
ar
X

iv
:2

10
3.

11
53

6v
1 

 [
qu

an
t-

ph
] 

 2
2 

M
ar

 2
02

1
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Abstract We extend the scheme of quantum teleportation by quantum walks introduced by
Wang et al. (2017). First, we introduce the mathematical definition of the accomplishment
of quantum teleportation by this extended scheme. Secondly, we show a useful necessary and
sufficient condition that the quantum teleportation is accomplished rigorously. Our result classifies
the parameters of the setting for the accomplishment of the quantum teleportation.

1 Introduction

Quantum walk is considered as a quantum analogue of random walk. This model was first intro-
duced in the context of quantum information theory such as Aharonov et al. [1] and Ambainis et
al. [2]. Since then, quantum walk is treated as an interesting model in the field of mathematics
and information theory [3–7], and expected of its application [8, 9]. Quantum walk is capable of
universal quantum computation and able to be implemented by the physical system in various
ways [10–13], which is why the model is considered to be expectable one.

On the other hand, quantum teleportation is a communication protocol that transmits a quan-
tum state from one place to another. It is first introduced by Bennett et al. [15], and regarded as
not only a system for communication but also the basis of quantum computation [16].

Recently, the works on applications of quantum walks to quantum teleportation [11, 17, 18]
appears. In previous quantum teleportation systems, they had to produce prior entangled states,
and carried on transmission with it. However, by using quantum walks, the walk itself has a
role of entanglement, which makes teleportation simpler. In the previous study [17], the concrete
models of teleportation by quantum walks are shown, but the general condition where the scheme of
teleportation succeeds is not shown. In this paper, we extend the scheme of quantum teleportation
by quantum walks introduced by Wang et al. [17]. We introduce the mathematical definition of
the accomplishment of quantum teleportation by this extended scheme. Then, we show a useful
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necessary and sufficient condition for it. Our result classifies the parameters of the setting for the
accomplishment of the quantum teleportation including Wang et al.’s settings.

The rest of the paper is organized as follows. Section 2 gives the definition of our quantum walk
model, and in Sect.3 we give the scheme of teleportation by the quantum walk model. In Sect.
4, we present our main theorem of this paper and demonstrate some examples of the theorem.
Futhermore, Sect. 5 is devoted to the proof of the result. Finally, we give summary and discussion
in Sect. 6.

2 Quantum Walks

Here we introduce the quantum walks (QWs). First we review a basic model of discrete QW, and
then introduce the QW applied to the scheme of quantum teleportation.

2.1 The One-Coin Quantum Walks on One-Dimensional Lattice

The one-dimensional quantum walk with one coin is defined in a compound Hilbert space of the
position Hilbert space HP = span{|x〉 |x ∈ Z} and the coin Hilbert space HC = span{|R〉 , |L〉}
with

|R〉 =
[
1
0

]

, |L〉 =
[
0
1

]

.

Note that HC is equivalent to C
2. Then, the whole system is described by H = HP ⊗HC.

Now, we define one-step time evolution of the quantum walk as W = Ŝ · Ĉ, where Ŝ is a shift
operator described by

Ŝ = S ⊗ |R〉 〈R|+ S−1 ⊗ |L〉 〈L|

with

S =
∑

x∈Z

|x+ 1〉 〈x| ,

and Ĉ is a coin operator defined by

Ĉ = I2 ⊗ C,

with

I2 =

[
1 0
0 1

]

, C ∈ U(2).

Here, U(n) is the set of n× n unitary matrices.
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2.2 m-Coin Quantum Walks on One-Dimensional Lattice

To implement schemes of quantum teleportation based on quantum walks, we need to define
quantum walks with many coins, which are determined on the whole system H = HP ⊗ HC

⊗m

with m ≥ n (the previous case was one coin QW).
Now, we define one-step time evolution of the m-coin quantum walk at time n as Wn = Ŝn · Ĉn,

where Ŝn is a shift operator described by

Ŝn = S ⊗



IHC
⊗ · · · ⊗ IHC

⊗
n

︷ ︸︸ ︷

|R〉 〈R| ⊗IHC
⊗ · · · ⊗ IHC





+S−1 ⊗



IHC
⊗ · · · ⊗ IHC

⊗
n

︷ ︸︸ ︷

|L〉 〈L| ⊗IHC
⊗ · · · ⊗ IHC



 ,

and Ĉn is the coin operator described by

Ĉn = IHP
⊗
(

IHC
⊗ · · · ⊗ IHC

⊗
n
︷︸︸︷

Cn ⊗IHC
⊗ · · · ⊗ IHC

)

.

Here, “
n
︷︸︸︷” means that the matrix corresponds to nth HC and Cn ∈ U(2).

Moreover, we put

Pn = |L〉 〈L|Cn, Qn = |R〉 〈R|Cn.

We should note that Cn = Pn +Qn. Then, a quantum walker at time n moves one unit to the left
with the weight

IHC
⊗ · · · ⊗ IHC

⊗
n
︷︸︸︷

Pn ⊗IHC
⊗ · · · ⊗ IHC

,

or to the right with weight

IHC
⊗ · · · ⊗ IHC

⊗
n
︷︸︸︷

Qn ⊗IHC
⊗ · · · ⊗ IHC

.

In other words, for n ∈ Z≥ and |Ψn〉, the state of the system at time n, the relationship between
the states |Ψn〉 and |Ψn+1〉 is described as

|Ψn+1〉 = Wn+1 |Ψn〉 .

3 Schemes of Teleportation

Let us set HP ⊗H(A)
C and H(B)

C as the Alice and Bob’s spaces, respectively after the fashion of the

proposed idea by [17]. Here H(A)
C , H(B)

C
∼= C2. In this section, we consider quantum teleportation

described in Figure 1. Now, the sender Alice wants to send |φ〉 ∈ H(A)
C (∼= C2) with ‖φ‖ = 1 to the

receiver Bob. We call |φ〉 the target state.
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The space of this quantum teleportation is denoted by H = HP ⊗ H(A)
C ⊗ H(B)

C . We set the
initial state as

|Ψ0〉 = |0〉 ⊗ |φ〉 ⊗ |ψ〉 ∈ H.

Here, |ψ〉 satisfies ‖ψ‖ = 1. In the framework of quantum walk, the total state space of quantum
teleportation is isomophic to a two-coin quantum walk whose position Hilbert space is HP and
whose coin Hilbert space is H(A)

C ⊗H(B)
C . On the other hand, from the point of view of quantum

teleportation, Alice has two initial states |0〉 ⊗ |φ〉 ∈ HP ⊗ H(A)
C and Bob has an initial state

|ψ〉 ∈ H(B)
C , and the goal of the teleportation is that Bob obtains the state |φ〉 as the element of

H(B)
C .
Then, we provide three stages: (1) time evolution, (2) measurement and (3) transformation.

3.1 Time Evolution by QW

In the first stage, we carry out 2 steps of QWs with two coins; we describe the time evolution
operator at the first and second step W1,W2 as

W1 = Ŝ1 · Ĉ1 = (S ⊗ |R〉 〈R| ⊗ IHC
+ S−1 ⊗ |L〉 〈L| ⊗ IHC

)(IHP
⊗ C1 ⊗ IHC

),

W2 = Ŝ2 · Ĉ2 = (S ⊗ IHC
⊗ |R〉 〈R|+ S−1 ⊗ IHC

⊗ |L〉 〈L|)(IHP
⊗ IHC

⊗ C2),

respectively. Suppose |Ψn〉 ∈ H (n = 0, 1, 2) is the state after the n-th time evolution of the QW,
and we regard the initial state of |Ψ0〉 of the quantum teleportation as the initial state of the QW.
We run this QW for two steps, that is,

|Ψ0〉 W17−→ |Ψ1〉 W27−→ |Ψ2〉 .

3.2 Measurement

In the second stage, to carry out the measurement on the Alice’s state, we introduce the observables
denoted by self-adjoint operators M1 and M2 on H(A)

C and HP respectively, as follows:

M1 = (+1) |ηR〉 〈ηR|+ (−1) |ηL〉 〈ηL| ,

M2 =
∑

j∈Z

j

2
|ξj〉 〈ξj| ,

HP |0〉 S S
✌
✌
✌ •

H
(A)
C |φ〉 C1 • ✌

✌
✌ •

H
(B)
C |ψ〉 C2 • U (j, ε) |φ〉

Figure 1: Circuit diagram of quantum teleportation by multiple coin quantum walks
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where |ηε〉 = H1 |ε〉 (ε ∈ {R, L}), and |ξj〉 = H2 |j〉 (j ∈ Z). Here, H1 and H2 are unitary

operators on H(A)
C (∼= C2) and HP(∼= ℓ2(Z)) respectively. Especially, H2 is described as follow:

H2 ≃









α22 α20 α2(−2)

α02 α00 α0(−2) O
α(−2)2 α(−2)0 α(−2)(−2)

O I









=







H̃2 O

O I






,

where

H̃2 =





α22 α20 α2(−2)

α02 α00 α0(−2)

α(−2)2 α(−2)0 α(−2)(−2)



 .

The computational basis of H2 in RHS are {|2〉 , |0〉 , |−2〉 , . . .} by this order. The observed values
of the observable M1 are ε ∈ {±1} after the description of [17], but in this paper, we describe the
observed values of M1 by R,L by the bijection map

R ↔ +1 and L↔ −1.

In the same way, we describe the observed values of M2 as {−2, 0, 2} by the bijection map

2k ↔ k (k = −1, 0, 1).

Furthermore, we extend the domains of operators M1 and M2 to the whole system H by putting
M

(s)
1 and M

(s)
2 as follows:

M
(s)
1 := IHP

⊗M1 ⊗ IH(B)
C
,

M
(s)
2 :=M2 ⊗ IH(A)

C
⊗ IH(B)

C
.

This means that Alice carries out projection measurements on H(A)
C and HP with the eigenvectors

B1 = {|ηε〉 |ε ∈ {R, L}} ofM1 and B2 = {|ξj〉 |j ∈ Z} ofM2, respectively. If Alice gets the observed

values ε by M1 and j by M2 respectively, then the states collapse to |ηε〉 ∈ H(A)
C and |ξj〉 ∈ HP ,

respectively.
Through the measurements, if the state of H(A)

C collapses to |ηε〉 ∈ B1 by M1 and the state of

HP collapses to |ξj〉 ∈ B2 byM2, the degenerate state on the whole state is denoted by |Ψ (j, ε)
∗ 〉 ∈ H.

So, the state |Ψ (j, ε)
∗ 〉 can be described explicitly as follows. The proof is given in Section 5.

Proposition 1. The state |Ψ (j, ε)
∗ 〉 can be described as

|Ψ (j, ε)
∗ 〉 = |ξj〉 ⊗ |ηε〉 ⊗ |Φ(j, ε)

∗ 〉 , (1)

where |Φ(j, ε)
∗ 〉 = V (j, ε) |φ〉 and V (j, ε) is a linear map on H(B)

C (See (2) for the detailed expression
for V (j, ε)).

Then, our problem is converted to finding a practical necessary and sufficient condition for the
unitarity of V (j, ε).
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3.3 Transformation

In the final stage, Bob should convert his state |Φ(j, ε)
∗ 〉 ∈ H(B)

C to the state |φ〉. After the measure-
ments, Alice sends the outcomes ε ∈ {L,R} and j ∈ {−2, 0, 2} to Bob. Then Bob acts a unitary

operator U (j, ε) on H(B)
C to |Φ(j, ε)

∗ 〉, depending on a pair of observed results (j, ε). Finally, Bob

obtains a state |Φ〉 := U (j, ε) |Φ(j, ε)
∗ 〉 ∈ H(B)

C . If |Φ〉 = |φ〉, we can regard that the teleportation is
“accomplished” (We define this clearly below).

3.4 A mathematical formulation of schemes of teleportation

In the above subsections, we introduced the notion of quantum teleportation driven by quantum
walk. As we have seen, the factors to determine the scheme of this teleportation are Bob’s initial
state |ψ〉, the coin operators C1 and C2, and the measurement operator H1 and H2. Then, for
convenience, we define the set of them as the parameter of the teleportation as follows:

Definition 2. We call

T = (|ψ〉 ; C1, C2; H1, H2) ∈ C
2 ×U(2)× U(2)×U(2)× U(∞)

a quantum walk measurement procedure.

Definition 3. Let |Φ〉 ∈ H(B)
C be a Bob’s final state of a quantum walk measurement procedure

T and |φ〉 ∈ H(A)
C be the target state. If this quantum walk measurement procedure T satisfies

|Φ〉 = |φ〉 for any observed value (j, ε) ∈ {−2, 0, 2} × {L,R} by Alice, we say that the quantum
teleportation is accomplished by T .

Definition 4. We define T ⊂ C2 × U(2)× U(2)× U(2)×U(∞) by

T := {T = (|ψ〉 ; C1, C2; H1, H2) | T accomplishes the quantum teleportation.}

and call T the class of quantum teleportation driven by 2-coin quantum walks.

The main purpose of this paper is to determine explicitly the class T .

4 Our result

In this section, we present our main result on the quantum teleportation by quantum walks.

4.1 Main Theorem

Theorem 5. Quantum walk measurement precedure T = (|ψ〉 ; C1, C2; H1, H2) accomplishes the
quantum teleportation, i.e., T ∈ T iff T satisfies the following three conditions simultaneously:

(I) [Condition for H1] | 〈R|H1|R〉 | = | 〈L|H1|L〉 |.

(II) [Condition for C2 and ψ ] |〈R|C2|ψ〉| = |〈L|C2|ψ〉| =
1√
2
.

6



(III) [Condition for H2] T satisfies one of the following three conditions at least:

(i) Let H be the set of three dimensional unitary matrices defined by

H =











p r 0
0 0 t
q s 0



 ,





p 0 r
0 t 0
q 0 s



 ,





0 p r
t 0 0
0 q s



 ∈ U(3) : |p| = |q|






.

Then H2 = H̃2 ⊕ I∞ with H̃2 ∈ H .

(ii) for all k ∈ {0, ±2},

|(H2)2k| = |(H2)(−2)k| and arg(H2)2k + arg(H2)(−2)k − 2arg(H2)0k ∈ (2Z+ 1)π.

Here, (H2)jk = 〈j|H2|k〉.

Moreover, in any case, the transformation U (j, ε) by Bob depending on observed results (j, ε) is
unitary described as

U (j, ε) =
1

‖V (j, ε) |φ〉 ‖
(
V (j, ε)

)−1
,

where

V (j, ε) =

[
〈ηε| (α2kQ1 + α0kP1)βR

〈ηε| (α0kQ1 + α(−2)kP1)βL

]

,

regardless of |φ〉. Here αjk = (H2)jk and βL = 〈L|C2|ψ〉, βR = 〈R|C2|ψ〉.

Remark 6. This theorem implies that accomplishment of the quantum teleportation is indepen-
dent of C1. Moreover, the theorem does not depend on C2 and |ψ〉, for each one, but “C2 |ψ〉”.
After all, the accomplishment of quantum teleportation is determined only by three factors, that
is, H1, H2, and |ψ′〉 = C2 |ψ〉; this is a generalization of the statement of [17].

4.2 Examples and Demonstrations

In the following, we put H =
1√
2

[
1 1
1 −1

]

.

(1) We choose

|ψ〉 = |R〉 , C1 = I2, C2 = H1 = H, H̃2 ≃ H ⊕ 1.

This case satisfies (III)-(i) and Wang et al. [17] has shown that in this case the quantum
teleportation is accomplished. Bob’s state before measurement |Φ(j, ε)〉 and the operator U (j, ε)
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are as follows:

(j, ε) |Φ(j, ε)〉 U (j, ε)

(2, R) |φ〉 I2

(0, R) X |φ〉 X

(−2, R) Z |φ〉 Z

(2, L) Z |φ〉 Z

(0, L) XZ |φ〉 ZX

(−2, L) |φ〉 I2

(2) We choose

|ψ〉 = |R〉+ |L〉√
2

, C1 = C2 = I2, H1 = H, H̃2 =
1√
3





−e 4
3
πi −1 −e 2

3
πi

1 1 1

e
2
3
πi 1 e

4
3
πi



 .

This case satisfies (III)-(ii). Bob’s state before measurement |Φ(j, ε)〉 and the operator U (j, ε)

are as follows:

(j, ε) |Φ(j, ε)〉 U (j, ε)

(2, R)
1√
2

[
e

2
3
πi 1

1 −e 4
3
πi

]

|φ〉 1√
2

[
e

4
3
πi 1

1 −e 2
3
πi

]

(0, R)
1√
2

[
1 1
1 −1

]

|φ〉 1√
2

[
1 1
1 −1

]

(−2, R)
1√
2

[
e

4
3
πi 1

1 −e 2
3
πi

]

|φ〉 1√
2

[
e

2
3
πi 1

1 −e 4
3
πi

]

(2, L)
1√
2

[
e

2
3
πi −1

1 e
4
3
πi

]

|φ〉 1√
2

[
e

4
3
πi 1

−1 e
2
3
πi

]

(0, L)
1√
2

[
1 −1
1 1

]

|φ〉 1√
2

[
1 1
−1 1

]

(−2, L)
1√
2

[
e

4
3
πi −1

1 e
2
3
πi

]

|φ〉 1√
2

[
e

2
3
πi 1

−1 e
4
3
πi

]

(3) We choose

|ψ〉 = |R〉+ i |L〉√
2

, C1 = C2 = I2, H1 = H, H̃2 =





i/2 1/
√
2 −i/2

1/
√
2 0 1/

√
2

i/2 −1/
√
2 −i/2



 .
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This case is another example of (III)-(ii). Bob’s state before measurement |Φ(j, ε)〉 and the
operator U (j, ε) are as follows:

(j, ε) |Φ(j, ε)〉 U (j, ε)

(2, R)
1√
3

[
i

√
2√

2i −1

]

|φ〉 1√
3

[
−i −

√
2i√

2 −1

]

(0, R)

[
−1 0
0 i

]

|φ〉
[
−1 0
0 −i

]

(−2, R)
1√
3

[
−i

√
2√

2i 1

]

|φ〉 1√
3

[
i −

√
2i√

2 1

]

(2, L)
1√
3

[
i −

√
2√

2i 1

]

|φ〉 1√
3

[
−i −

√
2i

−
√
2 1

]

(0, L)

[
−1 0
0 −i

]

|φ〉
[
−1 0
0 i

]

(−2, L)
1√
3

[
−i −

√
2√

2i −1

]

|φ〉 1√
3

[
i −

√
2i

−
√
2 −1

]

5 Proof of Main Theorem

5.1 Proof of Proposition 1

Proof. At n = 1, |Ψ0〉 evolves to

|Ψ1〉 =W1 |Ψ0〉 = |1〉 ⊗ |Q1φ〉 ⊗ |ψ〉+ |−1〉 ⊗ |P1φ〉 ⊗ |ψ〉 ,

and at n = 2, |Ψ1〉 evolves to

|Ψ2〉 = W2 |Ψ1〉 = |2〉 ⊗ |Q1φ〉 ⊗ |Q2ψ〉
+ |0〉 ⊗ (|Q1φ〉 ⊗ |P2ψ〉+ |P1φ〉 ⊗ |Q2ψ〉)
+ |−2〉 ⊗ |P1φ〉 ⊗ |P2ψ〉

If the coin state of Alice collapses to |ηε〉 ∈ B1 after the observable M1, the total state |Ψ2〉 is
changed to

|Ψ (ε)
∗ 〉 = 1

κ(ε)
{ |2〉 ⊗ |ηε〉 ⊗ 〈ηε|Q1φ〉 |Q2ψ〉
+ |0〉 ⊗ |ηε〉 ⊗ (〈ηε|Q1φ〉 |P2ψ〉+ 〈ηε|P1φ〉 |Q2ψ〉)
+ |−2〉 ⊗ |ηε〉 ⊗ 〈ηε|P1φ〉 |P2ψ〉}

9



Here κ(ε) is a normalizing constant. Moreover, if the position state of Alice collapses to |ξj〉 ∈ B2

after the observable M2, the total state |Ψ (ε)
∗ 〉 is changed to the normalized state of

|Ψ (j, ε)
∗ 〉 = 1

κ(j, ε)
[|ξj〉 ⊗ |ηε〉 ⊗ {〈ηε|(〈ξj|2〉Q1 + 〈ξj|0〉P1|φ〉 〈R|C2|ψ〉) |R〉

+ 〈ηε| 〈ξj|0〉Q1 + 〈ξj|−2〉P1|φ〉 〈L|C2|ψ〉 |L〉}]

= |ξj〉 ⊗ |ηε〉 ⊗
Ṽ (j, ε)

κ(j, ε)
|φ〉 ,

where

Ṽ (j, ε) :=

[
〈ηε| (〈ξj|2〉Q1 + 〈ξj|0〉P1) 〈R|C2|ψ〉
〈ηε| (〈ξj|0〉Q1 + 〈ξj|−2〉P1) 〈L|C2|ψ〉

]

, (2)

and κ(j, ε) is a normalizing constant. Note that the amplitudes are inserted into the third slots in
the above expression. Now, because ‖ |ξj〉 ⊗ |ηε〉 ‖ = 1,

κ(j, ε) = ‖ |ξj〉 ⊗ |ηε〉 ⊗ Ṽ (j, ε) |φ〉 ‖ = ‖Ṽ (j, ε) |φ〉 ‖.

Here, putting

V (j, ε) =
Ṽ (j, ε)

κ(j, ε)
and |Φ(j, ε)〉 = Ṽ (j, ε)

κ(j, ε)
|φ〉 = V (j, ε) |φ〉 ,

we obtain the desired conclusion.

Let us put αjk = 〈j|H1|k〉 (j, k ∈ {0, ±2}) and βε = 〈ε|C2|ψ〉 (ε ∈ {L, R}). Then Ṽ (j, ε) is
reexpressed by the following:

Ṽ (j, ε) =

[

〈v(j, ε)R |
〈v(j, ε)L |

]

=







〈ηε|
[
α2jβR 0
0 α0jβR

]

〈ηε|
[
α0jβL 0
0 α(−2)jβL

]






C1, (3)

where

〈v(j, ε)R | = 〈ηε| (〈ξj|2〉Q1 + 〈ξj|0〉P1) 〈R|C2|ψ〉 , (4)

〈v(j, ε)L | =〈ηε| (〈ξj|0〉Q1 + 〈ξj|−2〉P1) 〈L|C2|ψ〉, (5)

P1 = |L〉 〈L|C1, and Q1 = |R〉 〈R|C1. We will use this expression later.

5.2 Rewrite of the accomplishment of teleportation

The following lemma seems to be simple, but plays an important role later.

Lemma 7. The following two statements are equivalent for V ∈Mn(C):

(i) There exists U ∈ U(n) such that for any φ ∈ Cn\{0}, there exists a complex value κ = κ(φ)
such that

UV φ = κ(φ)φ.

10



(ii) There exists a complex number κ such that

V ∈ κU(n).

Proof. Assume (i) holds. For any φ ∈ Cn, UV φ = κ(φ)φ ⇐⇒ (UV − κ(φ)I)φ = 0 ⇐⇒
eigenvector of UV is every φ ∈ Cn \ {0}. That is equivalent to UV = κ(φ)I. Since U and V are
independent of φ, the eigenvalue κ(φ) must be independent of φ. So (ii) holds. The converse is
obvious.

By using Lemma 7, the following lemma is completed:

Lemma 8.

T ∈ T ⇐⇒ for any (j, ε) ∈ {−2, 0, 2} × {R, L}
there exists κ = κ(j, ε) such that Ṽ (j, ε) ∈ κU(2).

Proof. Let |Φ(j, ε)
∗ 〉 ∈ H be the final state after obtaining the observed values (j, ε); that is, there

exists |Ψ (j, ε)
∗ 〉 ∈ H(B)

C such that |Φ(j, ε)
∗ 〉 = |ξj〉 ⊗ |ηε〉 ⊗ |Ψ (j, ε)

∗ 〉. By the definition of T and

Proposition 1, T ∈ T if and only if there must exist a unitary matrix U (j, ε) on H(B)
C such that

U (j, ε) |Φ(j, ε)〉 = U (j, ε) Ṽ
(j, ε)

κ(j, ε)
|φ〉 = |φ〉 ⇐⇒ U (j, ε)Ṽ (j, ε) |φ〉 = κ(j, ε) |φ〉 .

Here, because κ(j, ε) = ‖Ṽ (j, ε) |φ〉 ‖, this is equivalent to the following by Lemma 7: κ(j, ε) is
independent of |φ〉 and

Ṽ (j, ε) ∈ κ(j, ε)U(2).

In the next section, we will apply the statement of Lemma 8 and the expression of Ṽ (j, ε) in (3).

5.3 A necessary condition of measurement

In this section, we will show that to accomplish the quantum teleportation, the eigenbasis of the
observables on B1 and B2 must be different from each computational standard basis. More precisely
we obtain the following theorem:

Lemma 9. If T ∈ T , H1 6= I2 and H2 6= I∞.

Proof. We show the contrapositive of the theorem: if H1 = IHC
or H2 = IHC

, T /∈ T , that is,
by Lemma 8 and (3),

[

〈v(j, ε)R |
〈v(j, ε)L |

]

=







〈ηε|
[
α2jβR 0
0 α0jβR

]

〈ηε|
[
α0jβL 0
0 α(−2)jβL

]






C1 /∈ ∀κU(2). (6)
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In case of H1 = IHC
, |ηε〉 is equal to |ε〉, so

[

〈v(j, ε)R |
〈v(j, ε)L |

]

=







〈ε|
[
α2jβR 0
0 α0jβR

]

〈ε|
[
α0jβL 0
0 α(−2)jβL

]






C1.

Now, when (j, ε) = (j, R), we obtain







[1 0]

[
α2jβR 0
0 α0jβR

]

[1 0]

[
α0jβL 0
0 α(−2)jβL

]






=

[
α2jβR 0
α0jβL 0

]

.

It’s followed by det

[

〈v(j,R)
R |

〈v(j,R)
L |

]

= 0, and it implies (6).

In case of H2 = I∞, |ξj〉 is equal to |j〉, so

[

〈v(j, ε)R |
〈v(j, ε)L |

]

=







〈ηε|
[
α2jβR 0
0 α0jβR

]

〈ηε|
[
α0jβL 0
0 α(−2)jβL

]






C1 =







〈ηε|
[
δ2jβR 0
0 δ0jβR

]

〈ηε|
[
δ0jβL 0
0 δ(−2)jβL

]






C1,

where

〈ξj|k〉 = 〈j|k〉 = δjk =

{
1 (j = k)
0 (j 6= k)

.

Now, we put H1 =

[
a b
c d

]

. Because |ηε〉 = H1 |ε〉, we can rewrite

[

〈v(j, ε)R |
〈v(j, ε)L |

]

as following:

[

〈v(j, ε)R |
〈v(j, ε)L |

]

=







〈ε|H†
1

[
δ2jβR 0
0 δ0jβR

]

〈ε|H†
1

[
δ0jβL 0
0 δ(−2)jβL

]






C1 =







〈ε|
[
aδ2jβR cδ0jβR
bδ2jβR dδ0jβR

]

〈ε|
[
aδ0jβL cδ(−2)jβL
bδ0jβL dδ(−2)jβL

]






C1.

Under here, if (j, ε) = (2, R),







[1 0]

[
aβR 0

bβR 0

]

[1 0]

[
0 0
0 0

]






=

[
aβR 0
0 0

]

.

It’s followed by det

[

〈v(2, R)
R |

〈v(2, R)
L |

]

= 0, and it implies (6).
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5.4 Two conditions for 〈v(j, ε)L |, 〈v(j, ε)R |
By Lemma 8, the problem is reduced to find a condition for the unitarity of Ṽ (j, ε) except a constant
multiplicity. Since

Ṽ (j, ε) =

[

〈v(j, ε)R |
〈v(j, ε)L |

]

,

the two vectors in H(B)
C must satisfy the following two conditions as the corollary of Lemma 8.

Corollary 10. T ∈ T if and only if the two row vectors of Ṽ (j, ε); 〈v(j, ε)R | and 〈v(j, ε)L |, satisfy

[Condition I] : ‖v(j, ε)R ‖2 = ‖v(j, ε)L ‖2

[Condition II] : 〈v(j, ε)R |v(j, ε)L 〉 = 0

for any observed values (j, ε).

Proof. By the expression of Ṽ (j, ε) in (3) and Lemma 8, we obtain the desired condition.

From now on, we find more useful equivalent expressions of Conditions I and II.

5.5 Equivalent expression of [Condition I]

From the definition of Condition I and the expressions of 〈v(j, ε)R | and 〈v(j, ε)L | in (3), we have

[Condition I] ⇐⇒ ||v(j, ε)R ||2 = ||v(j, ε)L ||2

⇐⇒ 〈ηε|
[
|α2j |2|βR|2 − |α0j |2|βL|2 0

0 |α0j|2|βR|2 − |α(−2)j |2|βL|2
]

|ηε〉 = 0. (7)

Here, we put A := |α2j|2|βR|2 − |α0j|2|βL|2 and B := |α0j |2|βR|2 − |α(−2)j |2|βL|2.

(7) ⇐⇒ 〈ηε|
[
A 0
0 B

]

|ηε〉 = 0

⇐⇒ X1 : “

[
A 0
0 B

]

= O ” or Y1 : “

[
A 0
0 B

]

6= O and

[
A 0
0 B

]

|ηε〉 = ∃λj, ε |η¬ε〉 , ”

where λj, ε ∈ C. Then, we have Condition I = “X1 ∨ Y1 for any (j, ε)” and in the following, we
will transform X1 and Y1, respectively.

5.5.1 Equivalent transformation of X1

Lemma 11.

X1 ⇐⇒ |αjk| =
1√
3

for all j, k ∈ {0,±2} and |βR| = |βL| =
1√
2
.
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Proof. Assume |αjk| = 1/
√
3 for all k, j and |βR| = |βL| = 1/

√
2, it is easy to check that X1 holds.

Let us consider the inverse. Assume X1 holds. In this case, we obtain

A = |α2j |2|βR|2 − |α0j |2|βL|2 = 0,

B = |α0j |2|βR|2 − |α(−2)j |2|βL|2 = 0,

that is,
[
|α2j|2 −|α0j |2
|α0j|2 −|α(−2)j |2

] [
|βR|2
|βL|2

]

= 0.

Because of T[|βR|2 |βL|2] 6= 0, we have

det

[
|α2j |2 −|α0j |2
|α0j |2 −|α(−2)j |2

]

= 0

This is equivalent to

|α2j |2|α(−2)j |2 =
(
|α0j |2

)2
. (8)

On the other hand, by the unitarity of H̃2, we have

|α2j|2 + |α(−2)j |2 = 1− |α0j|2. (9)

for any j = −2, 0, 2. By (8) and (9), |α2j |2, |α(−2)j |2 are the solutions of the following quadratic
equation:

t2 − (1− |α0j |2)t+
(
|α0j|2

)2
= 0.

Its solution is

t =
1− |α0j|2 ±

√
D

2
, D = −(3|α0j |2 − 1)(|α0j|2 + 1).

Here, because the solution t is a real number, the discriminant D ≥ 0, i.e. 3|α0j|2 − 1 ≤ 0.
Therefore, because |α0j | ≥ 0,

0 ≤ |α0j |2 ≤
1

3
.

Here, the necessary condition for the unitarity of H̃2 that |α02|2 + |α00|2 + |α0(−2)|2 = 1 is
satisfied by only the case for

|α02|2 = |α00|2 = |α0(−2)|2 =
1

3
.

Hence, for j ∈ {0, ±2}, we obtain D = 0, and then t = 1/3 holds. Therefore, for j, k ∈ {0, ±2},

|αjk| =
1√
3
,

which implies,

A = B =
1

3
(|βR|2 − |βL|2) = 0 ⇐⇒ |βR| = |βL| =

1√
2
.
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5.5.2 Equivalent transformation of Y1

Lemma 12.

Y1 ⇐⇒ |α2j |2|βR|2 − |α0j |2|βL|2 = −|α0j |2|βR|2 + |α(−2)j |2|βL|2
for all j, k ∈ {0,±2} and |a| = |b|.

Proof. First let us consider the proof of the “⇐” direction. It holds
[
1 0
0 −1

]

|ηR〉 =
[
b
−d

]

=

[
(b/a) · a
(ā/b̄) · c

]

=
b

a

[
b
d

]

=
a

b
|ηL〉 . (10)

Here the second equality derives from c = −∆b̄ and d = ∆ā, where ∆ = det(H1) by the unitarity
of H1 and the third equality comes from the last assumption of |a| = |b|. In the same way, we
obtain

[
1 0
0 −1

]

|ηL〉 =
a

b
|ηR〉 . (11)

The first assumption implies A = −B. Then (10) and (11) include
[
A 0
0 B

]

|ηR〉 = A · b
a
|ηL〉 and

[
A 0
0 B

]

|ηL〉 = A · a
b
|ηR〉

Thus the condition Y1 holds. Secondly, assume Y1 holds. In this case, there exist λ and λ′ such
that

[
A 0
0 B

]

|ηR〉 = λ |ηL〉 and

[
A 0
0 B

]

|ηL〉 = λ′ |ηR〉 , (12)

where |ηε〉 = H1 |ε〉 and

H1 =

[
a b
c d

]

is unitary. Therefore,

(12) ⇐⇒
[
A 0
0 B

]

H1 |R〉 = λH1 |L〉 (13)

and
[
A 0
0 B

]

H1 |L〉 = λ′H1 |R〉 . (14)

Let us give further transformation of (13). Because H1 is unitary,

H†
1

[
A 0
0 B

]

H1 |R〉 = λ |L〉

⇐⇒
[
|a|2A+ |c|2B
abA+ cdB

]

=

[
0
λ

]

. (15)
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Similarly, (14) is equivalently deformed as follow:

H†
1

[
A 0
0 B

]

H1 |L〉 = λ′ |R〉

⇐⇒
[

abA + cdB
|b|2A + |d|2B

]

=

[
λ′

0

]

. (16)

Therefore, (12) is equivalent to (15) and (16), and these are also equivalent to

[
|a|2A+ |c|2B
|b|2A+ |d|2B

]

=

[
|a|2 1− |a|2

1− |a|2 |a|2
] [

A
B

]

= 0 (17)

and

[
abA+ cdB
abA+ cdB

]

=

[
ab cd
ab cd

] [
A
B

]

=

[
λ
λ′

]

(18)

Here we used in (17), the unitarity of H1, |a|2 = |d|2 = 1 − |b|2 = 1 − |c|2. Moreover, because of
the assumption T[A, B] 6= 0,

det

[
|a|2 1− |a|2

1− |a|2 |a|2
]

= 0 ⇐⇒ |a| = 1√
2
.

Then we have |a| = |b|. By substituting this result to (17), we obtain

A+ B = 0, (19)

which is equivalent to

|α2j|2|βR|2 − |α0j|2|βL|2 = −|α0j |2|βR|2 + |α(−2)j |2|βL|2

for all j.

Note that, by substituting (19) to (18), we obtain

ab̄− cd̄ =
λ′

A
, āb− c̄d =

λ

A
.

The unirarity of H1 implies d = ∆ā, c = −∆b̄, where ∆ = det(H1). Therefore, we obtain the
constants of the Condition Y1 are

λ′ = 2ab̄ · A =
b

a
· A and λ = 2āb ·A =

a

b
· A

since |a| = |b| = 1/
√
2.
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5.6 Calculation of [Condition II]

From the definition of [Condition I] and the expressions of 〈v(j, ε)R | and 〈v(j, ε)L | in (3), we have

[Condition II] ⇐⇒〈v(j, ε)R |v(j, ε)L 〉 = 0

⇐⇒〈ηε|
[
βRα2jα0jβL 0

0 βRα0jα(−2)jβL

]

|ηε〉 = 0 (20)

Putting A′ := βRα2jα0jβL and B′ := βRα0jα(−2)jβL, we decompose (20) into the conditions X2

and Y2, as follows.

(20) ⇐⇒ 〈ηε|
[
A′ 0
0 B′

]

|ηε〉 = 0

⇐⇒ X2 : “

[
A′ 0
0 B′

]

= O ” or Y2 : “

[
A′ 0
0 B′

]

6= O and

[
A′ 0
0 B′

]

|ηε〉 = ∃µj, ε |η¬ε〉 , ”

where µj, ε ∈ C. Then we obtain [Condition II]= X2 ∨ Y2. We will transform X2 and Y2 to more
useful forms.

5.6.1 Equivalent transformation of X2

Lemma 13. Let H be the set of three dimensional unitary matrices defined by

H =











p r 0
0 0 t
q s 0



 ,





p 0 r
0 t 0
q 0 s



 ,





0 p r
t 0 0
0 q s



 ∈ U(3) : |p| = |q|






. (21)

Then the condition X2 is equivalent to the following condition;

H̃2 ∈ H .

Proof. Assume H̃2 ∈ H . Then each raw vector of H̃2 is of the form [∗, 0 , ∗] or [0, ∗, 0], where
“∗” takes a non-zero value. Since the computational basis of H̃2 are |−2〉 , |0〉 , |2〉 by this order, it
holds that α2jα0j = α(−2)jα0j = 0 for any j ∈ {−2, 0, 2}. Then we have A′ = B′ = 0 which implies
the condition X2. On the other hand, assume the condition X2. In this case, for A′ and B′, the
followings are held:

A′ = βRα2jα0jβL = 0,

B′ = βRα0jα(−2)jβL = 0.

Therefore,

|βRα2jα0jβL| = |βRα0jαj(−2)βL| = 0

⇐⇒ |βRα0jβL| = 0 or |α2j| = |αj(−2)| = 0

⇐⇒ “( |βR|, |βL| ) ∈ {(0, 1), (1, 0)}”
or “( |α0j|2, |α2j|2 + |α(−2)j |2 ) ∈ {(0, 1), (1, 0)}”
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Here we used |α0j|2+ |α2j|2+ |α(−2)j |2 = 1 due to the unitarity of H̃2 in the last equivalence. When

( |βR|, |βL| ) = (0, 1) or (1, 0), the determinant of Ṽ (j, ε) is det(Ṽ (j, ε)) = 0 by (3), and because of
it, the matrix Ṽ (j, ε) doesn’t satisfy the condition of Theorem 2. Hence, the conditions we should
only impose are

(a) ( |α0j|2, |α2j |2 + |α(−2)j |2 ) = (0, 1)

or

(b) ( |α0j|2, |α2j |2 + |α(−2)j |2 ) = (1, 0)

to each column vector of H̃2 (j = −2, 0, 2). Each column vector satisfies the condition (a) or
(b), however by the unitarity of H̃2, we notice that one of the column vectors in H̃2 satisfies the
condition (b) and all the rest of the two column vectors satisfy (a) because every raw vector of
H̃2 must be a unit vector. This implies that H2 = H̃2 ⊕ I∞ with H̃2 ∈ H . Then we obtained the
desired conclusion.

5.6.2 Equivalent transformation of Y2

By the same discussion as that of Y1, we obtain the following lemma:

Lemma 14. For all j, k ∈ {0,±2},

Y2 ⇐⇒ A′ = −B′ 6= 0 and ab ∈ R ⇐⇒ α2jα0j = −α0jα(−2)j and |a| = |b|.

5.7 Fusion of the conditions

We have shown that a necessary and sufficient condition for T ∈ T is (X1 ∨ Y1) ∧ (X2 ∨ Y2) and
we have converted Xj and Yj (j = 1, 2) to useful expressions in the above discussions. Expanding

(X1 ∨ Y1) ∧ (X2 ∨ Y2) = (X1 ∧X2) ∨ (X1 ∧ Y2) ∨ (Y1 ∧X2) ∨ (Y1 ∧ Y2),

we consider each case as follows to finish the proof of Theorem 5.

X2

H̃2 ∈ H

Y2
α2jα0j = −α0jα(−2)j

|a| = |b|
X1

|βR| = |βL| = 1/
√
2

|αjk| = 1/
√
3

(A) (B)

Y1
|α2j |2|βR|2 − |α0j |2|βL|2 = −|α0j |2|βR|2 + |α(−2)j |2|βL|2

|a| = |b|
(C) (D)

(A) X1 ∧X2

Lemma 15. X1 ∧X2 = ∅
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Proof. It is easy to see that X1 and X2 are contradictory each other.

(B) X1 ∧ Y2
Lemma 16. The condition X1 ∧ Y2 coincides with (I), (II) and (III)-(ii) in the condition
of Theorem 5 for the case of |(H2)jk| = 1/

√
3 for any j, k ∈ {−2, 0, 2}.

Proof. Let us assume X1 ∧ Y2. By X1, for j, k ∈ {0, ±2},

αjk =
ei argαjk

√
3

.

We can rewrite Y2 by using it as follow:

1√
3
· ei(argα2j−argα0j) = − 1√

3
· ei(argα0j−argα(−2)j )

⇐⇒ argα2j + argα(−2)j − 2argα0j ∈ (2Z+ 1)π = {(2m+ 1)π|m ∈ Z}.

Therefore, the condition X1 ∧ Y2 includes

|a| = |b| and |βR| = |βL| =
1√
2

and ∀j, k ∈ {0, ±2}, |αjk| =
1√
3

and argα2j + argα(−2)j − 2argα0j ∈ (2Z+ 1)π.

The reverse is also true.

(C) Y1 ∧X2

Lemma 17. The condition Y1 ∧X2 coincides with (I),(II) and (III)-(i) in the condition of
Theorem 5.

Proof. Let us assume Y1 ∧X2. By Y1, the condition |α2j |2|βR|2 − |α0j|2|βL|2 = −|α0j |2|βR|2 +
|α(−2)j |2|βL|2 holds for any j ∈ {−2, 0, 2}, and by X2, the condition H̃2 ∈ H holds. Therefore,
by the definition of H in (21), we obtain

|pβR| = |qβL| and |rβR| = |sβL| and |βR| = |βL|.

Therefore, we can obtain |βR| = |βL| = 1/
√
2 from all of the condition and |p| = |q| = |r| = |s|.

Hence, the condition Y1 ∧X2 includes

H̃2 ∈ H and |βR| = |βL| =
1√
2

and |a| = |b|.

The reverse is also true.
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By this result, there exist permutation matrices U and V such that H2 can be expressed by

H2 = U







1√
2
eiargαj1k1

1√
2
eiargαj1k2 0

1√
2
eiargαj2k1

1√
2
eiargαj2k2 0 O

0 0 1
O I






V.

In particular, when j1 = k1 = 2, j2 = k2 = −2, argα22 = argα(−2)2 = argα2(−2) = 0 and
argα(−2)(−2) = π, the result meets the example in paper [17].

(D) Y1 ∧ Y2
Lemma 18. Y1 ∧ Y2 coincides with (I), (II) and (III)-(ii) in the condition of Theorem 5.

Proof. Let us assume Y1 ∧ Y2. Taking the absolute values to both sides of the condition Y2,
we obtain |α2j| = |α(−2)j | for any j ∈ {−2, 0, 2}. Inserting this into the condition Y1, we have

(|α2j|2 + |α0j|2)(|βR|2 − |βL|2) = 0.

Since |α2j |, |α0j| > 0, we get |βR|2 = |βL|2. In the next, let us consider Y2 with respect to the
phase; the condition Y2 implies

argα2j − argα0j = (2m+ 1)π + argα0j − argα(−2)j

for any m ∈ Z. This implies

argα2j − 2argα0j + argα(−2)j ∈ (2Z+ 1)π.

Therefore, Y1 ∧ Y2 includes

|a| = |b| and |βR| = |βL| =
1√
2

and ∀j ∈ {0, ±2}, |α2j | = |α(−2)j | and argα2j + argα(−2)j − 2argα0j ∈ (2Z+ 1)π.

The reverse is also true.

Combining all together with Lemmas 15–18, we complete the proof of Theorem 5.

6 Summary and Discussion

In this paper, we extended the scheme of quantum teleportation by quantum walks introduced
by Wang et al. [17]. First, we introduced the mathematical definition of the accomplishment
of quantum teleportation by this extended scheme. Secondly, we showed a useful necessary and
sufficient condition that the quantum teleportation is accomplished rigorously. Our result classified
the parameters of the setting for the accomplishment of the quantum teleportation. Moreover, we
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demonstrated some examples of the scheme of the teleportation that is accomplished. Here we
identified the model proposed in the previous study as one of the examples and gave the new
models of the teleportation. Moreover, we implied that we can simplify the teleportation in terms
of theory and experiment.

Our future’s work is to implement the scheme of teleportation. Moreover, applications of
the properties of quantum walks to the scheme of teleportation is one of the interesting future’s
problems.
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