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Light-weight sleep monitoring: electrode
distance matters more than placement for

automatic scoring
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Abstract— Modern sleep monitoring development is
shifting towards the use of unobtrusive sensors com-
bined with algorithms for automatic sleep scoring. Many
different combinations of wet and dry electrodes, ear-
centered, forehead-mounted or headband-inspired designs
have been proposed, alongside an ever growing variety of
machine learning algorithms for automatic sleep scoring.
In this paper, we compare 13 different, realistic sensor
setups derived from the same data set and analysed with
the same pipeline. We find that all setups which include
both a lateral and an EOG derivation show similar, state-of-
the-art performance, with average Cohen’s kappa values of
at least 0.80. This indicates that electrode distance, rather
than position, is important for accurate sleep scoring. Fi-
nally, based on the results presented, we argue that with
the current competitive performance of automated staging
approaches, there is an urgent need for establishing an
improved benchmark beyond current single human rater
scoring.

Index Terms— EEG, ear-EEG, Deep Learning, Sleep scor-
ing

I. INTRODUCTION

During an 80 year lifespan, a human spends roughly 27
years asleep. As such, it should not be surprising that sleep has
a large impact on virtually every major disease category, from
cardiovascular disease over psychiatric disorders to cancer
[1]. However, diagnosis of sleep disorders is still largely
confined to dedicated sleep laboratories. Laboratory-based
polysomnography (PSG) is the main method to gather insight
in a patient’s sleep, certainly when neurophysiological data is
needed. Although sleep is an essential part of several disorders,
such as neuropsychiatric disorders, the practical limitations for
wide scale use of PSG hamper the integration of sleep as a
vital component in diagnostic and therapeutic trajectories of
patients with these disorders. Moreover, the sleep laboratory is
a very artificial environment, which has an influence on sleep
itself. In order to better understand the impact of healthy and
abnormal sleep-wake patterns on various disease conditions,
there is an urgent need for sleep monitoring over prolonged
periods of time outside traditional sleep clinics.
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In the past decade, multiple studies have explored the use
of digital wearable (e.g. actigraphy) and bed-side (e.g. radar-
based) sensors to quantify various aspects of sleep, but failed
to capture the neurophysiological signatures that underpin the
quantification of sleep based on AASM convention [2]. With
the introduction of various wearable EEG sensors, capturing
brain activity from unconventional places (e.g. behind or in the
ear), personalised long-term sleep monitoring on the general
population is within reach [3]–[10].

Visually reviewing the large amount of time series sleep data
that could be recorded with this new generation of wearable
EEG would be time-consuming and costly, in addition to
requiring re-training of the human scorers for each new wear-
able (which would be highly inefficient [10]). For decades,
machine learning scientists have attempted to mimic visual
annotation based on AASM rules by handcrafting features and
training machine learning algorithms. This approach achieved
only moderate success. More recently, the field of automated
sleep staging embraced artificial intelligence (AI) technology,
in particular deep learning (DL) architectures. This lead to a
variety of promising automated sleep analysis approaches. An
important advantage of automated scoring approaches is the
absence of intra-scorer variability [11]. Those automated stag-
ing approaches are primarily developed and validated on large,
publicly available PSG datasets. With minor modifications,
such DL architectures could also be used for automatic staging
of wearable sleep data [12]. However, due to the variety of
available wearable sensors and the experimental nature of data
collection with those devices, ’wearable’ datasets are still an
order of magnitude smaller compared to PSG data sets, and
performance of automated staging approaches requires further
investigation.

In this paper, we apply one of the leading analysis pipelines,
the SeqSleepNet [13], to multiple different, realistic sensor
configurations. ’Realistic’ in this sense means that we only test
montages where a limited number of electrode positions are
used at a time, and only positions that are reasonably hidden
and easy to access (out of the hair line and only on the sides
of the head).

The SeqSleepNet pipeline was validated by an independent
group on two different datasets, showing that the performance
of the network outperformed the average human annotator
[14]. In this paper, we show that this network, originally
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Fig. 1. The recording setup used in this study. A: example of the
soft ear-EEG electrode holders, with embedded dry-contact electrodes,
placed in each ear. B: cap-mounted PSG setup using 8 scalp EEG
electrodes, 2 EOG electrodes and 3 EMG electrodes. See [3] for a
detailed description.

developed and trained for automatically staging PSG, can be
directly applied to in-ear EEG data. In addition, we investigate
the likely upper limits to mobile sleep scoring accuracy and
the variations between different approaches.

II. METHODS

A. Data
We used the 80 nights of sleep recordings (4 nights from

20 subjects each) which were presented in Mikkelsen et
al 2019[3]. This data set consists of concurrent PSG (13
electrodes) and ear-EEG (6 electrodes in each ear) recordings.
See Figure 1 for an example of the setup.

Rather than using the raw data, we work with the sleep
recordings after artefact rejection, as described in Mikkelsen et
al [3]. In this artefact rejection pipeline, artefacts are identified
on an individual electrode basis, and are removed by changing
the relevant sample values to ’NaN’ (which enables discarding
samples from individual channels). During preparation of
the various derivations, NaN-values are ignored when EEG
electrodes are averaged (as is the case with ear derivations). If
there were any NaN’s in a final derivation, the missing samples
were linearly interpolated from the nearest non-missing values.
For extended missing sections, the interpolated values decayed
exponentially towards zero (with time scale 1 second).

The PSG recordings have been scored by two independent
and experienced sleep technicians (’scorer 1’ and ’scorer 2’),
according to the AASM guidelines [2]. We have decided to
treat scorer 1 as the ground truth, to which the automatic
sleep classifiers will be compared (and trained on). In contrast,
scorer 2 is an independent source of labels, which will be used
in studying the possible causes of classifier errors.

B. Choice of electrode configurations and epochs
Figure 2 shows all electrode derivations under consideration

in this study. As can be seen, we have chosen to rely more
on the left than right side of the head. This was done both to
reduce the number of derivations at play, and because previous
work had shown the left ear electrodes were found to be
slightly more reliable than the right ear electrodes [3], we will

elaborate more on this in the ’Results’ section. In designing
the ’Scalp’ and ’EMG’ derivations, we decided to try to make
them as reliable as possible, by combining multiple derivations
in one. This was done because we are primarily interested in
the performance of a mobile sleep monitoring setup, and we
do not consider chin EMG or scalp EEG electrodes to be
prime candidates for user friendly mobile setups. Therefore,
the primary concern for these data channels is that they are
responsible for as little data rejection as possible.

Epoch rejection: To make the comparison of different setups
(meaning different combinations of derivations) as unambigu-
ous as possible, we only use epochs for which all derivations
are well defined. In this regard, a derivation is considered ’ill
defined’ if all samples in that epoch for that derivation have
been rejected (replaced with ’NaN’ values). In cases when a
derivation is constructed by averaging a set of channels, any
’NaN’-values of an individual channel are ignored.

Using these statistics, we evaluate whether any derivations
should be excluded from the analysis. In this regard, the im-
portant metric is not the individual reliability of the derivation,
but rather to which degree the derivation is well-defined when
other derivations are. If it is not, it will be directly responsible
for reducing the number of viable epochs. As is shown later,
we end up removing the ’right ear’ derivation.

C. The SeqSleepNet classifier

In this study we used SeqSleepNet [13], illustrated in Fig.
3, as the base classifier. SeqSleepNet works by analysing a
sequence of L consecutive epochs and classifying them at
once into a sequence of L sleep stage labels (i.e., sequence-
to-sequence). We set L = 20 in this study as recommended in
[13]. The data input to the network can be single- or multiple-
channel log-scale spectrograms. The data of each channel was
normalized to have zero mean and unit variance for each
frequency bin using the normalization parameters computed
from the training data.

The i-th epoch, 1 ≤ i ≤ L, in the input sequence was
encoded into a feature vector āi via the epoch encoder. The
epoch encoder is composed of (1) filter-bank layers, one for
each input channel, (2) a bidirectional recurrent layer realized
by a long short-term memory (LSTM) cell, and (3) an attention
layer. The spectrogram channels first have their frequency
dimension smoothed and reduced via the filter-bank layers.
The filtered spectrograms are then stacked along the frequency
direction and presented to the LSTM, which converts them
into a sequence of output vectors. The output vectors in this
sequence are eventually combined, using weights learned by
the attention layer to form the feature vector āi.

Going through the epoch encoder, the input sequence was
transformed into a sequence of feature vectors. An LSTM-
based bidirectional recurrent layer was then employed for
inter-epoch sequential modelling, converting the sequence of
feature vectors into a sequence of output vectors. These output
vectors were finally presented to a fully-connected layer,
followed by a softmax layer, for classification, producing a
sequence of labels, each label corresponding to an epoch in
the input sequence. The network was trained end-to-end to
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Fig. 2. Overview of different derivations used. ’Left ear’ and ’right ear’ uses the average over the three innermost ear electrodes versus the average
of the three outermost electrodes, in each ear. Left-right use the average of all electrodes in each ear. ’M1’, ’EOG 1’ and ’EOG 2’ references a single
electrode to the average of all left ear electrodes. For ’Scalp’, both C3-M2 and C4-M1 are calculated; for each recording we used the derivation with
the least rejected or lost samples. For ’Chin EMG’, all three derivations between all three EMG electrodes (l, r, c) are calculated. If l-r has a missing
sample, r-c is used instead. If r-c is missing as well, l-c is used.

...
...
...

x21 x22
x2T...

a21 a22
a2T...

α 2 α
T

α 1
...

...
...
...

x11 x12
x1T...

a11 a12
a1T...

α 2 α
T

α 1
...

...
...
...

x
L1 x

L2
x
LT

...

a
L1 a

L2
a
LT

...

α 2 α
T

α 1
...

...

...

...

...
21 L

...

o1 o2
o
L

y1 y2
y
L

softmaxsoftmaxsoftmax

a a a

epoch 1 epoch 2 epoch L

EMG
EOG
EEG

EMG
EOG
EEG

EMG
EOG
EEG

R R R... R R R... R R R...

R R R

...

Fig. 3. Illustration of SeqSleepNet. The figure is adapted from [13]. In this paper, L = 20.

minimize the cross-entropy loss averaged over the sequence.
See [13] for more details.

D. Classifier training and transfer learning
Training: To test a wide selection of different, relevant elec-

trode combinations, we used different subsets of the electrode
derivations as inputs to the network, these are listed in Table I.
Here, ‘+’ means that multiple derivations are given as separate
inputs. The SeqSleepNet was configured similar to original
implementation [13].

Transfer learning: As an alternative to training directly on
the reduced electrode set, we also studied the effect of transfer

learning [15]. To this end, we pretrained SeqSleepNet with the
Montreal Archive of Sleep Studies (MASS) database, which
consists of 200 subjects [16]. For this test, only a single-
input version of the network was prepared, using the C4-
A1 derivation. The pretrained networks were then used as the
starting points and further trained (i.e., the entire network were
finetuned) with our data.

Performance evaluation: In the remainder of this paper, we
shall refer to a SeqSleepNet trained for a specific set of inputs
as a ‘classifier’. When discussing both manual sleep scorers
and automatic classifiers, we shall refer to to all of them as
‘scorers’.
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TABLE I
OVERVIEW OF CHANNEL COMBINATIONS USED. ’+’ MEANS USING

MUTIPLE, SEPARATE DATA CHANNELS.

Single, double or triple channel input:
Single Double Tripple

’Left ear’
’M1’
’EOG 1-2’
’LR’
’M1-M2’
’scalp’

’M1’+’EOG1’
’M1’+’EOG2’
’LR’+’EOG1’
’LR’+’EOG2’
’LR’+’EOG 1-2’

’scalp’+’EOG 1-2’+’EMG’
’LR’+’M1’+’M2’

Each classifier was trained and tested in a leave-one-subject-
out fashion, using 15 subjects for training, 4 subjects for
validation and one for testing. For each subject, all available
recordings were used.

When quantifying classifier performance, we use Cohen’s
kappa [17].

III. RESULTS

Figure 4 shows how the set of accepted epochs depends on
the chosen set of derivations. On the left is shown rejection
statistics for individual derivations. We see that the epoch-
wise rejection rate is quite stable across derivations, varying
between 3.2% and 6.0%. For comparison, scorer 1 marked
3.5% of the epochs as unclassified. However, more important
than the single derivation statistics is the impact on epoch
rejection when multiple derivations are considered. On the
right, statistics are shown for when all but one derivation are
used. Again, we see that excluding a single derivation mostly
does not change the overall rejection rate. However, we note
that removing the ’right ear’ derivation reduces the number of
recordings that are completely rejected (from 3 to 2). Because
of this, we decided to exclude the ’right ear’ derivation from
the rest of the analysis, and use the 83% of epochs which are
accepted in all other derivations (including being scored by
scorer 1). This results in excluding 2 recordings (from two
different subjects).

Please note that EMG, EOG and Scalp derivations have been
excluded from the comparison in Figure 4. This is because
these derivations are all necessary to perform our analysis
(constituting a three-channel PSG classifier), and thus their
inclusion is obligatory.

Figure 5 shows boxplots for distributions of Cohen’s kappa
between the classifier output and the manual labels assigned
by scorer 1. It is interesting to note how any classifier which
combines both lateral and EOG information reaches kappa
values of about 0.76 or above (in particular how well ’EOG
1-2’ performs). Also, we see that the ’scalp+EOG 1-2+EMG’-
classifier actually reproduces scorer 1 better than scorer 2 does.
This indicates that SeqSleepNet manages to incorporate the
special quirks of scorer 1, and that it is probably unwarranted
to attempt further improvements in PSG-based scoring (at least
when training against a single scorer).

In the case of transfer learning, we tested the effect on
the ’LR’, ’LR+EOG1’, ’LR+EOG2’ and ’M1-M2’. We found
average increases in Cohen’s kappa of 0.016, 0.009, 0.005 and
0.029, respectively.

Figure 6 shows a visual comparison between all scorers,
both manual and automatic. For each scorer, all kappa values
are calculated relative to all other scorers (by bundling all
recordings into one, and calculating one total kappa value), and
the two highest values are plotted as edges on the graph. This
means that while some nodes (each representing a scorer) have
more than two connected edges, all nodes have at least two.
The edges are coloured depending on the kappa value, and the
nodes are coloured depending on the kappa value between the
scorer and scorer 1.

An interesting observation can be made from Figure 6: even
though ’scorer 1’ is the target that all automatic classifiers are
aiming at, they do in fact agree more with each other than with
scorer 1. This happens even for classifiers that do not have any
input derivations in common (e.g. ’M1+EOG 2’ and ’LR+EOG
1’ may share electrodes, but not derivations). In particular,
we note that even though ’scalp+EOG 1-2+EMG’ attains the
highest kappa relative to scorer 1 of any scoring method, it
still attains even higher kappa values with other automatic
classifiers. We can think of two plausible causes of this: (1)
the manual scorer likely also makes some mistakes, meaning
that there is an upper limit to how well an entirely rules-based
sleep classifier can predict manual scoring. (2) it is possible
that the manual sleep scorer uses information not available
to the classifiers - either because the manual scorer considers
more than the last 5 minutes of recording when scoring a
given epoch, or because they consider other aspects of the
recording, such as time of night, total duration etc., which are
not revealed to the automatic classifier.

When we further analyse the discrepancies between manual
and automatic scoring, we find, not surprisingly, that most
errors happen close to state transitions. This is shown in Figure
7 where we see that almost 60% of discrepancies between
manual and automatic scoring happens immediately before or
after a stage transition (as judged by scorer 1). Including three
additional epochs to either side of the transition brings the total
up to around 80%. Not shown is a comparison to the distance-
to-transitions for a randomly chosen epoch. We find that the
distributions are significantly different, which discredits the
hypothesis that errors might be unrelated to transitions.

Given the high agreement between many of the automatic
classifiers, we decided to specifically study the level of con-
sensus between some of the most well-performing classifiers.
We chose the following 5: ’LR + EOG2’,’EOG 1-2’,’M1 +
EOG2’,’scalp’,’scalp + EOG 1-2 + EMG’. When comparing
each of the 5 classifier outputs to their own majority vote,
we overwhelmingly find that the 6 classifiers mutually agree.
Figure 8 shows the average number of votes for the majority
(maximum 5) for different sleep stages (as judged by the
majority). We see that in 80% of cases there is complete
consensus, except for stage N1, which is also considered the
least well-defined stage.

IV. DISCUSSION AND CONCLUSION

By combining a high number of recordings with an ad-
vanced sleep scoring algorithm, we achieve a consistent, high
scoring performance, as measured by the Cohens kappa value.
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In fact we generally achieve a higher kappa value than what
has previously been found for mobile sleep setups [3], [7]. This
is central for the realization of light weight sleep monitoring,
and our results here show that this can be reality. Additionally,
importantly, we find that a broad selection of electrode place-
ments, all having in common that they have both lateral and
EOG components, achieve very similar performances. This
means that electrode placements should be chosen based on

unobtrusiveness, reliability and comfort, and if the recording
setup is otherwise sound, we predict that a very large number
of different sensor combinations can make a viable sleep
monitor.

In particular, we found that a PSG-based automatic scorer,
which performed very well in reproducing scorer 1, still
had a higher Kappa value with at least two other automatic
classifiers. This indicates that the high internal consistency
among the automatic classifiers is not entirely due to limited
sleep information in the non-PSG derivations, but is likely
also related to the human peculiarities in the scoring by scorer
1. Apparently, the automatic classifiers all manage to define
certain special cases more consistently than scorer 1, leading to
the ’scalp+EOG 1-2+EMG’ classifier attaining both the highest
kappa value with scorer 1, while at the same time having
higher agreement with other automatic classifiers.

Based on this observation, it would be very interesting to
compare the output of the classifiers presented here with output
from consensus-trained PSG-based classifiers such as the one
presented in Stephansen et al 2017 [18], which the authors
believe could be more consistent than the gold standard manual
sleep scoring.

It is worth noting that we have found no indication that
the specific choice of epochs used here (as described above)
is particularly easy to score, which would introduce a bias
towards artificially high kappa values. We have tested the
random forest based classifier presented in Mikkelsen et al.
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Fig. 6. Left: Matrix showing all pairwise Cohens kappa coefficients, ordered to maximise nearest neighbour values. Right: Graph ordering scorers
based pairwise kappas. Each node represents a scorer, and the edge weights represent the kappa value between the two scorer outputs. The
node color shows the kappa value between classifier output and scorer 1 labels. For clarity, only the two strongest edges for each node have been
included.
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2019 [3], on the same, reduced epoch set, (used for both
testing and training), however it only attains an average kappa
coefficient of 0.72 (compared to the 0.73 which was achieved
using a larger set of epochs).

In future work, it will be interesting to see how these
results change when a more challenging cohort is used - it
is possible that as sleep and its associated biomarkers change
with age or infirmity, the optimal electrode locations will
change accordingly.

On the topic of future directions, we feel that this work
highlights the need for a change in focus regarding how
machine learning is used to improve clinical sleep analysis.
Given the apparent high reliability of automatic sleep scoring
shown in this paper and others, we believe that the goal of
reproducing manual scoring for ’regular sleep’ has been largely
reached. Rather than marking any kind of end to the project
of updating clinical sleep analysis, we believe this marks the
beginning of a new phase. To anyone following this field, it
should be clear that cost-effective, long term sleep monitoring
is becoming a reality. The question now is, how can automatic
scoring be transformed into a trusted, clinical tool (as was
recently suggested by the American Academy of Sleep Science
[19]), and how can we use this tool to actually update the
framework within which sleep is analyzed? For instance, the
work presented in this paper would likely have benefitted
from a more finegrained definition of sleep stages, such as the
’hypnodensities’ that some researchers have been advocating
[18]. That is an example of how the existence of accurate,
automatic sleep scoring, suitable for long-term monitoring,
can motivate and support development of new approaches. We
hope that much more of such developments are on the way.
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