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High-order expansion around BCS theory
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We demonstrate that high-order diagrammatic expansion around BCS theory is a viable generic
unbiased approach for strongly correlated fermions in superconducting or superfluid phases. For
the 3D attractive Hubbard model in a strongly correlated regime, we observe convergence of the
diagrammatic series, evaluated up to 12 loops thanks to the connected determinant diagrammatic
Monte Carlo algorithm. Our study includes the polarized regime, where conventional quantum
Monte Carlo methods suffer from the fermion sign problem. Upon increasing the Zeeman field,
we observe the first-order superconducting-to-normal phase transition at low temperature, and a

significant polarization of the superconducting phase at higher temperature.

After the discovery of superconductivity 110 years
ago [1], it took nearly half a century before Bardeen,
Cooper and Schrieffer provided a microscopic explana-
tion based on an ansatz for the many-body ground-state
wavefunction — a coherent state of pairs, breaking the
U(1) symmetry corresponding to particle number con-
servation [2]. Variational minimization over this ansatz
leads to the well-known BCS mean-field theory which
captures not only the “BCS regime” where the attractive
interaction is weak, but also the “BEC regime” where
the attractive interaction is strong, suggesting a smooth
crossover from a fermionic superfluid with large Cooper
pairs to a Bose-Einstein condensate of small composite
bosons [3]. This BCS-BEC crossover scenario, confirmed
experimentally in ultracold atomic gases [4H7], is rele-
vant to neutron matter [8, 0] and to various solid-state
materials [I0, II] where s-wave pairing arises between
opposite-spin electrons due to phonon-mediated attrac-
tion [I2HI6] or between an electron and a hole due to
Coulomb interaction [ITHI9]. The problem becomes even
more interesting in presence of a Zeeman field h, i.e., a
chemical potential offset between 1 and | fermions, which
favors a difference between 1 and | densities, and tends
to destabilize the fully paired superconducting state.

The minimal theoretical formulation of the BCS-BEC
crossover problem is the attractive Hubbard model on
the cubic lattice, which was widely studied at » = 0 (and
generic filling [20]) by BCS mean-field theory [21], differ-
ent versions and extensions of the T-matrix approxima-
tion [111 221 23], dynamical mean-field theory (DMFT) in
the normal [16], 24H29] and the superconducting [I5, [B0-
[35] phase, and the dynamical vertex approximation [36].
Unbiased studies, based on the auxiliary field quantum
Monte Carlo (AFQMC) [37H43] or determinant diagram-
matic Monte Carlo (DDMC) methods [44] [45], are mostly

restricted to a Zeeman field A = 0: In the h # 0 regime,
where there is no symmetry between T and |, these
methods are plagued by the infamous fermion sign prob-
lem [46], and most studies resort to the static |21, [47, 48]
or dynamical [49-51] mean-field approximations. A very
different route is to emulate the Hubbard model with cold
atoms, although long-range order in 3D was not reached
so far [Bl [7), 52H56).

In this Letter, we demonstrate that unbiased accurate
results in the polarized superconducting phase can be ob-
tained from a high-order diagrammatic expansion around
the BCS hamiltonian. By extending the connected deter-
minant (CDet) algorithm [57] to anomalous propagators,
we go up to twelve-loop order and observe convergence
of the series. This extends to superconducting phases
the realm of controlled diagrammatic computations for
strongly correlated fermions, which was so far limited to
normal phases [58H78] with the notable exception of [79].
We determine the critical Zeeman field where a first-
order superconducting-to-normal phase transition takes
place at low temperature, and find a significant polar-
ization of the superconducting phase at higher temper-
ature. Our results deviate very substantially from the
BCS mean-field predictions and provide reliable bench-
marks to guide optical-lattice experiments.

The Hubbard model is defined by the hamiltonian

H = Hyin — Y fto No + Hint (1)

o="11
where the kinetic part is a nearest-neighbor hopping,
Hyin = —tzﬁ)j)a(c;facjg + h.c.) and the interaction is

on-site, Hipy = Uzi ni nyiy. Here ¢, are the fermion
annihilation operators, nj, = c;racig and Ny = > Nio
the single-site and total particle-number-operators, and



H1/, = o h the chemical potentials.

To set up a diagrammatic expansion for the infinite-
size system in the superconducting phase, we must ex-
pand around an unperturbed hamiltonian Hy that breaks
the U(1) symmetry. We take

A
Ho = Hyin — Zﬂo,a No + H;()ai(r)) (2)
ag
with a symmetry-breaking pairing term
pair

HEO = A, Z c}LTcL + h.c. (3)

The most natural choice for the free parameters Ag and
Ho,s is given by the self-consistency conditions of BCS
mean-field theory

Moo = Ho — U <n07*0>H0 (4)
Ao = =U(O)u, ()
where (O) := (corcoy) is the order parameter for the

superconducting phase with long-range order in the s-
wave pairing channel. In what follows we will denote
this mean-field choice of Ay by Ayp. We will also use
other values of A, but always keep the mean-field choice
for the unperturbed chemical potential.

As usual we then introduce a hamiltonian that depends
on a formal parameter &,

H52H0+§ (H_HO)v (6)

expand intensive observables in powers of £, and finally
set & = 1. For the order parameter, this means introduc-
ing

0(¢) := <@>H§ = Tr(O e PHe) ) Ty e PHe (7)

and expanding O(§) = Y Nv_oOn &Y. We will see nu-
merically that this series converges at £ = 1. We can
thus obtain the physical order parameter simply by eval-
uating the series > x_, On.

Thermodynamic limit and spontaneous symmetry
breaking. Here it is actually crucial to work directly in the
thermodynamic limit [80]. This limit should be taken in
the definition (7)) of O(¢), and hence the thermodynamic
limit should be taken before summing the Oy over N.
Indeed, recall that in presence of spontaneous symmetry
breaking, the order parameter is defined by introducing
an external symmetry-breaking field n that couples to the
order parameter, and sending 7 to zero after taking the
thermodynamic limit:

O = lim

n—0+

lim <@>H("l), L (8)

L—oo

where H™ := H + H™ and L is the linear system size.

pair
Let us denote by Or (&) and O, 1, the finite-system ver-
sions of O(¢) and Op. Since there is no spontaneous

symmetry breaking for a finite system, Or(§ = 1) = 0.
What we should do instead, to obtain the order pa-
rameter defined in , is to first take the thermody-
namic limit: O = limg_,- limp oo O(§). This fol-
lows simply from and the fact that H¢ contains a
symmetry-breaking field which by construction vanishes
in the limit £ — 1 where the symmetry of the phys-
ical hamiltonian is restored. Explicitly, Hf = Hyin —

S0 (1= &) oo + & i) No-+(1-€) Higt +€ Hyse, which
is equal to Her=(1=€) 2o) plus corrections that have no
effect to leading order in the limit £ — 1.

Diagrams and CDet algorithm. Each coefficient Oy
is a sum of connected Feynman diagrams with N ver-
tices. We compute these coefficients up to a maximal
order Npyax using the CDet algorithm generalized to
the broken-symmetry phase. In addition to the normal
propagator lines, diagrams contain anomalous propaga-
tor lines, where particles are destroyed at both ends, or
created at both ends. These anomalous propagators are
the off-diagonal elements of the 2 by 2 propagator matrix

Gao (X = X') = ~(T LX) Yo (X)), (9)

with the Nambu spinor notation (Uy, ¥q) := (cy, CD
Here X = (i,7) stands for space and imaginary-time,
and T is the time-ordering operator.

Following the CDet approach, we express the diagram-
matic series for the order parameter, or for the densities,
as

(W} (0)Tu (0)) i, =

— ((U)N
- dXi...dXy cdet(Xy,...,Xn) (10)
Pt N / 1 N 1 N

where [dX =3, fO’B dr with A the inverse temperature,
and cdet(Xy,...,Xy) is the sum of all connected Feyn-
man diagrams with internal vertex positions Xi,..., Xy,
which is evaluated by recursively subtracting out all dis-
connected diagrams from the sum of all connected plus
disconnected diagrams, the latter being given by the de-
terminant of the (2N +1) by (2N 4 1) propagator matrix

0 Osh Goo(X1n)  Go1(X1n) Goig(X1)
Ssh 0 G10(X1n)  G11(X1n) Gia(X1)
goo(.an) 901(.an) 0 Sen gOO((.X’n.)
Gi10(Xn1) G11(Xn1) ... Osh 0 Gra(Xn)

Garo(=X1) Gor1(=X1) o Garo(=Xn) Gar1(—=Xn) Gara(0)

where X;; = X; — X, and dqn := (O)n, + Ao/U is
the anomalous tadpole minus a counter-term. When
Ay = Amr, dsn = 0, reflecting the cancellation of
anomalous tadpoles by Ag counter-terms. The zeros
on the diagonal reflect the cancellation of normal tad-
poles by chemical-potential counter-terms, ensured by
(4). We will also evaluate the series for the pressure,

P(¢) = InTrexp(—BHe)/(BL?) = Y x_o PnEY, whose
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FIG. 1. Benchmark at zero Zeeman field: Order parameter
at T = 1/8 = T./2. Green circles: CDet results vs. trunca-
tion order Nmax (Nmax = 0 corresponds to BCS mean field
theory). Blue line with grey error-band: Npmax — 00 extrap-
olated result. Pink diamonds: DDMC benchmark vs. system
size L (CDet data are in the thermodynamic limit L — o).

coefficients Py are given by fully closed diagrams and
are obtained with CDet by removing the last row and
column from the above propagator matrix.

Our computer code is based on a library [81] providing
a generic implementation of CDet, the integration over
the internal vertex positions being done for all diagram
orders N < Npax at once thanks to a recently introduced
many-configuration Monte Carlo algorithm [82].

Results. Taking the hopping t = 1 as unit of energy,
we set U = —5, and u = —3.38 so that the density n =
ny 4+ ny is close to 0.5 particles per site, i.e. quarter
filling — a standard choice of generic filling that differs
from the special half-filled case. For h = 0, AFQMC
is sign free and provides the critical temperature curve
T.(U) [37): Our choice of U lies in the strongly correlated
regime where the curve has a broad maximum — we have
T.(U = —5) ~ 0.25, which is not far from the maximal
value 0.33, and much larger than in the weak-coupling
regime where T, vanishes exponentially with 1/|U|.

We start with a benchmark at h = 0. We compute the
order parameter at T = 1/8 ~ T,/2 and compare with
the DDMC method [44], [83] also known as continuous-
time interaction expansion in the context of impurity
solvers [84H86]. Our data for the partial sum Z%fg‘ On
converge as a function of the truncation order Ny to
a result which agrees with the DDMC benchmark, see
Fig. Here and in what follows we use Padé approxi-
mants for the Np.x — oo extrapolation [87]. We used
Ag = Anr and checked that the extrapolated results
agree for different choices of Ag.

We turn to the polarized regime h > 0, where conven-
tional approaches such as AFQMC and DDMC have a
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FIG. 2. Grand-potential density vs. Zeeman field, at

T =1/16 ~ T./4. Circles: superconducting phase, obtained
by expanding around BCS mean-field theory (A¢ = Amr).
Squares: normal phase, obtained by expanding around the
normal mean-field solution (Ag = 0). The crossing between
the curves signals the first-order phase transition. Inset: same
quantity vs. truncation order Nmax, at h = 0.8; horizontal
lines with error bands are the Nmax — 00 extrapolated re-
sults also shown in the main panel.

sign problem and unbiased results are unavailable. We
start by setting the temperature to T' = T./4, increase
the Zeeman field h, and compute the thermodynamic
grand potential per unit volume, Q/L3 = —P with P
the (electronic) pressure. We obtain the pressure of the
superconducting phase using again the expansion around
the broken-symmetry mean-field solution (Ay = Aypr).
We also evaluate the expansion around the normal mean-
field solution (Ao = 0) which yields the normal-phase
pressure. As shown in Fig. 2] the two curves cross, which
indicates a first order phase transition. The error bars
are dominated by the Ny.x — 0o extrapolation, and are
larger for the normal phase because we could only eval-
uate the series up to order 7, instead of 12 for the super-
conducting phase. We attribute this difference to the fact
that the superconducting-phase propagators are gapped,
and hence decay faster with position, which reduces the
Monte Carlo variance. Within error bars, the supercon-
ducting pressure is independent of i, which means that
the magnetization m := n4 — ny is zero. This indicates
that we are in the regime where & is smaller than the pair-
ing gap Fy, i.e. the Zeeman field is not large enough to
overcome the energy cost of having an unpaired fermion,
and the magnetization is exponentially suppressed at low
temperature, m ~ e~ (Fs=1/T So the pairing gap essen-
tially prevents the superconducting phase from polariz-
ing, until a first-order phase transition occurs when the
polarized normal phase becomes energetically favorable.
Contiuous-space ultracold atom experiments [§8H90] and
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FIG. 3. Magnetization vs. maximal expansion order at
T=019 ~ 37./4 and h = 0.35, for different choices of
the unperturbed pairing field (from bottom to top: Ay =
1.357 =~ Awmr,Ao = 0.9,0.5,0.4,0.37,0.34, and 0.3), from
which we obtain m = 0.0206(9). Inset: Pressure vs. ex-
ternal symmetry-breaking field n, whose slope, and hence the
order parameter, is non-zero.

fixed-node Monte Carlo calculations [91] are consistent
with this scenario. This is also what is predicted by BCS
mean-field theory [21][02] albeit with a critical field nearly
twice larger than our unbiased result h. = 0.62(11).

For h > h. the superconducting phase is metastable.
We have checked that the order parameter is still non-
zero at h = 0.8. In this regime the convergence of the
series Y Oy is slower and the extrapolation becomes less
stable. Therefore, instead of computing the order param-
eter directly, we extracted it from the response to a small
symmetry-breaking field: 20 = —dP" / dnl|,=o+, where
P is the pressure in presence of the field 1 (i.e. for
the hamiltonian H (77)), whose expansion can be extrap-
olated reliably [93]. As always, the notion of metastable
phase has to be taken with a grain of salt: It is only well
defined asymptotically close to the first-order transition
point, where the energy barrier for nucleating the stable
phase inside the metastable phase diverges. Accordingly,
the diagrammatic expansion must actually diverge, but
as long as we are not too deep in the metastable regime,
this divergence is slow and only visible at very large or-
ders, see below. Similarly, the normal phase is metastable
for h < h., and we are able to follow it all the way to
h = 0 without encountering the divergence of the series
within the 7 orders that are accessible to us.

While we have seen that the pairing gap prevents the
superfluid from polarizing at low temperature, the situ-
ation changes at higher temperature. At T =~ 3T,/4 and
h = 0.35, we find a magnetization m = 0.0206(9), which
corresponds to a polarization (ny —n,)/(nt+ny) of 4.1%.
This is 30 times larger than the BCS mean-field predic-
tion. Therefore, BCS mean-field is not a good starting

point for the expansion in this case, and we had to tune
Ag away from Ayp in order to obtain convergence of the
partial sums within accessible orders, see Fig. 3] Fur-
thermore we can again check that the order parameter is
non-zero by computing P vs. external field n, see inset
of Fig. We thus observe a polarized superconducting
phase. This phase is possibly metastable, since its pres-
sure (at 7 = 0) does not differ from the one of the normal
phase within our error bars.

We end with a discussion of the large-order behavior
of the expansion for the superconducting phase, which
is determined by the singularities as a function of the
formal expansion parameter £. In the limit & — 17, we
effectively have an external field neg = (1 — £) Ag, hence
the long-wavelength thermal fluctuations of the Gold-
stone mode lead to a singularity O(§) — O ~ C'/1 ¢,
with C = [0/(2D,)]*?TVAg/m, O = O — 17),
and Dg the superfluid stiffness [94, [95]. This yields
the power-law asymptotics Oy ~ —C/(N3/22,/7) and
Py ~ C Ag/(N5/?/7) for N = co. When T' — 0 there
is a crossover to the quantum-fluctuation regime where
the Goldstone singularity is only logarithmic [96], lead-
ing to a faster 1/N? decay of Py. We expect another,
weaker singularity at £ = 1, given that the change of sign
of 1 — & causes a first-order phase transition associated
to a change of sign of the equilibrium order parameter.
Such a first-order transition is generally expected to cause
an essential singularity, with a branch-cut discontinuity
~ e B for ¢ - 1, with B(¢) the grand-potential bar-
rier for nucleating a critical bubble of the stable phase
inside the metastable phase [97) 98], which diverges like
a power of 1/|1—¢| [99], and hence a streched-exponential
large-order behavior ~ exp(—#N%) with a < 1. In the
vicinity of the physical first-order transition from Fig.
we expect a third singularity at a point &. that moves
continuously from the left to the right of the physical
point £ = 1 when h changes from below to above h,,
with a branch-cut discontinuity ~ e B® for &€ — £, with
B(&) the barrier for nucleating the stable normal phase
inside the metastable superconducting phase, which di-
verges like a power of 1/|¢. — &| [I00], hence a large-order
behavior (1/£.)Y times a streched exponential. None of
these three singularities lead to a divergence of the series,
except for the third one in the metastable regime where
&. < 1, but this is a slow divergence only visible at very
large N as long as &. is close to 1, as anticipated. In
the stable regime, the Goldstone singularity dominates
asymptotically, but the prefactor C' is much smaller than
what would correspond to our numerically obtained coef-
ficients, assuming that D, is not much smaller than the
value 0.5 predicted by DMFT at T = 0 [33]. Thus at
N = 12 we are still far from the true large-IN behavior;
furthermore the smallness of C' implies that the contri-
bution of the Goldstone singularity to the final result is
negligible. To estimate the effect of the sub-exponential
decay of the coeflicients, we supplemented the Padé re-



sults with Dlog-Padé and with power-law extrapolations
of the series shifted by N, orders with |Ng| < 3, and we
increased the final error bars to include all obtained re-
sults. As seen in Fig. 2] and in the inset of Fig. 3] the
resulting error bars are still remarkably small. In this
sense, 12 loops are sufficient for accurate extrapolation.

Outlook. BCS mean-field theory predicts [47] that in
a large part of the phase diagram, the true equilibrium
state is an exotic FFLO [I0I] phase. This open ques-
tion can be tackled with the present approach by making
Ag space dependent. Stronger couplings can be accessed
by replacing the bare interaction vertex with the T-
matrix, following [I02]. This would allow to look for the
breached-pair gapless superconducting phase [49] and to
extend the continuous-space approach of [58, [70, T03] to
superfluid phases. For the repulsive Hubbard model, the
d-wave superconducting phase is accessible by expand-
ing around a momentum-dependent Ag, as was done to
second order in [104]. Another natural extension would
be to go beyond the third-order expansion for open-shell
nuclei [105].
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