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Abstract. Dark matter annihilation in dwarf spheroidal (dSph) galaxies near the Milky Way
has the potential to produce a detectable signature in gamma-rays. The amplitude of this
signal depends on the dark matter density in a dSph, the dark matter particle mass, the
number of photons produced in an annihilation, and the possibly velocity-dependent dark
matter annihilation cross section. We argue that if the amplitude of the annihilation signal
from multiple dSphs can be measured, it is possible to determine the velocity-dependence of
the annihilation cross section. However, we show that doing so will require improvements
in constraints on the dSph density profiles. Making reasonable assumptions about these
improvements, we make forecasts for the ability of current and future experiments — including
Fermi, CTA and AMEGO — to constrain the dark matter annihilation velocity dependence.
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1 Introduction

A key strategy for studying dark matter is the search for photons arising from dark matter
annihilation in dwarf spheroidal galaxies (dSphs). dSphs are promising search targets because
they are thought to be dark matter-dominated astrophysical objects with relatively small
astrophysical foregrounds. Searches for dark matter annihilation in dSphs have thus far
yielded tight bounds, but no significant evidence of a signal (e.g. [1, 2]). It is hoped that, as
more dSphs are found, and as they are studied with instruments probing new energy ranges
with larger exposures, evidence for dark matter annihilation may yet be forthcoming. In this
paper, we investigate a related question: if future observations with gamma-ray telescopes
find evidence for dark matter annihilation in dSphs, can these observations also be used to
determine the velocity-dependence of the microscopic dark matter annihilation process?

The flux of photons arising from dark matter annihilation in any astrophysical object is
proportional to the object’s J-factor, which encodes all of the dependence of the photon flux
on the astrophysical details of the target. The J-factors are typically determined by analyzing
stellar velocity data, which can be used to infer the dSph mass distribution. Recent work
has demonstrated that these J-factors depend non-trivially on the velocity-dependence of the
dark matter annihilation cross section [3–12].

For unresolved observations of the photon flux from a single dSph, information about
the velocity-dependence encoded in the J-factor will be degenerate with the annihilation cross
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section, particle mass, and the number of photons produced per annihilation, which also im-
pact the expected photon flux. However, for a set of dSphs with different characteristic dark
matter velocities, changing the velocity-dependence of the annihilation cross section will im-
pact the J-factor of each dSph differently. Consequently, gamma-ray observations of multiple
dSphs can be used to break degeneracies between the annihilation velocity dependence and
other quantities that impact the amplitude of the annihilation signal.

Such an analysis will also be impacted by a variety of additional uncertainties. First
of all, for any choice of velocity-dependence, the calculation of the J-factors from stellar
data is plagued by parameter degeneracies and systematic uncertainties which can be large.
Secondly, astrophysical foregrounds can complicate the determination of the photon flux
arising from dark matter annihilation. But as more stars in a dSph are observed, and with
greater precision, the uncertainties in the J-factors are expected to decrease. By the same
token, as more dSphs are found, and as observations are made with larger exposures, the
statistical impact of the foregrounds will decrease.

In this work we forecast the ability of future gamma-ray observations of dSphs to con-
strain the velocity dependence of dark matter annihilation. Our forecasts rely on a set of
Milky Way dSphs with J-factors measured in [12]. We consider both current J-factor uncer-
tainties, as well as prospects for future improvements. We generate mock data sets for the
Cherenkov Telescope Array (CTA), the Fermi Gamma-Ray Space Telescope, and the All Sky
Medium Energy Gamma-Ray Observatory (AMEGO). For each observatory, we consider a
baseline exposure as well as significantly enhanced exposures. The mock data sets include
realistic estimates of backgrounds. Using these mock observations, we estimate the future
improvements that will be needed in order to distinguish between different models of dark
matter microphysics from the data.

The paper is organized as follows. In §2 we introduce the formalism for modeling the
velocity-dependent J-factors of dSphs; in §3 we describe the J-factor constraints for a set
of dSphs, and how we generate forecasts for the constraints on the dark matter annihilation
velocity dependence. Our results are presented in §4, and we conclude in §5.

2 General formalism

We assume that dark matter is a real particle with an annihilation cross section given by

σv = (σv)0 × S(v/c), (2.1)

where v is the relative velocity between the dark matter particles, and (σv)0 is a constant
which is independent of v. The velocity dependence of the annihilation process is contained
in S(v/c), which we will assume takes the form S(v/c) = (v/c)n. We will consider several
theoretically-motivated choices for n.

• n = 0 (s-wave): This is the standard case of velocity-independent annihilation.

• n = 2 (p-wave): This case can arise in any scenario respecting minimal flavor violation
(MFV) in which dark matter is a Majorana fermion which annihilates to a Standard
Model (SM) fermion/anti-fermion pair (see, for example, [13]). In this case, annihilation
from an L = 0 state is chirality-suppressed, and annihilation from the L = 1 state may
thus dominate. This case can also arise if dark matter is a fermion (Majorana or Dirac)
which annihilates through an intermediate scalar in the s-channel.
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• n = 4 (d-wave): This case can arise in any scenario respecting MFV in which dark matter
is a real scalar particle, which annihilates to a SM fermion/anti-fermion pair [14, 15]. In
this case, annihilation from the L = 0 state is chirality-suppressed, while annihilation
from the L = 1 state is forbidden by symmetry of the wavefunction [13–15]. Annihilation
from the L = 2 state may thus dominate.

• n = −1 (Sommerfeld-enhanement in the Coulomb limit): This case can arise if dark
matter annihilation is Sommerfeld-enhanced, and the particle mediating dark matter
self-interaction is much lighter than the dark matter [16, 17].

The expected number of photons with energies between Emin and Emax arising from
dark matter annihilation in any astrophysical target can be written as [18, 19]

Nexp = ΦPP × J(∆Ω)× (TAeff ), (2.2)

where T is the exposure time, Aeff is the effective area,

ΦPP ≡
(σv)0

8πm2
χ

∫ Emax

Emin

dEγ
dNγ

dEγ
, (2.3)

mχ is the dark matter mass, and dNγ/dEγ is the photon spectrum per annihilation. The
integrated J-factor is given by

J(∆Ω) =

∫
∆Ω

dΩ

∫
d`

∫
d3v1

∫
d3v2 f(~r,~v1)f(~r,~v2)× S(|~v1 − ~v2|/c), (2.4)

where f(~r,~v) is the dark matter velocity distribution, ∆Ω is the solid angle, and ` = |~̀| is
the distance along the line of sight. If ~D is a vector from the observatory to the center of the
dSph, then ~r = ~̀− ~D.

We thus see that ΦPP depends only on the properties of the dark matter particle, while all
of the dependence of the photon counts on the dark matter distribution in the target appears
in the J-factor. But the J-factor also depends on S(v/c). For the case of s-wave dark matter
annihilation (S = 1), the J-factor reduces to the usual expression J(∆Ω) =

∫
dΩ d` ρ2. But

for a more general particle physics model, the J-factor of the target must be recomputed.
The form of the J-factor simplifies considerably for the case in which the dark matter

velocity distribution depends on only two parameters, a scale density ρs and a scale radius
rs. One then finds that the only quantity one can write with units of velocity which depends
on the relevant parameters is 4πGNρsr

2
s . The form of the J-factor simplifies even more if the

dSph is reasonably far away (D � rs), and the aperture of the observation covers the region
where most dark matter annihilation occurs. The dependence of the integrated J-factor on
the parameters is then determined by dimensional analysis, yielding [11]

J(∆Ω) ∝ ρ2
sr

3
s

D2

(
4πGNρsr

2
s

)n/2
, (2.5)

where the proportionality constant is independent of the halo parameters.
Given any ansatz for the form of the dark matter distribution, stellar data can be used to

estimate the halo parameters, which in turn determine the J-factor for any choice of S(v/c).
However, because the annihilation flux also depends on ΦPP , measurement of the flux from
a single dSph will be insufficient to determine both ΦPP and n. On the other hand, if one
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considers the ratio of the fluxes between two dSphs with different velocity distributions, this
ratio will be independent of ΦPP , but will depend on n (and the velocity distributions).
This implies that, if the halo parameters of several dSphs can be determined with sufficient
precision from stellar data, with a sufficient exposure, it should be possible to determine n
from the relative photon counts from different dSphs.

For our analysis, we will consider the J-factors derived in [12] for 25 dSphs, assuming
either n = −1, 0, 2, or 4. Following [20], the analysis of [12] assumed an NFW profile, and
estimated ρs and rs for each dSph from stellar data. The dark matter velocity distribution
was then determined from the density distribution using the Eddington inversion method [21],
following [11]; this determines the proportionality constant in eqn. 2.5 for each choice of n.
Note that, although this overall proportionality constant affects the normalization of the dark
matter signal from a dSph, it does not affect one’s ability to determine the velocity-dependence
of a detected signal at fixed signal flux, which depends on the relative flux between different
dSphs. We discuss the estimation of J-factors and forecasts for future J-factor constraints in
more detail in §3.3. We will also consider J-factors which we derive using a modified version
of the approach used in [12, 20], in which the stellar data is supplemented with a cosmological
prior derived from numerical simulations.

3 Forecasting future constraints on the dark matter annihilation velocity-
dependence

3.1 The likelihood for photon counts from dSphs

We consider here the case of unresolved observations of the annihilation signal in dSphs.
Because the observations are unresolved, we define our observable to be the measured photon
counts in an aperture around each dSph. Since the dark matter annihilation signal is expected
to be localized in a small region centered on each dSph and because the beam size of gamma-
ray telescopes is typically large compared to these regions, assuming that the annihilation
signal is unresolved is reasonable. For high-resolution observations, such as with CTA, it
maybe be possible to improve constraints on the velocity dependence by using the angular
dependence of the signal [11].

For a set of ND dSphs, we define a ND-dimensional data vector, ~d, that represents the
photon counts in the aperture around each dSph. The observed data is the sum of signal
photons and background photons:

~d = ~s+~b, (3.1)

where the ND-dimensional vectors ~s and ~b represent the photon counts from signal and back-
grounds, respectively. We represent the probability distribution functions (PDF) describing
~s and ~b as PS(~s) and PB(~b), respectively. We will discuss PB(~b) in more detail in §3.2.

We assume that the dark matter signal, ~s, is Poisson distributed. The expectation value
of the signal for the ith dSph, 〈si〉, is given by 〈si〉 = Nexp (Eq. 2.2). The signal PDF is then

PS(si|Ji,ΦPP ) =
〈si〉sie−〈si〉

si!
, (3.2)

where 〈si〉 depends on the dSph’s J-factor, Ji, the particle physics factor ΦPP , and the
exposure. We remind the reader that the J-factor in turn depends on the velocity dependence,
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n. Since the observed sky signal is the sum of signal and backgrounds, the total data likelihood
is given by a convolution of the signal and background distributions:

PD(di|Ji,ΦPP ) =

di∑
i=0

PS(i|Ji,ΦPP )PB(di − i). (3.3)

Ultimately, we are interested in constraining the velocity dependence of the dark matter
annihilation (i.e. n), rather than the J-factors themselves. Marginalizing over the J-factor
PDF we have

PD(di|ΦPP , n) =

∫
dJi PD(di|Ji,ΦPP )PJ(Ji|n), (3.4)

where PJ(Ji|n) is the prior on the J-factor of the i-th dSph, which we will discuss in more
detail in §3.3.

Assuming the dSphs are far enough apart on the sky that they can be treated as statis-
tically independent, we write the total likelihood for all dSphs as

L ≡ PD(~d|ΦPP , n) =

ND∏
i

PD(di|ΦPP , n). (3.5)

We adopt flat priors on ΦPP and n so that the posterior on ΦPP and n is simply proportional
to this likelihood. The purpose of our analysis is to determine whether (future) observations
can distinguish between different models for the velocity dependence of the dark matter
annihilation cross section. In §4.2 we describe how the likelihood introduced above can be
applied to mock data to make such forecasts.

3.2 Background modeling

We will make forecasts for future observations in three energy ranges: (1) 1 − 100 GeV, (2)
1 − 200 TeV, and (3) 1 MeV − 1 GeV. In each case, we will take different approaches to
estimating the PDF describing photon backgrounds, PB(~b).

Our analysis at 1− 100 GeV is modelled after Fermi observations. In this case, we will
use the Fermi maps themselves to estimate the backgrounds. This can be done by defining a
large number of background sky regions which are of the same size as the signal aperture, but
displaced slightly from the dSph; the histogram of photon counts in these backgrounds regions
forms our estimate of the background PDF for that dSph. This procedure has been applied in
[18, 19, 22], for example, and we will use the background PDFs obtained in Ref. [22]. Note that
these PDFs can be highly non-Poissonian, owing largely to the complicated morphology of the
diffuse galactic backgrounds. For our baseline analysis, we adopt an exposure corresponding
to roughly 10 years of observation time with Fermi, i.e. the data set used in [22]; the exact
exposure values assumed for each dSph are given in the appendix of [22]. We will also consider
a future Fermi-like data set that has a factor of five larger exposure, which could be obtained
by increasing the observation time and/or collecting area relative to Fermi.

Our analysis at higher photon energies is tailored to CTA-like observations. At energies
E & 100 GeV and for detectors like CTA, the dominant background is cosmic rays that have
been misclassified as gamma-rays (the so-called residual background). Since this background
is close to isotropic, we can ignore the sky positions of the dSphs, and obtain an accurate
estimate of the backgrounds by using the estimated spectrum of these misclassifications. Since
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the effective area of CTA is both maximal and approximately constant for photon energies
1 TeV . E . 200 TeV, we assume this energy range in our analysis. We adopt the reported
background flux for CTA south.1 We assume an exposure time (for each dSph) of 20 hours,
an effective area of 4 × 106 m2, and an aperture of radius 0.5◦. This aperture size matches
that used in the analysis of [22]; significantly smaller apertures would remove signal flux,
while much larger apertures would significantly increase the backgrounds. Since the CTA
beam size at these energies is roughly 0.03◦, more information about the velocity dependence
of the dark matter annihilation cross section could be obtained by considering the angular
dependence of the signal rather than the total flux in an aperture. For the present analysis,
though, we ignore the angular dependence, so our constraints can be viewed as conservative.

We also consider the energy range E . 1 GeV, for which future MeV-range gamma-
ray telescopes, such as e-ASTROGAM, AMEGO and APT, can conduct a similar search for
photons from dSphs. For this energy range, one would expect the astrophysical background
to be anisotropic. Unfortunately, however, we do not have a data-driven background estimate
for individual dSphs over this energy range. Instead, as a benchmark, we will use a fit to
the isotropic background seen by COMPTEL (0.8-30 MeV) and EGRET (30 MeV - 10 GeV).
This fit is given by [23]

d2Φ

dEdΩ
= 2.74× 10−3

(
E

MeV

)−2.0

cm−2s−1MeV−1sr−1. (3.6)

Integrating this fit over the desired energy range provides a rough estimate of the expected
background flux. We tailor our low-energy forecasts to AMEGO-like observations, assuming
an energy range of 1 MeV < E < 1 GeV, a baseline exposure time of one year, an effective
area of 800 cm2, and a beam size of 2.5◦ [24].

3.3 J-factors and their uncertainties

As mentioned previously, [12] constrained PJ(Ji|n) by running fits to stellar velocity data.
The full details are described in [20]. Briefly, the Spherical Jeans equations are solved for the
radial velocity dispersion which is projected into the line-of-sight direction to directly compare
to stellar velocity data [25–27]. The Spherical Jeans equations are solved assuming an NFW
profile for the dark matter distribution, a Plummer profile for the stellar distribution, and a
constant stellar anisotropy.

For the purposes of this analysis, we will assume that the posteriors on the J-factor for
each dSph is described by a Gaussian:

PJ(Ji|n) ∝ exp

[
−(Ji − µJ)2

2σ2
J,i

]
, (3.7)

where µJ and σJ are the mean and standard deviations computed from the posterior samples
generated in [12]. Assuming Gaussianity is useful partly because it allows us to trivially
make forecasts for future data by appropriately reducing σJ,i. For current data, the J-factor
posteriors for individual dSphs can be significantly non-Gaussian for reasons that we discuss
in §4.3. However, we show below that approximating the individual J-factor posteriors as
Gaussians does not lead to significant error in the combined constraints from all dSphs.
Furthermore, the Gaussian approximation is likely to become more accurate for individual
dSphs as stellar velocity constraints improve.

1https://www.cta-observatory.org/science/cta-performance/
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Future stellar observations will improve J-factor constraints by measuring velocities
for fainter stars. To make projections for the estimated J-factor uncertainty with different
stellar magnitude cuts we first make forecasts for how the number of stars observed in the
dSphs will increase with future observations. We estimated the number of stars at different
magnitudes in each dSph by drawing stars from an [28] initial mass function with a metallicity
of [Fe/H]=-2.2 and an age of 12.5 Gyr [29]. Taking the dSph absolute magnitudes compiled
in [20] and assuming a mass-to-light ratio of 2 we performed 1000 simulations with the Ultra-
faint Galaxy Likelihood (ugali) software toolkit2 [30, 31] to estimate the number of stars
at a given magnitude. At each magnitude limit we assumed that all stars brighter than this
are observed. This exercise only accounts for the statistical errors that increasing the sample
size will reduce. There are systematic errors due to different types of modeling, prior choices,
and potential unresolved binary stars that are not accounted for here. We assume a limiting
magnitude of rDECam < 23.5 which is expected for future 30m class telescopes with multi-
object spectrographs such as GMT/GMACS and TMT/IRIS. Finally, we assume that the
J-factor uncertainty scales according to σfuture(J) = σcurrent(J)

√
Ncurrent/Nfuture, where N is

the number of stars in a dSph and the subscripts indicate current or forecast observations.

3.4 Imposing a prior on the rs-ρs relation

The analysis of [12] does not impose any prior on the relationship between rs and ρs when
fitting to the stellar velocity data. As we discuss in §4.3, strong parameter degeneracies
degrade the precision of the resultant J-factor constraints. Numerical simulations predict that
rs and ρs are related for cold dark matter halos, and by imposing a prior on this relationship
we can improve the J-factor precision.

Following [6, 32], we adopt a Gaussian prior with mean

〈log10(rmax/kpc)〉 = 1.35 log10 (Vmax/(km/s))− 1.75, (3.8)

and standard deviation

σ(log10(rmax/kpc)) = 0.22, (3.9)

where rmax = 2.16rs and Vmax = 0.465
√

4πGρsr2
s . This relation [32] was found from a fit to

subhalos in the Aquarius simulations [33].
We present an alternative derivation of the dSph velocity-dependent J-factors, using the

same posterior samples as in Ref. [12], but with an additional weighting by the cosmological
prior given above. The resultant J-factor constraints are presented in Appendix A. Below,
we will present results utilizing J-factors derived both with and without this J-factor prior.

4 Results

4.1 Generating and analyzing mock data

We generate mock data as follows. First, we assign a true J-factor to every dSph. The true
J-factors are set to µJ , i.e. the mean J values from the analysis of stellar data described in
§3.3. We then randomly draw from the Poisson distributions in Eq. 3.2 to assign a mock dark
matter annihilation signal to each dSph. We next draw from the background distributions
for each dSph to assign them mock background photon counts. The combined signal and

2https://github.com/DarkEnergySurvey/ugali
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P
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Ptrue(J), E = E0

PGauss(J)

E = 2E0

σ2(J) = 0

No backgrounds

Input ΦPP

Figure 1. Recovered posterior on ΦPP when the mock data are generated assuming s-wave annihi-
lation and CTA-like observations. We assume s-wave annihilation when analyzing the mock data, so
the posterior should recover the input value of ΦPP , shown with the vertical dashed line; this value
is set larger than current limits for illustrative purposes. The red curves show the posterior for our
baseline model assumptions, computed using the true posteriors on the dSph J-factors (solid) and a
Gaussian approximation to the J-factor posteriors (dashed). The blue dashed curve shows the impact
of increasing the exposure by a factor of two, which significantly improves our ability to constrain
ΦPP. We also show the impact of removing J-factor uncertainty (green dotted) and backgrounds
(purple dot-dashed). We see that J-factor uncertainty significantly degrades our ability to recover
ΦPP . The assumed energy range is 1 TeV < E < 200 TeV.

background counts for each dSph represent a mock data set that we can analyze using the
likelihood defined in Eq. 3.5.

In Fig. 1 we show the posteriors on ΦPP that we obtain from our analyses of mock
CTA data. Each curve represents the posterior, P (ΦPP |~d), obtained from combining the
constraints across all dSphs for a different realization of mock data. For this figure we assume
s-wave annihilation, with ΦPP = 5 × 10−33 cm3 s−1 GeV−2 (shown with the vertical black
dashed line).

The red solid curve shows the recovered constraint on ΦPP assuming an exposure of
E0 = 20 hrs (per dSph) and using the true (non-Gaussian) J-factor PDFs from [12]. As
expected, we recover the input value of ΦPP to within the uncertainties. For comparison, the
dashed red curve shows the results of analyzing the same mock data set, but approximating
the J-factor PDFs with Gaussians of the same variance. This approximation introduces some
error in the posterior, but it is small compared to the uncertainty on ΦPP .

The blue dashed curve shows the results of increasing the exposure by a factor of two,
computed using the true J-factor posteriors. In this case, the width of the posterior is reduced.
The green dotted curve represents the case where we know the J-factor exactly, while the
purple dot-dashed curve represents the case with no background photons. For the assumed
value of ΦPP , uncertainty on the J-factors dominates over uncertainty from the backgrounds.
At lower ΦPP or lower exposure, though, uncertainty contributed by the backgrounds can
become significant. Note that we expect scatter between the different curves in this plot, as
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each one corresponds to a different random realization of the mock data (except the two red
curves, which represent analyses of the same mock data).

4.2 Ability of future dSph observations to constrain the dark matter annihilation
velocity dependence

We now forecast the ability of future observations of dSphs to constrain the velocity depen-
dence of dark matter annihilation by analyzing mock data sets generated as described above.
We generate a mock data set, assuming a true model (that is, a choice of n and ΦPP ), along
with a choice of exposure and choice of J-factor uncertainties (i.e., either current uncertainties
or forecast uncertainties for fainter stellar samples). Given this mock data set, we maximize
the likelihood over ΦPP , assuming either the value of n used to generate the mock data or an
alternative choice.

For two models (model 1 and model 2), the difference in the maximum likelihoods,
∆ lnLmax = Lmax,1 − Lmax,2, is related to our ability to reject model 2 in favor of model 1,
based on the data. For instance, the Akaike information criterion (AIC) is given by

AIC = 2k − 2 lnLmax, (4.1)

where k is the number of free parameters in the model (i.e. k = 1 when ΦPP is varied, and
k = 0 for the null model that has no dark matter signal). The quantity exp((AIC2−AIC1)/2)
is then the relative likelihood of model 1 with respect to model 2. This means that when
comparing dark matter annihilation models with different values of n, the relative likelihood
of the true model with respect to the alternative model is exp(∆ lnLmax); for comparison
with the null model, the relevant quantity is exp(∆ lnLmax− 1). In other words, models that
have ∆Lmax � 1 are strongly favored over models that have ∆Lmax . 1.

Fig. 2 shows the ability of future observations of dSphs with a CTA-like experiment to
distinguish different alternative velocity-dependent annihilation models, assuming the true
model is s-wave (n = 0). On the x-axis we plot the value of ΦPP used to generate the mock
data set, and on the y-axis we plot ∆ lnLmax for n = −1 (second column), n = 2 (third
column) and n = 4 (fourth column). The first column of Fig. 2 represents the ∆ lnLmax

between the true model and the model with ΦPP = 0 (i.e. no dark matter). For all panels,
solid lines are used for analyses with an exposure E0 = 20 hours, while the dashed lines are
used for an exposure of 5E0. Blue lines are used for analyses in which the velocity-dependent
J-factors and their uncertainties uncertainties are as found given in [12]. Green lines are used
for analyses in which the J-factor uncertainties are reduced, based on an estimate of what
precision might be possible with a future survey with a magnitude limit of 23.5 (see §3.3).
Red lines correspond to the most optimistic case, in which the uncertainties in the J-factors
are negligible. Finally, the translucent lines correspond to analyses in which the J-factors
and their uncertainties are derived using the cosmological prior described above. We note
that, since we are analyzing simulated realizations of the data, we expect some scatter in the
various curves with variance of order σ2(∆ lnLmax) ∼ 1.

Fig. 3 and Fig. 4 are similar to Fig. 2, except that they use mock data generated assuming
Sommerfeld and p-wave annihilation, respectively. In Appendix B we show the corresponding
results for our Fermi and AMEGO forecasts.

We find that for sufficiently high ΦPP , different models of the velocity-dependence can
be distinguished at high significance. In general, the significance with which different velocity-
dependence models can be distinguished is lower than that with which we can rule out the
null model (i.e. no dark matter). This is sensible: we must be able to detect the dark matter
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Figure 2. The ∆ lnLmax between the model assuming the true annihilation velocity dependence (s-
wave) and an alternate model (labeled above) computed on mock data corresponding to observations
with CTA. In all cases, the true data were generated assuming s-wave velocity dependence. From
left to right, the alternative models of each column are the null model with no dark matter signal,
Sommerfeld-enhanced annihilation, p-wave annihilation, and d-wave annihilation. Top panels show
∆ lnLmax for different values of the exposure, while bottom panels show the same for different levels
of J-factor uncertainty. The faded curves show the impact of imposing the rs-ρs prior. The units of
ΦPP are cm3s−1GeV−2, and the assumed energy range is 1 TeV < E < 200 TeV.

signal before we can determine the velocity dependence of the dark matter annihilation cross
setion. We find that increasing the exposure time and decreasing the J-factor uncertainties
improves the sensitivity significantly at high ΦPP .

One perhaps surprising feature of Fig. 2 is that when the data are generated with the
s-wave model, we cannot rule out Sommerfeld annihilation for current J-factor uncertainty
levels, regardless of how large ΦPP is. A second surprising feature of Fig. 2 is that imposing
a prior on the rs-ρs relationship does not necessarily help improve our ability to distinguish
between different models for the velocity dependence. Both of these features are connected
to the dSph J-factors and their uncertainties, which we now consider in more detail.

4.3 The impact of J-factor uncertainty

The stellar velocity data used to constrain the J-factor effectively probes the circular velocity
in the dSph, Vcirc(r), at some radial distance, r, from the halo center. The analysis in [12]
assumed an NFW density profile for the dark matter, given by

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
. (4.2)
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Figure 5. Left: degeneracy in the rs − ρs plane for the dSph Draco. The analysis of stellar veloc-
ity data leads to a degeneracy corresponding roughly to ρs ∝ r−βs . We include power law fits for
three subsets of the data. Right: constraints on Vmax (top) and log10 J (bottom) assuming s-wave
annihilation. The dSphs are ordered by their s-wave J-factors. We show results with and without
the imposition of the cosmological prior discussed in §3.4. Given the large errorbars on Vmax with
current data, the measurements for different dSphs are roughly consistent. We provide the J-factors
assuming different velocity-dependence of the dark matter annihilation in Appendix A.

Relating Vcirc to the enclosed mass, M(r), via Vcirc ∝
√
GNM(r)/r we have for r � rs

Vcirc(r) ∝
√
GNρsrsr, (4.3)

while for r � rs, we have

Vcirc(r) ∝
√
GNρsr3

s ln r/r. (4.4)

In each case, the Vcirc measurements constrain some degenerate combination of rs and ρs,
meaning that the constraints on the J-factor will be very weak. If stars can be measured
spanning a wide range of r, the different degeneracies in these two limits could be broken.

In practice, however, we find that for current dSph measurements, rs and ρs remain
quite degenerate with a degeneracy direction between these two limits, roughly ρs ∝ r−βs
with β ∼ 1.3. This degeneracy is shown (for Draco) in Fig. 5 (left panel), in which we plot
the values of ρs and rs inferred from each the MCMC chains used in Ref. [20]. Using Eq. 2.5,
this translates into a degeneracy between J and rs given by

J ∝ r3−2β+n(1−β/2)
s . (4.5)

Notably, since 3 − 2β > 0 and 1 − β/2 > 0, the variation of J with rs becomes steeper
for larger values of n. Since rs is only weakly constrained by the data, this means that the
fractional J-factor uncertainty increases significantly for large n.

Furthermore, the values of Vmax = Vcirc(rmax) (which is the maximum circular velocity)
inferred from current data for the different dSphs are all very similar to each other, within
uncertainties. This can be seen in the top right panel of Fig. 5, in which we plot the values and
uncertainties in Vmax for each dSph, as inferred from the MCMC chains used in Ref. [20]. Even
with the prior imposed, the dSphs have essentially consistent Vmax to within the uncertainties.
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These two facts together explain why the maximized likelihood tends to favor the model
of Sommerfeld-enhanced annihilation (given current J-factor uncertainties) even if the true
model is s-wave annihilation. Consider two annihilation models, 1 and 2, with velocity-
dependence specified by n1 and n2 such that n1−n2 = ∆n. The J-factor of a dSph computed
assuming model 2 will differ from that assuming model 1 by a factor of order V ∆n

max. Since
the Vmax values are similar across all dSphs, if ∆n is small, then the J-factors of all dSphs
for these two models will roughly differ by only an overall common factor, which can be
compensated by a rescaling of ΦPP . Moreover, if n1 > n2, then as we argued above, the n1

model will yield larger uncertainties on the J-factors. The large J-factor uncertainties mean
that when varying ΦPP , model 1 (with the larger value of n) will yield a lower maximum
likelihood than model 2, regardless of which was the true model. Therefore, the larger n
model (n1) will be disfavored. For large ∆n, on the other hand, the small differences in Vmax

between the different dSphs will be magnified. If ∆n is sufficiently large, the J-factors of the
different dSphs will become sufficiently different that the true n model will be favored despite
possible differences in the J-factor uncertainties.

This effect explains the strange behavior seen in Fig. 2 when the data generated assuming
s-wave annihilation are analyzed with the Sommerfeld model. In this case, ∆n = 1 and the
model with the lower value of n (Sommerfeld) is preferred slightly over s-wave for current
J-factor uncertainty, even though this is not the true model. This effect persists even at high
ΦPP , since in these cases the J-factor uncertainty dominates the width of the likelihood. The
only remedy to this situation is to obtain tighter constraints on the J-factors, as seen in the
bottom row of Fig. 2. Note that, as shown in Fig. 3, the Sommerfeld model is always preferred
when the data are generated assuming Sommerfeld annihilation. Since the Sommerfeld model
has the lowest value of n, other annihilation models will yield larger J-factor uncertainties;
thus, in this case, the true model will also have the smallest J-factor uncertainties.

Similarly, we see in Figure 4 that, if the mock data are generated assuming p-wave
annihilation, then with current J-factor uncertainties, the likelihood would show a preference
for the s-wave model over the true p-wave model. But the true model is preferred over the
Sommerfeld model; although the J-factors for the Sommerfeld model are smaller, for this
case ∆n is large enough that the relative differences in the J-factors can be distinguished.
But in all cases we find that, if the J-factor uncertainties can be sufficiently reduced, then a
reasonable data set can be used to distinguish the true model of dark matter annihilation.

One might expect imposing the prior on the the rs-ρs relation to help here, since this
prior will decrease the J-factor uncertainty (as seen for most dSphs in the bottom right panel
of Fig. 5). However, we find that the Vmax values still remain close together (to within the
uncertainties) upon the application of the rs-ρs prior, as seen in the top right panel of Fig. 5.
Furthermore, we find that imposing the cosmological prior can shift the mean J-factors. As
seen in Appendix A, the imposition of the prior tends to reduce the J-factors more as n
is increased. This explains why when the data are generated assuming s-wave and p-wave
annihilation (Figs. 2 and 4, respectively), the imposition of the prior typically leads to slightly
reduced ∆ lnLmax, while for Sommerfeld-enhanced annihilation (Fig. 3), the imposition of the
prior leads to somewhat enhanced ∆ lnLmax.

5 Conclusions

We have considered the prospects for gamma-ray searches of dwarf spheroidal galaxies to
determine the power-law velocity-dependence of the dark matter annihilation cross section.
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The key principle behind this study is that if the dark matter profile is parameterized only
by a scale radius rs and scale density ρs, then the dark matter velocity distribution in any
subhalo is characterized by a single velocity parameter Vmax ∝ (GNρsr

2
s)

1/2. Thus, the
photon flux from any dSph is proportional to powers of (ρsr

2
s)

1/2, where the proportionality
constant is universal, but ρs and rs are unique to each dSph and can be estimated from stellar
data. Although the photon flux from one dSph cannot distinguish the effect of the velocity-
dependence from that of the overall normalization of the annihilation flux, the relative photon
fluxes from many dSphs should, in principle, be sufficient to distinguish between different
models of dark matter annihilation.

In practice, we have found that this intuition is correct, but with some caveats. We
have considered theoretically-motivated scenarios in which the annihilation cross section has
a velocity-dependence proportional to (v/c)n, with n = −1, 0, 2, 4. In general, more exposure
is required to reject a dark matter annihilation model with the wrong velocity-dependence
than is required to reject the background-only scenario. But the larger the difference in n
between the true model and the alternate hypothesis, the smaller the exposure required to
reject the false hypothesis.

Interestingly, for current J-factor uncertainty levels, we have found that if the true
velocity dependence of the annihilation is ntrue, it can be difficult or impossible to reject
models with n < ntrue, even at large exposure and ΦPP . The basic reason is that uncertainties
in the velocity-dependent J-factor tend to increase with n, given the stellar velocity data.
Because the velocity parameters of the various dSphs which are currently observed are all
roughly O(10 km/ s), up to uncertainties, the Vmax-dependent rescaling of the J-factors which
would be required for a different choice of annihilation model is approximately the same for
all dSphs, when compared to their current uncertainties. This rescaling can be absorbed by
the overall normalization ΦPP . Thus, if the likelihood is dominated by the uncertainties in
the J-factors, the large J-factor uncertainties for the large n models can cause these models
to be disfavored in a likelihood analysis.

But we also see that, if the future surveys can reduce the uncertainty in the J-factor,
then one could realistically distinguish the velocity-dependence of the dark matter annihi-
lation cross section, with an exposure only modestly larger than that needed to reject the
background-only model. We have shown that the necessary reduction in J-factor uncertain-
ties can be achieved with future stellar velocity measurements that probe fainter magnitude
stars.

In summary, upcoming gamma-ray observations of dSphs may not only be able to detect
the presence of dark matter annihilation, but may also be able to determine the velocity-
dependence of the annihilation cross section. But an improvement in the precision of stellar
data would be required in order for the latter determination to be robust.
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dSph name Som. no
prior

Som. w/
prior

s no prior s w/
prior

p no prior p w/ prior d no prior d w/ prior

aquarius2 22.70+0.44
−0.48 22.73+0.37

−0.45 18.48+0.62
−0.72 18.42+0.56

−0.78 10.51+1.08
−1.27 10.23+0.93

−1.56 2.70+1.56
−1.86 2.22+1.35

−2.35

bootes1 22.68+0.23
−0.24 22.71+0.19

−0.22 18.39+0.38
−0.45 18.22+0.27

−0.61 10.24+0.76
−0.93 9.69+0.43

−1.49 2.29+1.17
−1.42 1.33+0.60

−2.37

canesvenatici1 21.75+0.12
−0.12 21.82+0.11

−0.05 17.49+0.17
−0.24 17.45+0.13

−0.27 9.38+0.34
−0.63 9.16+0.21

−0.85 1.45+0.54
−1.04 1.03+0.28

−1.45

canesvenatici2 22.12+0.33
−0.35 22.17+0.30

−0.30 17.92+0.53
−0.55 17.78+0.44

−0.69 9.95+0.97
−1.03 9.43+0.76

−1.55 2.16+1.46
−1.52 1.27+1.09

−2.42

carina2 23.03+0.39
−0.41 23.10+0.32

−0.33 18.57+0.59
−0.66 18.49+0.46

−0.73 10.06+1.05
−1.29 9.70+0.77

−1.66 1.73+1.51
−1.93 1.08+1.07

−2.57

carina 22.25+0.09
−0.11 22.32+0.10

−0.03 17.88+0.10
−0.11 17.89+0.09

−0.11 9.54+0.16
−0.29 9.45+0.11

−0.38 1.37+0.26
−0.50 1.19+0.15

−0.69

comaberenices 23.46+0.28
−0.29 23.40+0.25

−0.36 19.25+0.50
−0.57 19.01+0.38

−0.81 11.29+1.05
−1.15 10.69+0.70

−1.75 3.50+1.62
−1.75 2.54+1.03

−2.71

crater2 20.34+0.18
−0.20 20.81+0.17

−0.27 15.56+0.23
−0.25 16.03+0.24

−0.23 6.43+0.37
−0.42 6.91+0.35

−0.06 −2.54+0.54
−0.63 −2.05+0.47

−0.14

draco1 23.08+0.12
−0.13 23.09+0.11

−0.12 18.96+0.16
−0.20 18.91+0.13

−0.25 11.13+0.30
−0.47 10.97+0.20

−0.64 3.50+0.46
−0.75 3.20+0.31

−1.05

fornax 22.36+0.10
−0.10 22.39+0.09

−0.07 18.11+0.09
−0.10 18.13+0.09

−0.07 10.05+0.09
−0.09 10.06+0.09

−0.08 2.16+0.10
−0.10 2.17+0.09

−0.10

hercules 21.84+0.39
−0.38 21.98+0.29

−0.23 17.35+0.54
−0.58 17.38+0.41

−0.55 8.78+0.91
−1.10 8.59+0.66

−1.29 0.38+1.31
−1.68 0.01+0.94

−2.05

horologium1 23.42+0.51
−0.59 23.36+0.55

−0.65 19.28+0.80
−0.87 19.25+0.90

−0.89 11.39+1.39
−1.59 11.47+1.59

−1.51 3.67+2.03
−2.39 3.85+2.31

−2.20

hydrus1 23.34+0.25
−0.28 23.27+0.20

−0.35 18.93+0.47
−0.57 18.61+0.29

−0.89 10.58+1.03
−1.21 9.73+0.51

−2.07 2.42+1.61
−1.85 1.01+0.75

−3.25

leo1 21.81+0.09
−0.10 21.86+0.09

−0.05 17.64+0.12
−0.19 17.60+0.09

−0.23 9.72+0.27
−0.53 9.50+0.15

−0.75 2.00+0.47
−0.85 1.57+0.22

−1.28

leo2 22.03+0.15
−0.16 22.02+0.13

−0.17 17.66+0.15
−0.16 17.64+0.14

−0.17 9.33+0.18
−0.20 9.31+0.18

−0.22 1.19+0.23
−0.26 1.16+0.23

−0.29

reticulum2 23.53+0.30
−0.32 23.43+0.25

−0.42 19.16+0.53
−0.64 18.87+0.37

−0.93 10.86+1.08
−1.38 10.19+0.67

−2.05 2.75+1.66
−2.13 1.68+0.99

−3.19

sagittarius2 22.03+0.70
−1.16 22.66+0.34

−0.53 17.48+0.79
−1.23 18.09+0.46

−0.63 8.83+1.07
−1.42 9.37+0.69

−0.88 0.35+1.37
−1.66 0.83+0.93

−1.19

sculptor 22.88+0.05
−0.06 22.89+0.05

−0.04 18.63+0.05
−0.05 18.63+0.05

−0.06 10.55+0.09
−0.15 10.52+0.08

−0.18 2.65+0.16
−0.26 2.59+0.13

−0.32

segue1 23.71+0.53
−0.39 23.60+0.37

−0.49 19.12+0.68
−0.63 18.96+0.58

−0.79 10.32+1.08
−1.40 10.11+0.98

−1.60 1.67+1.50
−2.30 1.44+1.42

−2.53

sextans 22.21+0.09
−0.10 22.32+0.09

−0.00 17.87+0.10
−0.12 17.90+0.09

−0.09 9.56+0.17
−0.33 9.49+0.12

−0.40 1.42+0.26
−0.61 1.26+0.16

−0.77

tucana2 23.30+0.39
−0.44 23.35+0.35

−0.39 19.13+0.56
−0.65 19.09+0.52

−0.70 11.24+0.99
−1.13 11.00+0.87

−1.37 3.53+1.44
−1.66 3.08+1.23

−2.11

ursamajor1 22.68+0.23
−0.22 22.70+0.20

−0.20 18.40+0.32
−0.37 18.33+0.26

−0.44 10.26+0.55
−0.82 10.03+0.40

−1.05 2.27+0.76
−1.36 1.91+0.57

−1.72

ursamajor2 23.85+0.32
−0.33 23.84+0.30

−0.34 19.72+0.49
−0.54 19.62+0.46

−0.65 11.90+0.93
−1.08 11.58+0.80

−1.39 4.25+1.39
−1.64 3.72+1.16

−2.17

ursaminor 23.07+0.12
−0.12 23.09+0.11

−0.10 18.80+0.11
−0.11 18.80+0.10

−0.11 10.68+0.14
−0.18 10.66+0.13

−0.20 2.73+0.19
−0.29 2.69+0.18

−0.33

willman1 23.82+0.39
−0.42 23.74+0.41

−0.49 19.46+0.52
−0.73 19.47+0.62

−0.72 11.14+0.89
−1.60 11.36+1.09

−1.38 3.01+1.32
−2.47 3.42+1.59

−2.06

Table 1. J-factors computed from the analysis of stellar data in [12] with and without imposing a
cosmological prior on the rs-ρs relation (see §3.4). Numbers represent log10(J/GeV2cm−5).
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Figure 6. J-factors computed assuming different velocity-dependence for the dark matter annihila-
tion cross section, with and without the imposition of the cosmological prior discussed in §3.4. J is
in units of GeV2cm−5, and the dSphs are ordered by their s-wave J-factors.
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Figure 7. Likelihood results when mock data are generated assuming s-wave annihilation and Fermi-
like observations. The units of ΦPP are cm3s−1GeV−2.

B Likelihood results for different observational configurations and velocity
dependences

In Figs. 7 through 10 we present the results of our likelihood analysis for different experi-
mental configurations and for data generated assuming different models for the dark matter
annihilation velocity dependence.

In Figure 7 (Figure 8), we assume that the true model is s-wave (Sommerfeld-enhanced)
annihilation, and assume a Fermi-like experimental configuration, as discussed in Subsec-
tion 3.2. Note that, for an exposure similar to the current Fermi exposure, the s-wave (Som-
merfeld) model can be distinguished from the background model if ΦPP ≥ O(10−30) cm3 s−1 GeV−2

(ΦPP ≥ O(10−34) cm3 s−1 GeV−2), consistent with the results found in Ref. [19, 22]. Simi-
larly, in Figure 9 (Figure 10), we assume that the true model is s-wave (Sommerfeld-enhanced)
annihilation, and assume a AMEGO-like experimental configuration.
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Figure 8. Likelihood results when mock data are generated assuming Sommerfeld-enhanced annihi-
lation and Fermi-like observations. The units of ΦPP are cm3s−1GeV−2.
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Figure 9. Likelihood results when mock data are generated assuming s-wave annihilation and
AMEGO-like observations. The units of ΦPP are cm3s−1GeV−2.
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Figure 10. Likelihood results when mock data are generated assuming Sommerfeld-enhanced anni-
hilation and AMEGO-like observations. The units of ΦPP are cm3s−1GeV−2.
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