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Abstract. Timing of millisecond pulsars has long been used as an exquisitely precise
tool for testing the building blocks of general relativity, including the strong equivalence
principle and Lorentz symmetry. Observations of binary systems involving at least one
millisecond pulsar have been used to place bounds on the parameters of Einstein-
æther theory, a gravitational theory that violates Lorentz symmetry at low energies
via a preferred and dynamical time threading of the spacetime manifold. However,
these studies did not cover the region of parameter space that is still viable after the
recent bounds on the speed of gravitational waves from GW170817/GRB170817A. The
restricted coverage was due to limitations in the methods used to compute the pulsar
“sensitivities”, which parameterize violations of the strong-equivalence principle in these
systems. We extend here the calculation of pulsar sensitivities to the parameter space
of Einstein-æther theory that remains viable after GW170817/GRB170817A. We show
that observations of the damping of the period of quasi-circular binary pulsars and of
the triple system PSR J0337+1715 further constrain the viable parameter space by
about an order of magnitude over previous constraints.
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1. Introduction

Lorentz symmetry has been the foundation of the magnificent edifice of theoretical
physics for more than a century, playing a central role in special and general relativity
(GR), as well as in the quantum theory of fields. Because of its special status,
Lorentz invariance has been tested to exquisite precision in the matter sector via
particle physics experiments [48, 49, 53, 44]. More recently, this experimental program
has been extended to the matter-gravity [47], dark matter [16, 13], and pure-gravity
sectors [41, 52], where bounds on Lorentz violations (LVs) have been historically looser
(because of the intrinsic weakness of the gravitational interaction).

Compelling theoretical reasons to seriously consider the possibility of LVs in the purely
gravitational sector were provided by the realization that they could generate a better
behavior in the ultraviolet (UV) limit. In particular, P. Hořava [38] showed that
by allowing for a non-isotropic scaling between space and time, one can construct
a theory that is power-counting renormalizable in the UV. Renormalizability beyond
power counting (i.e. pertubative renormalizability) in special (“projectable”) versions of
Hořava gravity has also been proven [10].

The low-energy limit of Hořava gravity reduces to “khronometric theory” [15, 42], which
consists of GR plus an additional hypersurface-orthogonal and timelike vector field,
often referred to as the “æther”. Because this vector field is hypersurface orthogonal,
it selects a preferred spacetime foliation, which makes LVs manifest. A more general
boost-violating low-energy gravitational theory, however, can be obtained by relaxing
the assumption that the æther be hypersurface-orthogonal, in which case it selects a
preferred time threading of the spacetime rather than a preferred foliation. The resulting
theory is known as Einstein-æther theory [45].

Despite allowing for an improved UV behavior, LVs in gravity face long-standing
experimental challenges, particularly when it comes to their percolation into the matter
sector, where particle physics experiments are in excellent agreement with Lorentz
symmetry. While some degree of percolation is inevitable, because of the coupling
between matter and gravity, mechanisms suppressing it have been put forward, including
suppression by a large energy scale [57], or the effective emergence of Lorentz symmetry
at low energies as a result of renormalization group flows [23, 12, 11] or accidental
symmetries [37].

At the same time, purely gravitational bounds on LVs are becoming increasingly
compelling. The parameters (“coupling constants”) of both Einstein-æther and
khronometric theory have been historically constrained by theoretical considerations
(absence of ghosts and gradient instabilities [18, 40, 36], well-posedness of the
Cauchy problem [59]), by the absence of vacuum Cherenkov cascades in cosmic-
ray experiments [29]), by solar-system tests [66, 33, 18, 19, 54], by observations of
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the primordial abundances of elements from Big-Bang nucleosynthesis [22], by other
cosmological tests [8], and by precision timing of binary pulsars (where LVs generically
predict violations of the strong equivalence principle) [32, 31, 70, 71, 9]. More recently,
the coincident detection [3, 2] of gravitational waves (GW170817) and gamma rays
(GRB170817A) emitted by the coalescence of two neutron stars and the subsequent
kilonova explosion has allowed extremely strong constraints on the propagation speed
of gravitational waves, which must equal that of light to within‡ 10−15 [1], which in turn
places even more stringent bounds on the couplings of both theories [30, 58, 59, 55].

The bounds from the coincident GW170817/GRB170817A observations force us to
rethink the parameter spaces of both Einstein-æther and khronometric theory, as the
only currently allowed regions appear to be ones that were previously thought to be
of little interest, and which were not explored extensively. In the case of khronometric
theory, Refs. [58, 9] found that the couplings that remain viable after GW170817 and
GRB170817 produce exactly no deviations away from the predictions of GR, not only
in the solar system, but also in binary systems of compact objects, be they black holes
(BHs) or neutron stars (NSs), to leading post-Newtonian (PN) order. Reference [34]
extended this result to the quasinormal modes of spherically symmetric black holes and
to fully non-linear (spherical) gravitational collapse, where again no deviations from
the GR predictions are found. It would therefore seem that the most promising avenue
to further test khronometric theory may be provided by cosmological observables (e.g.
Big-Bang nucleosynthesis abundances or CMB physics), where the viable couplings do
produce non-vanishing deviations away from the GR phenomenology.

Like for khronometric theory, the parameter space where detailed predictions for
isolated/binary pulsars were obtained in Einstein-æther theory [70, 71] does not include
the region singled out by the combination of the GW170817/GRB170817A bound and
existing solar-system constraints (see Ref. [59] for a discussion). The goal of this paper
is therefore to extend the previous analysis of binary/isolated-pulsar data by some of
us [70, 71] to this region of parameter space. This will require a significant modification
of the formalism that Refs. [70, 71] utilized to calculate pulsar “sensitivities”, i.e. the
parameters that quantify violations of the strong-equivalence principle in these systems.
Moreover, we will extend our analysis to include additional data over that considered
in Refs. [70, 71], namely the triple system PSR J0337+1715 [7]. Overall, we find that
observations of the damping of the period of quasi-circular binary pulsars, and that of
the triple system PSR J0337+1715, reduce the viable parameter space of Einstein-æther
theory by about an order of magnitude over previous constraints.

We will also amend an error (originally pointed out in Ref. [67]) in the calculation of
the strong-field preferred-frame parameters α̂1 and α̂2 for isolated pulsars, which were
presented in Refs. [70, 71]. While we have checked that this error does not impact the
bounds presented in Refs. [70, 71], we present in Appendix A a detailed derivation of

‡ See also [24] for looser bounds coming from mergers of black holes.
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α̂1 and α̂2 for possible future applications, also correcting a few typos present in the
original calculation of Ref. [67].

This paper is organized as follows. In Sec. 2 we give a succinct introduction to Einstein–
æther theory, including the modified field equations and the current observational
bounds on the coupling constants. In Sec. 3 we introduce the concept of stellar
sensitivities as parameters regulating violations of the strong equivalence principle.
Solutions describing slowly moving stars are derived in Sec. 4, and they are used in Sec. 5
to compute the sensitivities. Section 6 uses the sensitivities to obtain the constraints on
Einstein–æther theory resulting from observations of binary and triple pulsar systems.
We summarize our conclusions in Sec. 7. Appendix A contains a calculation of the
strong-field preferred-frame parameters α̂1 and α̂2 in Einstein-æther theory, fixing an
oversight in [70], which was pointed out by [67], and correcting also a few typos present
in [67] itself. We will adopt units where c = 1 and a signature + − −−, in accordance
with most of the literature on Einstein-æther theory.

2. Einstein æther theory

In order to break boost (and thus Lorentz) symmetry, Einstein-æther theory introduces
a dynamical threading of the spacetime by a unit-norm, time-like vector field U . This
vector field, often referred to as the æther, physically represents a preferred “time
direction” at each spacetime event. Requiring the action to also include the usual
spin-2 graviton of GR, to be quadratic in the æther derivatives, and to feature no direct
coupling between the matter and the æther (so as to enforce the weak equivalence
principle, i.e. the universality of free fall, and the absence of matter LVs at tree level),
one obtains the action [45, 43]

S = − 1

16πG

∫ [
R +

1

3
cθθ

2 + cσσµνσ
µν + cωωµνω

µν + caAµA
µ

+ λ(UµUµ − 1)
]√
−g d4x+ Smat(ψ, gµν), (1)

where R is the four-dimensional Ricci scalar, g the determinant of the metric, G
the bare gravitational constant (related to the value GN measured locally by GN =

G/(1 − ca/2) [22, 41]), ψ collectively denotes the matter degrees of freedom, λ is a
Lagrange multiplier enforcing the æther’s unit norm, cθ, cσ, cω and ca are dimensionless
constants§, and we have decomposed the æther congruence into the expansion θ, the

§ Note that much of the earlier literature on Einstein-æther theory uses a different set of coupling
constants ci (i = 1, . . . , 4), which are related to our parameters by c1 = (cω + cσ)/2, c2 = (cθ − cσ)/3,
c3 = (cσ − cω)/2 and c4 = ca − (cσ + cω)/2.
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shear σµν , the vorticity ωµν and the acceleration Aµ as follows:

Aµ = U ν∇νU
µ , (2)

θ = ∇µU
µ , (3)

σµν = ∇(νUµ) + A(µUν) −
1

3
θhµν , (4)

ωµν = ∇[νUµ] + A[µUν] , (5)

with hµν = gµν − UµUν the projector onto the hyperspace orthogonal to U .

By varying the action with respect to the metric, the æther and the Lagrange multiplier,
and by eliminating the latter from the equations, one obtains the generalized Einstein
equations

Eαβ ≡ Gαβ − TÆ
αβ − 8πGTmat

αβ = 0 (6)

and the æther equations

Æµ =

[
∇αJ

αν −
(
ca −

cσ + cω
2

)
Aα∇νUα

]
hµν = 0, (7)

where Gαβ is the Einstein tensor, the æther stress-energy tensor is

TÆ
αβ = ∇µ

(
J(α

µUβ) − Jµ(αUβ) − J(αβ)Uµ
)

+
cω + cσ

2
[(∇µUα)(∇µUβ)− (∇αUµ)(∇βU

µ)]

+ Uν(∇µJ
µν)UαUβ −

(
ca −

cσ + cω
2

)[
A2UαUβ − AαAβ

]
+

1

2
Mσρ

µν∇σU
µ∇ρU

νgαβ,

(8)

with

Jαµ ≡Mαβ
µν∇βU

ν ,

Mαβ
µν =

(
cσ + cω

2

)
hαβgµν +

(
cθ − cσ

3

)
δαµδ

β
ν +

(
cσ − cω

2

)
δαν δ

β
µ + caU

αUβgµν ,

and the matter stress-energy tensor is defined as usual by

Tαβmat ≡ −
2√
−g

δSmat

δgαβ
. (9)

As already mentioned, a number of experimental and theoretical results constrain
Einstein-æther theory and the couplings ci. In more detail, perturbing the field equations
about Minkowski space yields propagation equations for spin-0 (i.e. scalar), spin-1 (i.e.
vector) and spin-2 (i.e. tensor gravitons). Their propagation speeds are respectively
given by [40]

c2T =
1

1− cσ
, (10)

c2V =
cσ + cω − cσcω

2ca(1− cσ)
, (11)

c2S =
(cθ + 2cσ)(1− ca/2)

3ca(1− cσ)(1 + cθ/2)
. (12)
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In order to ensure stability at the classical level (i.e. no gradient instabilities) and at
the quantum level (i.e. no ghosts) one needs to have c2T > 0, c2V > 0 and c2S > 0 [40, 36].
Furthermore, significantly subluminal graviton propagation would cause ultrarelativistic
matter to lose energy to gravitons via a Cherenkov-like process [29]. Since this effect
is not observed e.g. in ultrahigh energy cosmic rays, one must have c2I & 1 −O(10−15)

(with I = T, V, S). More recently, the coincident detection of a neutron-star merger in
GW170817 (gravitational waves) and GRB170817A (gamma rays) had led to the bound
−3× 10−15 < cT − 1 < 7× 10−16 [1].

Expanding the field equations through 1PN order leads to the conclusion that
the 1PN dynamics is well described (like in GR) by the parametrized PN (PPN)
expansion [66, 54]. However, unlike in GR, the preferred frame parameters α1 and
α2 appearing in the PPN expansion do not vanish, but are given by [33]

α1 = 4
cω(ca − 2cσ) + cacσ
cω(cσ − 1)− cσ

, (13)

α2 =
α1

2
+

3(ca − 2cσ)(cθ + ca)

(2− ca)(cθ + 2cσ)
. (14)

Solar system experiments require |α1| . 10−4 and |α2| . 10−7 [66, 54]. By saturating
these bounds (i.e. requiring in particular that |α1| . 10−4 but not |α1| � 10−4) and
combining with the constraints on the propagation speeds, one finds cσ ≈ O(10−15),
ca ≈ O(10−4), and cθ ≈ 3ca[1+O(10−3)]. The resulting experimentally viable parameter
space, therefore, is effectively (i.e. to within a fractional width of 10−4 or better in the
parameters) one-dimensional: cσ, ca, cθ ≈ 0, but cω is essentially unconstrained [59].

Another viable region of the parameter space can be obtained by not saturating the
PPN constraints [59]. In more detail, one may require |α1| be much smaller than its
upper limit, so as to automatically satisfy the bound on α2 (since α2 ∝ α1 if cσ ≈ 0,
as imposed by GW170817 and GRB170817A). This leads to |ca| . 10−7 and thus to an
effectively two-dimensional experimentally viable parameter space (cθ, cω), with the only
additional requirement that |cθ| . 0.3 to ensure that the production of light elements
during Big Bang Nucleosynthesis gives predictions in agreement with observations [22].

Both of the viable regions of parameter space identified above were not considered
in Refs. [70, 71], where neutron-star sensitivities in Einstein-æther theory were first
computed. This is because back when Refs. [70, 71] were written, the strongest
constraints available were the solar system ones (since the GW170817/GRB170817A
constraint was not yet available). Therefore, Refs. [70, 71] solved for ca and cθ in
terms of cσ, cω, α1 and α2, and varied the latter two within the solar system bounds
|α1| . 10−4 and |α2| . 10−7. Since these bounds are narrow, this restricted the
exploration of the parameter space to a region very close to α1 ∼ 0 ∼ α2, which
in turn implies that ca ∼ −cθ ∼ 2cωcσ/(cσ + cω). This selects a two-dimensional
hypersurface in the (cθ, cσ, cω, ca) parameter space. If after this selection, one were
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to impose the GW170817/GRB170817A constraint (i.e. |cσ| . 10−15), one would then
find that |ca| . 10−15 and |cθ| . 10−15, leaving only cω free. However, because of the
Cherenkov bound [29], one must have 0 ≤ cω . cσ/[3(1 − cσ)] [41], and cω is therefore
constrained to the small region 0 ≤ cω . 10−15. In contrast, the first region listed above
[(cθ, cσ, ca) . 10−4 with cω kept free] is much larger, precisely because we are now not
restricting ourselves to a two-dimensional hypersurface of parameter space.

3. Strong-equivalence principle violations and sensitivities

Most theories extending/modifying GR involve additional degrees of freedom besides
the massless tensor graviton of GR. These additional gravitational polarizations cannot
directly couple with matter significantly, to avoid introducing unwanted fifth forces
in particle physics experiments, and to prevent violations of the weak equivalence
principle (and particularly violations of the universality of free fall for weakly gravitating
objects). Nevertheless, effective couplings between the extra gravitons and matter may
be mediated by the metric perturbations (i.e. by the tensor gravitons present also in
GR), which are typically coupled non-minimally to the extra gravitational degrees of
freedom. These effective couplings become important when the metric perturbations
are “large”, which is the case for strongly gravitating systems such as those involving
NSs and/or BHs.

A useful way to parametrize this effective coupling is provided by the sensitivity
parameters. Because of the aforementioned effective couplings, the mass of strongly
gravitating objects will be comprised not only of the contributions from matter and
the metric (like in GR), but it will also generally depend on the additional gravitational
fields. We can thus describe isolated objects, and members of a widely separated binary,
by a point particle model (like in GR), but with a non-constant mass depending on the
extra fields. Because the mass is a scalar quantity, it must depend on a scalar constructed
from the æther field U , the simplest of which is the Lorentz factor γ ≡ u ·U , where u

is the particle’s (i.e. the body’s) four-velocity.

In many practical situations (including the long inspiral of a binary system of compact
objects) one may assume that the relative speed between the æther and the object is
small compared to the speed of light, and thus Taylor-expand the mass µ(γ) around
γ = 1:

µ(γ) = m̃

[
1 + σ(1− γ) +

1

2
σ′(1− γ)2 + . . .

]
(15)

where m̃, σ and σ′ are constant parameters. In particular, the latter two are often
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referred to as the “sensitivities” and their derivatives:

σ ≡ −d lnµ(γ)

d ln γ

∣∣∣
γ=1

, (16)

σ′ ≡ σ + σ2 +
d2 lnµ(γ)

d(ln γ)2

∣∣∣
γ=1

. (17)

In order to understand the effect of the sensitivities and their derivatives on the dynamics
of binary systems, one can derive the equations of motion simply by varying the point
particle action

Spp = −
∑
A

∫
µA(γA)dτA , (18)

where A is an index identifying the objects, and τ is the proper time. This yields the
equation of motion

[µA(γA)− µ′A(γA)γA]aAβ = −µ′A(γA)(−uµA∇βU
A
µ + uµA∇µU

A
β )− µ′′A(γA)γ̇A(UA

β − γAuAβ ) ,

(19)
where again the index A identifies the particle under consideration (when used in µ, γ
and u) or at which position the æther field U and its acceleration A are to be computed,
the prime denotes a derivative with respect to the function’s argument, and the overdot
represents a derivative along u (i.e. with respect to the proper time).

Reinstating the dependence on the speed of light c and expanding in PN orders (i.e. for
c→∞), one obtains the 1PN equations of motion for a binary as

dvA
dt

= −mBn

r2

{
GAB − (3GABBAB +DABB)

mB

r

−1

2

[
2G2AB + 6GABB(AB) + 2DBAA + GAB(CAB + EAB)

] mA

r

+
1

2
[3BAB − GAB(1 +AA)] v2A +

1

2
(3B21 + GAB + EAB)v2B

−1

2

(
6B(AB) + 2GAB + CAB + EAB

)
vA · vB −

3

2
(GAB + EAB) (n · vB)2

}
+
mBvA
r2

n · {[3BAB + GAB(1 +AA)]vA − 3BABvB}

− 1

2

mBvB
r2

n ·
[(

6B(AB) + 2GAB + CAB + EAB
)
vA −

(
6B(AB) + CAB − EAB

)
vB
]

− 1

2

mBw

r2
n ·
[(
CAB − 6B[AB] + EAB − 2GABAA

)
vA −

(
CAB − 6B[AB] − EAB

)
vB
]
,

(20)
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where indices A 6= B, r ≡ |xA − xB|, n ≡ (xA − xB)/r, vA ≡ dx/dt, and

GAB =
GN

(1 + σA)(1 + σB)
,

AA = − σ′A
1 + σA

,

BAB = GAB(1 + σA) ,

DABB = GAB2(1 + σA) ,

CAB = GAB [α1 − α2 − 3 (σA + σB)−QAB −RAB] ,

EAB = GAB [α2 +QAB −RAB] ,

QAB = −1

2

(
2− ca

2cσ − ca

)
(α1 − 2α2)(σA + σB) + 3

(
2− ca

2cσ + cθ

)
σAσB ,

RAB =
1

2

(
8 + α1

cω + cσ

)
[−cω(σA + σB) + (1− cω)σAσB] . (21)

Note that we have defined the “active” masses mA ≡ m̃A(1 + σA), in terms of which
the Newtonian acceleration matches the GR result, albeit with a rescaled gravitational
constant GAB. To derive Eq. (20) we have also used the PN-expanded solutions for the
metric and æther found in [32, 70] (dropping divergent terms due to the point particle
approximation, as usual in PN calculations):

g00 = 1− 2GNm̃1

r1c2
+

1

c4

[
2G2

Nm̃
2
1

r21
+

2G2
Nm̃1m̃2

r1r2
+

2G2
Nm̃1m̃2

r1r12
− 3GNm̃1

r1
v21 (1 + σ1)

]
+ 1↔ 2 +O(1/c6) , (22)

g0i = − 1

c3

[
B−1

GNm̃1

r1
vi1 +B+

1

GNm̃1

r1
vj1n

j
1n

i
1

]
+ 1↔ 2 +O(1/c4) , (23)

gij = −
(

1 +
1

c2
2GNm̃1

r1

)
δij + 1↔ 2 +O(1/c4) , (24)

U0 = 1 +
1

c2
GNm̃1

r1
+ 1↔ 2 +O(1/c4) , (25)

U i =
1

c3
GNm̃1

r1

(
C−1 v

i
1 + C+

1 v
j
1n

j
1n

i
1

)
+ 1↔ 2 +O(1/c5) , (26)

B±A ≡ ±
3

2
− 2± 1

4
(α1 − 2α2)

(
1 +

2− ca
2cσ − ca

σA

)
− 2cω
cω + cσ

σA −
1

4
α1

(
1 +

cω
cω + cσ

σA

)
,

(27)

C±A ≡
1

4

(
8 + α1

cω + cσ

)
[cω − (1− cω)σA]± 2− ca

2

(
2α2 − α1

2(2cσ − ca)
+

3σA
2cσ + cθ

)
, (28)

where rA ≡ |x− xA| and nA ≡ (x− xA)/rA.

Note that the æther solution (25)–(26) has space components U i vanishing at large
distances from the binary, i.e. the equations of motion are valid in a preferred reference
frame in which the æther is asymptotically at rest. The dependence of the dynamics on
the velocity w of the binary’s center of mass with respect to the preferred frame can be
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reinstated by performing a boost. If w � c, one then obtains [67]
dvA
dt

= −mBn

r2

{
GAB − (3GABBAB +DABB)

mB

r

−1

2

[
2G2AB + 6GABB(AB) + 2DBAA + GAB(CAB + EAB)

] mA

r

+
1

2
[3BAB − GAB(1 +AA)] v2A +

1

2
(3B21 + GAB + EAB)v2B

−1

2

(
6B(AB) + 2GAB + CAB + EAB

)
vA · vB −

3

2
(GAB + EAB) (n · vB)2

+
1

2
(CAB + GABAA)w2 +

1

2

(
CAB − 6B[AB] + EAB + 2GABAA

)
vA ·w

+
1

2

(
CAB + 6B[AB] − EAB

)
vB ·w

+
3

2
EAB

[
(w · n)2 + 2(w · n)(vB · n)

]}
+
mBvA
r2

n · {[3BAB + GAB(1 +AA)]vA − 3BABvB + GABAAw}

− 1

2

mBvB
r2

n ·
{(

6B(AB) + 2GAB + CAB + EAB
)
vA

−
(
6B(AB) + CAB − EAB

)
vB + 2EABw

}
− 1

2

mBw

r2
n ·
{(
CAB − 6B[AB] + EAB − 2GABAA

)
vA

−
(
CAB − 6B[AB] − EAB

)
vB − 2 (GABAA − EAB)w

}
,

(29)

with which Eq. (20) of course agrees for w = 0.

The sensitivities and their derivatives enter into the conservative dynamics of the binary
system at Newtonian and 1PN order, as can be seen explicitly in Eqs. (20) and (29). In
Appendix A we will use these equations as starting point for studying in more detail the
1PN dynamics of binaries in Einstein-æther theory. In doing so, we will also amend the
calculation of the strong-field preferred-frame parameters α̂1 and α̂2 performed in [70],
fixing an oversight pointed out by [67] and correcting also a few typos present in [67]
itself‖.

The sensitivities and their derivatives, however, also enter the dissipative dynamics. In
more detail the total energy emitted in GWs (including not only tensor but also scalar
and vector æther modes) by a binary in quasi-circular orbits was derived in [32, 70] via

‖ The corrections to α̂1 and α̂2 do not significantly affect the final results of [70], since the strong-field
preferred-frame parameters did not play a crucial role in constraining the parameter space of Lorentz-
violating gravity in that paper. The measurements of α̂1 and α̂2 were used mainly to constrain cω, but
similar bounds on that coupling constant can be obtained from the measurement of the damping of the
period of PSR J0348+0432 (see Fig. 7 of [70]).
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a standard multipole expansion and reads

Ėb
Eb

= 2

〈(
G12Gm1m2

r3

){
32

5
(A1 + SA2 + S2A3)v

2
21

+ (s1 − s2)2
[
E + 2D[w2 − (w · n)2] +

18

5
A3w

2 +

(
6

5
A3 + 36B

)
(w · n)2

]
(30)

− (s1 − s2)
24

5
(A2 + 2SA3)(w · v21)

}〉
,

where sA ≡ σA/(1 + σA) is the rescaled sensitivity for the A-th body; v21 = v2 − v1 is
the relative velocity of the two bodies; the total (potential and kinetic) energy of the
binary is

Eb = −G12m1m2

2r
; (31)

w is the velocity of the binary’s center of mass with respect to the preferred frame; and
we have introduced the definitions

A1 ≡
1

cT
+

2cac
2
σ

(cσ + cω − cσcω)2cV
+

3ca(Z − 1)2

2cS(2− ca)
, (32)

A2 ≡
2(Z − 1)

(ca − 2)c3S
+

2cσ
(cσ + cω − cσcω)c3V

, (33)

A3 ≡
1

2c5V ca
+

2

3ca(2− ca)c5S
, B3 ≡

1

9cac5S(2− ca)
, (34)

E ≡ 4

3c3Sca(2− ca)
+

4

3cac3V
, D ≡ 1

6S5
1ca

, (35)

Z ≡ (α1 − 2α2)(1− cσ)

3(2cσ − ca)
, S ≡ mBsA +mAsB

mA +mB

. (36)

Note that the dipole flux is proportional to E and to (s1− s2)2 (just like in scalar-tensor
theories of the Fierz-Jordan-Brans-Dicke type [28, 26, 69]). Therefore, it may dominate
over GR’s quadrupole emission at low frequencies, depending on the sensitivities and
the coupling parameters of the theory.

4. Solutions for slowly moving stars

In order to compute the sensitivities, we start from the observation that the metric and
æther solutions for a single point particle [Eqs. (22)–(26) with m̃2 = 0] depend on the
sensitivity σ already at linear order in the particle’s velocity. Moreover, σ regulates the
decay of the metric and æther components at large radii and enters already at O(1/r).
The sensitivity is of course a free parameter in the metric and æther solutions for a
point particle, but it can be determined by replacing the point particle with a body of
finite size. Once a fully non-linear solution for such a body (e.g., in our case, a NS) has
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been obtained, one can extract its sensitivity from the asymptotic fall-off of the metric
and æther fields. Obviously, since σ appears at linear order in velocity, the NS must be
moving relative to the preferred foliation. Here, we follow [70] and consider a star in
slow motion with respect to the æther, solve the field equations through linear order in
the star’s velocity, and extract the sensitivities from the asymptotic decay of the fields.

4.1. Metric Ansatz

Here, we consider the case of a non-spinning NS at rest with a background æther field
moving relative to it. The system is in a stationary regime, i.e, there is no dependence
of the metric and the æther field on the time coordinate. For this configuration, letting
vi be the velocity of the star relative to the æther, we consider the following ansatz for
the metric and the æther

ds2 = eν(r)dt2 −
(

1− 2M(r)

r

)−1
dr2 − r2(dθ2 + sin2 θdφ2)

+ 2vV (r, θ)dtdr + 2vS(r, θ)dtdtθ +O(v2) (37)

Uµ = eν(r)/2δtµ + vW (r, θ)δrµ + vQ(r, θ)δθµ +O(v2), (38)

and we will set GN = 1 from here on. Note that M(r) has dimensions of length and
M(r) → M? as r → ∞, with M? thus being the measured mass of the star. Here we
have adopted a coordinate system that is comoving with the fluid elements of the NS,
by aligning the time coordinate vector to the fluid 4-velocity uµ [70]. In these comoving
coordinates, the fluid elements are at rest while the æther is moving. The fluid 4-velocity
field is

uµ = e−ν/2δµt . (39)

The ansatz of Eqs. (37)–(39) depends onM(r) and ν(r) at O(v0) and on four potentials
V (r, θ), S(r, θ), W (r, θ) and Q(r, θ) at O(v). However, one can perform a coordinate
transformation of the form

t′ = t+ vH(r, θ), (40)

which allows for any one of the four potentials to be set to zero while keeping the ansatz
valid at O(v). Here we choose to set Q = 0 without loss of generality.

4.2. Zeroth order in velocity

From Eqs. (6)–(7) let us derive the field equations at zeroth order in velocity,
which we will solve to construct the background NS solution. The (t, t), (r, r) and
(θ, θ) components of the field equations are the only non-trivial ones and give three
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independent equations [70]

16
dM

dr
− 4car(r − 2M)

d2ν

dr2
− car(r − 2M)

(
dν

dr

)2

+ 4ca

(
r
dM

dr
− 2r + 3M

)
dν

dr
= 64πρr2 ,

(41)

car
2(r − 2M)

(
dν

dr

)2

+ 8r(r − 2M)
dν

dr
− 16M = 64πr3P , (42)

4r2(r − 2M)
d2ν

dr2
− (ca − 2)r2(r − 2M)

(
dν

dr

)2

− 4r

(
r
dM

dr
− r +M

)
dν

dr

− 8r
dM

dr
+ 8M = 64πr3P , (43)

where P (r) and ρ(r) are rescaled NS pressure and density respectively (rescaled because
GN = 2G

2−ca ). These can be expressed as

P ≡ 2− ca
2

P̃ , ρ ≡ 2− ca
2

ρ̃, (44)

with P̃ and ρ̃ representing the pressure and energy density that enter directly in the
stress-energy tensor for the matter field, which we take to be of a perfect fluid form

Tmat
µν =

(
ρ̃+ P̃

)
uµuν − P̃ gµν +O(v2) . (45)

Note, that there is a bijective correspondence between the original parametrization
(ca, cθ, cω, cσ) and (α1, α2, cω, cσ) that can be derived from Eqs. (13) and (14). As
discussed in Sec. 2, cσ � 10−15 from gravitational wave observations; we thus rewrite
Eqs. (41)–(43) in terms of (α1, α2, cσ, cω) and expand them in the limit cσ → 0. Upon
simplification, we get the modified Tolman-Oppenheimer-Volkoff (TOV) equations

dM

dr
=

1

α1(α1 + 8)r

{
−4
√
r − 2M(α1 + 8)

√
(−α1 + 8)M − 4Pα1πr3 + 4r

−
(
α2
1 + 24α1 + 128

)
M − 16r

(
α1πr

2(α1 + 2)P − 2πr2α1ρ−
α1

2
− 4
)}

, (46)

dν

dr
=

1

α1(r − 2M)r

[
−8
√
r − 2M

√
(−α1 − 8)M − 4Pα1πr3 + 4r + 16r − 32M

]
,

(47)
dp

dr
=

1

α1(r − 2M)r
4(P + ρ)

[√
r − 2M

√
(−α1 − 8)M − 4Pα1πr3 + 4r − 2r + 4M

]
.

(48)

Modifications to the GR TOV equations can be singled out by expanding the above
equations (41)–(43) in a small coupling approximation, i.e., ca � 1 or α1 � 1 [63, 56, 70].

4.3. First order in velocity

We derive field equations at first order in velocity from Eqs. (6) and (7), which include
the potentials as functions of r and θ, at first order in velocity. We can separate variables



Updated Binary Pulsar Constraints on Einstein-æther theory 14

in r and θ using a Legendre decomposition [70] to obtain

V (r, θ) =
∑
n

Kn(r)Pn(cos θ), (49)

S(r, θ) =
∑
n

Sn(r)
Pn(cos θ)

dθ
, (50)

W (r, θ) =
∑
n

Wn(r)Pn(cos θ), (51)

where Pn is the Legendre polynomial of order n. More details on tensor harmonic
decomposition can be found in [62]. By separation of variables, we arrive at O(v)

equations, where only the (t, r) and (t, θ) components of the modified Einstein equations
and the r and θ components of the æther field equations are non-trivial. We are
only interested in n = 1 component of Legendre decomposition since these functions
determine sensitivities and consequently the change in orbital period.

Since cσ � 10−15 (c.f. Sec. 2), we proceed with calculations in the limit cσ → 0 to
obtain [70]

dS1

dr
=

1

α1r(r − 2M)

{
−2S1

√
r − 2M(α1 + 4)

√
(−α1 − 8)M − 4Pα1πr3 + 4r−

(r − 2M)
(
J1e

ν/2cωα1 − (3α1 + 16)S1 +K1α1(cω − 1)
)}

, (52)
dK1

dr
=

1

cω(r − 2M)(α2
1 + (2− 2α2)α1 − 16α2)α1(α1 + 8)r

{
2
[
((cω + 1)α1 + 2cω)J1e

ν/2

−(6α1 + 32)S1 + cωK1α1] (α2
1 + (2− 2α2)α1 − 16α2)(α1 + 8)

√
r − 2M

×
√

(−α1 − 8)M − 4Pα1πr3 + 4r + [−(α1 + 8)(r − 2M)α1r

((cω + 1)α2
1 − 2cω(α2 − 1)α1 − 16α2cω)

(
∂J1
∂r

)
− 16

(
−1

8

(
3

((
cω +

5

3

)
α3
1

+

((
−2α2 +

14

3

)
cω −

8α2

3
+

8

3

)
α2
1 +

((
−64α2

3
+

16

3

)
cω −

64α2

3

)
α1

−128α2cω
3

)
(α1 + 8)M

)
+
(
π(α1 + 2)α1r

2((cω + 1)α2
1 − 2cω(α2 − 1)α1

− 16α2cω)P − 2πα1r
2((cω + 1)α2

1 − 2cω(α2 − 1)α1 − 16α2cω)ρ

+
1

4

(
(α1 + 8)

((
cω +

3

2

)
α3
1 + ((−2α2 + 4)cω − 2α2 + 2)α2

1

+((−20α2 + 4)cω − 16α2)α1 − 32α2cω))) r) J1] e
ν/2

+ 6

(
−2(α1 + 8)2S1

3
+ cωK1α1

)
(α1 + 8)(α2

1 + (2− 2α2)α1 − 16α2)M

− 16

[(
π(α2

1 + (2− 2α2)α1 − 16α2)(α1 + 4)α1r
2P − 11α3

2

8

+(3α2 − 11)α2
1 + (40α2 − 16)α1 + 128α2

)
(α1 + 8)S1 + cωK1(α

2
1

+(2− 2α2)α1 − 16α2)α1

(
πr2(α1 + 2)P − 2πr2ρ+ α1/4 + 2

)]
r
}
, (53)
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d2J1
dr2

=
1√

(−α1 − 8)M − 4Pα1πr3 + 4r(r − 2M)3/2α3
1r

2(α1 + 8)
(4 {[(α1 + 8)(

(α2
1 − 4α1α2 − 32α2)S1 +

(
−α

2
1

2
+ cω(α2 − 1)α1 + 8α2cω

)
K1

)
α1re

−ν/2

− 12α2
1

((
1

24
α2
1 + α1 +

16

3

)
M +

(
α1πr

2(α1 + 2)P − 2πr2α1ρ+
α2
1

24
− 8

3

)
r

)
× r

(
∂J1
∂r

)
+

(
8

(
∂ρ

∂r

)
α3
1πr

4 +
1

2

(
(α1 + 8)

(
α3
1 + (−8α2 + 56)α2

1

+ (−192α2 + 128)α1 − 1024α2)M) +
(
8π(α3

1 + (−5α2 + 14)α2
1

+ (−56α2 + 24)α1 − 128α2)α1r
2P + 4πα2

1r
2
(
α2
1 + (−2α2 + 16)α1 − 16α2

+ 16) ρ+

(
α3
1

2
+ (α2cω − cω − 12)α2

1 + (−32 + (8cω + 32)α2)α1 + 256α2

)
× (α1 + 8)r) J1]

√
r − 2M

√
(−α1 − 8)M − 4Pα1πr3 + 4r

+ 64
((α1

4
+ 2
)
M + Pα1πr

3 − r
)

×
[

1

8

(
−S1α1α2r(α1 + 8)2e−ν/2 + α2

1r(α1 + 8)(r − 2M)
∂J1
∂r

)
+ J1

(
3(α1 + 8)

4

×
(
α2
1 +

(
−8α2

3
+

8

3

)
α1 −

64α2

3

)
M +

(
r2πα2

1(α1 + 2)P

+ α2
1πr

2(α1 + 2)ρ− 3α3
1

8
+ (α2 − 4)α2

1 + (16α2 − 8)α1 + 64α2

)
r

)]})
, (54)

where we have defined Jn = Wn + e−ν/2Kn [70]. With the above set of equations at
hand, the next section describes the methods of solving these equations at each order
in velocity.

5. The calculation of the sensitivities

The sensitivities are calculated by solving the coupled differential equations in Eqs. (46)-
(48) and Eqs. (52)-(54), which are obtained from the modified Einstein and the æther
field equations in a v � 1 expansion at O(v0) and O(v) respectively [70]. In Secs. 5.1
and 5.2 we describe and apply two methods to solve these equations and find the NS
sensitivities. The first method, outlined in Sec. 5.1, was used previously in Ref. [70],
but we will explain how it leads to unstable solutions in particular regions of parameter
space. A second method outlined in Sec. 5.2 provides stable results in all regions of
parameter space.

The O(v0) solutions are common to both methods, as they both involve solving O(v0)

differential equations (46)–(48) numerically once in the interior and then in the exterior
of the NS. The initial and boundary conditions to it are obtained by imposing regularity
at the NS center, while imposing asymptotic flatness at spatial infinity respectively. The
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differential equations are solved from a core radius (i.e. some small initial radius) to the
stellar surface radius, where the pressure goes to zero. These numerical solutions at the
NS surface are now used as initial conditions to solve the exterior evolution equations
from the stellar surface to an extraction radius rb. Using continuity and differentiability
of the the solutions, the asymptotic solutions at spatial infinity are matched to the
numerical solutions evaluated at rb. This gives the observed mass of the NS and the
integration constant corresponding to ν(0) (obtained by solving the O(v0) differential
equations [70]) which will be used in solving the O(v) equations discussed further.

5.1. Method 1: Direct Numerical Solutions

In this method, the aforementioned O(v) differential equations are solved in two regions,
the interior of the star, and the exterior. The initial conditions at O(v) are obtained
by solving the corresponding differential equations asymptotically about a core radius,
while imposing regularity at the core, and asymptotically about spatial infinity, while
imposing asymptotic flatness [70]. In both cases, the solutions depend on integration
constants – C̃ and D̃ in the interior asymptotic solution and Ã and B̃ in the exterior
asymptotic solution – that must be chosen so as to guarantee that the numerical interior
and exterior solutions are continuous and differentiable at the stellar surface, where
pressure becomes significantly smaller than their core values.

As defined above, the global solution reduces to finding the right constants (Ã, B̃, C̃, D̃),
which in turn is a shooting problem. In practice, Ref. [70] solved this shooting prob-
lem by first picking two sets of values for interior constants, ~c(1) = (C̃(1), D̃(1)) and
~c(2) = (C̃(2), D̃(2)), and then solving the interior equations twice from the core radius rc to
the NS surface R? to find the solutions ~f int

(1)(r) = [S
(1,int)
1 (r), K

(1,int)
1 (r), J

(1,int)
1 , J

′(1,int)
1 (r)]

and ~f int
2 (r) = [S

(2,int)
1 (r), K

(2,int)
1 (r), J

(2,int)
1 (r), J

′(2,int)
1 ]. Then, each interior nu-

merical solution is evaluated at the stellar surface and used as initial con-
ditions for a numerical evolution in the exterior, leading to two exte-
rior solutions ~f ext

1 (r) = [S
(1,ext)
1 (r), K

(1,ext)
1 (r), J

(1,ext)
1 (r), J

′(1,ext)
1 (r)] and ~f ext

2 (r) =

[S
(2,ext)
1 (r), K

(2,ext)
1 (r), J

(2,ext)
1 (r), J

′(2,ext)
1 (r)].

The global solutions ~f glo
1,2(r) = ~f int

1,2(r) ∪ ~f ext
1,2(r) are then automatically continuous and

differentiable at the surface, but in general they will not satisfy the boundary conditions
at spatial infinity. Because of the linear and homogeneous structure of the differential
system, one can find the correct global solution through linear superposition

~f glo(r;C ′, D′) = C ′ ~f glo
1 (r) +D′ ~f glo

2 (r) , (55)

where C ′ and D′ are new constants, chosen to guarantee that ~f glo satisfies the correct
asymptotic conditions near spatial infinity, which in turn depend on (Ã, B̃), i.e.

~f glo(rb;C
′, D′) = ~f glo,∞(rb; Ã, B̃) , (56)
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where rb � R? is the matching radius, ~f glo(rb;C
′, D′) is given by Eq. (55) evaluated at

r = rb (which depends on (C ′, D′)) and ~f glo,∞(rb; Ã, B̃) is the asymptotic solution to
the differential equations near spatial infinity evaluated at the matching radius (which
depends on (Ã, B̃)).

With this at hand, one can calculate the NS sensitivities via [70]

σ = 2Ã
α1

α1 + 8
, (57)

where Ã is the coefficient of 1/r in the near-spatial infinity asymptotic solution of W ext
1

such that
W ext

1 (r) = Ã
M?

r
+O

(
M2

?

r2

)
, (58)

while we recall that α1 . 10−4 (c.f. Sec. 2). Because of the latter constraint, it is
obvious that the sensitivities are essentially controlled by σ ≈ Ãα1, so the numerical
stability of its calculation relies entirely on the numerical stability of the calculation of
this coefficient. Unfortunately, as we show below, this calculation is not numerically
stable in the region of parameter space we are interested in.

Figure 1 shows S1 as a function of radius, assuming (α1, α2, cω) = (10−4, 4×10−7,−0.1),
and setting (rc, rb) = (102, 2× 107) cm. Observe that both S(1,glo)

1 and S(2,glo)
1 diverge at

spatial infinity, so in order to find an Sglo
1 that is finite at spatial infinity, a very delicate

cancellation of large numbers needs to take place. This cancellation needs to lead to
Ãα1 ≈ 0 but in general Ãα1 6= 0, since σ ≈ Ãα1/4 � 1 6= 0, and precisely by how
much Ãα1 deviates from 0 is what determines the value of the sensitivity. We find in
practice that σ is highly sensitive to the accuracy of the numerical algorithm used to
solve for ~f glo

(1,2), as well as the choice of rc, rb and the value of p(R?) that defines the
stellar surface. Figure 1 is in the parameter region that is outside of interest but it
indicates how sensitive the calculations are to cancellation, making it difficult to find
numerically stable solutions.

5.2. Method 2: Post-Minkowskian Approach

Given that the first method does not allow us to robustly compute the sensitivities in
the regime of interest, we developed a new post-Minkowskian method, which we describe
here. In this method, the background O(v0) equations are solved by direct integration,
as done in method 1. The differential equations at O(v), however, are expanded in
compactness C and solved order by order. This is a post-Minkowskian approximation
because the compactness always appears multiplied by G/c2, so in this sense it is a
weak-field expansion. NSs are not weak-field objects, but their compactness is always
smaller than ∼ 1/3 (and usually between [0.1, 0.3]), so provided enough terms are kept
in the series, this approximation has the potential to be valid. Moreover, and perhaps
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Figure 1: The metric function |S1| is plotted against the radius in the entire numerical
domain, where the radius of the star is at 11.1 km (vertical dashed line). Observe that
both of the trial solutions S(1,glo)

1 and S(2,glo)
1 diverge at spatial infinity. Hence, the global

linearly combined solution S
(glo)
1 shows a diverging behaviour representing numerical

instabilities in the calculation of sensitivities.

more importantly, we will show below that such a perturbative scheme stabilizes the
numerical solution for the NS sensitivities.

The procedure presented above is not technically a standard post-Minkowskian series
solution because the background equations (or their solutions) are not expanded in
powers of C. Had we expanded in powers of C everywhere, we would have encountered
terms in the differential equations with derivatives of the equation of state (EoS). Such
derivatives would introduce numerical noise because “realistic” (tabulated) EoSs are not
usually smooth functions, potentially introducing steep jumps, see, e.g., [72]. By not
expanding the O(v0) differential equations, we are implicitly adding higher order terms
in compactness, so this procedure could be seen as a resummation technique.

Through this approach, the differential equations at O(v1) turn into n sets of differential
equations for an expansion carried out to O(Cn), with n therefore labeling the
compactness order. In order to derive these equations, however, one must first establish
the order of the background solutions, which can be shown to satisfy

M(r) = O(C) , P (r) = O(C2) , (59)

ρ(r) = O(C) , and ν(r) = O(C) , (60)
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by looking at the differential equations these functions obey at O(v0). The metric
perturbation functions at O(v1) are then expanded in powers of compactness through

Yi(r) =
n∑
j=1

Yijε
j , (61)

where Yi ≡ (S1, K1,W1), ε is a bookkeeping parameter of O(C) and j indicates the order
of C to be summed over. We work with W1(r) instead of J1(r) to avoid introducing
numerical error during the conversion between these two functions.

Using these expansions in the differential equations at O(v), and re-expanding them in
powers of compactness, one finds n sets of differential equations. AtO(C), the differential
system becomes

dS11

dr
=

2rK11 − 2r (S11 + α1W11)− (4 + α1)M

2r2
, (62)

dK11

dr
=

−1

2cωr2α1

[
8cωπr

3α1ρ+ 4cωrα1(K11 − S11)− 4rα2
1W11

+ cω(8α1 + α2
1 − 16α2 − 2α1α2)M − 4cωr

2α1W
′
11

−2r2(α2
1 + cωα

2
1 − 16cωα2 − 2cωα1α2)W

′
11

]
, (63)

d2W11

dr2
=

2W11

r2
, (64)

where S11(r), K11(r) and W11(r) are metric functions at O(C), and recall that the
density ρ(r) is related to pressure through the EoS as ρ(r) = ρ[P (r)]. We note that
W11(r) is decoupled from S11(r) and K11(r), and so we can solve Eq. (64) separately and
analytically in the regions r ≤ rb and r ≥ rb. The solutions to them are W11(r) = D̃1r

2

for r ≤ rb and W∞
11 (r) = Ã1/r for r ≥ rb, where Ã1 and D̃1 are integration constants.

By requiring continuity and differentiability of metric functions W11(r) and W ′
11(r), we

match the solutions at the extraction radius rb. This fixes the values of two integration
constants Ã1 = 0 and D̃1 = 0.

The remaining two equations, namely Eqs. (62) and (63), are solved numerically with
initial conditions obtained using regularity at the NS center and asymptotic flatness at
spatial infinity. At the center, we have

S11(r) = C̃1 −
1

120α1

π
[
(240α1 + 40α2

1 − 128α2 − 16α1α2)ρc

+(48α1α2 − 72α2
1 − 15α3

1 + 6α2
1α2)pc

]
r2

+
1

1260
π2
[
(−160α1 − 35α2

1 + 80α2 + 10α1α2)ρ
2
c

+ (288α2 − 576α1 − 126α2
1 + 36α1α2)p

2
c

+(336α2 − 672α1 − 147α2
1 + 42α1α2)ρcpc

]
r4 +O(r6) , (65)

K11(r) = C̃1 −
1

120α1

π
[
(400α1 + 40α2

1 − 384α2 − 48α1α2)ρc
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+(144α1α2 − 96α2
1 − 15α3

1 + 18α2
1α2)pc

]
r2

+
1

1260
π2
[
(400α2 − 240α1 − 35α2

1 + 50α1α2)ρ
2
c

+ (1440α2 − 864α1 − 126α2
1 + 180α1α2)p

2
c

+(1680α2 − 1088α1 − 147α2
1 + 210α1α2)ρcpc

]
r4 +O(r6) , (66)

where C̃1 is an integration constantP . At spatial infinity, we have

S∞11(r) = − B̃1

2r3
− 1

2cωrα1

[
Ã1(α

2
1 − 2cωα1 − 2α2

1cω + 16cωα2 + 2cωα1α2)

+cω(8α2 − 6α1 − α2
1 + α1α2)M?

]
+ (16α2 − 8α1 − α2

1 + 2α1α2)
M2

?

64r2

+ (16α2 − 16α1 − 3α2
1 + 2α1α2)

M3
?

192r3

+ (8α2 − 2α1 + α1α2) ln

(
r

M?

)
M3

?

48r3
+O

(
M4

?

r4

)
, (67)

K∞11(r) =
B̃1

r3
+

4M? + 2Ã1α1 +M?α1

2r
− (α2

1 + 16α2 + 2α1α2)
M2

?

64r2

+ (2α1 − 8α2 − α1α2) ln

(
r

M?

)
M3

?

24r3
+O

(
M4

?

r4

)
(68)

where B̃1 is an integration constant and M? is the mass of the star.

We next explain how to solve Eqs. (62) and (63) to construct the solution for S11 andK11.
First, homogeneous solutions are given by Shom

11 = Khom
11 = C̃1. Next, one can construct

particular solutions Spart
11 and Kpart

11 by setting C̃1 = 0 and numerically integrate the
equations from rc to R?. We then use the numerically calculated interior solutions,
evaluated at R?, as the initial conditions to solve the exterior evolution equations with
zero pressure and density from R? to rb. The true solutions are simply the sum of the
homogeneous and particular solutions, namely

S11(r) = C̃1 + Spart
11 , (69)

K11(r) = C̃1 +Kpart
11 . (70)

By requiring continuity and differentiability of all metric functions, we match the true
numerical solution to the analytic asymptotic solution in Eqs. (67) and (68) at rb.
Applying this matching condition gives the values of B̃1 and C̃1.

Now let us focus on the solution to O(C2) differential equations. The equation for the
metric function W12(r) is

d2W12

dr2
=

2W12

r2
+ 4πrW11ρ

′ − 2πρ

(
−2K11 + 2S11 + (4 + α1 +

2α1

cω
)W11 − 6rW ′

11

)
P Equations (65) and (66) (and also Eqs. (67) and (68)) contain terms higher than O(C) because the
background functions are not expanded in a series of C and thus contain higher order contributions.
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− 2πρ(6 + α1)
M

r
−W ′

11

(
4 + α2 +

8α2

α1

)
M

r2

−
(

3K11 − 3S11 − 10W11 − 2α1W11 −
2α1W11

cω

)
M

r3

+

(
5 + α1 +

α2

2
+

4α2

α1

)
M2

r4
, (71)

where ρ′(r) is the derivative of ρ(P (r)) obtained from the EoS. This equation is
decoupled from the remaining metric functions at O(C2), S12 and K12, and can be
solved numerically on its own. The initial condition obtained at the center of the NS is

W12(r) = D̃2r
2 +

1

529200α1

π2r4
[
560ρ3cπr

2α1(α1 + 8)(5α1 + 4α2)

− 27p2cα
2
1(70(8πpcr

2 − 7)α2
1 − 8πpcr

2α1(α2 − 422) + 49α1(α2 − 62)

+ 8(49− 8πpcr
2)α2)− 252ρcpcα1

{
70pcπr

2α3
1 + α2

1(70− pcπr2(α2 − 382))

+64(7− 4πpcr
2)α2 − 8α1(5πpcr

2(α2 + 8)− 7(α2 + 10))
}

− 12ρ2c
(
350πpcr

2α4
1 − 5πpcr

2α3
1(−226 + α2)− 31360α2

−784α1(−40 + (5 + 8πpcr
2)α2)− 8α2

1(−490 + πpcr
2(980 + 103α2))

)]
+O(r6),

(72)

where D̃2 is an integration constant. The boundary condition to Eq. (71) at spatial
infinity is

W∞
12 (r) =

Ã2

r
+

1

320r3α1cω

[
Ã1M?(40r −M?α1)(α

2
1 + cω(4α2

1

+ α1(34− 4α2)− 32α2)) + cω(80M2
? r(α1 + 8)(α1 − α2)

+M3
?α1(−4α2

1 + 56α2 + α1(−38 + 7α2)))
]

+O
(
M4

?

r4

)
, (73)

where Ã2 is an integration constant. To construct the solution, we first note that the
homogeneous solution is given by W hom

12 = D̃2r
2. Next, we set D̃2 = 0 and find the

particular solution W part
12 (r) numerically in the interior of the NS by solving Eq. (71).

This interior solution evaluated at the NS surface now serves as initial conditions to
solve the differential equations in the exterior up to the boundary radius rb. The correct
solution in the entire numerical domain is then

W12(r) = D̃2r
2 +W part

12 (r), (74)

where the values of Ã2 and D̃2 are obtained using the matching condition at rb. The
equations for S12 and K12 are solved similar to the way Eqs. (62) and (63) are solved,
so we omit a more detailed description here for brevity. We can use the above method
to solve differential equations at higher order in C.
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5.3. Comparison between numerical and analytical approaches

5.3.1. Tabulated APR4 EoS The sensitivity in the æther theory σ for an isolated NS
depends on the EoS chosen, and here we perform the calculations of the previous section
for the APR4 tabulated EoS [4]. The results are representative of what one finds with
other EoSs.

Eq. (57) gives the expression of sensitivity in terms of the integration constant Ã [70]
where Ã can be expressed as

Ã ≡ 1

M?

n∑
j=2

Ãjε
j, (75)

where n is the order of the compactness expansion, with Ã1 = 0. The coefficients Ãj
can be calculated numerically as described in the previous subsection. Notice that the
leading contribution to Ã (and hence to the sensitivities) is of O(ε), since M? = O(ε).

The calculation of the sensitivity as described above requires one to choose the
truncation order n of the post-Minkowskian expansion. We will choose n by the
sensitivities computed from methods 1 and 2 in a regime of parameter space where
method 1 yields stable results [70]. In particular, we will focus on the choice
(α1, α2, cω, cσ) = (10−4, 4× 10−7, 10−4, 0). Figure 2 compares the sensitivities computed
with the two methods with this parameter choice. Observe that as the order of post-
Minkowskian approximation increases (i.e. as n increases), the curves approach the
method 1 solution, but in an oscillatory manner.

In the weak field limit, the sensitivity can be well-approximated as the ratio of the
binding energy to the NS mass (Ω/M∗) through [32]

swf =

(
α1 −

2

3
α2

)
Ω

M?

, (76)

where the stellar binding energy Ω is [31]

Ω = −1

2

∫
d3xρ(r)

∫
d3x′

ρ(r′)

|x− x′|
, (77)

with r = |x| and r′ = |x′|. We can use a Legendre expansion of the Green’s function to
evaluate this integral, and to leading order in C, we find a result that is identical to that
computed in the weak field limit by [31]. This can also be seen numerically in Fig. 2,
where the weak field curve coincides with O(C1) post-Minkowskian approximation.
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Figure 2: Sensitivity as a function of compactness using the APR4 EoS, for various
post-Minkowskian truncation orders at (α1, α2, cω, cσ) = (10−4, 4 × 10−7, 10−4, 0). At
leading order in C, the sensitivity curve overlaps with that computed analytically in the
weak field limit in [31] (Eq. (76)). As the compactness order is increased, the sensitivity
curve starts to converge toward the solution found with method 1. Observe that when
n = 3, the truncated post-Minkowskian series is already an excellent approximation.
The vertical dashed line corresponds to the compactness of a 1M� NS.

5.3.2. Tolman VII EoS We now focus on the sensitivity of a NS using the Tolman VII
EoS. The latter is an analytic model that accurately describes non-rotating NSs [63] by
the energy density profile

ρ(r) = ρc

(
1− r2

R2
?

)
. (78)

The advantage of using the Tolman VII EoS is that the background solution is known
analytically in GR [63, 46]. We expand analytically both the O(v0) and O(v) equations
order by order in compactness. The sensitivity obtained is then

s =
5

21
C (−3α1 + 2α2)

+ 5

(
573α3

1 + α2
1(67669− 764α2) + 96416α2

2 + 68α1α2(−2632 + 9α2)

252252α1

)
C2

+
1

1801079280cωα2
1

{
(4α1)

2(8 + α1)(36773030α2
1 − 39543679α1α2

+ 11403314α2
2) + cω

[
−1970100α5

1 + 13995878400α3
2

+ 640α1α
2
2(−49528371 + 345040α2) + 5α4

1(−19596941 + 788040α2)
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+ α3
1(−2699192440 + 440184934α2 − 5974000α2

2)

16α2
1α2(1294533212− 29152855α2 + 212350α2

2)
] }
C3 +O(C4) . (79)

Note that the above expression is not regular in the limit of α1 → 0 while keeping α2

finite or cω → 0 while keeping α1 or α2 finite. This is a known feature of Einstein-æther
theory, which recovers GR only when a certain combination of coupling constants is
taken to zero at a specific rate.

With this EoS, the compactness can be expressed as a function on Ω/M? as

C = − 7Ω

5M?

+
35819α1Ω

3

85800M3
?

+O
(

Ω4

M4
?

)
. (80)

Here C and M? are the observed values with æther corrections included. With this at
hand, we can rewrite the sensitivity as a function of Ω to find

s =
(3α1 + 2α2)

3

Ω

M?

+

(
573α3

1 + α2
1(67669− 764α2) + 96416α2

2 + 68α1α2(9α2 − 2632)

25740α1

)
Ω2

M2
?

+
1

656370000cωα2
1

{
− 4α2

1(α1 + 8)
[
36773030α2

1 − 39543679α1α2

+11403314α2
2

]
+ cω

[
1970100α5

1 − 13995878400α3
2

− 640α1α
2
2(−49528371 + 345040α2)− 5α4

1(19548109 + 788040α2)

− 16α2
1α2(1294533212− 29152855α2 + 212350α2

2)

+α3
1(2699192440− 309701434α2 + 5974000α2

2)
] } Ω3

M3
?

+O
(

Ω4

M4
?

)
. (81)

Note that this expression matches identically to that of [32] when working to leading
order in the binding energy.

One may wonder whether the above analytic expression is capable of approximating
the sensitivity when using other EoSs. Figure 3 shows the absolute magnitude of
the sensitivity as a function of Ω computed analytically with Eq. (81), as well as
numerically with six other EoSs. Here we have chosen to work in a different region
of parameter space, namely (α1, α2, cω) = (10−4, 4 × 10−7,−10−3), where we obtain a
stable smoothly varying sensitivity curve. Observe that the sensitivities differ by less
than 3%, exhibiting an approximate universality already discovered in [70] as a function
of compactness. Given these results, in all future calculations we will use the analytic
sensitivities computed with the Tolman VII EoS.

6. Constraints from binary pulsar and triple systems

The majority of millisecond pulsars are found in binary and triple systems. The orbital
dynamics of these systems modulate the time of arrival of radio waves and allow for
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Figure 3: Top panel shows the plot of sensitivity as a function of binding energy for
different EoS including Tolman VII (Eq. (81)) valid to O(C3). The bottom panel shows
the relative fractional difference between the EoS from data and the Tolman case, which
represents the EoS variation in the relations. Observe that the universality holds to
better than 3%.

precise measurements of the orbital parameters [27, 39, 60, 61]. In this section, we
discuss the use of precise orbital parameter data to place constraints on the Lorentz-
violating Einstein-æther theory. In GR energy is carried away at quadrupolar order
due to propagation of tensor modes whereas in this theory (and many of other modified
theories of gravity), one usually finds radiation from extra scalar and vector modes
which are responsible for energy loss at dipole order, i.e., −1PN order (c.f. the term
proportional to E in Eq. (30)) as compared to GR. Hence, energy is radiated faster than
what is predicted in GR. This results in a decrease in the orbital separation and orbital
period (Pb) of the binary. The modified orbital period decay rate (Ṗb) relates to the
total energy of the binary, i.e., Eq. (30) via

Ṗb
Pb

= −3

2

Ėb
Eb

, (82)

suggesting a strong dependence of Ṗb on the sensitivity of the NS [17]. Since the GR
predictions agree with the observed value of Ṗb within observational uncertainty, this
allows for stringent constraints to be placed on æther theory.
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6.1. Observations

Following from Eqs. (30) (with LV terms set to zero) and (82), one can relate the
post-Keplerian parameter Ṗb in GR to the Keplerian parameter Pb via [70](

Ṗb
Pb

)
GR

= −384π

5
22/3

(
π(m1 +m2)

Pb

)5/3
m1m2

(m1 +m2)2
1

Pb
. (83)

Here m1 and m2 are the masses in the binary system. In principle, if we can measure the
masses, orbital periods and the orbital period decay rates with some uncertainty and find
that they are consistent with GR predictions, then we can place constraints on Einstein-
æther theory. In this section we focus on data from the measurements of Keplerian
and post Keplerian parameters of four different pulsar systems PSR J1738+0333, PSR
J0348+0432, PSR J1012+5307 and PSR J0737-3039 (Table 1) and a stellar triple
system [64]. The first three are pulsar-white dwarf binaries in orbits with O(10−7)

eccentricity and 8.5-hour period, 0.17 eccentricity and 4.74-hour period and O(10−7)

eccentricity and 14.5-hour period respectively. The fourth is the double pulsar binary
system with 0.088 eccentricity and 2.45-hour period. Because of the small eccentricity
of these systems, we will ignore it in the following, i.e. we will consider quasi-circular
binaries.

Table 1: Orbital parameters as measured for the binary systems studied in this paper.
Table shows the estimated values of the parameters and the 1-σ uncertainity in the last
digits in parentheses. Here, Ṗb

obs
is the observed value of Ṗb.

Pulsar System m1(M�) m2(M�) Pb (days) Ṗb
obs

PSR J1738+0333[35] 1.46+0.06
−0.05 0.181+0.008

−0.007 0.3547907398724(13) −25.9(3.2)× 10−15

PSR J0348+0432 [6] 2.01(4) 0.172(3) 0.102424062722(7) −0.273(45)× 10−12

PSR J1012+5307 [21] [51] 1.64(0.22) 0.16(0.02) 0.60467272355(3) −1.5(1.5)× 10−14

PSR J0737-3039 [50] 1.3381(7) 1.2489(7) 0.10225256248(5) −1.252(17)× 10−12

6.2. Parameter Estimation and Bayesian Analysis

Our goal is to constrain the theory parameters using measurements of Ṗb. We discuss
briefly the Bayesian formalism with Markov-Chain Monte-Carlo (MCMC) exploration
used to calculate the posteriors on the model parameters [c.f. Sec. 6.2.1] and derive
robust constraints.

For the parameter estimation, we need the expression for the orbital period decay, which
depends on both the relative velocity of the binary constituents v21 and the center-of-
mass velocity w of the binary’s center of mass with respect to the æther field. A natural
choice for the æther field direction is provided by the cosmic microwave background (i.e.
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the æther is expected to be approximately aligned with the cosmological background
time direction). In this case, a typical value for the center-of-mass velocity is w ∼
10−3 [32], which for binary pulsar observations is of the same order as v21. If so, the w-
dependent corrections in the rate of change of the binding energy [Eq. (30)] and orbital
period [Eq. (84)] enter at the same PN order (0PN) as the quadrupole emission terms
of GR, but multiplied by either (s1 − s2) or powers of it. As such, these w-dependent
corrections are negligible for both white dwarf-pulsar systems (for which the dominant
term is the −1PN dipole emission) and also for the relativistic double pulsar system
(for which s1 − s2 ≈ 0 as a result of the similar pulsar masses, which kills both the
dipole emission and the w-dependent corrections to quadrupole emission). Therefore,
our results are independent of the exact value of w as long as that is of order w ∼ 10−3

or smaller [70]

From the above assumption, the orbital period decay rate in Einstein-æther theory is
a function of the individual masses (m1,m2)

+, pulsar radii (R?,1, R?,2), orbital period
(Pb) and coupling constants (α1, α2, cω) as shown below

Ṗb
Pb

=
1

5(m1 +m2)4Pb
√

α1

(α1−8α2)

√
−cω
α1
α3
1c

2
ω

{
12π22/3

(
π(m1 +m2)

Pb

)5/3

m1m2

[
− 1

12

(
5α1cω(m1 +m2)

2(s1 − s2)2(
α2
12

5/6(α1 + 8)

√
α1

(α1 − 8α2)
− 16

√
−cω
α1

cω(α1 − 8α2)2
1/3

)
(
Pb
πm

)2/3)
+

(
(s1 − 1)(s2 − 1)

)2/3(
(α1 + 8)α3

1(
−4c2ω(m1 +m2)

2

√
−cω
α1

+ α1

√
2(m1s2 +m2s1)

2

)√
α1

(α1 − 8α2)
+

2
√
−cω
α1

(α1 − 8α2)
2c2ω((m1 +m2)α1 + 8m1s2 + 8m2s1)

2

3

)]}
, (84)

where s1 and s2 are functions of C and coupling constants. One may worry that the terms
inside the square roots in the above expression may be negative, leading to a complex
orbital decay rate, but this is not the case because when α1 > 0, then cω ≤ −α1/2, while
when α1 < 0, then cω ≥ −α1/2. As noted in Fig. 3, sensitivities are independent of the
EoS. Here we choose to work with the Tolman VII EoS since it gives stable analytic
solutions for the sensitivities.
+ These are the active masses, whose fractional difference from the “real” masses (m̃1, m̃2) is of the order
of the sensitivities and thus negligible. In the following we will therefore typically identify (m1,m2) and
(m̃1, m̃2). Note that this could however introduce correlations not captured by our sufficient statistics
approach, but as we show, even large correlations would have little impact on the results.
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There are some phenomenological constraints on the æther coupling constants as
discussed in Sec. 2, i.e., |α1| . 10−4, |α2| . 10−7 and cσ . 10−15. Using these pre-
existing constraints and by determining if the estimated value of Ṗb lies within the
range Ṗb

obs ± δṖb
obs

(Table 1), we determine the consistency of points in the parameter
space with observations.

One important point is that we are not using the pulsar timing data directly [5], but
instead we are using existing constraints on Ṗb, m1 and m2 derived from the primary
pulsar timing data as a sufficient statistic. Unfortunately, the published results only
quote values the individual parameters and their uncertainties, so we do not have access
to the the joint posterior distributions. For simplicity we assume that the parameter
correlations are negligible. To check the impact of this assumption, we compared results
with zero correlations with a case with 90% correlation between the parameters, and
found that it only changed the results by a maximum of 17%.

6.2.1. Bayesian Analysis We are interested in constructing a posterior distribution on
a set of model parameters ~λ = (m1, m2, Pb, R?,1, R?,2, α1, α2, cω) and using an MCMC
algorithm to explore the parameter space. According to Bayes’ theorem, the probability
density for parameters ~λ given data D and hypothesis H (the theory) is

P (~λ|D,H) =
P (D|~λ,H)P (~λ|H)

P (D|H)
, (85)

where P (~λ|H) is called the prior which represents the state of knowledge about the
parameters before we analyze the data. P (D|~λ,H) is called the likelihood which describes
the probability of measuring data D given the model H and a set of parameters ~λ.
P (D|H) is called the model evidence which represents the overall normalization factor.
In practice it is better to work with log probability densities to better cover the dynamic
range of the densities.

We assumed uniform priors on α2 and cω such that −4 × 10−7 ≤ α2 ≤ 4 × 10−7 and
−105 ≤ cω ≤ 105 and a Gaussian prior for α1, m1, m2, Ṗb with mean and standard
deviation given by the existing bounds listed in Table 1. We use Gaussian priors on
R?,1 and R?,2 with mean and standard deviation given 12.4 ± 1.1km based on LIGO
and NICER measurement [25]. While these bounds are derived assuming GR, the
corrections due to LV effects are sub-dominant compared to those impacting Ṗb (c.f. e.g.
footnote P). Using lunar laser ranging experiments, the bounds on α1 were obtained to
be α1 = (−0.7± 0.9)× 10−4 [54] (c.f. also Sec. 2).

The log likelihood function is

ln(P (D|~λ,H)) ∝ −1

2

((
Ṗb/Pb

)obs
−
(
Ṗb/Pb

)th
)2

σ2
(Ṗb/Pb)

, (86)
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where (Ṗb/Pb)
th is the theoretically predicted value of (Ṗb/Pb) from the model. With the

likelihood and the priors in place, we can find the posterior using a MCMC algorithm.

We start the MCMC simulation near the mean values for the model parameters, calculate
the posterior and iterate through these steps. Model parameters are allowed to explore
the entire range of parameter space and that gives the joint posterior distribution on all
parameters ~λ. For the proposal distribution we use the prior distribution for a certain
set of parameters, and a relative jump from the current position for the remaining.
Proposed jumps are accepted or rejected based on the Metropolis-Hastings acceptance
probability

H = min

(
P (~λnew|H)P (D|~λnew, H)Q(~λold|~λnew)

P (~λold|H)P (D|~λold, H)Q(~λnew|~λold)
, 1

)
. (87)

A random number u ∼ U [0, 1] is drawn, and if H > u the proposed jump is accepted,
otherwise it is rejected. This process is repeated multiple times to ensure convergence.

We begin by considering a single observation from the pulsar-white dwarf system PSR
J1738+0333. Since the sensitivity of a white dwarf (WD) is negligible compared to the
NS we can set s2 = sWD = 0 (thus R?,2 is excluded from ~λ) but for a double pulsar
binary we should have s2 6= 0. Figure 4 shows the prior and posterior distribution on
the model parameters. We are recovering our priors on the masses and radii, given that
these are well constrained as can be noted from Table 1. This pulsar system further
constrains the value of parameter α1 by approximately a factor of 5 while the coupling
constants α2 and cω remain unconstrained. The small dip in the posterior around α1 = 0

is due to the dip in prior distribution shown in Fig. 5 where we have chosen a smaller
range uniform prior on α1 i.e., (−10−5, 10−5) compared to the pre-existing constraint
to elaborate the behaviour of prior around α1 = 0. This behaviour is reflected in the
posterior distributions shown in other corner plots.

We then consider constraints on the coupling parameters by stacking all four different
binary systems from Table 1 and computing the joint constraints (Fig. 6). These
joint constraints also restrict the region of α1 by a factor of 5 better than the existing
constraints. The behavior of the posteriors on α2 and cω reflects the nature of observed
data, i.e., if Ṗb

obs
is greater than Ṗb

GR
, a positive α2 is favored (and thus a negative cω

is favored) and vice versa. The opposite behavior of the posterior to the priors on α2

and cω is a result of the nature of data and cannot be generalized.

In the coming years we expect to have more observations, as the sensitivities of radio
telescopes will improve as a result of larger collecting areas (e.g. the Square Kilometre
Array (SKA) project [65, 20]), which will allow for discovering more pulsars. Moreover
the longer observation time (T ) which will reduce the error in measurements of Ṗb by
T−5/2 [14], allowing for more precise measurements of the orbital parameters. Figure 7
illustrates the kind of bounds we will get for a PSR J1738+0333 system if Ṗb

obs
matches
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Figure 4: Prior and posterior distribution on the model parameters ~λ from Ṗb constraints
for PSR J1738+0333. The pre-existing constraints from solar system and Big-Bang
nucleosynthesis are applied to uniform priors which results in a step like behaviour for
the priors shown in blue where, if α1 is positive it results in a positive α2 and negative
cω. The posterior distributions depend on the Ṗb constraints for PSR J1738+0333. The
three shades of contours in the prior and posterior distribution in the off-diagonal cross-
correlation panels represent 1-σ, 2-σ and 3-σ uncertainty on model parameters starting
from the center (we only show 1-σ shaded regions for the one-dimensional marginal
distributions). Observe that the value of α1 is further constrained by a factor of 5
compared to existing solar system constraints (prior).
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Figure 5: Prior distribution for coupling constants with pre-existing constraints applied
on uniform prior in α1 = (−10−5, 10−5), uniform prior in α2 = (−10−7, 10−7) and
uniform prior in cω = (−105, 105). Observe that the priors in α1 has a dip around
α1 = 0. This nature is reflected in the posterior distributions shown in other corner
plots.

the GR prediction Ṗb
GR

and the uncertainties are tightened by a factor of 10. The
improved constraints on Ṗb translate directly into similarly improved bounds on α1. We
also considered an alternative scenario, in which the uncertainties in Ṗb improved y a
factor of ten, but stayed centered on the current observed value. As shown in Figure 8,
this leads to a value for α1 bounded away from zero. In other words, in a scenario where
the observed period derivative stays at the current value while the uncertainty drops by
a factor of ten, we would find that Einstein-æther theory would be favored over GR!

6.3. Constraint from the triple system

Next we have constraints coming from a pulsar in a stellar triple system PSR J0337+1715
consisting of an inner millisecond pulsar-white dwarf binary and a second white dwarf
(WD) in an outer orbit [7]. Due to the gravitational pull of the outer WD, the pulsar and
the inner WD experience accelerations that differ fractionally. If the strong equivalence
principle is violated (as a result of the sensitivities), the triple system constrains the
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Figure 6: Joint prior and posterior distribution on α1, α2 and cω from Ṗb constraints for
all four pulsars listed in (Table 1) The constraint on α1 is improved by a factor of 5.

fractional acceleration difference parameter δa to (+0.5± 1.8)× 10−6 [64]. The relation
between δa and the sensitivity parameter σpulsar (before rescaling) in Einstein-æther
theory is [67, 9]

|δa| =
∣∣∣∣ σpulsar
1 + σpulsar/2

∣∣∣∣ ≈ |σpulsar| , (88)

as can be obtained directly from Eq. (29) (in the Newtonian limit).

We use MCMC simulations in Bayesian analysis similar to that for the Ṗb constraint
and with the likelihood

P (D|~λ,H) ∝ exp

(
−1

2

(
σobs
pulsar − σ th

pulsar

)2
σ2
(σpulsar)

)
, (89)

where σobs
pulsar = (+0.5 ± 1.8) × 10−6 from Eq. (88) and σth

pulsar is given by Eq. (57),
to constrain the model parameters. Figure 9 shows the joint pulsar and triple system
constraints on the model parameters ~λ assuming uniform distribution in α2 and cω. It
shows that the preferred frame parameter α1 is constrained by a factor of 10 better than
the lunar laser ranging experiments.

Table 2 shows bounds on α1 from binary and triple systems mentioned in this paper.
The data from joint binary + triple system allows us to put a stringent constraint on
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Figure 7: Prior and posterior distribution on the model parameters α1, α2 and cω from
Ṗb constraints for PSR J1738+0333, in a scenario where the observational uncertainties
tighten by a factor of 10 and the value of Ṗb matches the GR prediction. It shows that
the GR values are favoured and the value of α1 is very closely centered around zero.

Table 2: Bounds on α1 from different pulsar systems shown in Figs. 4–9 with 1-σ
uncertainity. The first half shows the bounds from existing measurements, while the
second half shows projected future bounds assuming that the measurement error on
Ṗ obs
b reduces by a factor of 10 with the central value of Ṗ obs

b at the GR predicted value
(−27.5× 10−15) and at the current measured value (−25.9× 10−15).

Pulsar System α1

PSR J1738+0333 (−0.295± 4.758)× 10−5

Joint binary system (0.792 ± 4.663)×10−5

Joint binary + triple system (−0.563 ± 1.021)×10−5

PSR J1738+0333 ( ˙P obs
b = −27.5× 10−15) (−1.127 ± 6.920)×10−6

PSR J1738+0333 ( ˙P obs
b = −25.9× 10−15) (2.493 ± 0.527)×10−5
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Figure 8: Prior and posterior distribution on the model parameters α1, α2 and cω from Ṗb
constraints for PSR J1738+0333, in a scenario where the uncertainties in measurements
are reduced by a factor of 10, and the value of Ṗb stays at the currently observed
value. The black vertical dashed line in the top-most panel corresponds to the GR value
(α1 = 0) which explicitly shows that the GR value is disfavoured. It can also be noted
from Table 2 that posterior does not include α1 = 0.

α1, which is an order of magnitude stronger than the bounds from lunar laser ranging
experiments [68, 54].

7. Conclusions

We have investigated Einstein-æther theory in the context of binary pulsars and NSs.
We have recalculated the sensitivities in the regime of coupling parameter space that
still survives after the recent measurement of the speed of GWs. This required the
development of a new post-Minkowskian approach that allows for stable numerical
evaluation of the sensitivities, in addition to the derivation a closed form analytic
solution for the Tolman VII EoS. We used these results to place a constraint on certain
coupling constants of Einstein-æther theory using Bayesian analysis of binary pulsar
observations, including recent observations on the triple system. We find that these
data allows for constraints on a certain combination of the coupling constants, α1, of
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Figure 9: Joint prior and posterior distribution on the model parameters ~λ from Ṗb
constraints for all four pulsars listed in (Table 1) and stellar triple system. Observe
that inclusion of stellar triple system improves the constraints and parameter α1 is now
constrained by a factor of 10 better than lunar laser ranging experiments.

O(10−5), improving current Solar System constraints by one order of magnitude.

The work carried out here opens the door to several avenues for future research. One
such avenue is to use gravitational wave data directly to place constraints on Einstein-
æther theory, now that the sensitivites have been analytically calculated. This can be
done today to leading post-Newtonian order in the inspiral, and it remains to be seen
whether it is enough to lead to interesting constraints. To include the very late inspiral
and merger phase, numerical simulations of coalescing NSs would have to be carried out
in Einstein-æther theory. However, since the parameter space of the theory is already
quite well constrained, it is not clear whether stronger bounds can be achieved with
gravitational wave data.

Another avenue for future research concerns computing sensitivities for black holes. This
has been done in khronometric theory [58] but not yet in Einstein-æther theory. Once
the black hole sensitivities are in hand, and assuming they do not vanish, one could use
the existing GW data for binary black hole mergers to constrain Einstein-æther theory,
including the dipole radiation effect in the gravitational waveform.

One more avenue for future work would be along the lines of improving the analysis
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in this paper by directly analyzing binary pulsar data and carrying out a parameter
estimation and model selection study with a GR and a non-GR timing model. For this,
it would be ideal to compute the derivative of the NS sensitivities that enter in the
conservative post-Keplerian parameters, such as the periastron precession and Shapiro
time delay.
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Appendix A. Modified EIH technique

In this Appendix, we start from the 1PN acceleration (29) and analyze the effect of the
1PN conservative dynamics on the orbital parameters of a binary of compact objects.
We will follow the osculating-orbits technique of [67], which will lead us to amend the
calculation of the preferred frame parameters α̂1 and α̂2 presented in [70]. In doing so,
we will also correct a few typos that we found in the expressions of [67].∗

The relative acceleration between the two gravitating bodies is obtained by simply
letting

a =
dv1

dt
− dv2

dt
, (A.1)

while the position of the center of mass is not accelerated. Thus, we can set Ẋ = X = 0

at Newtonian order without any loss of generality, getting

x1 =
(m2

m
+O(ε)

)
x, (A.2)

x2 = −
(m1

m
+O(ε)

)
x, (A.3)

where ε ∼ m/r ∼ v221 is a book-keeping parameter that counts PN order.
∗ We have double checked the correctness of our expressions with the authors of [67].
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Here the acceleration of every individual body is given by (29). Hereinafter we will
borrow the notation of [67] and thus we define

m = m1 +m2, η =
m1m2

m2
, ∆ =

m2 −m1

m
, (A.4)

and the functions of the sensitivities

G = G12, B+ = B(12), B− = B[12], D =
m2

m
D122 +

m1

m
D211,

C = C12, E = E12, A(n) =

(
m2

m1

)n
A1 −

(
−m1

m

)n
A2. (A.5)

Using this, the relative acceleration can be written in a compact form

a = aL + aPF, (A.6)

where we have separated the purely local contributions and those coming from preferred
frame effects. The former reads

aL =
m

r2

[
n
(
Â1v

2
21 + Â2ṙ

2 + Â3
m

r

)
+ ṙB̂v21

]
, (A.7)

where

v21 = ẋ2 − ẋ1, (A.8)

Â1 =
1

2

[
G(1− 6η)− 3B+ − 3∆B− − η(C + 2E) + GA(3)

]
, (A.9)

Â2 =
3η

2
(G + E), (A.10)

Â3 = D + G [2ηG + 3B+ + η(C + E) + 3∆B−] , (A.11)

B̂ = G(1− 2η) + 3B+ + 3∆B− + ηG + GA(3). (A.12)

These expressions agree with those of [67]. However, we find a difference in the
acceleration due to preferred frame effects

aPF =
m

r2

{
−n

[(
α̂1

2
+ 2GA(2)

)
(ω · v21) +

3

2

(
α̂2 + GA(1)

)
(ω · n)2

]
(A.13)

−ω
[
α̂1

2
(n · v21) + α̂2(n · ω)

]
+ GA(2)v21(n · ω)

}
− mω2

2r2
(
C + GA(1)

)
n.

where we have already specified the generic boost velocity w in (29) to match the
velocity of the preferred frame ω.

This differs from the result of [67] in a sign multiplying the first whole line, as well as in
the last term, which is absent in [67]. Here we have defined the following compact-body
effective PPN parameters

α̂1 = ∆(C + E)− 6B−2GA(2), α̂2 = E − GA(1). (A.14)
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In the absence of PN corrections, the motion of the two-body system describes a
Keplerian orbit, parametrized by x = rn with

n = [− cos Ω cos(ω + f)− cos ι sin Ω sin(ω + f)]eX + [sin Ω cos(ω + f)

+ cos ι cos Ω sin(ω + f)]eY + sin ι sin(ω + f)eZ , (A.15)

where the orbital elements are: inclination ι, longitude of the ascending node Ω and
pericenter angle ω. The element f = ω−φ is the true anomaly, with φ the orbital phase
measured from the ascending node. The reference vectors ei form an orthonormal basis.

When the extra force (A.6) is included, Keplerian orbits are not solutions to the
equations of motion anymore. However, provided that the force is small enough relative
to the Newtonian force, we can use perturbation theory and translate the dependence
on time of the motion to the orbital parameters. This is the method of osculating orbits
described in [68], which leads to a secular variation of the orbital elements under the
effect of a. In order to parametrize this change in terms of the velocity vector of the
preferred frame, we decompose the latter by projecting it onto the orbital plane by
defining

ωP = ω · eP , ωQ = ω · eQ, ωZ = ω · z, (A.16)

as well as onto the angular momentum vector

ωh = ω · h = ωZ
√
Gmp, (A.17)

Following the computation in [68], we thus find that the local terms in aL induce a
change only on the pericenter angle ω, which in an orbit changes by

∆Lω =
6πm

Gp

[
GB+ +

1

6

(
G2 −D

)
+

1

6
G
(
6∆B− + η(2C + E) + GA(3)

)]
, (A.18)

and is of course independent of ω. Again, this agrees with [67] up to a typographical error
in their result. The rest of secular changes vanish, either because they are identically
zero or because they compensate along the orbit.

On the other hand, the force induced by preferred frame effects produces a secular
change in all orbital parameters

∆PFa =
2πeωP

(1− e2)2

(
mp

G

) 1
2 (
α̂1 + 4A(2)G

)
, (A.19)

∆PFι = πα̂1

(
m

Gp

) 1
2

ωh sin(ω)eF (e)− 2πα̂2ωhωRF (e)

G
√

1− e2
, (A.20)

∆PFΩ = −πα̂1

(
m

Gp

) 1
2 ωh

sin(ι)
cos(ω)eF (e)−)

2πα̂2ωhωSF (e)

G sin(ι)
√

1− e2
, (A.21)
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∆PF$ = −πα̂1

(
m

Gp

) 1
2

ωQ

√
1− e2F (e)

e
− πα̂2(ω

2
Pω

2
Q)F (e)2

+
πωQ
e

(
m

Gp

) 1
2

(α̂1 + 4A(2)G), (A.22)

∆PFe = −πα̂1

(
m

Gp

) 1
2

ωP (1− e2)F (e) + 2πα̂2ωPωQe
√

1− e2F (e)2

+ πωP

(
m

Gp

) 1
2

(α̂1 + 4A(2)G), (A.23)

where ∆PF$ = ∆PFω + cos(ι)∆PFΩ and

F (e) =
1

1 +
√

1− e2
, (A.24)

ωR = ωP cosω − ωQ
√

1− e2 sinω, (A.25)

ωS = ωP sinω + ωQ
√

1− e2 cosω. (A.26)

Out of these deviations, the most relevant one is the variation of the semimajor axis,
which can be related to the change in the period of the orbit by using Kepler’s third law

∆T

T
=

3

2

∆a

a
. (A.27)

Note however that this change is sub-leading with respect to the change expected from
emission of gravitational radiation in a binary system like the one considered throughout
this paper [c.f. Eq. (30)], which is actually the dominant factor.
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