates and forecasts, it can be used without any issues in our FC-

WQ approach which only requires the quantile estimates and forecasts from individual

models.

The CAViaR with asymmetric slope (CAViaR-AS) framework which aims to capture

the leverage effect is employed:

Qt = β0 + β1Qt−1 + (β2I[rt−1≥0] + β3I[rt−1<0])|rt−1|. (19)

As documented by Engle and Manganelli (2004), solutions to the optimization of the

quantile loss objective function can be heavily dependent on the chosen initial values. To
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account for this issue, we adopt a multi-start optimization procedure inspired by that

suggested in Engle and Manganelli (2004).

CARE-AS (semi-parametric): a different approach to joint estimation of VaR and

ES is based on the theory of expectiles. The concept of expectile is closely related to the

concept of quantile. The τ level expectile µτ , as defined by Aigner et al. (1976), can be

estimated through minimizing the following Asymmetric Least Squares (ALS) criterion

(Newey and Powell, 1987):

N∑

t=1

|τ − I(rt < µτ )|(rt − µτ)
2 , (20)

no distributional assumption is required to estimate µτ here.

Taylor (2008) proposes a class of semi-parametric models for VaR and ES forecasting,

called Conditional Autoregressive Expectile (CARE) models, with a similar form to the

CAViaR model. Under the CARE framework, the lagged returns drive the expectiles and

model parameters are estimated via minimizing an ALS criterion.

To select the appropriate expectile levels for VaR and ES estimation, implementation

of CARE type models requires a grid search process between 0 and the target quantile

level 2.5%, based on the optimization of the violation rate (VRate, the percentage of

returns exceeding VaR estimates). The size of the expectile level grid search is selected

as 100 in our paper.

The CARE with asymmetric slope (CARE-AS) specification as below is included in

the model universe, where the expectile responds asymmetrically to positive and negative

returns:

µt;τ = β0;τ + β1;τµt−1;τ + (β2;τI[rt−1≥0] + β3;τI[rt−1<0])|rt−1| . (21)
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6 Empirical study

6.1 Data and empirical study design

The daily data, including open, high, low and closing prices, are downloaded from Thom-

son Reuters Tick History and cover the period from the beginning of 2000 to the end of

2015. The closing price is employed to calculate the daily return rt. Data are collected

for six market indices: S&P500 (US), Hang Seng (Hong Kong), FTSE 100 (UK), DAX

(Germany), SMI (Swiss) and ASX200 (Australia).

As described in Section 4.3, a rolling window with fixed in-sample size is employed for

estimation and to produce each one-step-ahead forecast in the forecasting period. Table

1 reports the in-sample size for each series, which differs due to different non-trading days

occurring in each market.

The forecasting study incorporates a 8 year out-of-sample period, with the start date

of the out-of-sample chosen as January 2008 (to include the 2008 GFC as part of the out-

of-sample period) and out-of-sample size H as 2000. Therefore, the end of the forecasting

period is around the end of 2015, with small differences among different markets due to

calendar effects.

Employing the proposed FC-WQ framework, both daily one-step-ahead VaR and ES

forecasts are produced for the returns on the six indices. VaR forecasts are produced

for the whole range of selected trial quantile values defined in Section 4.3 while, for ES

forecasting, α = 2.5% is chosen as target level, as recommended by Basel Committee on

Banking Supervision (2019).

For comparison, VaR and ES forecasts are also generated from each individual model

included in the model universe, as presented in Section 5. Since the CAViaR-AS model

cannot directly produce the ES forecasts, the ES-CAViaR models of Taylor (2019) are

also included in the ES study, again employing the CAViaR-AS models as the specifica-

tion of the quantile regression component. Two VaR to ES relationships, additive and

multiplicative, are employed for the ES-CAViaR framework. We name the models as
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ES-CAViaR-Add-AS and ES-CAViaR-Mult-AS, respectively. Then, to assist the opti-

mization in the estimation of ES-CAViaR models, the initial values of the parameters of

the ES component are also selected by means of an additional random sampling procedure,

following Taylor (2019).

6.2 VaR forecasts evaluation

One-step-ahead forecasts of VaR and ES are generated for each day in the forecasting

period for each data series. This section focuses on the evaluation of VaR forecasts. For

brevity, we only report results for the 2.5% quantile level. However, we would like to

emphasize that the adopted quantile forecast combination approach allows to reduce the

impact of model uncertainty, potentially improving the quantile estimation and forecasting

accuracy, for each trial quantile level, i.e., α1, α2, . . . , αM . This is expected to positively

affect the second step ES estimation and forecast (details to be shown in the following

section).

First, the VaR violation rate (VRate) is employed to initially assess VaR forecasting

accuracy. VRate is simply the proportion of returns that exceed the forecasted VaR in

the forecasting period, as in Equation (22)

VRate =
1

H

N+H∑

t=N+1

I(rt < VaRt) , (22)

where N is the in-sample size and H = 2000 is the out-of-sample size. Models with a

VRate closest to the nominal quantile level α = 2.5% are preferred, or equivalently VRate
α

closest to 1.

Table 1 summarizes the VRate
α

(the closer to 1 the better) at the 2.5% quantiles over

the six indices for all competing models. The “MAD” column shows the Mean Absolute

Deviation, employing 2.5% as the target VRate, across the six indices. The “Avg Rank”

column is the average of the ranks, across indices, based on the absolute value of the

deviation of each VRate from the 2.5% target level. Box indicates the best model, while

dashed box indicates the 2nd best model.
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Overall, the proposed FC-WQ frameworks produce favourable VRate results, com-

pared with the other 8 competing individual models in the model universe. The “MAD”

value from FC-WQ is 0.0028 which is the smallest. The EGARCH-t-HS is ranked the

best, followed by FC-WQ, GJR-GARCH-t-HS and CARE-AS.

Here, we would like to mention that only the first step (quantile forecast combination)

in the proposed FC-WQ framework would affect the VaR forecasting performance. The

second step (weighted combined quantile of each trial quantile level) will determine the

ES forecasting performance which will be presented in the following section.

Table 1: VRate
α

across the six markets.
Model S&P500 HangSeng FTSE DAX SMI ASX200 Avg Rank MAD

GJR-GARCH-t 1.68 1.26 1.50 1.68 1.36 1.58 8.67 0.0128

EGARCH-t 1.62 1.24 1.50 1.64 1.48 1.50 8.17 0.0124

POT-GJR-GARCH-t 1.30 1.08 1.06 1.26 1.12 1.14 4.67 0.0040

POT-EGARCH-t 1.26 1.10 1.08 1.18 1.18 1.10 3.83 0.0038

GJR-GARCH-t-HS 1.30 1.06 1.04 1.26 1.10 1.10 3.33 0.0036

EGARCH-t-HS 1.26 1.10 1.06 1.16 1.16 1.10 3.17 0.0035

CAViaR-AS 1.18 1.00 1.08 1.28 1.28 1.10 4.00 0.0038

CARE-AS 1.08 1.00 1.16 1.24 1.24 0.98 3.33 0.0031

FC-WQ 1.04 0.98 1.00 1.18 1.32 0.90 3.33 0.0028

Out-of-sample H 2000 2000 2000 2000 2000 2000

In-sample N 1905 1890 1943 1936 1930 1871

Note: Box indicates the favoured model and dashed box indicates the 2nd ranked model based

on the average rank and MAD.

The average value of the quantile loss over the out-of-sample period is then used

to compare the VaR forecast accuracy of competing models. This choice is motivated

considering that the standard quantile loss function is strictly consistent, i.e., the expected

loss is a minimum at the true quantile series. The quantile loss function is the one that is

employed to optimize the quantile forecast combination weights, as described in Section

4.3. Thus, the most accurate VaR forecasting model is expected produce the minimized

aggregated quantile loss function, given as in Equation (23):

N+H∑

t=N+1

(α− I(rt < Qt))(rt −Qt) , (23)

where N is the in-sample size and H = 2000 is the out-of-sample size. Q̂N+1, . . . , Q̂N+H

is a series of quantile forecasts at level α = 2.5% for the observations rN+1, . . . , rN+H.
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The values of the out-of-sample quantile loss are presented in Table 2. The average

loss is included in the “Avg Loss” column. The average rank based on ranks of quantile

loss across six markets is calculated and shown in the “Avg Rank” column. Box indicates

the favoured model and dashed box indicates the 2nd ranked model based on the average

loss and rank.

Based on the quantile loss results, we can see that the proposed FC-WQ framework

is characterized by very competitive performances, with the smallest average quantile loss

value 164.2. With respect to the average ranking, the EGARCH-t-HS ranks the best,

closely followed by the FC-WQ and POT-EGARCH-t approaches. The GJR-GARCH-t

and EGARCH-t are in general least preferred, with the average rank as 7.83 and 6.83

respectively. Although GJR-GARCH-t and EGARCH-t are included in the forecasting

combination process, the FC-WQ is still capable of producing competitive quantile fore-

casting results, which lends evidence on the combination weights estimation scheme, as

described in Section 4.3.

Table 2: 2.5% quantile loss function values across the markets.
Model S&P500 HangSeng FTSE DAX SMI ASX200 Avg Loss Avg Rank

GJR-GARCH-t 162.9 196.4 156.4 182.9 159.4 141.7 166.6 7.83

EGARCH-t 166.9 194.9 155.2 181.6 159.3 140.3 166.4 6.83

POT-GJR-GARCH-t 161.1 195.0 154.5 180.7 159.3 139.8 165.1 5.50

POT-EGARCH-t 163.8 193.7 153.0 179.5 157.5 138.4 164.3 3.17

GJR-GARCH-t-HS 161.0 194.9 154.5 180.7 159.3 139.8 165.0 4.83

EGARCH-t-HS 163.7 193.6 153.0 179.5 157.5 138.4 164.3 2.50

CAViaR-AS 167.7 190.6 153.1 179.2 159.0 139.9 164.9 3.83

CARE-AS 168.3 189.7 154.7 180.8 163.6 142.4 166.6 6.83

FC-WQ 160.7 191.4 155.1 180.2 159.3 138.5 164.2 3.67

Note:Box indicates the favoured model and dashed box indicates the 2nd ranked model based

on the average loss and rank.

In addition, for S&P 500 the quantile loss values for each time step across the whole

forecasting period are visualised in Figure 1. Namely, EGARCH-t, EGARCH-t-HS,

CAViaR-AS and FC-WQ are compared. The forecast combination is evidently char-

acterized by more “stabilized” quantile loss values. For example, between 2009 and 2012,

the quantile loss from the forecast combination approach is consistently smaller than that

of the competing models, including the EGARCH-t-HS and CAViaR-AS which have good

quantile loss performance as shown in Table 2. Therefore, the proposed forecast combi-

22



nation not only allows obtaining an improved predictor via combining different functional

forms, i.e., parametric and semi-parametric models, but also produces more robust and

stabilized quantile forecasts through the quantile combination process. Such time stabil-

ity argument is consistent with the aim of forecasting combinations that is to account for

model uncertainty and to provide a forecasting performance that is optimal (or close to

being optimal) and stable across time, which is supported by the results in Table 1, 2 and

Figure 1.

2009 2010 2011 2012 2013 2014 2015 2016
-10

0

10
S&P500 return

2009 2010 2011 2012 2013 2014 2015 2016
0

5 EGARCH-t

2009 2010 2011 2012 2013 2014 2015 2016
0

5 EGARCH-t-HS

2009 2010 2011 2012 2013 2014 2015 2016
0

5 CAViaR-AS

2009 2010 2011 2012 2013 2014 2015 2016
0

5 FC-WQ

Figure 1: S&P500 out-of-sample quantile loss value from EGARCH-t, EGARCH-t-HS,

CAViaR-AS and FC-WQ.

Lastly, to further assess the validity of the quantile forecast combination, we have em-

ployed the VaR calibration tests defined in Patton et al. (2019), with the code developed

by the authors. The test employs a MZ type regression of generalized VaR residuals on

fitted VaR and lagged generalized residuals. Regression coefficients are fitted by Ordinary

Least Squares (OLS) and standard errors are computed by a Newey-West estimator with
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20 lags. The p-values of each data set and model produced from the test are presented

in Table 3. In addition, on the 10% significance level, the column “Total” shows the

total number of rejections (p-value less than 10%) for each model. Regarding the results,

CAViaR-AS receives the least number of rejections and is closely followed by several mod-

els, including the proposed FC-WQ, which are rejected twice. The GJR-GARCH-t and

EGARCH-t models are the most frequently rejected by the test.

Table 3: 2.5% VaR calibration test at the 10% significance level.
Model S&P500 HangSeng FTSE DAX SMI ASX200 Total

GJR-GARCH-t 0.003 0.494 0.010 0.001 0.025 0.002 5

EGARCH-t 0.056 0.576 0.018 0.006 0.002 0.024 5

POT-GJR-GARCH-t 0.255 0.948 0.750 0.037 0.000 0.000 3

POT-EGARCH-t 0.740 0.936 0.757 0.639 0.059 0.000 2

GJR-GARCH-t-HS 0.255 0.953 0.807 0.037 0.000 0.000 3

EGARCH-t-HS 0.740 0.936 0.838 0.706 0.074 0.000 2

CAViaR-AS 0.816 0.849 0.796 0.501 0.106 0 1

CARE-AS 0.910 0.610 0.734 0.605 0.097 0.000 2

FC-WQ 0.932 0.682 0.873 0.738 0.069 0.000 2

Note: Box indicates the favoured model and dashed box indicates the 2nd ranked model based

on the total number of rejections on the 10% significance level. p-values are presented for each

index and each model.

6.3 ES forecasts evaluation

We remind that a key feature of the proposed framework is that, for each trial quantile

level, the combined VaR predictor can potentially have a different structure in terms of in-

cluded models and assigned weights. This flexibility can only expected to be beneficial for

the ES forecasting performance. Also, no specific assumptions are formulated on relation-

ship linking VaR and ES but, consistently with its theoretical definition, ES is computed

as a weighted average of combined VaR forecasts. This design naturally yields a combined

ES predictor that has been purged of the impact of model uncertainty. Due to these fea-

tures, it is expected that, compared to single forecasting models, the FC-WQ framework

could be characterized by an improved and more stable ES forecasting performance. Aim

of this section is to provide empirical evidence supporting this hypothesis.

In the FC-WQ framework, we consider M = 3 and M = 5 quantile trial levels for
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the weighted quantile process, with the corresponding framework named as FC-WQ-M ,

M = 3, 5. Storti and Wang (2021) show that the weighted quantile framework is not

sensitive to the choice of M , meaning a small value of M , i.e., 3 or 5, can be chosen in

real data applications to reduce the computation requirement.

To evaluate the FC-WQ framework more comprehensively, we assess the ability of the

different models under comparison to forecast VaR and ES jointly, employing the joint

loss values in Equation (6). We use this to jointly compare the VaR and ES forecasts

from all models, because the AL log-score in Equation (6) is a strictly consistent scoring

function that is jointly minimized by the true VaR and ES series.

First, Figure 2 shows the S&P500 ES forecasts from EGARCH-t, EGARCH-t-HS,

ES-CAViaR-Mult-AS and FC-WQ-3. To make a more in-depth comparison of these mod-

els, Figure 3 presents the S&P 500 AL joint loss (log-score) values for each time step

across the out-of-sample period. In general, we have a consistent story as in the quantile

loss plot in Figure 1. The ES forecasts are again characterized by more stabilized and

smaller joint loss values than the ones from the competing individual models, such as

EGARCH-t, EGARCH-t-HS and ES-CAViaR-Mult-AS. These regularities are also con-

sistently observed across different data sets.

In addition, we also test the ES forecasting performance via incorporating the Simple

Average of the combined quantile forecasts (FC-SA), as in below Equation (24). The

value of M is also selected as 3 and 5 respectively.

ES
(FC-SA)
t =

1

M

M∑

j=1

Q̂
(C,αj)
t . (24)

Table 4 reports, for each model and data series, the value of the loss function in

Equation (6) aggregated over the out-of-sample period: S =
∑N+H

t=N+1 St, with H = 2000.

In general, the proposed FC-WQ models produce on average the smallest joint loss, i.e,

4257.6 for FC-WQ-3 and 4257.8 for FC-WQ-5, and are best ranked (together with ES-

CAViaR-Mult-AS). The results of FC-WQ-3 and FC-WQ-5 are quite close to each other,

which is consistent with the observations in Storti and Wang (2021) and means the choice
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Figure 2: S&P500 ES forecasts from EGARCH-t, EGARCH-t-HS, ES-CAViaR-Mult-AS

and FC-WQ-3.

of M = 3 can already produce ES forecast with good accuracy. The FC-SA framework

produces joint loss values which are consistently larger than that from the corresponding

FC-WQ, i.e., comparing FC-SA-M to FC-WQ-M (M = 3, 5). This lends evidence on the

effectiveness of employing the Beta weighting scheme on the combined quantile forecasts.

Lastly, GJR-GARCH-t and EGARCH-t, which are included in the model universe of the

FC-WQ framework, are least preferred, with average rank as 12 and 11.5 respectively.

Lastly, similar to the VaR calibration test, following Patton et al. (2019) an ES

regression-based calibration test is also conducted with results shown in Table 5. Overall,

the observations are similar to that of the VaR calibration test. On the 10% signifi-

cance level, the proposed framework FC-WQ together with CARE-AS are least likely

to be rejected by the test, compared with other competing models. The ES-CAViaR-

Mult-AS model produces top ranked joint loss results, while it is rejected on 4 markets

via the calibration test. The GJR-GARCH-t and EGARCH-t are rejected for all six

data sets. However, the proposed FC-WQ framework which includes the GJR-GARCH-t
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Figure 3: S&P500 out-of-sample VaR and ES AL joint loss from EGARCH-t, EGARCH-

t-HS, ES-CAViaR-Mult-AS and FC-WQ-3.
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Table 4: 2.5% VaR and 2.5% ES joint loss function values across the markets.
Model S&P500 HangSeng FTSE DAX SMI ASX200 Avg Loss Avg Rank

GJR-GARCH-t 4239.2 4601.7 4183.8 4601.4 4253.6 4009.1 4314.8 12.00

EGARCH-t 4290.6 4586.9 4192.1 4585.2 4245.2 3990.4 4315.1 11.50

POT-GJR-GARCH-t 4175.3 4587.6 4131.4 4557.7 4215.5 3963.5 4271.8 7.83

POT-EGARCH-t 4226.2 4575.6 4146.7 4543.2 4185.6 3954.6 4272.0 6.33

GJR-GARCH-t-HS 4174.1 4587.7 4131.3 4556.6 4216.0 3962.5 4271.3 7.50

EGARCH-t-HS 4225.1 4575.0 4146.9 4542.8 4185.5 3953.9 4271.5 5.67

CARE-AS 4276.8 4550.7 4160.6 4514.8 4252.5 4024.9 4296.7 8.33

ES-CAViaR-Add-AS 4242.3 4551.9 4131.8 4506.8 4192.1 3992.9 4269.6 5.33

ES-CAViaR-Mult-AS 4242.3 4564.2 4117.8 4509.1 4188.3 3977.4 4266.5 4.83

FC-SA-3 4157.7 4572.8 4138.7 4551.7 4211.5 3966.8 4266.5 6.83

FC-SA-5 4149.7 4568.1 4182.3 4534.7 4213.1 3946.6 4265.8 5.67

FC-WQ-3 4152.9 4568.1 4136.5 4537.1 4193.7 3957.5 4257.6 4.83

FC-WQ-5 4141.9 4565.6 4174.6 4520.8 4198.6 3945.6 4257.8 4.33

Note:Box indicates the favoured model and dashed box indicates the 2nd ranked model based

on the average loss and rank.

and EGARCH-t in its model universe can still produce competitive ES forecasts via the

quantile forecast combination and weighting scheme, which again lends support on its

effectiveness.

Table 5: 2.5% ES calibration test at the 10% significance level.
Model S&P500 HangSeng FTSE DAX SMI ASX200 Total

GJR-GARCH-t 0.000 0.037 0.000 0.000 0.000 0.000 6

EGARCH-t 0.003 0.066 0.000 0.000 0.000 0.001 6

POT-GJR-GARCH-t 0.067 0.368 0.135 0.003 0.000 0.000 4

POT-EGARCH-t 0.201 0.338 0.161 0.079 0.008 0.000 3

GJR-GARCH-t-HS 0.069 0.420 0.175 0.003 0.000 0.000 4

EGARCH-t-HS 0.205 0.345 0.207 0.091 0.011 0.000 3

CARE-AS 0.508 0.473 0.122 0.180 0.009 0.000 2

ES-CAViaR-Add-AS 0.241 0.725 0.123 0.059 0.014 0.000 3

ES-CAViaR-Mult-AS 0.298 0.696 0.086 0.055 0.018 0.000 4

FC-SA-3 0.458 0.541 0.311 0.131 0.007 0 2

FC-SA-5 0.729 0.506 0.343 0.170 0.004 0 2

FC-WQ-3 0.459 0.553 0.306 0.119 0.009 0.000 2

FC-WQ-5 0.712 0.450 0.344 0.166 0.006 0.000 2

Note: Box indicates the favoured model and dashed box indicates the 2nd ranked model based

on the total number of rejections on the 10% significance level. p-values are presented for each

index and each model.

7 Conclusion

In this paper, in order to reduce the impact of model uncertainty in tail risk forecast-
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ing, we propose an innovative framework based on a forecast combination and weighted

quantile (FC-WQ) approach that extends the WQ approach in Storti and Wang (2021).

The first step forecasting combination procedure combines quantile forecasts from all VaR

models included in the model universe, on a grid of quantile levels. Then, the combined

quantiles forecasts are employed as input to a quantile weighting scheme which is used

to produce ES forecasts. The coefficients involved in the two steps of the procedure are

estimated via optimizing the quantile loss and a strictly consistent joint VaR and ES loss,

respectively. The selected model universe consists of parametric and semi-parametric

models.

Compared to the VaR & ES forecasting combination approach in Taylor (2020), which

combines “pairs” of VaR & ES forecasting from various models, our approach breaks the

tie between the VaR and ES model, and only requires VaR forecasts from individual VaR

models. Therefore, we implicitly consider a greater variety of functional forms without

making the number of parameters explode.

In a comprehensive empirical study, improvements in the out-of-sample forecasting

of tail risks, especially ES, are observed, compared to each individual model in the model

universe and a simple average approach. A further advantage of the proposed forecast-

ing combination and weighted quantile framework is its attitude to return “stabilized”

quantile and joint loss values.

The proposed framework can be extended in a number of directions. First, other

quantile forecasting combination schemes, i.e., considering a multivariate quantile frame-

work in the spirit of White et al. (2010), could be considered as alternatives. Second, the

first step quantile forecasting combination approach could be replaced by a cross valida-

tion approach which selects one model for each quantile level in the chosen grid. Third,

a greater range of models, such as the ones incorporating high frequency based realized

measures, could be included in the model universe. All these extensions are currently left

for future investigation.
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