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HIGHER SIEGEL–WEIL FORMULA FOR UNITARY GROUPS:

THE NON-SINGULAR TERMS

TONY FENG, ZHIWEI YUN, WEI ZHANG

Abstract. We construct special cycles on the moduli stack of unitary shtukas. We prove an identity
between (1) the rth central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein
series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of unitary shtukas
with r legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has
the additional feature of encompassing all higher derivatives of the Eisenstein series.
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1. Introduction

The classical Siegel–Weil formula ([Sie51, Wei65]) relates the special values of Siegel–Eisenstein series on
the symplectic group (resp. the unitary group) to theta functions, which are generating series of represen-
tation numbers of quadratic (resp. Hermitian) forms over number fields. In particular, by exploiting the
factorization of the non-singular Fourier coefficients into a product of local terms, one arrives at Siegel’s
formula for representation numbers of global quadratic or Hermitian forms in terms of local representation
densities.

In [Kud97] Kudla began to study an arithmetic version of the Siegel–Weil formula and he discovered a
relation between an “arithmetic theta function” — a generating series of arithmetic cycles on an integral
model of a Shimura curve—and the first central derivative of a Siegel–Eisenstein series on Sp4. In a series
of papers, Kudla and Rapoport developed this paradigm by defining the non-singular terms of a generating
series of special cycles on suitable integral models of Shimura varieties for SO(n− 1, 2) with n ≤ 4 and for
all U(n − 1, 1). Of particular relevance to our paper, in [KR11, KR14] Kudla and Rapoport defined the
sought-after special cycles on integral models of unitary Shimura varieties, now known as Kudla–Rapoport
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cycles, and conjectured a relationship to the non-singular Fourier coefficients of the central derivative of the
Siegel–Eisenstein series. Their conjecture has been recently proved by Li and one of us [LZ20]; we also refer
to the introduction of [LZ20] for a more detailed account of recent advances in some other related directions.

In this paper and its sequel we study a function field analogue of the arithmetic Siegel–Weil formula, for
unitary groups. In particular, we will construct special cycles on the moduli space of unitary shtukas. Then
we prove the analogue of the Kudla-Rapoport conjecture for derivatives of arbitrary order at the center of
the Siegel–Eisenstein series, relating the non-singular Fourier coefficients of such higher derivatives to the
degrees of special cycles. In the sequel, we will construct the complete generating series of special cycles
(including singular terms) and give evidence for their modularity.

1.1. Statement of main result. To formulate the result, let X be a smooth, proper and geometrically
connected curve over k = Fq of characteristic p 6= 2, and ν : X ′ → X be an étale double cover, with the
non-trivial automorphism denoted σ ∈ Aut(X ′/X). Let F be the function field of X and let F ′ be the
ring of rational functions on X ′ (we allow X ′ = X

∐
X). Let U(n) → X be the reductive group scheme

corresponding to the standard F ′/F -Hermitian space of dimension n. In §6 we define the moduli stack
ShtrU(n) parametrizing rank n “unitary shtukas” with r legs. It admits a fibration ShtrU(n) → (X ′)r, and will
play the role of Shimura varieties in the function field context.

1.1.1. Special cycles. Drawing inspiration from the construction of Kudla-Rapoport cycles on unitary Shimura
varieties [KR14], we introduce in §7 certain special cycles Zr

E(a) indexed by E , a vector bundle of rank m
with 1 ≤ m ≤ n on X ′, and a Hermitian map a : E → σ∗E∨ where E∨ := Hom(E , ωX′) is the Serre dual of E .
For general E the dimension of Zr

L(a) differs from the “virtual dimension”, but when E = L is a line bundle
and a is injective, Zr

L(a) has the expected dimension (cf. Proposition 7.9 and Remark 7.10) and serves as
the analogue of the Kudla-Rapoport divisor.

We will then be particularly interested in the case m = n. Then the “virtual dimension” of Zr
E (a) is

0. However, as is already seen in the number field context [KR14], the literal dimension of Zr
E is often

significantly larger; this problem is exacerbated as r increases. Nevertheless, under the assumption that
a : E → σ∗E∨ is injective, we are able to construct an appropriate “virtual fundamental cycle” [Zr

E(a)] ∈
Ch0(Zr

E (a))Q. When E = ⊕n
i=1Li is a direct sum of line bundles, the class [Zr

E(a)] ∈ Ch0(Zr
E(a))Q can be

defined as (the restriction to Zr
E(a) of) the intersection product of Zr

Li
(aii) for the diagonal entries aii of a;

this is similar to the number field case. However, a new feature arises when E is a not a direct sum of line
bundles. We overcome this difficulty in §7.9 by introducing the notion of a good framing for E to reduce to
the case of a sum of line bundles. A nontrivial task is to verify that the cycle class [Zr

E(a)] is independent of
the choice of the good framing, which occupies much of the sections §8–§10.

When a is injective, it turns out that Zr
E(a) is proper, so that [Zr

E(a)] has a well-defined degree deg[Zr
E(a)] ∈

Q.

1.1.2. The main result. Let E(g, s,Φ) be the Siegel–Eisenstein series for the standard split F ′/F -skew-
Hermitian space of dimension 2n, with respect to the unramified standard section Φ. For a rank n vector
bundle E on X ′ as above, E(g, s,Φ) admits a Fourier expansion with respect to E indexed by Hermitian

maps a : E → σ∗E∨. We let Ẽa(m(E), s,Φ) be the ath Fourier coefficient multiplied by certain normalization
factors, explained precisely in (12.1).

In our normalization, s = 0 is the center of the functional equation for Ẽ(m(E), s,Φ). Our main theorem
relates the Taylor expansion at this central point to the degrees of special cycle classes.

Theorem 1.1. Let E be a rank n vector bundle on X ′ and a : E → σ∗E∨ be an injective Hermitian map.
Then we have

1

(log q)r

(
d

ds

)r ∣∣∣
s=0

(
qdsẼa(m(E), s,Φ)

)
= deg[Zr

E(a)], (1.1)

where d = − deg(E) + n degωX = −χ(X ′, E).
1.1.3. Comments on the proof. Let us stress that (1.1) holds for all r, regardless of the order of vanishing of

Ẽa(m(E), s,Φ) at s = 0. The first results of this nature, giving motivic interpretations of Taylor coefficients
of automorphic L-functions even “beyond the leading term”, were proved in [YZ17, YZ19] for PGL2. Our
results here are the first higher derivative formulas to be proved for groups of arbitrary rank. Our proof
shares some common ingredients with these earlier works, but also has a number of interesting new ones.
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For example, a key discovery for us was a connection between the Fourier coefficients of Siegel–Eisenstein
series and certain perverse sheaves arising from Springer theory. Another key realization was that the special
cycles are governed by certain variants of the Hitchin fibration, whose geometry can also be described in
terms of Springer theory. An overview of the proof will be given in §1.2.

Another feature of the proof of Theorem 1.1 is that it is completely uniform in r, and in particular unites
the “Siegel–Weil formula” and “arithmetic Siegel–Weil formula” in the same framework. For this reason, we
propose to call (1.1) a higher Siegel–Weil formula.

Remark 1.2. When r = 0, the coarse moduli space of ShtrU(n) is just the discrete set of points which form

the domain of everywhere unramified automorphic forms for U(n). In that case, Theorem 1.1 specializes to
(the non-singular Fourier coefficients of) the classical Siegel–Weil formula.

One should imagine that when r = 1, ShtrU(n) → X ′ is analogous to (the integral model of) a unitary

Shimura variety. Now, under the technical assumptions of the present paper (namely the everywhere unram-
ifiedness assumptions) this space is always empty, corresponding to the fact that the sign of the functional
equation for the Siegel–Eisenstein series is +1 (so that all odd order derivatives vanish). However, the same
methods may be used to prove generalizations of Theorem 1.1 that incorporate certain level structure, for
which the r = 1 case is interesting.

When r > 1, no analogue of the spaces ShtrU(n) is presently known in the number field setting. Conse-
quently, we do not know how to formulate an analogue of the main result for number fields.

1.1.4. Singular coefficients. We say that a Hermitian map a : E → σ∗E∨ non-singular if it is injective as a
map of coherent sheaves, in analogy to the terminology of [KR14]. Theorem 1.1 only concerns the special
cycles for E of rank n and a non-singular; indeed, when a is singular it is quite non-trivial even to define an
appropriate virtual fundamental class [Zr

E(a)].
Our companion paper [FYZ21] proposes a solution to this problem. There, we construct cycle classes

[Zr
E(a)] for all E of rank ≤ n and possibly singular a : E → σ∗E∨. Moreover, we conjecture that they can be

assembled appropriately into generating series valued in the Chow groups of ShtrU(n) which are automorphic,

in analogy to known results over number fields [BHK+20], which fall under the umbrella of the Kudla
program.

1.2. Method of proof. To summarize, we prove Theorem 1.1 by constructing two perverse sheaves that
encode the two sides of (1.1) in the sense of sheaf-function correspondence, and then identifying these
two perverse sheaves using a Hermitian variant of Springer theory, which labels these perverse sheaves by
representations of the appropriate Weyl group. In this way, Theorem 1.1 is eventually unraveled into an
elementary identity between representations of the Weyl group for type B/C.

On the geometric side, the connection between special cycles and Springer theory comes via the geometry
of a moduli stack that resembles the Hitchin moduli space. On the other side, the connection between the
Fourier coefficients of Siegel-Eisenstein series and Springer theory goes through local density formulas of
Cho-Yamauchi.

Let us briefly explain the connection between the higher Siegel-Weil formula and the Hitchin moduli stack
and Hermitian Springer theory, and refer more details to the later paragraphs. The degree of the special
cycle that appear on the right side of (1.1) is essentially an intersection number of cycles on ShtrU(n). We

follow the strategy of [YZ17] to compute this intersection number: doing linear intersections (those not
involving the Frobenius map) first, and leaving the Frobenius semi-linear intersection till the last step (cf.
(10.15) – (10.19)). In this process, a Hitchin-type moduli stackMd appears naturally as we perform linear
intersections (cf. (10.18)). The degree of the special cycle [Zr

E(a)] can be expressed as a weighted counting
of k-points on the fiber of a map fd :Md → Ad (analogue of Hitchin fibration) over the point (E , a) ∈ A(k),
where (E , a) are as in the statement of Theorem 1.1.

The cokernel Q = coker(a) is a torsion sheaf on X ′ with a Hermitian structure inherited from a. This
motivates the introduction of the moduli stack Herm2d(X

′/X) that parametrizes torsion coherent sheaves
on X ′ of length 2d together with a Hermitian structure, so that Q is a k-point of Herm2d(X

′/X) (where
2d = dimk Γ(X

′,Q)). We show that the fiber of fd :Md → Ad over (E , a) depends only on Q = coker(a),
therefore the degree of [Zr

E(a)] depends only on the k-point Q of Herm2d(X
′/X).

On the other hand, the Eisenstein series side of (1.1) can be written as a product of local terms –
representation density functions for Hermitian lattices. These density functions again only depend on the
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torsion sheaf Q together with its Hermitian structure, i.e., a k-point in Herm2d(X
′/X).

Therefore we reduce to proving that two quantities attached to a k-point in Herm2d(X
′/X) are equal.

A key realization is that both quantities are of motivic nature: they come by the sheaf-to-function corre-
spondence from two (graded, virtual) perverse sheaves on Herm2d(X

′/X). This is where Hermitian Springer
theory enters. Classically, starting with a reductive Lie algebra g, Springer theory outputs a perverse sheaf
Sprg on g, defined as the direct image complex of the Grothendieck-Springer resolution πg : g̃→ g, together
with an action of the Weyl groupW . In our setting, Herm2d(X

′/X) will play the role of g. In §4, we construct

a perverse sheaf SprHerm
2d on Herm2d(X

′/X) together with an action of Wd = (Z/2Z)d⋊Sd analogous to the
Springer sheaf. If Herm2d(X

′/X) is replaced by Cohd(X), the moduli of torsion coherent sheaves on X of
length d, such a Springer sheaf was constructed by Laumon [Lau87]. The Springer sheaf on Cohd(X) (resp.
Herm2d(X

′/X)) can be viewed as a global version of the Springer sheaf for gld (resp. o2d). The perverse
sheaves on Herm2d(X

′/X) that govern both sides of (1.1) will be constructed from direct summands of the

Hermitian Springer sheaf SprHerm
2d .

Thus, the proof of Theorem 1.1 is completed in three steps:

(1) Construct a graded perverse sheaf on Herm2d(X
′/X)

KEis
d =

d⊕

i=0

KEis
d,i

whose Frobenius trace at Q is related to the LHS of (1.1). More precisely,

Ẽa(m(E), s,Φ) =
d∑

i=0

Tr(FrobQ, (KEis
d,i )Q)q

−2is.

(2) Construct a graded perverse sheaf on Herm2d(X
′/X)

KInt
d =

d⊕

i=0

KInt
d,i

whose Frobenius trace at Q is relate to the RHS of (1.1). More precisely,

deg[Zr
E (a)] =

d∑

i=0

Tr(FrobQ, (KInt
d,i )Q) · (d− 2i)r. (1.2)

(3) Prove that

KEis
d
∼= KInt

d (1.3)

as graded perverse sheaves on Herm2d(X
′/X).

These three steps correspond to the three parts of the paper. We elaborate on the main ideas involved in
each step.

1.2.1. Step (1). After a standard procedure expressing the nonsingular Fourier coefficients of Eisenstein
series in terms of local density of Hermitian lattices, we use the formula of Cho and Yamauchi [CY20] for
these densities (more precisely, the unitary variant developed in [LZ20]). We also need an extension of their
formula in the split case (Theorem 2.2). The formula of Cho and Yamauchi depends only on the Hermitian
torsion sheaf Q = coker(a), which gives the hope that the local density, as a function on the set of Hermitian
torsion sheaves, comes from a sheaf on Herm2d(X

′/X) via Grothendieck’s sheaf-to-function dictionary. We
do this by developing an analog of Springer theory over Herm2d(X

′/X) (§3-§4).
The key observation here is that the term in the Cho–Yamauchi formula resembles the Frobenius trace

function for a certain linear combination of Springer sheaves for gld or Cohd(X), except for some signs. To
match the signs exactly we consider an analogous linear combination of Springer sheaves on Herm2d(X

′/X),
and we compare the Frobenius actions on the cohomology of Springer fibers over Cohd(X) and over Herm2d(X

′/X),
see §4.5 and §4.6.
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1.2.2. Step (2). This step consists of three substeps.

• First, we define special cycles for nonsingular a (§6-§7). When E is a direct sum of line bundles Li, we
define, following Kudla and Rapoport, [Zr

E(a)] as the intersection of cycle classes [Zr
Li
(aii)], which,

despite not being divisors in our setting, always have the “expected” dimension (more precisely,
codimension r in ShtrU(n)). The definition of [Zr

E(a)] for general vector bundles E requires choosing

a “good framing” on E , i.e., an injective map from a direct sum of line bundles E ′ = ⊕n
i=1Li →֒ E

satisfying certain conditions. In any case, the RHS of (1.1) is an intersection number of cycles on
ShtrU(n).

• The well-definedness of [Zr
E(a)] is proved in the second substep (§8-§10), which also gives a differ-

ent definition of these cycle classes without any choices. The idea is similar to the one used in
[YZ17], namely by exchanging the order of intersection, we perform “linear intersections” first to
form Hitchin-type moduli stacks (denoted Md, making sense over any base field), and in the last
step we perform a shtuka-type construction by intersecting with the graph of Frobenius.
• In the last substep (§11) we use the Lefschetz trace formula to express the degree of [Zr

E(a)], for-
mulated using the Hitchin-type moduli stackMd, as the trace of Frobenius composed with the rth

power of an endomorphism C on the direct image complex Rf∗Qℓ of the Hitchin map f :Md → Ad.
Now, the “Hitchin base” Ad has a canonical smooth map to Herm2d(X

′/X), and it turns out that
Rf∗Qℓ together with its endomorphism C descends through this map to a perverse sheaf KInt

d on

Herm2d(X
′/X) with an endomorphism C. The decomposition of KInt

d into graded pieces KInt
d,i is

according to the eigenvalues of the C-action, which are of the form (d − 2i). Combining these facts
we get (1.2).

1.2.3. Step (3). Both KEis
d and KInt

d are linear combinations of isotypical summands of SprHerm
2d under the

action of Wd. The isomorphism (1.3) then comes from an isomorphism of two graded virtual representations
of Wd, which we verify directly.

Acknowledgment. We thank Michael Harris, Chao Li, and Zhiyu Zhang for comments on a draft. TF was
supported by an NSF Postdoctoral Fellowship under grant No. 1902927, as well as the Friends of the Institute
for Advanced Study. ZY was partially supported by the Packard Fellowship, and the Simons Investigator
grant. WZ is partially supported by the NSF grant DMS #1901642.

1.3. Notation. Throughout this paper, k = Fq is a finite field of odd characteristic p. Let ℓ 6= p be a

prime. Let ψ0 : k → Q
×
ℓ be a nontrivial character. For a stack over k, we write Frob = Frobq for its q-power

Frobenius endomorphism.
Let X denote a smooth curve over k. With the exception of §3 and §4, X is assumed to be projective and

geometrically connected. Let ωX be the line bundle of 1-forms on X .
Let F = k(X) denote the function field of X . Let |X | be the set of closed points of X . For v ∈ |X |, let Ov

be the completed local ring of X at v with fraction field Fv and residue field kv. Let A = AF denote the ring

of adèles of F , and Ô =
∏

v∈|X|Ov. Let deg(v) = [kv : k], and qv = qdeg(v) = #kv. A uniformizer of Ov is

typically denoted ̟v. Let | · |v : F×v → qZv be the absolute value such that |̟v|v = q−1v . Let | · |F : A×F → qZ

be the absolute value that is | · |v on F×v .
Let X ′ be another smooth curve over k and ν : X ′ → X be a finite map of degree 2 that is generically

étale. We denote by σ the non-trivial automorphism of X ′ over X . With the exception of §4.1 and §4.2, ν
is assumed to be étale. We emphasize that the case X ′ = X

∐
X is allowed. Let F ′ be the ring of rational

functions on X ′, which is either a quadratic extension of F or F × F . We let k′ be the ring of constants in
F ′, which is either Fq2 or Fq ×Fq. The notations ωX′ , |X ′|, F ′v′ ,Ov′ , kv′ ,AF ′ , | · |v′ , | · |F ′ , qv′ and deg(v′) (for
v′ ∈ |X ′|) are defined similarly as their counterparts for X . Additionally, for v ∈ |X |, we use O′v to denote
the completion of OX′ along ν

−1(v), and define F ′v to be its total ring of fractions.
For a vector bundle E on X ′, let E∨ = Hom(E , ωX′) be its Serre dual. For a torsion sheaf T on X ′, let

T ∨ = Ext1(T , ωX′).
When X (hence X ′) is projective, let BunGLn

(resp. BunGL′n) be the moduli stack of rank n vector
bundles over X (resp. X ′). Let g be the genus of X and g′ = 2g − 1 be the arithmetic genus of X ′.

For a stack Y, Ch(Y) denotes its rationalized Chow group and Db(Y,Qℓ) its bounded derived category
of constructible Qℓ-sheaves.
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Part 1. The analytic side

2. Fourier coefficients of Eisenstein series

In this section we will define the Siegel-Eisenstein series featuring into our main theorem, and explain
how to express their non-singular Fourier coefficients in terms of local density polynomials, which will be
geometrized in later sections.

2.1. Siegel–Eisenstein series. For any one-dimensional F -vector space L, let Hermn(F,L) be the F -vector
space of F ′/F -Hermitian forms h : F ′n×F ′n → L⊗F F

′ (with respect to the involution 1⊗σ on L⊗F F
′). For

any F -algebra R, Hermn(R,L) := Hermn(F,L)⊗F R is the set of L⊗F R
′-valued R′/R-Hermitian forms on

R′n, whereR′ = R⊗FF
′. When L = F we write Hermn(F ) = Hermn(F, F ) and Hermn(R) = Hermn(F )⊗FR

for any F -algebra R.
Let W be the standard split F ′/F -skew-Hermitian space of dimension 2n. Let Hn = U(W ). Write

A := AF for the ring of adeles of F . Let Pn(A) = Mn(A)Nn(A) be the standard Siegel parabolic subgroup
of Gn(A), where

Mn(A) =

{
m(α) =

(
α 0
0 tᾱ−1

)
: α ∈ GLn(AF ′)

}
,

Nn(A) =

{
n(β) =

(
1n β
0 1n

)
: β ∈ Hermn(AF )

}
.

Let η : A×F /F
× → C× be the quadratic character associated to F ′/F by class field theory. Fix χ :

A×F ′/F
′× → C× a character such that χ|

A
×
F
= ηn. We may view χ as a character on Mn(A) by χ(m(α)) =

χ(det(α)) and extend it to Pn(A) trivially on Nn(A). Define the degenerate principal series to be the
unnormalized smooth induction

In(s, χ) = Ind
Hn(A)
Pn(A)

(χ · | · |s+n/2
F ′ ), s ∈ C.

For a standard section Φ(−, s) ∈ In(s, χ), define the associated Siegel–Eisenstein series

E(g, s,Φ) =
∑

γ∈Pn(F )\Hn(F )

Φ(γg, s), g ∈ Hn(A),

which converges for ℜ(s)≫ 0 and admits meromorphic continuation to s ∈ C. Notice that E(g, s,Φ) depends
on the choice of χ.

In this paper, we will choose χ to be unramified everywhere.1 Then In(s, χ) is unramified and we fix

Φ(−, s) ∈ In(s, χ) as the unique K = Hn(Ô)-invariant section normalized by

Φ(12n, s) = 1.

Similarly we normalize Φv ∈ In(s, χv) for every v ∈ |X | and we then have a factorization Φ =
⊗

v∈|X| Φv.

2.2. Fourier expansion. Let ωF be the generic fiber of the canonical bundle of X , and AωF = A ⊗F ωF .
The residue pairing Res : AωF × AF → k induces a pairing

〈·, ·〉 : Hermn(A, ωF )× Hermn(A)→ k

given by 〈T, b〉 = Res(−Tr(Tb)). Composing this pairing with the fixed nontrivial additive character ψ0 :
k → C× exhibits Hermn(A, ωF ) as the Pontryagin dual of Hermn(A). Moreover, it exhibits Hermn(F, ωF )
as the Pontryagin dual of Hermn(F )\Hermn(A) = Nn(F )\Nn(A). The global residue pairing is the sum of
local residue pairings 〈·, ·〉v : Hermn(Fv, ωF )×Hermn(Fv)→ k defined by 〈T, b〉v = trkv/k Resv(−Tr(Tb)).

1To see that such χ exists, observe that by Baer’s criterion, it suffices to check that ηn is trivial on ker(Pic(X) → Pic(X′)).
If X′/X is the trivial double cover or the double cover corresponding to Fq2/Fq, then then this kernel is trivial so the result is

immediate. Otherwise, the cover is geometrically non-trivial. Since char(k) 6= 2, the kernel consists of the 2-torsion line bundle
whose class in H1(X, µ2) agrees with η ∈ H1(X,Z/2Z) under the isomorphism µ2

∼= Z/2Z. If n is even then there is nothing
to check; if n is odd then the desired vanishing property amounts (when char(k) 6= 2) to the alternating property of the cup
product pairing H1(X

Fq
,Z/2Z) × H1(X

Fq
,Z/2Z) → Z/2, which follows from the graded commutativity of the cup product

and the fact that the geometric Z2-cohomology of curves in characteristic 6= 2 is torsion-free.
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We have a Fourier expansion

E(g, s,Φ) =
∑

T∈Hermn(F,ωF )

ET (g, s,Φ),

where

ET (g, s,Φ) =

∫

Nn(F )\Nn(A)

E(n(b)g, s,Φ)ψ0(〈T, b〉) dn(b),

and the Haar measure dn(b) is normalized such that Nn(F )\Nn(A) has volume 1. For any α ∈ Mn(A) we
have

ET (m(α)g, s,Φ) = χ(det(ᾱ))−1| det(α)|−s+n/2
F ′ EtαTα(g, s,Φ). (2.1)

When T is nonsingular, for a factorizable Φ =
⊗

v∈|X| Φv we have a factorization of the Fourier coefficient

into a product (cf. [Kud97, §4])

ET (g, s,Φ) = |ωX |−n
2/2

F

∏

v

WT,v(gv, s,Φv), (2.2)

where the local (generalized) Whittaker function is defined by

WT,v(gv, s,Φv) =

∫

Nn(Fv)

Φv(w
−1
n n(b)gv, s)ψ0(〈T, b〉v) dvn(b), wn =

(
0 1n
−1n 0

)

and has analytic continuation to s ∈ C. Here the local Haar measure dvn(b) is the one such that the volume

of Nn(Ov) is 1. The factor |ωX |−n
2/2

F is the ratio between the global measure dn and the product of the
local measures

∏
v dvn.

Note that for α ∈Mn(Fv),

WT,v(m(α), s,Φv) = χ(det(ᾱ))−1| det(α)|−s+n/2
F ′v

Wtᾱ Tα,v(1, s,Φv). (2.3)

We define the regular part of the Eisenstein series to be

Ereg(g, s,Φ) =
∑

T∈Hermn(F,ωF )
rankT=n

ET (g, s,Φ). (2.4)

2.3. Local densities for Hermitian lattices. The local density for Hermitian lattices in the non-split
case has been studied in [LZ20, §3] following the strategy of Cho–Yamauchi [CY20]. Here we recall the
result of [LZ20] and extend the results to the split case.

From now on until §2.5, let F to be a non-archimedean local field of characteristic not equal to 2 (but
possibly with residue characteristic 2). Let F ′ be either an unramified quadratic field extension or the split
quadratic F -algebra F ′ = F × F . Denote by OF (resp. OF ′) the ring of integers in F (resp. F ′). In the
split case we have OF ′ = OF × OF . Let η = ηF ′/F : F× → {±1} be the quadratic character attached to
F ′/F by class field theory. Let ̟ be a uniformizer of F , k the residue field, q = #k.

Let L,M be two Hermitian OF ′-lattices. In the split case, the datum of a Hermitian OF ′-lattice L is a
pair (L1, L2) of OF -lattices together with an OF -bilinear pairing

(·, ·) : L1 × L2 → OF

that is perfect after base change to F . We will define L∨ = (L∨1 , L
∨
2 ) where L

∨
1 = {x ∈ L1⊗OF F : (x, L2) ⊂

OF } and similarly for L∨2 .
Let RepM,L be the scheme of integral representations of M by L, an OF -scheme such that for any OF -

algebra R,

RepM,L(R) = Herm(L⊗OF R,M ⊗OF R),

where Herm denotes the set of Hermitian R-module homomorphisms. In the split case, if we write L
and M in terms of pairs (L1, L2) and (M1,M2) with their OF -bilinear pairings, then a Hermitian module
homomorphism consists of a pair of R-linear maps φi : Li ⊗OF R → Mi ⊗OF R preserving the base change
to R of the OF -bilinear pairings.

The local density of integral representations of M by L is defined to be

Den(M,L) : = lim
N→+∞

#RepM,L(OF /̟
N)

qN ·dim(RepM,L)F
.
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Note that if L,M have OF ′-rank n,m respectively and the generic fiber (RepM,L)F 6= ∅, then n ≤ m and

dim(RepM,L)F = dimUm − dimUm−n = n · (2m− n).

2.4. Cho–Yamauchi formula for local density.

Definition 2.1. For a ∈ Z≥0 we define a polynomial of degree a

m(a;T ) :=

a−1∏

i=0

(1− (η(̟)q)iT ) ∈ Z[T ].

Note that m(a;T ) depends on F ′/F .
In both the non-split and the split cases, for a finite torsion OF -module T we define

ℓ(T ) := length of T as an OF -module;

t(T ) := dimk(T ⊗OF k).

For an OF ′ -Hermitian lattice L, we define its type

t(L) := t(L∨/L)

where we view the finite torsion OF ′ -module L∨/L as an OF -module.
When F ′/F is non-split, for a finite torsion OF ′ -module T we define

ℓ′(T ) := length of T as an OF ′ -module;

t′(T ) := dimk′ (T ⊗OF ′ k
′).

Then we have

ℓ(T ) = 2ℓ′(T ), t(T ) = 2t′(T ). (2.5)

When F ′ = F × F is split, for a finite torsion OF ′ -module T we may define ℓ′(T ) and t′(T ) by (2.5).
Moreover, for OF ′ -Hermitian lattices L = (L1, L2) and L′ = (L′1, L

′
2) such that L ⊂ L′ (meaning that

L1 ⊂ L′1 and L2 ⊂ L′2), we have

ℓ(L′/L) = ℓ(L′1/L1) + ℓ(L′2/L2)

and

t′(L∨/L) = t(L∨2 /L1) = t(L∨1 /L2).

In both the split and non-split case, we define

t′(L) = t′(L∨/L).

We have the following analog of Cho–Yamauchi formula [CY20].

Theorem 2.2. Let j ≥ 0 be an integer. Let 〈1〉j be the self-dual Hermitian OF ′-lattice of rank j with
Hermitian form given the identity matrix 1j. Let L be a Hermitian OF ′-lattice of rank n.

(1) We have

Den(〈1〉n+j , 〈1〉n) =
n∏

i=1

(1− (η(̟)q)−iT )

∣∣∣∣
T=(η(̟)q)−j

.

(2) There is a (unique) polynomial Den(T, L) ∈ Z[T ], called (normalized) local Siegel series of L, such
that for all j ≥ 0,

Den((η(̟)q)−j , L) =
Den(〈1〉n+j , L)

Den(〈1〉n+j , 〈1〉n) .

(3) We have

Den(T, L) =
∑

L⊂L′⊂L′∨⊂L∨
T 2ℓ′(L′/L)m(t′(L′);T ). (2.6)

Here the sum is over OF ′-lattices L
′ containing L on which the Hermitian form is integral.
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Proof. The non-split case is proved in [LZ20, Thm. 3.5.1] and here we indicate the necessary change in the
split case. Now suppose F ′ = F ×F and hence k′ = k×k. Let Lk = L⊗OF k and 〈1〉mk = 〈1〉mk ⊗OF k, which
are free k′-modules with the induced k′/k-Hermitian forms. In particular, 〈1〉mk is non-degenerate and the
radical of Lk = L⊗OF k has k′-rank equal to t′(L) = t(L∨1 /L1) = t(L∨2 /L2). Let Isom〈1〉mk ,Lk

be the k-scheme

of “isometric embeddings” from Lk to 〈1〉mk , i.e., injective k′-linear maps from Lk to 〈1〉mk preserving the
Hermitian forms.

Similar to the orthogonal case [CY20, §3.3], we have

Den(〈1〉m, L) = q− dimRep(〈1〉m,L)F
∑

L⊂L′⊂L′∨
#(L′/L)−(m−n)#Isom〈1〉mk ,Lk

(k),

where dimRep(〈1〉m, L)F = m2 − (m− n)2 = 2mn− n2.
It remains to show that

# Isom〈1〉mk ,Lk
(k) = qm

2−(m−n)2 ·
n+a−1∏

i=0

(1− qi−m) (2.7)

where a = t′(L) is the k′-rank of the radical of Lk. Note that up-to-isomorphism, Lk is determined by its
rank and the rank of its radical. Let Un−a,a be a k′/k-Hermitian space of rank n with radical of rank a. Let
Vm = Um,0 be a (non-degenerate) k′/k-Hermitian space of dimension m ≥ n. Then it is easy to see that
Un−a,a ≃ Un−a,0 ⊕ U0,a and

# IsomVm,Un−a,a(k) = # IsomVm,Un−a,0(k) ·#IsomVm−(n−a),U0,a(k).

By (2.7) (note that # Isom〈1〉m
k
,Lk

(k) = # IsomVm,Un−a,a(k)), it suffices to show (2.7) in the two extreme
cases: a = 0 and a = n.

First we consider the case a = n. Then, to give an isometric embedding from U = U0,n = k′n to
V = Um,0 = k′m is equivalent to give an injective k-linear map φ : kn → km and then an injective k-linear
map ϕ : kn → Im(φ)⊥ ⊂ km. Therefore, denoting by Hom∗k(k

n, km) the set of injective k-linear maps
φ : kn → km, we have

# IsomVm,U0,n(k) =#Hom∗k(k
n, km) ·#Hom∗k(k

n, km−n)

=qmn
n−1∏

i=0

(1− qi−m) · q(m−n)n
n−1∏

i=0

(1 − qi−m+n)

=q2mn−n2
2n−1∏

i=0

(1− qi−m).

It remains to consider the case a = 0. Then a similar argument shows

# IsomVm,Un,0(k) =#Hom∗k(k
n, km) ·#Homk(k

n, km−n)

=qmn
n−1∏

i=0

(1 − qi−m) · q(m−n)n

=q2mn−n2
n−1∏

i=0

(1− qi−m).

This completes the proof.
�

Remark 2.3. By Theorem 2.2, the degree of the polynomial Den(T, L) is equal to ℓ′(L∨/L). Moreover, the
polynomial Den(T, L) depends only on the induced Hermitian form on the torsion module L∨/L. Therefore
for a Hermitian torsion module2 Q we may define Den(T,Q) by (2.6).

Remark 2.4. In the split case, writing L = (L1, L2) and L
′ = (L′1, L

′
2). Then the formula reads

Den(T, L) =
∑

L1⊂L′1⊂L
′∨
2 ⊂L∨2

T ℓ(L′1/L1)+ℓ(L′2/L2)m(t(L′2
∨
/L′1);T ).

2By this we mean a torsion OF ′ -module with an OF ′/OF -Hermitian form.
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Remark 2.5. The local Siegel series satisfies a functional equation

Den(T, L) = (η(̟)T )ℓ
′(L∨/L) ·Den

(
1

T
, L

)
.

See Corollary 11.14 for the geometric analog.

2.5. Relation with local Whittaker functions. We continue to let F be a local field. Define the local
L-function

Ln,F ′/F (s) :=

n∏

i=1

L(i+ 2s, ηi) =

n∏

i=1

1

1− ηi(̟)q−i−2s
.

Lemma 2.6. Let L be a Hermitian OF ′-lattice of rank n. Let T = ((xi, xj))1≤i,j≤n be the fundamental
matrix of an OF ′-basis {x1, . . . , xn} of L, an n× n Hermitian matrix over F . Let θ be a generator of ωOF

so that Tθ ∈ Hermn(F, ωF ). Then

WTθ(1, s,Φ) = Ln,F ′/F (s)
−1 Den(q−2s, L).

Here Φ is the local unramified section normalized by Φ(12n, s) = 1.

Proof. Note that by Theorem 2.2

Ln,F ′/F (j) = Den(〈1〉n+2j , 〈1〉n)−1.
It is known that WTθ(1, s,Φ) is a rational function in qs. Therefore the formula is equivalent to

WTθ(1, j,Φ) = Den(〈1〉n+2j , L).

for all integer j ≥ 0. In the non-split case this is essentially [KR14, Prop. 10.1] (cf. [LZ20, §3.3]), which can
be easily modified to the split case. �

2.6. Fourier coefficients revisited. Now we return to the global situation. We need the following global
L-function to normalize the Eisenstein series

Ln(s) =

n∏

i=1

L(i+ 2s, ηi).

The regular part Ereg(·, s,Φ) (as a function in g ∈ Hn(A), cf. (2.4)) is determined by its restriction to
the Levi subgroup Mn(A). Since the restriction is left Mn(F )-invariant and right K-invariant, it descends
to a function on

Mn(F )\Mn(A)/Mn(Ô) ≃ BunMn(k) ≃ BunGL′n(k),

via the canonical identifications. From now on we will freely switch between g = m(α) ∈ Mn(A) and the
corresponding element E ∈ BunGL′n(k) and we will write

Ereg(m(E), s,Φ) = Ereg(m(α), s,Φ).

Note that the absolute value on A×F ′ is normalized such that | det(α)|F ′ = qdeg(E). By abuse of notation we
also view χ as a function on BunGL′1

(k).
Recall that E∨ = HomOX′

(E , ωX′) denotes the Serre dual of E . Consider a rational Hermitian map

a : E 99K σ∗E∨ (i.e., defined at the generic point of X ′). Given a pair (E , a) as above, we shall define the
Fourier coefficient

Ea(m(E), s,Φ)
as follows. For any generic trivialization τ : EF ′ ∼→ (F ′)n, the pair (E , τ) gives a point α = α(E , τ) ∈
Mn(A)/Mn(Ô) such that E is glued from (F ′)n and the lattices αvOn

F ′v
. Under τ , the restriction of a at the

generic point gives an ωF ′-valued Hermitian form on (F ′)n which we denote by T = T (a, τ). Then we define

Ea(m(E), s,Φ) := ET (a,τ)(m(α(E , τ)), s,Φ). (2.8)

If we change τ to γτ for some γ ∈Mn(F ) = GLn(F
′), then α(E , γτ) = γα(E , τ) and T (a, γτ) = tγ−1T (a, τ)γ−1.

By (2.1), we have

ET (a,γτ)(m(α(E , γτ)), s,Φ) = ET (a,τ)(m(α(E , τ)), s,Φ)
for all γ ∈Mn(F ). Therefore Ea(m(E), s,Φ) is well-defined.
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Now suppose a : E →֒ σ∗E∨ is an injective Hermitian map. Let (Ev, a) denote the Hermitian O′v-lattice
induced by a at v ∈ |X |. Define

Den(q−2s, (E , a)) =
∏

v∈|X|
Denv(q

−2s
v , (Ev, a)).

Here Denv(−) is the density polynomial (2.6) defined using F ′v/Fv. Note that the degree of Den(q−2s, (E , a))
(as a polynomial of q−s) is

deg(σ∗E∨)− deg(E) = −2 deg(E) + 2n degωX .

Theorem 2.7. Let E be a vector bundle over X ′ of rank n. Then

Ereg(m(E), s,Φ) =
∑

a:E →֒σ∗E∨
Ea(m(E), s,Φ) (2.9)

where the sum runs over all injective Hermitian maps a : E → σ∗E∨. Moreover, we have

Ea(m(E), s,Φ) = χ(det(E))q− deg(E)(s−n/2)− 1
2n

2 degωXLn(s)
−1 Den(q−2s, (E , a)). (2.10)

Proof. From the definitions it is clear that

Ereg(m(E), s,Φ) =
∑

a:E99Kσ∗E∨
Ea(m(E), s,Φ)

where a runs over rational Hermitian maps E → σ∗E∨ that are generically nonsingular.
Now let a : E 99K σ∗E∨ be such a rational nonsingular Hermitian map. Choose a generic trivialization

τ : EF ′ ∼→ (F ′)n, and use it to identify E with α ∈ Mn(A)/Mn(Ô) such that Ev = αvLv, where Lv = O′⊕nv .
Using τ , the map a induces T ∈ Hermn(F, ωF ), which gives an ωF ⊗F F

′
v-valued Hermitian form Tv on (F ′v)

n

for every v ∈ |X |. By definition (2.8) we have

Ea(m(E), s,Φ) = ET (m(α), s,Φ). (2.11)

By (2.2) and (2.3), and note that the character χ is trivial on the norm of A×F ′ , we have

ET (m(α), s,Φ) = χ(det(α))|α|−s+n/2
F ′ |ωX |−

1
2n

2 ∏

v∈|X|
WTv (1, s,Φv). (2.12)

If Tv does not have integral entries, then WTv (1, s,Φv) = 0 (since Φ is invariant under Nn(Ov)). Therefore
ET (m(α), s,Φ) is nonzero only when Tv is integral for all v, i.e., a is an everywhere regular Hermitian map
E →֒ σ∗E∨. This proves (2.9).

For such a : E →֒ σ∗E∨, by Lemma 2.6, the right side of (2.12) is

χ(det(α))|α|−s+n/2
F ′ |ωX |−

1
2n

2 ∏

v∈|X|

1

Ln,F ′v/Fv
(s)

Den(q−2sv , (Lv, Tv)). (2.13)

Note that χ(det(α)) = χ(det(E)), |α|F ′ = qdeg(E), and

Den(q−2s, (E , a)) =
∏

v∈|X|
Den(q−2sv , (Ev, av)) =

∏

v∈|X|
Den(q−2sv , (Lv, Tv)).

Combining these facts with (2.11), (2.12) and (2.13), we get (2.10).
�

3. Springer theory for torsion coherent sheaves

In this section we review the construction of the Springer sheaf on the moduli stack of torsion coherent
sheaves on a curve following Laumon [Lau87]. We also compute the Frobenius trace function of a particular
summand of the Springer sheaf called the Steinberg sheaf.

In this section let X be any smooth (not necessarily projective or connected) curve over k = Fq. For
d ∈ N, let Xd be the dth symmetric power of X .
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3.1. Local geometry of Cohd. Let Cohd = Cohd(X) be the moduli stack of torsion coherent sheaves on X
of length d. Let sCoh

d : Cohd → Xd be the support map. When X = A1, we have a canonical isomorphism

Cohd(A
1) ∼= [gld/GLd]

given as follows. For Q ∈ Cohd(A
1)(S), Γ(A1

S ,Q) is a locally free rank d OS-module equipped with an
endomorphism given by the affine coordinate t for A1, giving an S-point of [gld/GLd]; conversely, an S-point
of [gld/GLd] is the same as a locally free OS-module V of rank d together with an OS-linear endomorphism
T : V → V , which corresponds to OS [t]-module Q (viewed as a coherent sheaf on A1

S) with t acting as T .
Let U ⊂ Xk be open and f : U → A1

k
be an étale map. Such a pair (U, f) is called an étale chart

for Xk. It induces a map fCoh
d : Cohd(U) → Cohd(A

1
k
) sending Q to f∗Q which is compatible with the

symmetric power fd : Ud → (A1
k
)d under sCoh

d . Let Dd,A1 ⊂ (A1)d and Dd,U ⊂ Ud be the discriminant

divisors, i.e., they parametrize divisors with multiplicities. Clearly Dd,U ⊂ f−1d (Dd,A1), therefore we may

write f−1d (Dd,A1) = Dd,U +Rd,f as Cartier divisors on Ud. A divisor D of degree d lies in Ud\Rd,f if and

only if for all pairs of distinct points x, y in the support of D, f(x) 6= f(y). Finally let Cohd(U)f ⊂ Cohd(U)
be the preimage of Ud\Rd,f . Then Cohd(U)f is an open substack of Cohd(X)k = Cohd(Xk).

The following lemma shows that Cohd(X) is étale locally isomorphic to Cohd(A
1) ∼= [gld/GLd].

Lemma 3.1. (1) For any étale chart (U, f) of Xk, the map fCoh
d : Cohd(U)→ Cohd(A

1)k is étale when

restricted to Cohd(U)f .
(2) The stack Cohd(X)k is covered by the substacks Cohd(U)f for various étale charts (U, f) of Xk.

Proof. (1) For any Q ∈ Cohd(U)f (k), the tangent map of fCoh
d at Q is Ext∗U (Q,Q) → Ext∗A1(f∗Q, f∗Q).

Since different points in the support of Q map to different points in A1, the above map is the direct sum
of τz : Ext∗OU,z

(Qz,Qz) → Ext∗O
A1,f(z)

(Qz ,Qz) over z ∈ supp(Q). Since f is étale at each such z, τz are

isomorphisms, and hence fCoh
d is étale at Q by the Jacobian criterion.

(2) For every point Q ∈ Cohd(X)(k) we will construct an étale chart (U, f) such that Q ∈ Cohd(U)f (k).
Let Z ⊂ X(k) be the support of Q. For z ∈ Z, let Oz be the completed local ring of Xk at z with a

uniformizer ̟z. The map of sheaves r : OXk
→ ⊕x∈ZOz/̟

2
z is surjective. Let c : Z → k be any injective

map of sets. Then there exists an open neighborhood U1 of Z and f ∈ O(U1) such that r(f) = (cz+̟z)z∈Z .
Viewing f as a map f : U1 → A1

k
, it is then étale at Z, hence étale in an open neighborhood U ⊂ U1 of Z,

i.e., (U, f) is an étale chart. Since {f(z) = cz}z∈Z are distinct points in A1
k
, we see that Q ∈ Cohd(U)f

k
. �

3.2. Springer theory for Cohd. Let C̃ohd(X) be the moduli stack classifying a full flag of torsion sheaves
on X

0 ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂ Qd = Q
where Qj has length j. Let

πCoh
d,X : C̃ohd(X)→ Cohd(X)

be the forgetful map recording only Q = Qd.

Lemma 3.2 (Laumon [Lau87, Theorem 3.3.1]). The stacks C̃ohd(X) and Cohd(X) are smooth of dimension
zero, and the map πCoh

d is proper and small.

Proof. It is enough to check the same statements after base change to k. We give a quick alternative proof
using Lemma 3.1: for an étale chart (U, f) (over k), we have a diagram in which both squares are Cartesian:

C̃ohd(X)k

πCoh
d,X

��

C̃ohd(U)f

πCoh
d,U

��

//?
_oo C̃ohd(A

1)k

πCoh
d,A1

��
Cohd(X)k Cohd(U)f

fCoh
d //?

_oo Cohd(A
1)k

Here C̃ohd(U)f is the preimage of Cohd(U)f in C̃ohd(U). Since the horizontal maps are étale and the
Cohd(U)f cover Cohd(X)k by Lemma 3.1, the desired properties of πCoh

d,X follow from the same properties of

πCoh
d,A1 , which is the Grothendieck alteration πgld : [g̃ld/GLd]→ [gld/GLd]. �
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Let X◦d ⊂ Xd be the open subset of multiplicity-free divisors (i.e., the complement of Dd,X), and let

Cohd(X)◦ (resp. C̃ohd(X)◦) be its preimage under sCoh
d (resp. under sCoh

d ◦ πCoh
d ). Then C̃ohd(X)◦ →

Cohd(X)◦ is an Sd-torsor.

Corollary 3.3 (Laumon [Lau87, p.320]). The complex

Sprd := RπCoh
d∗ Qℓ ∈ Db(Cohd(X),Qℓ)

is a perverse sheaf on Cohd(X) that is the middle extension from its restriction to Cohd(X)◦. In particular,
the natural Sd-action on Spr |Cohd(X)◦ extends to the whole Sprd.

3.3. Springer fibers. Let Q ∈ Cohd(X)(k) with image D in Xd(k), an effective divisor of degree d. Let

Z = (suppD)(k). Let Σ(Z) be the set of maps y : {1, 2, · · · , d} → Z such that
∑d

i=1 y(i) = D. Let BQ be
the fiber of πCoh

d over Q. Then BQ classifies complete flags of subsheaves 0 ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂ Qd−1 ⊂ Q.
By Corollary 3.3, H∗(BQ) = (Sprd)Q carries an action of Sd.

For y ∈ Σ(Z), let BQ(y) be the open and closed subscheme of BQ defined by the condition suppQi/Qi−1 =
y(i). Then BQ is the disjoint union of BQ(y) for y ∈ Σ(Z). Hence

H∗(BQ) ∼=
⊕

y∈Σ(Z)

H∗(BQ(y)).

There is an action of Sd on Σ(Z) by precomposing.

Lemma 3.4. The action of w ∈ Sd on H∗(BQ) sends H∗(BQ(y)) to H∗(BQ(y ◦ w−1)), for all y ∈ Σ(Z).

Proof. It suffices to check the statement for each simple reflection si switching i and i + 1 (1 ≤ i ≤ d − 1).

Let C̃oh
i

d(X) be the moduli stack classifying chains of torsion coherent sheaves 0 ⊂ Q1 ⊂ · · · ⊂ Qi−1 ⊂
Qi+1 ⊂ · · · ⊂ Qd with Qi missing. Then we have a factorization

πCoh
d : C̃ohd(X)

ρi−→ C̃oh
i

d(X)
πi−→ Cohd(X).

The map ρi is an étale double cover over the open dense locus C̃oh
i,♥
d (X) where Qi+1/Qi−1 (which has

length 2) is supported at two distinct points. The map ρi is small, and Rρi∗Qℓ carries an involution s̃i,
which induces an involution s̃i on Rπi∗Rρi∗Qℓ

∼= Sprd. This action coincides with the action of si over
Cohd(X)◦, hence coincides with si everywhere.

Let Bi
Q = π−1i (Q). By considering the support of the successive quotients, we have a decomposition of

Bi
Q by the orbit set Σ(Z)/〈si〉. When y ∈ Σ(Z) satisfies y 6= y ◦ si, the si-orbit η = {y, y ◦ si} gives an

open and closed substack Bi
Q(η) ⊂ Bi

Q, such that ρ−1i (Bi
Q(η)) = BQ(y)

∐BQ(y ◦ si), and Bi
Q(η) ⊂ C̃oh

i,♥
2d .

Therefore in this case the action of s̃i on H∗(ρ−1i (Bi
Q(η))) comes from the involution on BQ(y)

∐BQ(y ◦ si)
that interchanges the two components. Since s̃i = si, this proves the statement for si and y such that
y 6= y ◦ si. For y = y ◦ si the statement is vacuous. This finishes the proof. �

Let Qx be the direct summand of Q supported at x ∈ Z. Let dx = dimkQx. Then for any y ∈ Σ(Z),

there is a canonical isomorphism over k

βy : BQ(y) ∼=
∏

x∈Z
BQx (3.1)

sending (Qi) ∈ BQ(y) to the full flag of Qx given by taking the summands of Qi supported at x.
The proof above implies the following statement that we record for future reference.

Lemma 3.5. Let y, y′ ∈ Σ(Z) and let w ∈ Sd be such that y ◦ w−1 = y′. Assume that w has minimal
length (in terms of the simple reflections s1, · · · , sd−1) among such elements (such w is unique). Then the
Springer action w : H∗(BQ(y)) → H∗(BQ(y′)) is induced by the composition of the canonical isomorphisms

βy,y′ := β−1y′ ◦βy : BQ(y) ∼→ BQ(y′). In particular, w sends the fundamental class of BQ(y) to the fundamental

class of BQ(y′).
Proof. Let w−1 = si1 · · · siN be a reduced word for w−1. Let yj = ysi1 · · · sij , 1 ≤ j ≤ N . Let y0 = y, and

y′ = yN . Since w has minimal length among w′ ∈ Sd such that y ◦w′−1 = y′, for each 1 ≤ j ≤ N , yj−1 6= yj
for otherwise one could delete sij to shorten w. Since yj = yj−1 ◦ sij 6= yj−1, the proof of Lemma 3.4 shows
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that the Springer action of sij : H∗(BQ(yj−1)) → H∗(BQ(yj)) is induced by the canonical isomorphism

σj = β−1yj
◦ βyj−1 : BQ(yj−1) ∼→ BQ(yj). The action w : H∗(BQ(y)) → H∗(BQ(y′)), being the composition

σN ◦ · · · ◦ σ1, is then equal to β−1y′ ◦ βy : BQ(y) ∼→ BQ(y′). �

Corollary 3.6. Let y ∈ Σ(Z) and Sy
∼=
∏

x∈Z Sdx be the stabilizer of y under Sd. There is an isomorphism
of graded Sd-representations

H∗(BQ) ∼= IndSd

Sy
H∗(BQ(y)) ∼= IndSd

Sy

(
⊗

x∈Z
H∗(BQx)

)
.

Here on the right side, each factor Sdx of Sy acts on the tensor factor indexed by x (for x ∈ Z) via the
Springer action in Corollary 3.3 on (Sprdx

)Qx .

Proof. By Lemma 3.4, H∗(BQ(y ◦ w−1)) = wH∗(BQ(y)) for w ∈ Sd. In particular, H∗(BQ(y)) is stable

under Sy, and H∗(BQ) ∼= IndSd

Sy
H∗(BQ(y)). By (3.1) and the Künneth formula, we have H∗(BQ(y)) ∼=

⊗x∈ZH
∗(BQx).

It remains to check that the action of Sy on H∗(BQ(y)) (as the restriction of the Sd-action on H∗(BQ)) is
the same as the tensor product of the Springer action of Sdx on H∗(BQx). Since the action of Sd on Σ(Z) is
transitive, it suffices to check this statement for a particular y ∈ Σ(Z).

Order points in Z as x1, · · · , xr. Let y0 ∈ Σ(Z) be the unique increasing function, i.e. such that if i < j
then the index of y0(i) is less than or equal to the index of y0(j). Let di = dxi . Let δ = (δi)1≤i≤r be the
increasing sequence δi = d1+ · · ·+ di. Let Cohδ(X) be the moduli stack of partial chains of torsion coherent
sheaves 0 ⊂ Qδ1 ⊂ · · · ⊂ Qδr−1 ⊂ Qδr = Q such that Qδi has length δi. The map πCoh

d then factorizes as

C̃ohd(X)
πδ−→ Cohδ(X)

νδ−→ Cohd(X).

We have a Cartesian diagram

C̃ohd(X)

πδ

��

c̃ // ∏r
i=1 C̃ohdi

∏
πCoh
di

��
Cohδ(X)

c // ∏r
i=1 Cohdi

(X)

(3.2)

where c sends (Qδi) to (Qδi/Qδi−1). By proper base change we have Rπδ∗Qℓ
∼= c∗(⊠r

i=1 Sprdi
), and the

latter carries the Springer action of Sd1 × · · · × Sdr = Sy0 (pulled back along c). Pushing forward along νδ,

this induces an action of Sy0 on Rνδ∗Rπδ∗Qℓ = Sprd. This action coincides with the restriction of the action
of Sd because both actions come from deck transformations over Cohd(X)◦.

Now ν−1δ (Q) contains the point Q† ∈ Cohδ(X) where suppQδi/Qδi−1 = {xi} for 1 ≤ i ≤ r. This is

an isolated point in ν−1δ (Q), and BQ(y0) = π−1δ (Q†). Moreover, the isomorphism (3.1) is the one given by

taking the Cartesian diagram (3.2) and restricting to Q† ∈ Cohδ(X). The above discussion shows that the
action of Sy0 ⊂ Sd on H∗(BQ(y0)) ⊂ H∗(BQ) is the same as the Springer action of

∏
i Sdi on ⊗iH

∗(BQxi
)

via the isomorphism (3.1). �

3.4. The Steinberg sheaf. Let Std ∈ Db(Cohd(X),Qℓ) be the direct summand of Sprd where Sd acts
through the sign representation. We will describe its Frobenius trace function below. The result is well-
known but we include a self-contained proof.

We call Q ∈ Cohd(X)(k) semisimple if it is a direct sum of skyscraper sheaves at closed points.

Proposition 3.7. (1) If Q ∈ Cohd(X)(k) is not semisimple, then the stalk of Std at Q is zero.
(2) Let Q = ⊕v∈|X|k⊕dv

v ∈ Cohd(X)(k) be semisimple. Then the stalk of Std at Q is 1-dimensional, and
Frob acts on the stalk Std,Q by the scalar

ε(Q)
∏

v∈suppQ
qdv(dv−1)/2
v

where ε(Q) ∈ {±1} is the sign of Frobenius permuting the geometric points in the support of Q
counted with multiplicities (as a multi-set of cardinality d).
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Proof. Let Q ∈ Cohd(X)(k). Let Z ⊂ X(k) be the geometric points in the support of Q and y ∈ Σ(Z). By
Corollary 3.6 and Frobenius reciprocity,

Std,Q ∼= HomSd
(sgn, IndSd

Sy
(⊗H∗(BQx)))

∼= HomSy(sgn,⊗H∗(BQx))

∼= ⊗x∈Z HomSdx
(sgn,H∗(BQx))

∼= ⊗x∈Z Stdx,Qx . (3.3)

(1) By the above factorization of Std,Q, it suffices to show that if Qx is not semisimple, then Stdx,Qx = 0.
By Lemma 3.1 we may reduce to the case X = A1 and Q is concentrated at x = 0. In this case Spr is
the usual Springer sheaf on [gld/GLd], and Q corresponds to a nilpotent element e ∈ Nd ⊂ gld (here Nd is
the nilpotent cone in gld). It is well-known that Std |Nd

∼= δ0[−d(d − 1)] where δ0 is the skyscraper sheaf
at 0 ∈ Nd (this can be seen by identifying Spr |Nd

with the direct image complex of the Springer resolution

Ñd → Nd). In particular, Std,e = 0 for all nilpotent e 6= 0.
(2) Let Q ∈ Cohd(X)(k) be semisimple. Let |Z| be the set of closed points in the support of Q. The

above discussion shows that Stdx,Qx
∼= Htop(BQx) = Hdx(dx−1)(Fldx) where Fldx is the flag variety for GLdx .

By (3.3), Std,Q is 1-dimensional and is in the top degree cohomology of H∗(BQ). Let

N = dimBQ =
∑

x∈Z
dx(dx − 1)/2 =

∑

v∈|Z|
deg(v)dv(dv − 1)/2

(here dv = dx for any x|v). Let 0 6= ξ ∈ Std,Q ⊂ ⊕y∈Σ(Z)H
2N (BQ(y)). Let F : BQ,k → BQ,k be the Frobenius

morphism. We need to show that F ∗ξ = ε(Q)qNξ.
For y ∈ Σ(Z), let ηy ∈ H2N (BQ(y)) be the fundamental class of BQ(y). Then F sends BQ(y) onto

BQ(F (y)) (here F (y) means post-composing y with the Frobenius permutation on Z), and hence F ∗ηF (y) =

qNηy. On the other hand, let w ∈ Sd be the minimal length element such that F (y) = y ◦ w−1. By
Lemma 3.5, the Springer action of w satisfies wηy = ηF (y). Write ξ = (ξy)y∈Σ(Z) where ξy = cyηy for some

cy ∈ Q
×
ℓ . Since wξ = sgn(w)ξ, we see that wξy = sgn(w)ξF (y). Since wηy = ηF (y), we have cy = sgn(w)cF (y).

Therefore

(F ∗ξ)y = F ∗(ξF (y)) = cF (y)F
∗ηF (y) = qNcF (y)ηy = sgn(w)qN cyηy = sgn(w)qN ξy.

Note that, for any choice of y and w above, sgn(w) is equal to the sign of the Frobenius permutation of the
multiset {y(i)}1≤i≤d, which is ε(Q). This implies F ∗ξ = ε(Q)qNξ as desired. �

4. Springer theory for Hermitian torsion sheaves

In this section we extend the construction in §3 to the case of Hermitian torsion sheaves. The main
output is a perverse sheaf SprHerm

2d on the moduli stack of Hermitian torsion sheaves with an action of

Wd := (Z/2Z)d ⋊ Sd. We will compare the stalks and Frobenius trace functions of SprHerm
2d with those of

Sprd.
As in §3, X is a smooth curve over k (not necessarily projective or connected). Let ν : X ′ → X be a finite

map of degree 2 that is assumed to be generically étale. We develop the Hermitian Springer theory in this
generality. Starting from §4.3 we will assume ν to be étale, which is the case needed for proving the main
theorem. Let σ ∈ Gal(X ′/X) be the nontrivial involution.

4.1. Local geometry of Hermd. Let d ∈ N. Let

Hermd(X
′/X), or simply Hermd

be the moduli stack of pairs (Q, h) where Q is a torsion coherent sheaf on X ′ of length d, and h is an

isomorphism Q ∼→ σ∗Q∨ := σ∗Ext1(Q, ωX′) satisfying σ
∗h∨ = h.

We offer two other ways to think about a Hermitian torsion sheaf (Q, h). For a torsion sheaf Q on X ′ of
length d, the datum of a h is equivalent to either

(1) a symmetric k-bilinear nondegenerate pairing

(·, ·) : V × V → k

on V = Γ(X ′,Q) satisfying (fv1, v2) = (v1, σ
∗(f)v2) for any function f on X ′ regular near the

support of Q, or
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(2) an OX′ -sesquilinear nondegenerate pairing

〈·, ·〉 : Q×Q→ ωF ′/ωX′

satisfying 〈v1, v2〉 = σ∗〈v2, v1〉. Here ωF ′ is the constant quasi-coherent sheaf on X ′ whose local
sections are the rational 1-forms on X ′.

We refer to h, or any of the above equivalent data, as a Hermitian structure on Q.
We have the support map

sHerm
d : Hermd(X

′/X)→ (X ′d)
σ.

Note that we have an isomorphism (X ′2d)
σ ∼= Xd, sending a σ-invariant divisor on X ′ to its descent on X .

so we will also allow ourselves to view the support map as sHerm
d : Hermd(X

′/X)→ Xd.

Remark 4.1. When ν is étale and d is odd, (X ′d)
σ = ∅ hence Hermd(X

′/X) = ∅.

In general, when ν is ramified over the points R ⊂ X(k), (X ′d)
σ has a decomposition into open and closed

subschemes according to the parity of the multiplicities of the divisor at each point x ∈ R.
Let A1√

t
→ A1

t be the square map of affine lines.

Lemma 4.2. There is a canonical isomorphism

Hermd(A
1√
t
/A1

t )
∼= [od/Od].

Here Od denotes the orthogonal group on a d-dimensional quadratic space over k and od is its Lie algebra
(the stack [od/Od] is independent of the quadratic form).

Proof. We give the map Hermd(A
1√
t
/A1

t )→ [od/Od] on S-points. For an S-point (Q, h) of Hermd(A
1√
t
/A1

t ),

V = Γ(A1
S ,Q) is a locally free OS-module of rank d with a nondegenerate symmetric self-duality (·, ·), i.e.,

an Od-torsor over S. Moreover the action of
√
t on V satisfies (

√
tv1, v2) = −(v1,

√
tv2) since σ

∗√t = −
√
t.

Therefore
√
t gives a section of the adjoint bundle of V . It is easy to check this map is an equivalence of

groupoids Hermd(A
1√
t
/A1

t )(S)
∼→ [od/Od](S). �

An σ-equivariant étale chart of X ′
k
is a pair (U, f), where U ⊂ Xk is an open subset (with preimage

U ′ ⊂ X ′
k
) and a regular function f : U ′ → A1√

t,k
that is an étale map satisfying σ∗f = −f . Note that if ν is

étale, the image of f has to lie in A1√
t,k
\{0}.

A σ-equivariant étale chart (U, f) of X ′
k
induces a map

fHerm
d : Hermd(U

′/U)→ Hermd(A
1√
t
/A1

t )k

by sending Q to f∗Q. Let Hermd(U
′/U)f be the preimages of (U ′d)

σ\Rσ
d,f under the support maps (here

Rd,f ⊂ U ′d is defined using the map f : U ′ → A1√
t,k

; see §3.1).

We have an analog of Lemma 3.1 in the Hermitian setting.

Lemma 4.3. (1) Let (U, f) be a σ-equivariant étale chart for X ′
k
. Then the map fHerm

d is étale when

restricted to Hermd(U
′/U)f .

(2) Assume ν is ramified at at most one point (over k). Then the stack Hermd(X
′/X)k is covered by

Hermd(U
′/U)f for various σ-equivariant étale charts (U, f) of X ′

k
. In particular, Hermd(X

′/X) is

étale locally isomorphic to [od/Od].
(3) In general, Hermd(X

′/X) is smooth of dimension 0.

Proof. (1) is similar to that of Lemma 3.1(1).
(2) We only need to construct for (Q, h) ∈ Hermd(X

′/X)(k), a σ-equivariant étale chart (U, f) such that

(Q, h) ∈ Hermd(U
′/U)f . Let Z ′ be its support in X ′, which is the preimage of Z ⊂ X(k) under ν. Let

L = (ν∗OX′
k
)σ=−1, a line bundle over X . Then the map r = (rz)z∈Z : L → ⊕z∈ZLz/̟2

z is surjective. Let

Z0 ⊂ Z be the points over which ν is étale (so Z − Z0 is empty or has one point). For each z ∈ Z0, upon
choosing z′ ∈ Z ′ over z, we may identify Lz with Oz = k[[̟z]]; changing z

′ to σ(z′) changes the identification

by a sign. If z ∈ Z − Z0, then Lz ∼=
√
̟zk[[̟z]]. Choose a map c : Z0 → k

×
such that c(z)2 are distinct for

z ∈ Z. Let f be a section of L over some open neighborhood U1 ⊂ Xk of Z such that rz(f) = c(z) +̟z for
z ∈ Z0 under one of the two identifications Lz ∼= Oz, and rz(f) ≡

√
̟z mod ̟z for z ∈ Z − Z0. Then f
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restricts to an étale map U ′ = ν−1(U)→ A1√
t,k

for some open neighborhood U of Z in U1. The definition of

L implies σ∗(f) = −f . Now {f(z′)|z′ ∈ Z ′} is the union of {c(z),−c(z)|z ∈ Z0} and possibly {0} if Z−Z0 is
nonempty, which are all distinct points in A1√

t,k
by construction. We conclude that (Q, h) ∈ Hermd(U

′/U)f .

(3) Let R ⊂ Xk be the ramification locus of ν. The case |R| ≤ 1 is treated in (2), so we may assume
|R| ≥ 2. For x ∈ R, let Yx = X\(R\{x}) and let Y ′x = ν−1(Yx). For any function δ : R → Z≥0 such that∑

x∈R δ(x) = d we have a map Yδ :=
∏

x∈R(Y
′
x,d(x))

σ → (X ′d)
σ by adding divisors. Let Y♥δ ⊂ Yδ be the

open locus where the divisors indexed by different x ∈ R are disjoint. It is clear that Y♥δ → (X ′d)
σ is étale

and for varying δ their images cover (X ′d)
σ. To prove the statement it suffices to show that the base change

Hermd(X
′/X)|Y♥δ is smooth of dimension 0 for each δ. Observe that Hermd(X

′/X)|Y♥δ is isomorphic to the

restriction of the product
∏

x∈RHermδ(x)(Y
′
x/Yx) to Y♥δ . Since ν|Yx : Y ′x → Yx is ramified at one point, by

(2) Hermδ(x)(Y
′
x/Yx) is smooth of dimension 0. Therefore Hermd(X

′/X)|Y♥δ
∼=
∏

x∈RHermδ(x)(Y
′
x/Yx)|Y♥δ

is smooth of dimension 0. �

Remark 4.4. There is an obvious notion of skew-Hermitian torsion sheaves. Let SkHmd(X
′/X) be the

moduli stack of skew-Hermitian torsion sheaves on (X ′, σ) of length d. Then d is even if SkHmd(X
′/X) 6= ∅.

The skew-Hermitian analog of Lemma 4.3 says that SkHmd(X
′/X) is étale locally isomorphic to [spd/ Spd],

at least when ν is étale.

4.2. The Hermitian Springer sheaf. Let H̃ermd(X
′/X) be the moduli stack classifying (Q, h) ∈ Hermd(X

′/X)
together with a full flag

0 ⊂ Q1 ⊂ · · · ⊂ Qi ⊂ · · · ⊂ Qd−1 = Q⊥1 ⊂ Qd = Q,
where Qi has length i and Qd−i = Q⊥i (the orthogonal of Qi under the Hermitian pairing Q×Q→ ωF ′/ωX′).
Let

πHerm
d : H̃ermd(X

′/X)→ Hermd(X
′/X)

be the forgetful map. Let Hermd(X
′/X)◦ ⊂ Hermd(X

′/X) be the preimage of the multiplicity-free part X ′◦d
under the support map sHerm

d .
We recall the Grothendieck alteration for the full orthogonal group O(V,Q) for some vector space V of

dimension d over k and a nondegenerate quadratic form Q on V . Let Fl(V,Q) be the flag variety that
parametrizes full isotropic flags V• = (V1 ⊂ · · · ⊂ Vd = V ) in V . Note that when d is even, this is different
from the flag variety of SO(V,Q) but rather a double cover of it because there are two choices for Vd/2 given
the rest of members of a flag. Let o(V,Q) be the Lie algebra of O(V,Q). Let õ(V,Q) be the moduli space
of pairs (A, V•) ∈ o(V,Q)× Fl(V,Q) such that AVi ⊂ Vi for all i. The Grothendieck alteration for O(V,Q)
is the O(V,Q)-equivariant map õ(V,Q)→ o(V,Q) forgetting the flag. The quotient stacks [o(V,Q)/O(V,Q)]
and [õ(V,Q)/O(V,Q)] are canonical independent of the quadratic form Q and only depends on d = dimV .
Therefore we also write the Grothendieck alteration as πOd

: [õd/Od]→ [od/Od].

Proposition 4.5. (1) If ν is ramified at at most one point, then the map πHerm
d is étale locally isomor-

phic to the Grothendieck alteration πOd
: [õd/Od]→ [od/Od].

(2) In general, H̃ermd(X
′/X) is smooth of dimension 0 and πHerm

d is a small map. In particular, the
complex

SprHerm
d := RπHerm

d,∗ Qℓ

is the middle extension perverse sheaf of its restriction to Hermd(X
′/X)◦.

Proof. (1) The proof is similar to that of Corollary 3.3. For a σ-equivariant étale chart (U, f) for X ′
k
we have

a diagram with Cartesian squares and étale horizontal maps by Lemma 4.3

H̃ermd(X
′/X)k

πHerm
d,X′/X

��

H̃ermd(U
′/U)f //?

_oo

πHerm
d,U′/U

��

H̃ermd(A
1√
t
/A1

t )k

πHerm

d,A1√
t
/A1

t

��
Hermd(X

′/X)k Hermd(U
′/U)f

fHerm
d //?

_oo Hermd(A
1√
t
/A1

t )k
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Using the isomorphism in Lemma 4.2, we identify πHerm
d,A1√

t
/A1

t
with the Grothendieck alteration πOd

. Since

Hermd(U
′/U)f cover Hermd(X

′/X) by Lemma 4.3(2), πHerm
d,X′/X is étale locally isomorphic to πHerm

d,A1√
t
/A1

t
=

πOd
.
(2) We use the notation from the proof of Lemma 4.3(3). We may assume |R| ≥ 2. For each function

δ : R → Z≥0 satisfying
∑

x∈R δ(x) = d, the base change of πHerm
d along Y♥δ → (X ′d)

σ is a disjoint union of
the restriction of ∏

x

πHerm
δ(x) :

∏

x∈R
H̃ermδ(x)(Y

′
x/Yx)→

∏

x∈R
Hermδ(x)(Y

′
x/Yx)

to Y♥δ . The disjoint union comes from different ways to distribute supp(Qi/Qi−1) among various factors in

the product
∏

x(Y
′
x,δ(x))

σ. By (1), πHerm
δ(x) : H̃ermδ(x)(Y

′
x/Yx)→ Hermδ(x)(Y

′
x/Yx) has smooth 0-dimensional

source and is small for each x ∈ R, the same holds true for the base change of πHerm
d to Y♥δ . Since {Y♥δ }δ

form an étale covering of (X ′d)
σ, the same is true for πHerm

d . �

4.3. The action of Wd. From now on we assume that ν : X ′ → X is an étale double cover. In this case,
(X ′2d)

σ can be identified with Xd via ν−1(D)↔ D. Let

Wd := (Z/2Z)d ⋊ Sd

be the Weyl group for O2d. Then π
Herm
2d is a Wd-torsor over Herm2d(X

′/X)◦.

Corollary 4.6 (of Proposition 4.5(1)). If ν : X ′ → X is an étale double cover, then there is a canonical

action of Wd on SprHerm
2d extending the geometric action on its restriction to Herm2d(X

′/X)◦.

Definition 4.7. (1) For any representation ρ of Wd, we define SprHerm
2d [ρ] to be the perverse sheaf on

Herm2d(X
′/X):

SprHerm
2d [ρ] = (ρ∨ ⊗ SprHerm

2d )Wd ∈ Db(Herm2d(X
′/X),Qℓ).

(2) We define the Hermitian analog of the Springer sheaf Spr as

HSprd := (SprHerm
2d )(Z/2Z)d ∈ Db(Herm2d(X

′/X),Qℓ).

Note that the notation shifts from the subscript 2d to d. By Corollary 4.6, HSprd carries a canonical
Sd-action.

Remark 4.8. In the case ν is ramified with ramification locus R ⊂ X(k), the stack Hermd(X
′/X)k decom-

poses into the disjoint union of open and closed substacks Hermε
d(X

′/X)k indexed by ε : R → {0, 1} where
the length of Qx has parity ε(x) for all x ∈ R. Then SprHerm

d |Hermε
d(X

′/X)k
carries a canonical action of Wd′

where d′ = (d−∑x∈R ε(x))/2.

4.4. The Springer fibers over Herm2d. Let (Q, h) ∈ Herm2d(X
′/X)(k) and consider its Hermitian

Springer fiber

BHerm
Q := πHerm,−1

2d (Q, h).
This is a proper scheme over k. In this subsection we prove the Hermitian analogs of results in §3.3.

Let Z ′ = suppQ ⊂ X ′(k). Let D′ = sHerm
2d (Q) ∈ (X ′2d)

σ(k), which is of the form D′ = ν−1(D) for some

D ∈ Xd(k). Let Z = ν(Z ′), the support of D. Write D′ =
∑

z∈Z′ dzz.
Let Σ(Z ′) be the set of maps y′ : {1, 2, · · · , 2d} → Z ′ satisfying y′(2d + 1 − i) = σ(y′(i)) for all i

and
∑2d

i=1 y
′(i) = D′. Identifying Wd with permutations of {1, 2, · · · , 2d} commuting with the involution

i 7→ 2d+ 1− i, we get an action of Wd on Σ(Z ′) by w : y′ 7→ y′ ◦ w−1.
Similarly let Σ(Z) be the set of maps y : {1, · · · , d} → Z such that

∑d
i=1 y(i) = D. Then the natural map

Σ(Z ′)→ Σ(Z) (sending y′ to y defined by y(i) = ν(y′(i))) is a (Z/2Z)d-torsor.
For y′ ∈ Σ(Z ′), let BHerm

Q (y′) be the subscheme of BHerm
Q consisting of isotropic flags Q• such that

supp(Qi/Qi−1) = y′(i) for all 1 ≤ i ≤ 2d. Then we have a decomposition into open and closed subschemes

BHerm
Q =

∐

y′∈Σ(Z′)

BHerm
Q (y′).
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Accordingly we get a decomposition of cohomology

H∗(BHerm
Q ) =

⊕

y′∈Σ(Z′)

H∗(BHerm
Q (y′)).

Lemma 4.9. The action of w ∈ Wd on H∗(BHerm
Q ) sends the direct summand H∗(BHerm

Q (y′)) to the direct

summand H∗(BHerm
Q (y′ ◦ w−1)).

Proof. It suffices to check the statement for each simple reflection si, i = 1, · · · , d. Here, for 1 ≤ i ≤ d − 1,

si = (i, i + 1)(2d − i, 2d+ 1 − i); for i = d, sd = (d, d + 1). For 1 ≤ i ≤ d, let H̃erm
i

2d be the moduli stack
classifying isotropic flags that only misses the terms Qi and Q2d−i (for i = d only misses Qd). Then we have
a factorization

πHerm
2d : H̃erm2d

ρi−→ H̃erm
i

2d
πi−→ Herm2d .

The map ρi is an étale double cover over the open dense locus H̃erm
i,♥
2d where Qi+1/Qi−1 (which has length

2) is supported at two distinct points. The map ρi is small, and Rρi∗Qℓ carries an involution s̃i, which
induces an involution s̃i on Rπi∗Rρi∗Qℓ

∼= RπHerm
2d∗ Qℓ. This action coincides with the action of si over

Herm◦2d, hence coincides with si everywhere.
Let (Q, h) ∈ Herm2d(k), and Bi

Q = π−1i (Q, h). We have a decomposition of Bi
Q by the orbit set Σ(Z ′)/〈si〉.

When y′ ∈ Σ(Z ′) satisfies y′ 6= y′ ◦ si, the si-orbit of η′ = {y′, y′ ◦ si} gives an open closed substack

Bi
Q(η

′) ⊂ Bi
Q, such that ρ−1i (Bi

Q(η
′)) = BQ(y′)

∐BQ(y′ ◦ si), and Bi
Q(η

′) ⊂ H̃erm
i,♥
2d . Therefore in this case

the action of s̃i on H∗(ρ−1i (Bi
Q(η

′))) comes from the involution on BQ(y′)
∐BQ(y′ ◦ si) that interchanges the

two components. Since s̃i = si, this proves the statement for si and y
′ such that y′ 6= y′ ◦ si. For y′ = y′ ◦ si

the statement is vacuous. This finishes the proof. �

Choose Z♯ ⊂ Z ′ such that Z♯
∐
σ(Z♯) = Z ′. Then for each x ∈ Z there is a unique x♯ ∈ Z♯ above x. For

y′ ∈ Σ(Z ′) with image y ∈ Σ(Z), we have an isomorphism

γZ♯,y′ : BHerm
Q (y′)

∼→ Bν∗(Q|Z♯ )(y)
∼=
∏

x∈Z
BQ

x♯
(4.1)

mapping (Qi)1≤i≤2d to the (non-strictly increasing) flag (Qi,x♯) of Qx♯ .
If y′, y′′ ∈ Σ(Z ′), the composition

γy′,y′′ := γ−1
Z♯,y′′ ◦ γZ♯,y′ : BHerm

Q (y′)
∼→ BHerm

Q (y′′)

is independent of the choice of Z♯.

Lemma 4.10. Let y′, y′′ ∈ Σ(Z ′) and let w ∈ Wd be a minimal length element such that y′′ = y′ ◦ w−1.
Then the Springer action w : H∗(BHerm

Q (y′))→ H∗(BHerm
Q (y′′)) is induced by the isomorphism γy′,y′′ .

Proof. Similar to the proof of Lemma 3.5. �

4.5. Comparing stalks of HSprd and Sprd. In this subsection we abbreviate Herm2d(X
′/X) by Herm2d.

Consider the stack Lagr2d classifying pairs (L ⊂ Q) where Q ∈ Herm2d and L ⊂ Q is a Lagrangian subsheaf,

i.e., L has length d and the composition L →֒ Q h−→ σ∗Q∨ → σ∗L∨ is zero. We have natural maps

Herm2d Lagr2d
υ2doo ε′d // Cohd(X ′)

ν∗ // Cohd(X)

where υ2d(L ⊂ Q) = Q and ε′d(L ⊂ Q) = L. Let εd = ν∗ ◦ ε′d : Lagr2d → Cohd(X).

Let (X ′d)
♦ ⊂ X ′d be the open subscheme parametrizing D ∈ X ′d such that D ∩ σ(D) = ∅. Let Lagr♦2d ⊂

Lagr2d be the preimage of (X ′d)
♦ under the map Lagr2d

ε′d−→ Cohd(X
′)

sCoh
d,X′−−−→ X ′d. It is easy to see that ε′d

restricts to an isomorphism

Lagr♦2d
∼= Cohd(X

′)♦

whose inverse is given by L 7→ (L ⊂ Q = L⊕ σ∗L∨).
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Let υ♦2d and ε♦d be the restrictions of υ2d and εd to Lagr♦2d. Thus we view Lagr♦2d
∼= Cohd(X

′)♦ as a
correspondence between Herm2d and Cohd(X)

Herm2d Lagr♦2d
υ♦2doo

ε♦d // Cohd(X)

Note that both υ♦2d and ε♦d are surjective. Now both Herm2d and Cohd(X) carry Springer sheaves HSprd and

Sprd with Sd-actions. The following proposition says that they become isomorphic after pullback to Lagr♦2d.

Proposition 4.11. There is a canonical Sd-equivariant isomorphism of perverse sheaves on Lagr♦2d

υ♦,∗2d HSprd
∼= ε♦,∗d Sprd .

Proof. The map πHerm
2d factors as

πHerm
2d : H̃erm2d

λ2d−−→ Lagr2d
υ2d−−→ Herm2d .

Let λ♦2d : H̃erm
♦
2d → Lagr♦2d be the restriction of λ2d to Lagr♦2d. We have a commutative diagram

Herm2d×Xd
Xd

��

H̃erm
♦
2d

oo

πHerm,♦
2d

xxqqq
qq
qq
qq
qq
qq

λ♦
2d

��

ε̃′♦d // C̃ohd(X ′)♦

πCoh,♦
X′,d

��

ν∗ // C̃ohd(X)

πCoh
d

��
Herm2d Lagr♦2d

ε♦d

88

υ♦2doo
ε′♦d // Cohd(X ′)♦

ν∗ // Cohd(X)

(4.2)

Here Cohd(X
′)♦ and C̃ohd(X

′)♦ are the preimages of (X ′d)
♦ under the support map. We have:

• The middle square is Cartesian. This is true even before restricting to the ♦ locus.
• Since ε′♦d is an isomorphism, so is ε̃′♦d .
• The rightmost square is Cartesian.

From these properties we get maps

α : υ♦∗2d HSprd → υ♦∗2d SprHerm
2d = υ♦∗2d Rυ2d∗Rλ2d∗Qℓ → υ♦∗2d Rυ

♦
2d∗Rλ

♦
2d∗Qℓ

→ Rλ♦2d∗Qℓ
∼= ε♦∗d πCoh

d∗ Qℓ = ε♦∗d Sprd .

To check α is an isomorphism, it suffices to check on geometric stalks. Let L ∈ Cohd(X
′)♦(k) with

support Z♯ ⊂ X ′(k). Let Q = L ⊕ σ∗L∨ ∈ Herm2d(k). The support of Q is Z ′ = Z♯
∐
σ(Z♯), with image

Z ⊂ X(k). We have (L ⊂ Q) ∈ Lagr♦2d(k), with image ν∗L ∈ Cohd(X)(k). The stalk of α at (L ⊂ Q) is

α(L⊂Q) : H
∗(BHerm
Q )(Z/2Z)d → H∗(λ−12d (L ⊂ Q))

∼→ H∗(Bν∗L) (4.3)

Recall BHerm
Q =

∐
y′∈Σ(Z′) BHerm

Q (y′). Let Σ(Z♯) ⊂ Σ(Z ′) be the set of y′ such that y′(i) ∈ Z♯ for 1 ≤
i ≤ d. Then we have a natural bijection Σ(Z) ↔ Σ(Z♯), y 7→ y♯. The fiber λ−12d (L ⊂ Q) is the disjoint

union
∐

y∈Σ(Z) BHerm
Q (y♯). Recall the isomorphism γZ♯,y♯ : BHerm

Q (y♯)
∼→ Bν∗L(y) from (4.1). Using these

descriptions we may rewrite (4.3) as

H∗(BHerm
Q )(Z/2Z)d

։ ⊕y′∈Σ(Z♯)H
∗(BHerm
Q (y′)) ∼= ⊕y∈Σ(Z)H

∗(Bν∗L(y)) = H∗(Bν∗L).
It remains to show that the composition of the first two maps above is an isomorphism. But this follows
from the fact that (Z/2Z)d acts freely on Σ(Z ′) with orbit representatives Σ(Z♯), and Lemma 4.9. This
shows that α is an isomorphism.

Finally we show that α is Sd-equivariant. By Proposition 4.5, πHerm
2d and hence λ2d is small, Rλ2d∗Qℓ is

the middle extension from a dense open substack of Lagr2d. Therefore the same is true for Rλ♦2d∗Qℓ. Since α

is an isomorphism, both υ♦,∗2d HSprd and ε♦∗d Sprd are middle extension perverse sheaves from a dense open

substack of Lagr♦2d. To check that α is Sd-equivariant it suffices to check it over the dense open substack
which is the preimage of the multiplicity-free locus X◦d . Over X◦d , all squares in (4.2) are Cartesian, and
all vertical maps are Sd-torsors. The Sd-actions on HSprd |Herm◦

2d
and Sprd |Cohd(X)◦ come from the vertical

Sd-torsors in the diagram, so α is Sd-equivariant when restricted over X◦d . This finishes the proof. �
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4.6. Comparing Frobenius traces of HSprd and Sprd. In this subsection we will prove a relationship
between Frobenius trace functions for HSprd and for Sprd. Since these sheaves live on different stacks, to
make sense of the comparison we first need to identify the isomorphism classes of the k-points of these stacks.

For a groupoid G, let |G| denote its set of isomorphism classes.

Lemma 4.12. There is a canonical bijection of sets

|Herm2d(X
′/X)(k)| ∼= |Cohd(X)(k)|

respecting the support maps to Xd(k).

Proof. Let P(d) be the set of partitions of d ∈ Z≥0, and P =
∐

d≥0 P(d). Let P|X| be the set of functions λ :

|X | → P such that λ(v) is the zero partition for almost all v ∈ |X |. For λ ∈ P|X|, let |λ| =
∑

v |λ(v)| deg(v).
Let P|X|(d) be the subset of those λ ∈ P|X| with |λ| = d. Let sd : P|X|(d) → Xd(k) be the map sending λ
to the divisor

∑
v |λ(v)|v.

By taking the Jordan type of a torsion sheaf at each closed point, we get a canonical bijection ΛCoh
d :

|Cohd(X)(k)| ∼→ P|X|(d). The map sCoh
d : |Cohd(X)(k)| → Xd(k) corresponds to sd under this bijection.

We define a map ΛHerm
d : |Herm2d(X

′/X)(k)| → P|X|(d) as follows. For (Q, h) ∈ Herm2d(X
′/X)(k)

and v ∈ |X |, let λ(v) be the Jordan type of Qv′ (the summand Qv′ supported at v′) for any v′ ∈ |X ′|
above v. When v is split in X ′, the two choices of v′ give the same Jordan type. The support map
sHerm
2d : |Herm2d(X

′/X)(k)| → Xd(k) is the composition sd ◦ ΛHerm
d .

We claim that ΛHerm
d is a bijection. Then ΛCoh,−1

d ◦ ΛHerm
d : |Herm2d(X

′/X)(k)| ∼→ |Cohd(X)(k)| is the
desired bijection.

To prove the claim, it suffices to show for a fix closed point v ∈ |X |, the set of isomorphism classes
|Hermv | of Hermitian torsion sheaves supported above v maps injectively to P by the restriction of ΛHerm

d .
If v splits into v′ and v′′ in |X ′|, then any (Q, h) ∈ |Hermv | has the form Qv′ ⊕ σ∗Qv′ equipped with the

canonical Hermitian structure. In this case we see that the isomorphism class of (Q, h) is determined by the
Jordan type of Qv′ .

If v is inert with preimage v′ ∈ |X ′|, let (Q, h) ∈ |Hermv | be of length d over kv′ . Then V = Γ(X ′,Q)
is a d-dimensional Hermitian kv′ -vector space with a self-adjoint nilpotent endomorphism e given by the
action of a uniformizer ̟ ∈ Ov. Fix a d-dimensional Hermitian space (Vd, h) over kv′ (unique up to
isomorphism), then the isomorphism classes of (Q, h) ∈ |Hermv | with length d over kv′ is in bijection
with the adjoint orbits of the unitary group U(Vd, h)(kv) acting on the nilpotent cone N (Vd, h)(kv) of self-
adjoint nilpotent endomorphisms of Vd. Being a Galois twisted version of the usual nilpotent orbits under
GLd, the orbits N (Vd, h)(kv)/U(Vd, h)(kv) are again classified by partitions of d according the Jordan types
of e ∈ N (Vd, h)(kv) (here we use that the centralizer CGLd

(e) is connected, and Lang’s theorem implies
H1(kv, CGLd

(e)) = {1}). Therefore the isomorphism class of (Q, h) ∈ |Hermv | is determined by the Jordan
type of Q. This shows that ΛHerm

d is a bijection. �

4.6.1. Further notations. Now let (Q, h) ∈ Herm2d(k). We write Qk for the base change of Q over X ′
k
, and

adapt the notations Z ′ ⊂ X ′(k), Z ⊂ X(k),Σ(Z ′),Σ(Z) from §4.4. Let |Z ′| and |Z| be the set of closed
points contained in Z ′ and Z. We have a decomposition

|Z| = |Z|s
∐
|Z|i

into split and inert places. For each closed point v ∈ |Z| we choose a geometric point x′v ∈ Z ′ above v and
denote its image in Z by xv.

Let F : X ′ → X ′ be the Frobenius morphism. Let Z♯ be the following subset of Z ′

Z♯ =
{
F i(x′v) : v ∈ |Z|, 0 ≤ i < deg(v)

}
.

When v splits into v′, v′′ in |X ′|, with x′v|v′, then Z♯ contains all geometric points above v′ and not any
above v′′. When v is inert with preimage v′ ∈ |X ′|, Z♯ contains half of the geometric points above v′ which
form a chain under the Frobenius, starting with x′v. Therefore Z ′ = Z♯

∐
σ(Z♯). For x ∈ Z let x♯ ∈ Z♯ be

the unique element above x. This induces a section Σ(Z)
∼→ Σ(Z♯) ⊂ Σ(Z ′) which we denote y 7→ y♯.
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Let Q♭ ∈ Cohd(X)(k) be the point corresponding to the isomorphism class of (Q, h) under the bijection
in Lemma 4.12. Then Q♭

k
∼= ν∗(Q|Z♯). Recall the isomorphism (3.1) for each y ∈ Σ(Z)

βy : BQ♭(y)
∼→
∏

x∈Z
BQ♭

x
.

From this and the Künneth formula we get an identification

H∗(BQ♭(y)) =
⊗

x∈Z
H∗(BQ♭

x
).

By [HS77, Corollary 2.3(1)], H∗(BQ♭
x
) is concentrated in even degrees. Let H∗(BQ♭(y))+ be the direct sum

of all ⊗x∈ZH
2ix(BQ♭

x
) (for varying (ix)x∈Z) such that

∑
v∈|Z|i ixv is even. (4.4)

Similarly, let H∗(BQ♭(y))− be the direct sum of all ⊗x∈ZH
2ix(BQ♭

x
) such that the quantity in (4.4) is odd.

We have

H∗(BQ♭(y)) = H∗(BQ♭(y))+ ⊕H∗(BQ♭(y))−. (4.5)

Taking direct sum over all y ∈ Σ(Z) we get a decomposition

H∗(BQ♭) = H∗(BQ♭)+ ⊕H∗(BQ♭)−. (4.6)

Note that this decomposition depends on the choice of a geometric point xv over each inert v. By Corollary
3.6, the action of Sy ⊂ Sd on H∗(BQ♭(y)) preserves the decomposition (4.5) since it is the same as the tensor
product of the Springer actions on each factor H∗(BQ♭

x
). Therefore the decomposition (4.6) is stable under

the Sd-action.
Now (Q|Z♯ ⊂ Q) gives a geometric point of Lagr♦2d, which is not defined over k if |Z|i 6= ∅. Using this

geometric point in Lagr♦2d, Proposition 4.11 gives an isomorphism α♯ := α(Q|
Z♯⊂Q) on the level of stalks (see

(4.3)):

α♯ : H∗(BHerm
Q )(Z/2Z)d ∼= H∗(BQ♭).

This isomorphism is Sd-equivariant. Both sides now carry geometric Frobenius actions which we denote by
FrobQ and FrobQ♭ , which are not necessarily intertwined under α♯ because the point (Q|Z♯ ⊂ Q) is not
necessarily defined over k. The next result gives the relation between the two Frobenius actions.

Proposition 4.13. Let θ be the involution on H∗(BQ♭) which is 1 on H∗(BQ♭)+ and −1 on H∗(BQ♭)−. Then
under the isomorphism α♯, FrobQ corresponds to FrobQ♭ ◦θ.

Proof. Recall from the proof of Proposition 4.11 that α♯ is the composition

H∗(BHerm
Q )(Z/2Z)d ∼=

⊕

y∈Σ(Z)

H∗(BHerm
Q (y♯))

⊕γ
Z♯,y♯−−−−−→

⊕

y∈Σ(Z)

H∗(BQ♭(y)).

Here γZ♯,y♯ is defined in (4.1).

Let F be the q-Frobenius morphism for stacks defined over k = Fq. Then F ∗ on H∗(BHerm
Q ) maps

H∗(BHerm
Q (F (y♯))) to H∗(BHerm

Q (y♯)). Note that F (y♯) and (Fy)♯ are in general different: if y(i) = F−1(xv)
for some inert v, then F (y♯)(i) = σ(x′v) while (Fy)♯(i) = x′v. In other words, the only difference between
F (y♯) and (Fy)♯ is the switch of all x′v and σ(x′v) for all inert v. Therefore there is a unique element
τy ∈ (Z/2Z)d such that (Fy)♯ = F (y♯) ◦ τy.

Identifying H∗(BHerm
Q )(Z/2Z)d with ⊕y∈Σ(Z)H

∗(BHerm
Q (y♯)), the geometric Frobenius endomorphism FrobQ

on H∗(BHerm
Q )(Z/2Z)d is the direct sum of the following compositions

H∗(BHerm
Q ((Fy)♯))

τy−→ H∗(BHerm
Q (F (y♯)))

F∗−−→ H∗(BHerm
Q (y♯))

where the first map is the Springer action of τy ∈Wd on (SprHerm
2d )Q.

On the other hand, let wy ∈Wd be the minimal length element such that (Fy)♯ = F (y♯) ◦ wy . Write

τy = wyuy, for a unique uy ∈ StabWd
((Fy)♯) = StabSd

(Fy) ⊂ Sd.
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Note that StabSd
(Fy) =

∏
x∈Z SIx where Ix ⊂ {1, 2, · · · , d} is the preimage of x under y. An easy calculation

shows that uy = (uy,x)x∈Z where uy,x ∈ SIx is

uy,x =

{
wIx , if x = xv, v ∈ |Z|i,
1, otherwise.

Here wIx ∈ SIx is the involution that reverses the order of Ix.
We use abbreviated notation

H(y′) := H∗(BHerm
Q (y′)), for y′ ∈ Σ(Z ′),

C(y) := H∗(BQ♭(y)), for y ∈ Σ(Z).

For each y ∈ Σ(Z), consider the following diagram

H((Fy)♯)
uy //

γ
Z♯,(Fy)♯

��

H((Fy)♯)
wy //

γ
Z♯,(Fy)♯

��

H(F (y♯))

γ
Z♯,F (y♯)uu❧❧❧

❧❧
❧❧
❧❧
❧❧
❧❧
❧

F∗ //

γ
F (Z♯),F (y♯)

��

H(y♯)

γ
Z♯,y♯

��
C(Fy)

uy // C(Fy)
δ∗ // C(Fy)

F∗ // C(y)

(4.7)

The left square is commutative by the Sd-equivariance of α
♯ proved in Proposition 4.11 (here uy ∈ StabWd

((Fy)♯) ⊂
Sd). The middle upper triangle is commutative by Lemma 4.10. The map δ∗ is defined to make the lower
middle triangle commutative. The right square is clearly commutative. The composite of the upper row is
the restriction of FrobQ to H((Fy)♯). Let us compute the composite of the lower row.

The map δ∗ is the pullback along the automorphism δ of BQ♭(Fy) that makes the following diagram
commutative

BHerm
Q (F (y♯))

γ
F (Z♯),F (y♯)

��

γ
Z♯,F (y♯)

ww♣♣♣
♣♣
♣♣
♣♣
♣♣

BQ♭(Fy) BQ♭(Fy)
δoo

Under the isomorphism βFy : BQ♭(Fy)
∼→ ∏

x∈Z BQ♭
x
, δ is the product of automorphisms δx for each BQ♭

x
.

If x is not of the form x = xv for v ∈ |Z|i, δx is the identity. If x = xv for some v ∈ |Z|i, then Q♭
x = Qx′v

and the Hermitian structure on Q gives an isomorphism ι : Qσ(x′v)
∼= Q∨x′v . On the other hand, F deg(v) gives

an isomorphism φ : Qx′v
∼= Qσ(x′v) since σ(x

′
v) = F deg(v)(x′v). Combining ι and φ we get a perfect symmetric

pairing (·, ·)x′v on Qx′v itself. Then δx sends a full flag R• of Q♭
xv

= Qx′v to R⊥• under the pairing (·, ·)x′v .
By the description of uy and δ above, under the isomorphism βFy, the composition δ∗ ◦ uy takes the form

⊗(δ∗x ◦ uy,x) :
⊗

x∈Z
H∗(BQ♭

x
)→

⊗

x∈Z
H∗(BQ♭

x
).

The automorphisms δ∗x ◦ uy,x are the identity maps except when x = xv for some v ∈ |Z|i, in which case
uy,x = wIx . Let us compute δ∗x ◦wIx on H∗(BQ♭

x
) for x = xv and v ∈ |Z|i. For this we switch to the following

notation. Let V = Qx′v = Q♭
xv
, a vector space of dimension m over k. We have argued that V carries a

symmetric self-duality (·, ·); the action of a uniformizer at xv gives a nilpotent element e ∈ Endk(V ), which
is self-adjoint under (·, ·). Let B be the flag variety of GL(V ) and Be be the Springer fiber of e. Then Sm

acts on H∗(Be). Let w0 be the longest element in Sm. Let δ : Be ∼→ Be be the map sending a flag V• to V ⊥• .

We claim that δ∗ ◦ w0 acts on H2i(Be) by (−1)i. Indeed, by [HS77, Corollary 2.3(2)], the restriction map
H∗(B)→ H∗(Be) is surjective and is clearly equivariant under δ∗ ◦w0, so it suffices to show that δ∗ ◦w0 acts

by (−1)i on H2i(B). Since δ∗ ◦ w0 preserves the cup product on H∗(B), it suffices to show it acts by −1 on
H2(B). For 1 ≤ j ≤ m, let ξj be the Chern class of the tautological line bundle on B whose fiber at V• is

Vj/Vj−1. Then H2(B) is spanned by ξj for 1 ≤ j ≤ m. Now we have w0(ξj) = ξm+1−j since H2(B) is the
reflection representation of Sm, and δ∗ξj = −ξm+1−j by the definition of δ. Therefore δ∗ ◦ w0(ξj) = −ξj for

all 1 ≤ j ≤ m, which proves that δ∗ ◦ w0 acts by −1 on H2(B), and hence acts by (−1)i on H2i(B) and on

H2i(Be).
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The above argument shows that δ∗ ◦ uy acts by 1 on H∗(BQ♭(Fy))+ and acts by −1 on H∗(BQ♭(Fy))−.
Therefore the bottom row of (4.7) is FrobQ♭ ◦θ. By the commutativity of (4.7), FrobQ♭ ◦θ corresponds under
α♯ to the composite of the top row, which is FrobQ. This finishes the proof. �

5. Geometrization of local densities

The goal of this section is to give a sheaf-theoretic interpretation of the formula of Cho-Yamauchi on the
representation density of Hermitian lattices, see Theorem 5.3. This will complete the geometrization of the
analytic side of our proposed Siegel-Weil formula, at least for non-singular Fourier coefficients. The technical
part of the proof of the theorem is a Frobenius trace calculation that uses properties of the Hermitian
Springer action proved in §4.6.

5.1. Density function for torsion sheaves. Following Remark 2.3, for any Hermitian torsion sheaf
(Q, h) ∈ Herm2d(X

′/X)(k), we may define the density polynomial Den(T,Q) using the Cho-Yamauchi
formula as follows. Let Qv be the summand of Q supported over v ∈ |X |, we define

Den(T,Q) :=
∏

v∈|X|
Denv(T

deg(v),Qv)

where

Denv(T,Qv) =
∑

0⊂I⊂I⊥⊂Qv

T 2ℓ′v(I)mv(t
′
v(I⊥/I);T ).

Here the sum is over all subsheaves of Qv that are isotropic under hv = h|Qv , and we write mv(−) to
emphasize the dependence of m(a;T ) on F ′v/Fv (see Definition 2.1). The functions ℓ′v(−) and t′v(−) are the
functions ℓ′(−) and t′(−) defined in (2.5), (2.5) and (2.5) for F ′v/Fv.

Expanding the product into a summation, we see

Den(T,Q) =
∑

0⊂I⊂I⊥⊂Q
T dimk I

∏

v∈|X|
mv(t

′
v(I⊥/I);T deg(v)). (5.1)

Moreover, we may restate Theorem 2.7 as follows.

Theorem 5.1. Let E be a rank n vector bundle over X ′ and a : E →֒ σ∗E∨ be an injective Hermitian map.
Then

Ea(m(E), s,Φ) = χ(det(E))q− deg(E)(s−n/2)− 1
2n

2 deg(ωX) ×Ln(s)
−1 Den(q−2s, coker(a)).

5.2. Density sheaves. We will define a graded perverse sheaf on Herm2d(X
′/X) whose Frobenius trace at

Q recovers Den(T,Q). We will suppress X ′/X from the notations.
For 0 ≤ i ≤ d, let Hermi,2d be the stack classifying

{(I, (Q, h)) ∈ Cohi(X
′)×Herm2d : I ⊂ Q and is isotropic under h}.

We have the following maps

Hermi,2d
←−
f i

yysss
ss
ss
ss
s −→

fi=(
−→
f ′i,
−→
f ′′i )

))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

Herm2d Cohi(X
′)×Herm2(d−i)

Here
←−
f i takes (I, (Q, h)) to (Q, h), −→f ′i takes it to I and

−→
f ′′i takes it to I⊥/I with the Hermitian structure

induced from h.
Recall the perverse sheaf HSprd on Herm2d from Definition 4.7(2). It is obtained from the Springer sheaf

on Herm2d by taking (Z/2Z)d-invariants, and HSpr2d carries an action of Sd.

Definition 5.2. We define the following graded virtual perverse sheaves on Herm2d. (In the notation below,
the degree of the formal variable T encodes the grading.)

(1) Pd(T ) =
⊕d

j=0(−1)j(HSprd)(Sj×Sd−j ,sgnj ⊠1)T j.

(2) KEis
d (T ) =

⊕d
i=0R

←−
f i,!R

−→
f ∗i (Qℓ · T i

⊠Pd−i(T )).
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Theorem 5.3. For any Q ∈ Herm2d(k), we have

Den(T,Q) = Tr(Frob,KEis
d (T )Q).

Proof. By the Grothendieck-Lefschetz trace formula, we have

Tr(Frob,KEis
d (T )Q) =

∑

(I,Q)∈Hermi,2d(k)

T dimk I Tr(Frob,Pd−i(T )I⊥/I).

Comparing with the expansion (5.1) for Den(T,Q), it suffices to prove, changing notation d − i to d and
I⊥/I to Q, that

Tr(Frob,Pd(T )Q) =
∏

v∈|X|
mv(t

′
v(Q);T deg(v)). (5.2)

This will be proved in Proposition 5.7. �

The rest of the section is devoted to the proof of (5.2). The idea is to relate the Frobenius trace to a
similar Frobenius trace of a graded perverse sheaf on Cohd(X) using results from §4.6, and then calculate
the latter explicitly.

5.3. Comparison of two graded Frobenius modules. For (Q, h) ∈ Herm2d(k), write

PQ(T ) = Pd(T )Q =

d⊕

j=0

(−1)j(HSprd)
(Sj×Sd−j,sgnj ⊠1)

Q T j =

d⊕

j=0

(−1)jH∗(BHerm
Q )(Wj×Wd−j ,sgnj⊠1)T j.

Here sgnj is the inflation of the sign representation of Sj under Wj ։ Sj . We view PQ(T ) as a Z-graded

virtual Frobenius module, with the Z-grading indicated by the power of T . Let Q♭ ∈ Cohd(X)(k) be in the
isomorphism class that corresponds to (Q, h) under the bijection in Lemma 4.12. Define

PQ♭(T ) =

d⊕

j=0

(−1)j(Sprd)
(Sj×Sd−j,sgnj ⊠1)

Q♭ T j =

d⊕

j=0

(−1)jH∗(BQ♭)(Sj×Sd−j,sgnj ⊠1)T j .

Define the Frobenius traces

PQ(T ) := Tr(Frob,PQ(T )), PQ♭(T ) := Tr(Frob,PQ♭(T )) ∈ Qℓ[T ].

The goal is to get a relationship between PQ(T ) and PQ♭(T ). Note that PQ♭(T ) is a special case of PQ(T )
when the double cover X ′ = X ⊔X (and Q is the direct sum of Q♭ on one copy of X and Q♭,∨ on the other).
We shall apply Proposition 4.13 to express PQ(T ) in terms of PQ♭(T ). For this we need to calculate the
decomposition of PQ♭(T ) given in (4.6).

Recall notations Z,Z ′,Σ(Z) and Σ(Z ′) from §4.4. First we show that PQ♭(T ) factorizes according to the

support of Q in X . Let |Z| be the set of closed points in Z. For v ∈ |Z|, let Q♭
v denote the direct summand

of Q♭ whose support is over v.

Lemma 5.4. We have a natural isomorphism of graded Frob-modules

PQ♭(T ) ∼=
⊗

v∈|Z|
PQ♭

v
(T ).

In particular,

PQ♭(T ) =
∏

v∈|Z|
PQ♭

v
(T ).

Proof. Choose any y ∈ Σ(Z) and let |y| be the resulting map {1, 2, · · · , d} → |Z|. Let S|y| = StabSd
(|y|), then

S|y| ∼=
∏

v∈|Z| SIv , where Iv = |y|−1(v). Applying Corollary 3.6 to Q♭ and to each Q♭
v gives an isomorphism

of (Sd,Frob)-modules

H∗(BQ♭) ∼= IndSd

S|y|


⊗

v∈|Z|
H∗(BQ♭

v
)


 . (5.3)

Here the factor SIv of S|y| acts on H∗(BQ♭
v
) by the Springer action.

Write Hv = H∗(BQ♭
v
) as a (SIv ,Frob)-module. Let dv = #Iv. By Mackey theory, the (Sj×Sd−j, sgnj ⊠1)-

isotypical part of the right side of (5.3) is a direct sum over double cosets (Sj × Sd−j)\Sd/S|y|, which can
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be identified with the set of functions i : |Z| → Z≥0, v 7→ iv ≤ dv, such that
∑

v iv = j. The stabilizer of the
Sj × Sd−j-action on the orbit indexed by i is isomorphic to

∏
v∈|Z| Siv × Sdv−iv (where the Siv factor lies

in Sj , Sdv−iv lies in Sd−j , and Siv × Sdv−iv is naturally a subgroup of SIv
∼= Sdv ). The contribution of the

summand indexed by i is ⊗

v∈|Z|
H

(Siv×Sdv−iv ,sgniv
⊠1)

v .

This implies that

PQ♭(T ) ∼=
∑

i:|Z|→Z≥0,iv≤dv

(−1)
∑

iv


⊗

v∈|Z|
H

(Siv×Sdv−iv ,sgniv
⊠1)

v


T

∑
iv

∼=
⊗

v∈|Z|

(
dv∑

iv=0

(−1)ivH(Siv×Sdv−iv ,sgniv
⊠1)

v T iv

)
=
⊗

v∈|Z|
PQ♭

v
(T ).

�

Let Qv be the direct summand of Q supported over v. Then Qv and Q♭
v correspond under the bijection

in Lemma 4.12.
For any Frobenius module M with integral weights, let GrWi M be the pure of weight i part of M . This

notation applies also to graded Frobenius modules by taking GrWi on each graded piece.

Proposition 5.5. Let Q ∈ Herm2d(k).

(1) We have

PQ(T ) ∼=
⊗

v∈|Z|
PQv(T ), PQ(T ) =

∏

v∈|Z|
PQv (T ). (5.4)

(2) If v ∈ |Z| is split in X ′, then
PQv (T ) = PQ♭

v
(T ). (5.5)

(3) If v ∈ |Z| is inert in X ′, then

PQv (T ) =
∑

i

(−1)iTr(Frob,GrW2i deg(v) PQ♭
v
(T )). (5.6)

Moreover, Tr(Frob,GrWi PQ♭
v
(T )) = 0 if i is not a multiple of 2 deg(v).

Proof. We will use the notations from §4.6.1. For each y ∈ Σ(Z), the summand H∗(BQ♭(y)) ∼= ⊗x∈ZH
∗(BQ♭

x
)

is graded by multidegree i : Z → Z≥0

H2i(BQ♭(y)) =
⊗

x∈Z
H2i(x)(BQ♭

x
).

We define H2i(BQ♭) as the direct sum of H2i(BQ♭(y)) over all y ∈ Σ(Z). Then each H2i(BQ♭) is sta-

ble under Sd. Accordingly, PQ♭(T ) decomposes into the direct sum of P2i
Q♭(T ), which is by definition

⊕d
j=0(−1)jH2i(BQ♭)(Sj×Sd−j ,sgnj ⊠1)T j. Let iv be the restriction of i to those x|v, then under the factoriza-

tion isomorphism in Lemma 5.4 we have

P2i
Q♭(T ) ∼=

⊗

v∈|Z|
P2iv
Q♭

v
(T ). (5.7)

(1) Recall the involution θ on H∗(BQ♭) in Proposition 4.13. Using the above notation, we see that θ acts

on H2i(BQ♭) by
∏

v∈|Z|i(−1)i(xv) (where xv ∈ Z is a chosen geometric point over v, as in §4.6.1). Because of

(5.7), the action of θ on PQ♭(T ) factorizes as the tensor product of the similarly-defined θv on each PQ♭
v
(T ).

By Proposition 4.13, PQ(T ) is the Frobenius module obtained by modifying the Frobenius action on PQ♭(T )
by composing with θ. By Lemma 5.4, this modified Frobenius structure on PQ♭(T ) is the tensor product of
the similarly modified Frobenius modules PQ♭

v
(T ), which in turn are isomorphic to PQv (T ) by Proposition

4.13. This implies (5.4).
(2) From the definition we see that if v is split, then θv is the identity onPQ♭

v
(T ). HencePQv (T ) = PQ♭

v
(T )

and PQv (T ) = PQ♭
v
(T ).
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(3) Since the cohomology of BQ♭
v
is pure by [HS77, Corollary 2.3(3)], we see that GrWi PQ♭

v
(T ) is the sum of

P2iv
Q♭

v
(T ) where iv : {x ∈ Z : x|v} → Z≥0 satisfies

∑
x|v 2iv(x) = i. The action of Frobenius sends P2iv

Q♭
v
(T ) to

P2F∗iv
Q♭

v
(T ), where F ∗iv means precomposing iv with Frobenius. Therefore only constant multi-degrees (i.e.,

constant functions iv) contribute to the Frobenius trace of PQ♭
v
(T ). This implies Tr(Frob,GrWi PQ♭

v
(T )) = 0

unless i is a multiple of 2 deg(v).
By the discussion above,

PQv (T ) = Tr(Frob ◦θv,PQ♭
v
(T )) =

∑

i≥0
Tr(Frob ◦θv,P(2i,2i,··· ,2i)

Q♭
v

(T )).

Since v is inert, θv acts by (−1)i on P
(2i,2i,··· ,2i)
Q♭

v
(T ), hence

Tr(Frob ◦θv,P(2i,2i,··· ,2i)
Q♭

v
(T )) = (−1)iTr(Frob,P(2i,2i,··· ,2i)

Q♭
v

(T )).

On the other hand, Tr(Frob,GrW2i deg(v) PQ♭
v
(T )) is the sum of Tr(Frob,P2iv

Q♭
v
(T )) with total degree

∑
x|v 2iv(x) =

2i deg(v). Since only constant multi-degrees contribute to the trace, we again conclude

Tr(Frob,GrW2i deg(v) PQ♭
v
(T )) = Tr(Frob,P

(2i,2i,··· ,2i)
Q♭

v
(T )).

Combining the above identities we get (5.6). �

5.4. Calculation of PQ♭(T ) and PQ(T ). Let Q♭ ∈ Cohd(X)(k) with support Z ⊂ X(k). For each v ∈ |Z|
recall tv(Q♭) from (2.5) for the local field Fv.

Proposition 5.6. For Q♭ ∈ Cohd(X)(k), we have

PQ♭(T ) =
∏

v∈|Z|
(1− T deg(v))(1 − qvT deg(v)) · · · (1 − qtv(Q♭)−1

v T deg(v)).

Proof. We write Cohd(X) simply as Cohd in the proof. For 0 ≤ j ≤ d, consider the correspondence

Cohj,d
p

{{✈✈
✈✈
✈✈
✈✈
✈

r

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

Cohd Cohj ×Cohd−j .

Here Cohj,d classifies pairs (Qj ⊂ Q) of torsion sheaves of length j and d respectively, and the map r sends
(Qj ⊂ Q) to (Qj ,Q/Qj). We claim that

Spr
(Sj×Sd−j ,sgnj ⊠1)

d
∼= Rp∗Rr

∗(Stj ⊠Qℓ). (5.8)

Indeed, consider the following diagram with Cartesian parallelogram

C̃ohd
πj,d

xxqqq
qq
qq
qq
qq
q

r̃

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

Cohj,d
p

{{✇✇
✇✇
✇✇
✇✇
✇

r

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

C̃ohj × C̃ohd−j
πj×πd−j

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

Cohd Cohj ×Cohd−j

Here πj = πCoh
j , etc. The composition p ◦ πj,d = πd = πCoh

d . By the proper base change theorem, we get

Sprd = Rp∗Rπj,d∗Qℓ
∼= Rp∗Rr

∗R(πj × πd−j)∗Qℓ = Rp∗Rr
∗(Sprj ⊠ Sprd−j).

This isomorphism is Sj × Sd−j-equivariant by checking easily over the open substack Coh◦d. Taking (Sj ×
Sd−j, sgnj ⊠1)-isotypical parts of both sides we get (5.8).
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By Lemma 5.4 it remains to compute PQ♭
v
(T ) for each v. Therefore we may assume Q♭ = Q♭

v. By (5.8)
and the Grothendieck-Lefschetz trace formula we have

PQ♭
v
(T ) =

∑

j

(−1)j Tr(Frob, (Sprd)
(Sj×Sd−j,sgnj ⊠1)

Q♭
v

)T j

=
∑

j

(−1)j Tr(Frob, Rp∗Rr∗(Stj ⊠Qℓ)Q♭
v
)T j

=
∑

R⊂Q♭
v ,

dimkv (R)=j

(−1)deg(v)j Tr(Frob, (Stdeg(v)j)R)T deg(v)j .

By Proposition 3.7, (Stdeg(v)j)R is zero unlessR ∼= k⊕jv , in which case the Frobenius trace is (−1)j(deg(v)−1)qj(j−1)/2v .

Let Qv[̟] be the kernel of the action of a uniformizer ̟ at v. Note V := Q♭
v[̟] has dimension t = tv(Q♭)

over kv. Then we only need to sum over kv-subspaces R of V . The above sum becomes

t∑

j=0

(−1)jqj(j−1)/2v T deg(v)j#Gr(j, V )(kv).

Recall that the “q-binomial theorem” says that q
j(j−1)/2
v #Gr(j, V )(kv) is the coefficient of xj in (1+ x)(1 +

qvx) . . . (1 + qt−1v x). Making the change of variables x = −T deg(v), we get

t∑

j=0

(−1)jqj(j−1)/2v T deg(v)j#Gr(j, V )(kv) = (1− T deg(v))(1 − qvT deg(v)) . . . (1 − qt−1v T deg(v))

as desired. �

Now we are ready to prove (5.2).

Proposition 5.7. For Q ∈ Herm2d(X
′/X)(k) with support Z, we have

PQ(T ) =
∏

v∈|X|
mv(t

′
v(Q);T deg(v)) =

∏

v∈|Z|

t′v(Q)−1∏

j=0

(1− (η(̟v)qv)
jT deg(v)).

Proof. By (5.4) it suffices to treat the case Q is supported over a single place v. Let Q♭ ∈ Cohd(X)(k)
be the corresponding point. If v is split, we have PQ(T ) = PQ♭(T ) by (5.5), and the formula follows from
Proposition 5.6.

If v is inert, let t = t′v(Q) = tv(Q♭). From the form of PQ♭(T ) computed in Proposition 5.6, which is valid
for any extension of k, the trace of the pure weight pieces of PQ♭(T ) are separated by different powers of qv,

i.e., q−iv Tr(Frob,GrW2i deg(v) PQ♭(T )) is the coefficient of qiv in
∏t−1

j=0(1− qjvT deg(v)). By (5.6),

PQ(T ) =
∑

i

(−1)iTr(Frob,GrW2i deg(v) PQ♭(T )) =

t−1∏

j=0

(1− (−qv)jT deg(v))

which is what we want because η(̟v) = −1 in this case. �

Part 2. The geometric side

6. Moduli of unitary shtukas

In this section we introduce some of the fundamental geometric objects in our story, in particular the
moduli stacks of unitary (also called Hermitian) shtukas, which play an analogous role to that of unitary
Shimura varieties in the work of Kudla-Rapoport.
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6.1. Hermitian bundles. We adopt the notation of §1.3, and in particular for the remainder of the paper
enforce the assumption that X is proper, and ν : X ′ → X is a finite étale double cover (possibly trivial).

Definition 6.1. A rank n Hermitian (also called unitary) bundle on X × S with respect to ν : X ′ → X is

a vector bundle F of rank n on X ′ × S, equipped with an isomorphism h : F ∼−→ σ∗F∨ such that σ∗h∨ = h.
We refer to h as the Hermitian structure on F .

We denote by BunU(n) the moduli stack of rank n unitary bundles on X , which sends a test scheme S to
the groupoid of rank n unitary bundles on X × S. The notation is justified by the following remark.

Remark 6.2. There is an equivalence of categories between the groupoid of Hermitian bundles on X × S,
and the groupoid of G-torsors for the group scheme G = U(n) over X defined as

{g ∈ ResX′/X GLn : σ(
tg−1) = g}.

Indeed, we choose a square root ω
1/2
X of ωX (which exists over k = Fq by [Wei95, p.291, Theorem 13]).

Then F1 := ν∗ω1/2
X′ is equipped with the canonical Hermitian structure h1 : F1

∼= σ∗F1
∼= σ∗F∨1 , and

(Fn, hn) := (F1, h1)
⊕n is a rank n Hermitian bundle on X whose automorphism group scheme is U(n). To a

Hermitian bundle (F , h) on X × S, IsomX×S((Fn ⊠OS , hn ⊠ Id), (F , h)) (the scheme of unitary isometries)
is a right torsor for U(n) over X × S. Conversely, for a right U(n)-torsor G over X × S, the contracted

product G
U(n)
× Fn is a Hermitian bundle on X × S.

6.2. Hecke stacks. We now define some particular Hecke correspondences for BunU(n).

Definition 6.3. Let r ≥ 0 be an integer. The Hecke stack HkrU(n) has as S-points the groupoid of the
following data:

(1) x′i ∈ X ′(S) for i = 1, . . . , r, with graphs denoted by Γx′i
⊂ X ′ × S.

(2) A sequence of vector bundles F0, . . . ,Fr of rank n on X ′×S, each equipped with Hermitian structure

hi : Fi
∼−→ σ∗F∨i .

(3) Isomorphisms fi : Fi−1|X′×S−Γx′
i
−Γσ(x′

i
)

∼−→ Fi|X′×S−Γx′
i
−Γσ(x′

i
)
, for 1 ≤ i ≤ r, compatible with the

Hermitian structures, with the following property: there exists a rank n vector bundle F ♭
i−1/2 and a

diagram of maps of vector bundles

F ♭
i−1/2

Fi−1 Fi

f←i f→i

such that coker(f←i ) is flat of length 1 over Γx′i
, and coker(f→i ) is flat of length 1 over Γσ(x′i)

. In

particular, f←i and f→i are invertible upon restriction to X ′×S−Γx′i
−Γσ(x′i)

, and the composition

Fi−1|X′×S−Γx′
i
−Γσ(x′

i
)

(f←i )−1

−−−−−→ F ♭
i−1/2|X′×S−Γx′

i
−Γσ(x′

i
)

f→i−−→ Fi|X′×S−Γx′
i
−Γσ(x′

i
)

agrees with fi.

Remark 6.4. Condition (3) above is equivalent to asking for the existence of a diagram

Fi−1 Fi

F ♯
i−1/2

h←i h→i

such that coker(h←i ) is flat of length 1 over Γσ(x′i)
, and coker(h→i ) is flat of length 1 over Γx′i

. In particular,

h←i and h→i are invertible upon restriction to X ′ × S − Γx′i
− Γσ(x′i)

, and the composition

Fi−1|X′×S−Γx′
i
−Γσ(x′

i
)

h←i−−→ F ♯
i−1/2|X′×S−Γx′

i
−Γσ(x′

i
)

(h→i )−1

−−−−−→ Fi|X′×S−Γx′
i
−Γσ(x′

i
)

agrees with fi.
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Definition 6.5 (Terminology for modifications of vector bundles). Given two vector bundles F and F ′ on
X ′ × S, we will refer to an isomorphism between F and F ′ on the complement of a relative Cartier divisor
D ⊂ X ′ × S as a “modification” between F and F ′, and denote such a modification by F 99K F ′. Given
x, y ∈ X ′(S), we say that the modification is “lower” of length 1 at x and “upper” of length 1 at y if it is as
in Definition 6.3 (3), i.e. if there exists a diagram

F ♭

F F ′
f← f→

such that coker(f←) is flat of length 1 over Γx, and coker(f→) is flat of length 1 over Γy, and F 99K F ′
agrees with the composition

F|X′×S−Γx−Γy

(f←)−1

−−−−−→ F ♭|X′×S−Γx−Γy

f→−−→ F|X′×S−Γx−Γy .

The condition admits a reformulation as in Remark 6.4.

6.3. Unitary shtukas. For a vector bundle F on X ′×S, we denote by τF := (IdX ×FrobS)
∗F . If F has a

Hermitian structure h : F ∼−→ σ∗F∨, then τF is equipped with the Hermitian structure τh; we may suppress
this notation when we speak of the “Hermitian bundle” τF .
Definition 6.6. Let r ≥ 0 be an integer. We define ShtrU(n) by the Cartesian diagram

ShtrU(n) HkrU(n)

BunU(n) BunU(n)×BunU(n)
(Id,Frob)

A point of ShtrU(n) will be called a “U(n)-shtuka”.

Concretely, the S-points of ShtrU(n) are given by the groupoid of the following data:

(1) x′i ∈ X ′(S) for i = 1, . . . , r, with graphs denoted Γx′i
⊂ X × S. These are called the legs of the

shtuka.
(2) A sequence of vector bundles F0, . . . ,Fn of rank n on X ′ × S, each equipped with a Hermitian

structure hi : Fi
∼−→ σ∗F∨i .

(3) Isomorphisms fi : Fi−1|X′×S−Γx′
i
−Γσ(x′

i
)

∼−→ Fi|X′×S−Γx′
i
−Γσ(x′

i
)
compatible with the Hermitian struc-

ture, which as modifications of the underlying vector bundles on X ′ × S are lower of length 1 at x′i
and upper of length 1 at σ(x′i).

(4) An isomorphism ϕ : Fr
∼= τF0 compatible with the Hermitian structure.

Lemma 6.7. The stack ShtrU(n) is empty if and only if r is odd.

Proof. We first treat the case n = 1. Let NmX′/X : PicX′ → PicX be the norm map. Then BunU(1)
∼=

Nm−1X′/X(ωX), hence it is a torsor under Prym(X ′/X) = ker(NmX′/X). Moreover, ShtrU(1) fits into a Carte-

sian square

ShtrU(1) BunU(1) F

Divr(X ′) Prym(X ′/X) F−1 ⊗ τF
Lang

with the bottom horizontal map sending D 7→ O(D − σD). If X ′ is geometrically connected, then the
stack Prym(X ′/X) has two connected components, and by a result of Wirtinger, explained in [Mum71, §2],
the bottom horizontal map lands in the identity component if and only if r is even. If X ′ is geometrically
disconnected (i.e. it is either X

∐
X or Xk′), then we have π0(Prym(X ′/X)k)

∼= Z, the Lang map lands in
the identity component, and the bottom horizontal map hits the identity component if and only if r is even.
This shows that, in all cases, ShtrU(1) is empty if and only if r is odd.

For general n, taking determinant of a unitary shtuka gives a map ShtrU(n) → ShtrU(1). From this we see

that if r is odd, then ShtrU(n) is empty for any n since ShtrU(1) is empty.
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On the other hand if r is even, then ShtrU(1) is non-empty. If n > 1, from an S point of ShtrU(1), we can

produce an S-point of ShtrU(n) by formation of direct sum with (the base change to X × S of) a unitary

bundle of rank n− 1 on X (e.g. we can take (Fn−1, hn−1) from Remark 6.2). �

6.4. Geometric properties.

Lemma 6.8. The stack BunU(n) is smooth and equidimensional.

Proof. The standard tangent complex argument, cf. [Hei10, Prop. 1]. �

Lemma 6.9. (1) The projection map (prX , prr) : Hk
r
U(n) → (X ′)r ×BunU(n) recording {xi} and (Fr, hr) is

smooth of relative dimension r(n − 1).
(2) ShtrU(n) is a Deligne-Mumford stack locally of finite type. The map ShtrU(n) → (X ′)r is smooth,

separated, equidimensional of relative dimension r(n− 1).

Proof. The statements about ShtrU(n) being locally finite type and separated are well-known properties of

moduli of G-shtukas for general G [Var04, Proposition 2.16 and Theorem 2.20].3

Part (2) follows from (1) by [Laf18, Lemma 2.13].

So it suffices to check (1). As a self-correspondence of BunU(n), Hk
r
U(n) is the r-fold composition of Hk1U(n).

This allows us to reduce to the case r = 1. In this case, the map (prX , pr1) : Hk
1
U(n) → X ′×BunU(n) exhibits

Hk1U(n) as a Pn−1-bundle whose fiber over (x′,F1, h1) classifies hyperplanes in F1,σ(x′). Indeed, a hyperplane

in F1,σ(x′) determines a lower modification at σ(x′), and the upper modification at x′ is then determined
from the lower modification by the Hermitian structure. This shows that (prX , pr1) is smooth, separated
and equidimensional of relative dimension (n− 1) in the case r = 1, and the general case follows.

�

7. Special cycles: basic properties

In this section we define special cycles over the moduli stacks of unitary shtukas, and construct corre-
sponding cycle classes. The latter task is rather subtle, as the cycles are in most cases of a highly “derived”
nature, with their “virtual dimension” differing significantly from their actual dimension.

7.1. Special cycles.

Definition 7.1. Let E be a rank m vector bundle on X ′.
We define the stack Zr

E whose S-points are the groupoid of the following data:

• A U(n)-shtuka with ({x′1, . . . , x′r}, {F0, . . . ,Fr}, {f1, . . . , fr}, ϕ) ∈ ShtrU(n)(S).

• Maps of coherent sheaves ti : E ⊠ OS → Fi on X ′ × S such that the isomorphism ϕ : Fr
∼= τF0

intertwines tr with τ t0, and the maps ti−1, ti are intertwined by the modification fi : Fi−1 99K Fi for
each i = 1, . . . , r, i.e. the diagram below commutes.

E ⊠OS E ⊠OS . . . E ⊠OS
τ (E ⊠OS)

F0 F1 . . . Fr
τF0

t0 t1

∼

tr τ t0

f0 f1 fr ∼

In the sequel, when writing such diagrams we will usually just omit the “⊠OS” factor from the notation.
We will call the Zr

E (or their connected components) special cycles of corank m (with r legs).

There is an evident map Zr
E → ShtrU(n) projecting to the data in the first bullet point. When rank E =

1, the Zr
E are function field analogues (with multiple legs) of the Kudla-Rapoport divisors introduced in

[KR11, KR14].

3See also [YZ17, paragraph after Theorem 5.4] for a sketch of the separatedness in a similar situation, which readily adapts
here.
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7.2. Indexing via Hermitian maps.

Definition 7.2. Let Aall
E (k) be the k-vector space of Hermitian maps4 a : E → σ∗E∨ such that σ(a)∨ = a.

Let AE(k) ⊂ Aall
E (k) be the subset where the map a : E → σ∗E∨ is injective (as a map of coherent sheaves).

Let ({x′i}, {Fi}, {fi}, ϕ, {ti}) ∈ Zr
E(S). By the compatibilities between the ti in the definition of Zr

E , the
compositions

E ⊠OS
ti−→ Fi

hi−→ σ∗F∨i
σ∗t∨i−−−→ σ∗E∨ ⊠OS (7.1)

agree for each i, and (7.1) for i = r also agrees with the Frobenius twist of (7.1) for i = 0. Hence (7.1)
for every i gives the same point of Aall

E (S), which moreover must come from Aall
E (k). This defines a map

Zr
E → Aall

E (k). For a ∈ Aall
E (k), we denote by Zr

E(a) the fiber of Zr
E over a. We have

Zr
E =

∐

a∈Aall
E (k)

Zr
E(a).

Definition 7.3. For a ∈ AE(k), let Da be the effective divisor on X such that ν−1(Da) is the divisor of the
Hermitian map det(a) : det(E)→ σ∗ det(E)∨.
7.3. Finiteness properties. We next establish that the projection map Zr

E(a) → ShtrU(n) is finite, which

will eventually allow us to construct cycle classes on ShtrU(n) associated to Zr
E(a).

Proposition 7.4. Let E be any vector bundle of rank m on X ′ and let a ∈ Aall
E (k). Then the projection

map Zr
E(a)→ ShtrU(n) is finite.

Proof. We will show that the map is proper and quasi-finite. First we establish the properness. It suffices
to show this locally on the target, so we pick a Harder-Narasimhan polygon P for BunU(n) and consider

the truncation Bun≤PU(n). Define Shtr,≤PU(n) to be the open substack of ShtrU(n) obtained as the pullback of

Bun≤PU(n) →֒ BunU(n) via the tautological projection pr0 : ShtrU(n) → BunU(n) recording F0, and Zr,≤P
E (a) →֒

Zr
E(a) the analogous pullback.
We can then pick a sufficiently anti-ample vector bundle E ′ of rank m on X ′ and an injection ι : E ′ →֒ E

so that the stack Hom(E ′,−)≤P parametrizing {(F ∈ Bun≤PU(n), t ∈ Hom(E ′,F))} forms a vector bundle over

Bun≤PU(n), with respect to the obvious projection map. Let a′ := (σ∗ι∨) ◦ a ◦ ι : E ′ → E ′∨. Then we have a

closed embedding Zr,≤P
E (a) →֒ Zr,≤P

E′ (a′) cut out by the condition that the map t : E ′ → F factors through
ι, which fits into a commutative diagram

Zr,≤P
E (a) Zr,≤P

E′ (a′)

Shtr,≤PU(n) .

Hence it suffices to show that Zr,≤P
E′ (a′) → Shtr,≤PU(n) is proper. For the closed substack where the map

t0 : E ′ → F0 vanishes, the properness is clear. Therefore it suffices to show the open substack Zr,≤P,◦
E′

defined by the condition that t0 6= 0 fiberwise over the test scheme is also proper over Shtr,≤PU(n) . We can

factorize this map as the composition of two maps in the diagram below:

Zr,≤P,◦
E′ (a′) P(Hom(E ′,−)≤P )×

Bun≤P

U(n)

Shtr,≤PU(n)

Shtr,≤PU(n)

j

pr2

where j is determined by the map Zr,≤P,◦
E′ (a′)→ P(Hom(E ′,−)≤P ) sending

(F0 99K . . . 99K Fr
∼= τF0, (ti)

r
i=0) 7→ (F0, t0 : E ′ → F0).

4We will later in §8.2 introduce a space Aall over BunGL′m for which Aall
E

(k) is the k-rational points of the fiber over

E ∈ BunGL′m(k), justifying the notation.
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The map pr2 is a projective bundle by design, so in order to establish that pr2 ◦j is proper it suffices to

show that j is finite. Indeed, since data of all the ti is determined by t0, the analogous map Zr,≤P,◦
E′ →

Hom(E ′,−)≤P,◦ ×
Bun≤P

U(n)

Shtr,≤PU(n) is a closed embedding. The requirement t0 = τ t0 in the definition of Zr
E′

therefore implies that the map j is a k×-torsor onto its image, which is a closed substack of P(Hom(E ′,−)≤P ).
This completes the proof of properness.

It remains to show that Zr
E(a)→ ShtrU(n) is quasi-finite. Since the map is already established to be proper,

it suffices by [Sta20, Tag 01TC] to check that the fibers over field-valued points are finite. Let

({x′i}1≤i≤r, (F0, h0) 99K (F1, h1) 99K . . . (Fr, hr)
∼−→ (τF0,

τh0)) ∈ ShtrU(n)(κ)

be such a point valued in a field κ. Its fiber in Zr
E(a)(κ) consists of {ti : E → Fi}0≤i≤r fitting into commutative

diagrams

Eκ Eκ . . . Eκ τEκ

F0 F1 . . . Fr−1 τF0

t0 t1

∼

tr−1
τ t0

∼

such that σ∗t∨i ◦ hi ◦ ti = a ∈ Aall
E (k) for each i = 0, . . . , r. We want to show that there are finitely many

possibilities for such ti ∈ H0(X ′κ, E∨κ ⊗Fi).
The situation can be abstracted to the following semi-linear algebra problem.

Lemma 7.5. Suppose that κ is any field over k, and we have finite-dimensional κ-vector spaces V1, V2 ⊂ V
with an injective Frob-semi-linear map τ : V1 →֒ V2.

V1 V2

V

τ

Then the set {x ∈ V1 : τ(x) = x ∈ V } is finite.

We assume Lemma 7.5 for the moment and use it to conclude the proof of Proposition 7.4. We apply it to
the situation above with V1 := HomX′κ(Eκ,F0), V2 := HomX′κ(

τEκ, τF0), which are both viewed as subspaces
of

V := HomX′κ


Eκ,F0(

r∑

j=1

(x′j + σ(x′j)))




by the obvious inclusion. The map V1 → V2 is the twist by τ . Then Lemma 7.5 shows that there are finitely
many possibilities for t0 since τ(t0) = t0. The other ti are determined by t0 (if they exist) because the ti as
well as the modifications Fi 99K Fi+1 are all isomorphisms over an open subset of X ′κ. �

Proof of Lemma 7.5. By replacing κ with an algebraic closure, it suffices to consider the case when κ is
algebraically closed. Let us call a subspace V ′1 ⊂ V1 “τ -fixed” if τ(V ′1 ) = V ′1 ⊂ V . Since a sum of τ -fixed
subspaces is evidently τ -fixed, there is a well-defined largest τ -fixed subspace V ◦1 ⊂ V1. It is a sub κ-vector
space of V1, hence necessarily finite-dimensional. Since τ : V1 → V2 is injective, the restriction of τ to V ◦1 is
a Frob-semi-linear bijection. The set {x ∈ V1 : τ(x) = x ∈ V } is evidently contained in (V ◦1 )

τ , which is an
k-form of V ◦1 (because κ is algebraically closed) and therefore finite-dimensional over k. �

7.4. Variation with E. Let E ′, E be two vector bundles (with possibly distinct ranks) on X ′ and s : E ′ → E
be a map of coherent sheaves. Given a : E → σ∗E∨ in Aall

E (k), let a′ = (σ∗s∨) ◦ a ◦ s : E ′ → σ∗(E ′)∨ be the
corresponding element in Aall

E′ (k). Therefore, composing with s defines a map

zs : Zr
E(a)→ Zr

E′(a
′) (7.2)

sending

E . . . E τE

F0 . . . Fr
τF0

∼

7→
E ′ . . . E ′ τE ′

F0 . . . Fr
τF0

∼

The following lemma follows directly from definitions.
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Lemma 7.6. If E = E1 ⊕ E2, and ai ∈ Aall
Ei (k) for i = 1, 2, then there is a canonical isomorphism

Zr
E1(a1)×Shtr

U(n)
Zr
E2(a2)

∼=
∐

a=



 a1 ∗
∗ a2





Zr
E(a)

where the union runs over all Hermitian maps a : E → σ∗E∨ whose restriction to Ei is ai (for i = 1, 2). The
map from the right side to the left is given by (zι1 , zι2), where ιi : Ei →֒ E is the inclusion.

Lemma 7.7. Under the notations of the beginning of this subsection,

(1) If s : E ′ → E is generically surjective, then zs : Zr
E(a)→ Zr

E′(a
′) is a closed embedding.

(2) Suppose that s is generically an isomorphism (in particular E and E ′ have the same rank). Let
Ds ⊂ X ′ be the divisor of det(s). Then the restriction of zs over (X\ν(Ds))

r

Zr
E(a)|(X\ν(Ds))r ⊂ Zr

E′(a
′)|(X\ν(Ds))r

is open and closed. Here we write Zr
E(a)|(X\ν(Ds))r for the preimage of (X\ν(Ds))

r under the leg

map Zr
E(a)→ ShtrU(n) → X ′r

νr

−→ Xr.

Proof. (1) Let E ′ = E ′/ ker(s) s−→ E , equipped with the induced Hermitian map a′ : E ′ → σ∗(E ′)∨. Then s∗

factors as Zr
E(a)

zs−→ Zr
E′(a

′) ⊂ Zr
E′(a

′), the latter being evidently a closed embedding. Therefore it suffices

to show zs is a closed embedding. We thus reduce to the case s is generically an isomorphism.

Let D be an effective divisor on X ′ such that E(−D) →֒ E ′ s−→ E . Let Funiv be the universal Hermitian
bundle overX ′×BunU(n), and Funiv

D its restriction toD×BunU(n). Let VD = pr2∗Hom(pr∗1 E(−D)|D,Funiv
D ),

where pr1, pr2 are the projections of D × BunU(n) to the two factors. Then VD is a vector bundle of
rank equal to n rank(E) deg(D) over BunU(n). Let Vi,D be the pullback of VD over Zr

E′(a
′) via the map

pri : Zr
E′(a

′) → BunU(n). Then Vi,D has a section vi whose value at ({x′j}, {Fj}, {tj : E ′ → Fj}) ∈ Zr
E′(a

′)
is the restriction of ti to E(−D)|D → Fi|D. Then ti extends to E if and only if vi vanishes at the point
({x′j}, {Fj}, {tj}). This identifies Zr

E(a) as the common zero locus of the sections (vi)0≤i≤r−1 of the vector

bundles Vi,D over Zr
E′(a

′), hence closed in Zr
E′(a

′).
(2) By (1), it remains to show the openness of s∗ when restricted to (X\ν(Ds))

r . Let U ′ = X ′\ supp(Ds+
σDs). Let Sht

r
U(n),Ds

be the moduli stack of Hermitian shtukas ({x′i}, {Fi}) of rank n with legs in U ′r, and
trivializations of Fi|Ds (as a vector bundle over Ds of rank n) compatible with the shtuka structures. Then
λ : ShtrU(n),Ds

→ ShtrU(n) |U ′r is a GLn(ODs)-torsor. Let Zr
E(a)Ds and Zr

E′(a
′)Ds be the base changes of

Zr
E(a) and Zr

E′(a
′) along λ. Since Zr

E′(a
′)Ds → Zr

E′(a
′)|U ′r is finite étale surjective, it suffices to show that

the inclusion Zr
E(a)Ds →֒ Zr

E′(a
′)Ds is open. Using the trivializations of Fi|Ds , we get an evaluation map

evDs : Zr
E′(a

′)Ds → HomDs(E ′|Ds ,O⊕nDs
)

where the target is a discrete set. Then Zr
E(a)Ds is the preimage of the image of

HomDs(E|Ds ,O⊕nDs
)

(−)◦s−−−−→ HomDs(E ′|Ds ,O⊕nDs
)

under evDs . Indeed, a map E ′ → Fi extends to E → Fi if and only if E ′|Ds → Fi|Ds vanishes on ker(E ′|Ds →
E|Ds) (this can be checked locally using elementary divisors). Since the target of evDs is discrete, Zr

E (a)Ds ⊂
Zr
E′(a

′)Ds is open and closed. �

7.5. Corank 1 special cycles. A special role is played by the case m = 1, i.e. where E is a line bundle on
X ′, because it is only in this case that we can appropriately control the dimension of the cycles Zr

E . We will
write L := E to emphasize that it is a line bundle.

Note that in this case a ∈ AL(k) if and only if a 6= 0.

Definition 7.8. We define Zr
L(0)

∗ ⊂ Zr
L(0) to be the substack classifying ({x′i}, {L

ti−→ Fi}) with the
additional conditions that all ti are injective when restricted to X ′s for any geometric point s of the test
scheme S. For a ∈ Aall

L (k) we introduce the uniform notation

Zr
L(a)

∗ :=

{
Zr
L(a) if a 6= 0;

Zr
L(0)

∗ if a = 0.
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Proposition 7.9. We have dimZr
L(a)

∗ ≤ r(n− 1).

This is established later, in Proposition 9.1 (for a 6= 0) and Proposition 9.5 (for a = 0), as a consequence
of a more refined study of the geometry of Zr

L(a)
∗.

Remark 7.10. One can show that when a 6= 0, in fact Zr
L(a)

∗ is LCI of pure dimension r(n− 1). This will
appear in a future paper; it relies on some ideas from [FYZ21]. This fact will not be used in the present
paper, but it may be psychologically helpful.

Definition 7.11. For a ∈ Aall
L (k), we define [Zr

L(a)
∗] ∈ Chr(n−1)(Zr

L(a)
∗) to be the cycle class of the union

of the irreducible components of Zr
L(a)

∗ with dimension r(n− 1), throwing away the irreducible components
of dimension < r(n − 1). (According to Remark 7.10, there are no such components to be thrown away at
least when a 6= 0, but we neither prove nor use this in the present paper.)

7.6. Corank n special cycles. In this paper we are mainly concerned with the case where the rank of E
is m = n. The following proposition contains basic geometric information about Zr

E(a).

Lemma 7.12. Let E be a vector bundle on X ′ of rank n, and a ∈ AE(k). Then the map Zr
E(a) → X ′r

recording the legs has image in (supp ν−1(Da))
r.

Proof. Let ({x′i}, {Fi}, {ti}) be a geometric point of Zr
E(a). For each 1 ≤ i ≤ r, the Hermitian map a

factorizes as E →֒ F ♭
i−1/2 →֒ Fi−1 →֒ σ∗E∨, we see that x′i (the support of Fi−1/F ♭

i−1/2) is in the support of

E∨/a(E), i.e., x′i ∈ supp ν−1(Da). �

Proposition 7.13. Let E be a vector bundle on X ′ of rank n, and a ∈ AE(k). Then Zr
E(a) is a proper

scheme over k that depends only on the torsion sheaf Q = coker(a) = σ∗E∨/E together with the Hermitian
structure a on Q induced from a (see §4.1 for the notion of Hermitian structure on a torsion sheaf).

The proof involves a few ideas not yet introduced, and will be given later in §8.4.1.
The next goal is to equip the proper scheme Zr

E(a) with a 0-cycle class in its Chow group. The “virtual
dimension” of Zr

E(a) is at most zero, for if E is a direct sum of line bundles L1 ⊕ · · · ⊕ Ln, then Zr
E(a) is

contained in the intersection of Zr
Li
(aii) for 1 ≤ i ≤ r, each having codimension at least r in ShtrU(n) by

Proposition 7.9 (which can be shown to be an equality, cf. Remark 7.10). However the actual dimension of
Zr
E(a) can be strictly positive. Our task is to find the correct virtual fundamental class of Zr

E(a).

7.7. Intersection theory on stacks. Recall the discussion of intersection theory on Deligne-Mumford
stacks from [YZ17, Appendix A]. Let Y be a smooth, separated, locally finite type Deligne-Mumford stack
over k of pure dimension d. Let Y1, · · · , Yn be Deligne-Mumford stacks with maps fi : Yi → Y . Then there
is an intersection product

(−) ·Y (−) ·Y · · · ·Y (−) : Chi1(Y1)× Chi2(Y2)× · · · × Chin(Yn)→ Chi1+···+in−d(n−1)(Y1 ×Y · · · ×Y Yn).

For ζi ∈ Ch∗(Yi), the intersection product ζ1 ·Y · · · ·Y ζn is defined as the Gysin pullback of the external
product ζ1×· · ·×ζn ∈ Ch∗(Y1×· · ·×Yn) along the diagonal map ∆ : Y → Y n, which is a regular embedding
of codimension d(n− 1).

7.8. Intersection problem: the case of a direct sum of line bundles. We now formulate the cycle
classes which enter into our intersection problem. We first consider the case E a direct sum of m line bundles
on X ′,

E ∼= L1 ⊕ . . .⊕ Lm.
Let a ∈ AE(k). We write a as an m×m-matrix with entries aij ∈ Hom(Lj , σ∗L∨i ).

Let
Zr
L1,··· ,Lm

(a11, · · · , amm)∗ := Zr
L1
(a11)

∗ ×Shtr
U(n)

. . .×Shtr
U(n)
Zr
Lm

(amm)∗.

In Definition 7.11 we defined a fundamental class [Zr
L(a)

∗] ∈ Chr(n−1)(Zr
L(a)

∗). Applying the intersection
product construction in §7.7 for Y = ShtrU(n) (the hypotheses apply by Lemma 6.9 (2)), we obtain a class

[Zr
L1
(a11)

∗] ·Shtr
U(n)

. . . ·Shtr
U(n)

[Zr
Lm

(amm)∗] ∈ Chr(n−m)(Zr
L1,··· ,Lm

(a11, · · · , amm)∗). (7.3)

Let Aall
E (a11, · · · , amm)(k) be the finite set of Hermitian maps a : E → σ∗E∨ (not assumed to be injective)

such that its restriction to Li is aii for i = 1, · · · ,m. By Lemma 7.6, there is a map

Zr
L1
(a11)×Shtr

U(n)
. . .×Shtr

U(n)
Zr
Lm

(amm)→ Aall
E (a11, · · · , amm)(k)
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such that the fiber over a ∈ AE(k) identifies with Zr
E(a). Since a is injective, the image of Zr

E(a)→ Zr
Li
(aii)

lies in Zr
Li
(aii)

∗. In particular,
Zr
E(a) ⊂ Zr

L1,··· ,Lm
(a11, · · · , amm)∗

is open and closed. Restricting (7.3) to Zr
E(a) gives a cycle class

ζrL1,··· ,Lm
(a) :=

(
[Zr
L1
(a11)

∗] ·Shtr
U(n)

. . . ·Shtr
U(n)

[Zr
Lm

(amm)∗]
)
|Zr
E (a)
∈ Chr(n−m)(Zr

E(a)).

Remark 7.14. Our notation suggests that ζrL1,··· ,Lm
(a) (as a cycle class on Zr

E(a)) depends, at least a priori,
on the decomposition of E into a direct sum of line bundles L1, · · · ,Lm. However, we will show later in
Theorem 10.1 that, at least when m = n, it only depends on E , and is equal to the cycle class [Zr

E(a)] that
we will define for general rank n bundle E .
7.9. Intersection problem: m = n and E arbitrary. To define a 0-cycle [Zr

E(a)] for general rank n vector
bundle E on X ′, we need to make some auxiliary choice first; eventually we will show that the definition is
independent of the choice.

Definition 7.15. Let E be a rank n vector bundle over X ′ and a ∈ AE(k). A good framing of (E , a) is an
n-tuple (si : Li → E)1≤i≤n of OX′ -linear maps from line bundles Li ∈ Pic(X ′) satisfying:

(1) The map s = ⊕si : E ′ := ⊕n
i=1Li → E is injective.

(2) Let Ds be the divisor of the nonzero map det(s) : ⊗n
i=1Li → det E . Then ν(Ds) (image in X) is

disjoint from Da (see Definition 7.3).

Lemma 7.16. For any rank n bundle E on X ′ and a ∈ AE(k), there exists a good framing for (E , a) in the
sense of Definition 7.15.

Proof. For notational convenience we give the argument for X ′ connected; the case X ′ = X
∐
X can be

proved with obvious changes.
We strengthen condition (2) on s : ⊕n

i=1Li → E slightly by asking ν(Ds) to avoid a prescribed divisor D0

on X , instead of Da. We prove the existence of s satisfying this stronger condition by induction on n.
The base case n = 1 is trivial: take L1 = E .
For the inductive step, start by picking any saturated line bundle L1 →֒ E . Then En−1 := E/L1 is a vector

bundle of rank n− 1. By induction hypothesis we may pick s : ⊕n
i=2L′i →֒ En−1 satisfying the conditions of

Definition 7.15 and such that ν(Ds) avoids the given divisor D0. Let D2, · · · , Dn be effective divisors on X ′

such that

(1) ν(D2), · · · , ν(Dn) are disjoint from ν(D0), and
(2) degL′i −Di + 2g′ − 2 < degL1 for i = 2, · · · , n.

Let Li = L′i(−Di). By the inequality above we see that Ext1(Li,L1) = 0, so the map si : Li →֒ En−1 = E/L1
lifts to a map si : Li →֒ E , i = 2, · · · , n.

Now we have an injection s : ⊕n
i=1Li →֒ E whose divisor Ds satisfies Ds = Ds + D2 + · · · + Dn. Since

ν(D2), · · · , ν(Dn), ν(Ds) are disjoint from D0 by construction, the same is true for ν(Ds). �

Corollary 7.17. If s : E ′ = ⊕n
i=1Li →֒ E is a good framing, then the map (7.2) realizes ZE(a) as an open

and closed subscheme of ZE′(a′).
Proof. Closedness is proved in Lemma 7.7(1). Only the openness requires an argument. By the definition
of a good framing, ν(Ds) is disjoint from Da, and therefore disjoint from all legs of all points of Zr

E(a) by
Lemma 7.12. Let U ′ = X ′\ supp(Ds + σDs), then Zr

E(a) = Zr
E(a)|U ′r . By Lemma 7.7(2), the inclusion

Zr
E(a) = Zr

E(a)|U ′r →֒ ZE′(a′)|U ′r
is open, hence the inclusion Zr

E(a) →֒ Zr
E′(a

′) is open. �

Definition-Proposition 7.18. Let E be a vector bundle of rank n over X ′ and a ∈ AE(k). Let s : ⊕n
i=1Li →֒

E be a good framing of (E , a). Let

[Zr
E(a)] := ζrL1,··· ,Ln

(a′)|Zr
E(a)
∈ Ch0(Zr

E (a)).

Here we are using Corollary 7.17 to make sense of the restriction, as it implies that Zr
E(a) is a union of

connected components of Zr
E′(a

′). Then the cycle class [Zr
E(a)] thus defined is independent of the good framing

s : E ′ = ⊕n
i=1Li →֒ E.
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The independence of good framing will be proved in Theorem 10.1 after some preparation in §8. The idea
is to construct another 0-cycle class on Zr

E(a) without making auxiliary choices (which is done by introducing
Hitchin shtukas), and show that the two constructions agree.

By Proposition 7.13, Zr
E(a) is proper over k, therefore the degree of the 0-cycle of [Zr

E (a)] ∈ Ch0(Zr
E(a))

is a well-defined number in Q. The main problem we are concerned with in this Part is to determine
deg[Zr

E(a)] ∈ Q.

8. Hitchin-type moduli spaces

In this section we introduce certain “Hitchin-type moduli stacks” which will help to analyze the special
cycles. In particular, we will be able to use these to give an alternative construction of the cycle classes
associated to special divisors, that is manifestly independent of auxiliary choices.

8.1. Hitchin stacks. Until §8.4, we fix an arbitrary positive integer m.

Definition 8.1. The Hitchin stack Mall(m,n) (sometimes denoted Mall when m,n are understood) has
S-points the groupoid consisting of the following data.

• E a rank m vector bundle on X ′ × S.
• F a rank n vector bundle on X ′ × S, equipped with a Hermitian map h : F ∼−→ σ∗F∨.
• A map of underlying coherent sheaves t : E → F over X ′ × S.

We define M(m,n) ⊂ Mall (sometimes denoted M when m,n are understood) to be the open substack
where the map t base changes to an injective map on X ′s for each geometric point s→ S.

Let us emphasize that both E and (F , h) are varying in this definition. We will usually suppress the
dependence on m,n from the notation.

8.2. Hitchin base.

Definition 8.2. We define the following two versions of the Hitchin base.

(1) Aall(m) (sometimes denoted Aall when m is understood) to be the stack whose S-points is the
groupoid of the following data:
• E a rank m vector bundle on X ′ × S;
• a : E → σ∗E∨ is a map of coherent sheaves on X ′ × S such that σ(a∨) = a.

(2) We define A ⊂ Aall to be the open substack where a : E → σ∗E∨ is injective after base change to X ′s
for every geometric point s→ S.

Definition 8.3. For integers 1 ≤ m ≤ n, we define the Hitchin fibration for Mall =Mall(m,n) to be the
map f :Mall → Aall sending (E , (F , h), t) to the composition

a : E t−→ F h−→ σ∗F∨ σ∗t∨−−−→ σ∗E∨.
Remark 8.4. In general the Hitchin fibration does not sendM(m,n) to A(m) even when m ≤ n. However,
in the special case m = n, the Hitchin map does sendM(n, n) to A(n) because when t : E → F is generically
injective, it is generically an isomorphism for rank reasons, hence the induced Hermitian map a on E is
generically non-degenerate.

8.3. Hitchin shtukas. We now discuss a notion of shtukas for Hitchin stacks. Throughout,M =M(m,n).

Definition 8.5 (Hecke stacks for Hitchin spaces). For r ≥ 0, we define HkrMall to be the stack whose S-points
are given by the groupoid of the following data:

(1) ({x′i}1≤i≤r, {(Fi, hi)}0≤i≤r) ∈ HkrU(n)(S).

(2) A vector bundle E of rank m on X ′ × S.
(3) Maps ti : E → Fi fitting into the commutative diagram

E E . . . E

F0 F1 . . . Fr

t0 t1 tr

We define the open substack HkrM ⊂ HkrMall by the condition that t0 base changes to an injective map
along every geometric point s → S (equivalently, every ti has this property). Let pri : Hk

r
M → M (resp.

pralli : HkrMall →Mall) be the map recording (E ,Fi, hi, ti), for 0 ≤ i ≤ r.
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Definition 8.6 (Shtukas for Hitchin stacks). For r ≥ 0, we define ShtrMall as the fibered product

ShtrMall HkrMall

Mall Mall ×Mall

(prall0 ,prallr )

(Id,Frob)

and the open substack ShtrM ⊂ ShtrMall as the fibered product

ShtrM HkrM

M M×M
(pr0,prr)

(Id,Frob)

(8.1)

Explicitly, the stack ShtrMall parametrizes diagrams of the form below, with notation as in Definition 8.5.

E E . . . E τE

F0 F1 . . . Fr
τF0

t0 t1

∼

tr
τ t0

∼

and ShtrM is the open substack where t0 base changes to an injective map along every geometric point s→ S
(equivalently, the same property holds for every ti).

In particular, E ∼−→ τE is a shtuka with no legs, exhibiting E as arising from a rank m vector bundle on
X ′, i.e. coming from BunGL′m(k). Therefore, ShtrMall decomposes as a disjoint union of special cycles

ShtrMall =
∐

E∈Bunm,X′ (k)

Zr
E .

This decomposition can be refined. The compositions f ◦ pri : HkrMall → Aall all coincide, and they induce
a map

ShtrMall → Aall(k).

This induces the decomposition

ShtrMall =
∐

E∈Bunm,X′ (k)

∐

a∈Aall
E (k)

Zr
E(a)

where Aall
E is the fiber of Aall → Bunm,X′ over E ∈ Bunm,X′(k). (Clearly the k-points of Aall

E coincide with
Aall
E (k) as defined in §7.2.) If a 6= 0 then Zr

E(a) ⊂ ShtrM, while if a = 0 then Zr
E(0) ∩ ShtrM = Zr

E(0)
∗. So

this induces a decomposition

ShtrM =
∐

E∈Bunm,X′ (k)

∐

a∈Aall
E (k)

Zr
E(a)

∗.

8.4. From vector bundles to torsion sheaves. For the rest of the section, we concentrate on the case
m = n. In this case, we will relateM =M(n, n) to the moduli stack of Hermitian torsion sheaves introduced
in §4.1. We introduce the following abbreviated notations.

Definition 8.7. Let d ∈ Z≥0.

(1) Let Md = M(n, n)d be the open-closed substack of M = M(n, n) consisting of (E t−→ F) where

d = deg E∨−deg(E)
2 = −χ(X ′, E).

(2) LetAd = A(n)d be the open-closed substack ofA = A(n) consisting of (E , a) where d = deg E∨−deg(E)
2 =

−χ(X ′, E).
By Remark 8.4, the Hitchin map forMall =Mall(n, n) restricts to a map

fd :Md → Ad.

When d is understood, we abbreviate f for fd.
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Recall that Herm2d = Herm2d(X
′/X) is the moduli stack of length 2d torsion coherent sheaves Q on X ′

equipped with a Hermitian structure hQ : Q ∼−→ σ∗Q∨, where Q∨ := Ext1(Q, ωX′) such that σ∗h∨Q = hQ.
Alternatively we may think of hQ as the datum of a perfect pairing

h′Q : Q⊗OX′ σ
∗Q → ωX′,F ′/ωX′

where ωX′,F ′ is the constant Zariski sheaf of rational differential form on X ′. The Hermitian condition is
equivalent to h′Q(u, v) = σ∗h′Q(v, u) for local sections u, v of Q.

In §4.5 we have also introduced the moduli stack Lagr2d = Lagr2d(X
′/X) classifying (Q, hQ,L) where

(Q, hQ) ∈ Herm2d and L ⊂ Q is a Lagrangian subsheaf.
There is a canonical map g : Ad → Herm2d sending (E , a) to the torsion sheaf Q = σ∗E∨/E together with

the Hermitian structure hQ defined as follows. Applying σ∗RHom(−, ωX′) to the short exact sequence

0→ E a−→ σ∗E∨ → Q→ 0 (8.2)

yields a short exact sequence

0→ E σ∗a∨−−−→ σ∗E∨ → σ∗Ext1(Q, ωX′)→ 0. (8.3)

Since σ∗a∨ = a, we may identify (8.2) and (8.3) and get an isomorphism hQ : Q ∼→ σ∗Q∨.
We have a map gM : Md → Lagr2d sending (E t−→ F) ∈ Md to the torsion Hermitian sheaf (Q =

σ∗E∨/E , hQ) constructed above together with the Lagrangian L = F/E .
Lemma 8.8. The maps defined above fit into a Cartesian diagram

Md Lagr2d

Ad Herm2d

f

gM

υ2d

g

(8.4)

Proof. Given a : E → σ∗E∨ that is injective, the datum of a subsheaf L ⊂ σ∗E∨/E is the same as a coherent
sheaf F such that E ⊂ F ⊂ σ∗E∨. It is easy to see that L is Lagrangian if and only if F is self-dual under
the Hermitian map a. �

Corollary 8.9. The Hitchin fibration fd :Md → Ad is proper.

Proof. Apply Lemma 8.8 and the fact that υ2d is proper. �

Lemma 8.10. The map υ2d : Lagr2d → Herm2d is small.

Proof. The map πHerm
2d from §4.2 factors as

πHerm
2d : H̃erm2d

λ2d−−→ Lagr2d
υ2d−−→ Herm2d .

Since λ2d is surjective and πHerm
2d is small by Proposition 4.5, we get the desired statement. �

8.4.1. Proof of Proposition 7.13. Let Lagr(Q) be the moduli space of Lagrangian subsheaves of Q. Let
HkrLagr(Q) be its Hecke version, classifying points {x′i}1≤i≤r of X ′ and chains of Lagrangian subsheaves of Q

L0 L1 · · · Lrf1 f2 fr

where the dashed arrow fi are modifications at x′i ∪ σ(x′i), similar to those in Definition 6.3. There is
a natural map Zr

E(a) → HkrLagr(Q) sending a point ({x′i}, {ti : E → Fi}) of Zr
E(a) to the collection of

(necessarily Lagrangian) subsheaves F i = coker(ti) ⊂ Q = σ∗E∨/E . This map fits into a Cartesian diagram

Zr
E(a) //

��

HkrLagr(Q)

��
Lagr(Q)(Id,Frob)// Lagr(Q)× Lagr(Q)

Now both Lagr(Q) and HkrLagr(Q) are proper schemes over k, hence the same is true for Zr
E(a). The diagram

also makes it clear that Zr
E (a) only depends on (Q, a).
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8.5. Smoothness.

Lemma 8.11. The map
βd :Md → Cohd(X

′)× BunU(n)

sending (E t−→ F , h) to (coker(t), (F , h)) is smooth of relative dimension dn. In particular, Md is smooth of
pure dimension dn+ n2(g − 1).

Proof. Consider the stackM′d classifying (T ,F , h, s) where T ∈ Cohd(X
′), (F , h) ∈ BunU(n) and an OX′-

linear map s : F → T . Let β′d :M′d → Cohd(X
′) × BunU(n) be the natural map. Due to the vanishing of

Ext1(F , T ), β′d exhibits M′d as a vector bundle over Cohd(X
′) × BunU(n) of rank dn = dimHomX′(F , T ).

NowMd is the open substack ofM′d where s is surjective. Therefore βd is also smooth of relative dimension
dn. �

Proposition 8.12. The map g : Ad → Herm2d is smooth.

Proof. We have a map sLagr2d : Lagr2d → X ′d sending (Q, hQ,L) to the divisor of L. Recall also the map
sHerm
2d : Herm2d → Xd sending (Q, hQ) to the descent of the divisor of Q to X .
Recall in §4.5 we introduced the open subset

(X ′d)
♦ = {D′ ⊂ X ′ : D′ ∩ σ(D′) = ∅} ⊂ X ′d.

Let Lagr♦2d ⊂ Lagr2d andM♦d ⊂Md be the preimages of (X ′d)
♦ under the maps sLagr2d and sLagr2d ◦ gM.

We claim that both squares in the diagram

M♦d Lagr♦2d (X ′d)
♦

Ad Herm2d Xd

fd

g

are Cartesian. The left square is Cartesian by definition. Now we show that the right square is Cartesian.
Let (Q, hQ) ∈ Herm2d, D

′ ∈ (X ′d)
♦ lying over D = sHerm

2d (Q, hQ). Since D′ ∩ σ(D′) = ∅, there is a unique
Lagrangian subsheaf L ⊂ Q supported on the support of D′, namely L = Q|suppD′ . This gives the unique

point (Q, hQ,L) ∈ Lagr♦2d mapping to (Q, hQ) ∈ Herm2d and D′ ∈ (X ′d)
♦.

Note that the map (X ′d)
♦ → Xd is faithfully flat: it is clearly surjective, and the map νd : X ′d → Xd is a

finite morphism between smooth schemes, hence flat. We will show thatM♦d → Lagr♦d is smooth. By fppf
descent it then follows that Ad → Hermd is also smooth.

Recall from §4.5 that ε′d : Lagr2d → Cohd(X
′) (recording only L) restricts to an isomorphism Lagr♦2d

∼→
Cohd(X

′)♦ := Cohd(X
′)|(X′d)♦ . Therefore it suffices to show that the composition M♦d

gM−−→ Lagr♦2d
ε′d−→

Cohd(X
′)♦ is smooth. This follows from the smoothness ofMd → Cohd(X

′) proved in Lemma 8.11. �

Corollary 8.13. The Hitchin fibration f :Md → Ad is small. The complex Rf∗Qℓ is a shifted perverse
sheaf that is the middle extension from any dense open substack of Ad.

Proof. By the smoothness of g in Proposition 8.12 and the Cartesian diagram in Lemma 8.8, the smallness
of f follows from that of υ2d : Lagr2d → Herm2d, which is proved in Lemma 8.10. �

8.6. Cycle class from Hitchin shtukas. In this subsection we take m = n, so M = M(n, n) and
A = A(n). Now consider the Hitchin shtukas for Md ⊂ M. Let N = dimMd. By Corollary 8.13,
dimAd = N . The Cartesian diagram (8.1) restricts to a Cartesian diagram

ShtrMd

��

// HkrMd

(pr0,prr)

��
Md

(Id,Frob)//Md ×Md

(8.5)

We would like to define a 0-cycle class on ShtrMd
as the Gysin pullback of a cycle on HkrMd

along the Frobenius
graph ofMd. Although the virtual dimension of HkrMd

is the same as dimMd, its actual dimension may be
larger. For this reason we have to define in a roundabout way a virtual fundamental cycle on HkrMd

of the

virtual dimension by relating it to Hk1Md
, which we show is smooth below.
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Lemma 8.14. The stack Hk1Md
is smooth and equidimensional of the same dimension as Md.

Proof. Let (x′,F0 99K F1) ∈ Hk1U(n). Let F ♭ := F ♭
1/2 = F0 ∩ F1 as in Definition 6.3. The generically

compatible Hermitian structures on F0 and F1 equip this intersection with a Hermitian structure h♭ : F ♭ →֒
σ∗(F ♭)∨ whose cokernel has length 1 at x′ and at σ(x′). We call such a bundle almost Hermitian with defect
at the ordered pair of conjugate points (x′, σ(x′)). Conversely, given (F ♭, h♭) almost Hermitian with defect
at (x′, σ(x′)), one can uniquely recover F0 (resp. F1) as the upper modification of F ♭ at x′ (resp. σ(x′))
inside σ∗(F ♭)∨.

Let Bun♭
U(n) be the moduli stack parametrizing (x′ ∈ X ′,F ♭, h♭) where (F ♭, h♭) is an almost Hermitian

bundle with defect at (x′, σ(x′)). The discussion in the previous paragraph shows that there is an isomorphism

Hk1U(n)
∼→ Bun♭U(n) over X ′. Let M♭

d be the moduli stack of (x′, E t−→ F ♭, h♭) where (F ♭, h♭) is almost

Hermitian with defect at (x′, σ(x′)), E is a vector bundle on X ′ of rank n and χ(X ′, E) = −d, and t is
injective. Then we have an isomorphism Hk1Md

∼=M♭
d.

We have a natural map

β♭
d :M♭

d → Cohd−1(X
′)× Bun♭U(n)

sending (x′, E t−→ F ♭, h♭) to (coker(t), (x′,F ♭, h♭)). The same argument as Lemma 8.11 shows that β♭
d ex-

hibits M♭
d as an open substack in a vector bundle of rank n(d − 1) over Cohd−1(X ′) × Bun♭U(n). Now

dimCohd−1(X ′) = 0 and dimBun♭U(n) = dimHk1U(n) = dimBunU(n) +n by Lemma 6.9(1). Therefore

Hk1Md

∼=M♭
d is of pure dimension dimBunU(n) +dn, which is the same as dimMd by Lemma 8.11. �

Definition 8.15. For any stack S over k we define a morphism

Φr
S : Sr → S2r

by the formula Φr
S(ξ0, · · · , ξr−1) = (ξ0, ξ1, ξ1, ξ2, ξ2, · · · , ξr−1,Frob(ξ0)). When r is fixed in the context, we

simply write ΦS .

We rewrite ShtrMd
as the fiber product

ShtrMd
//

��

(Hk1Md
)r

(pr0,pr1)
r

��
(Md)

r
Φr
Md // (Md)

2r

(8.6)

Here the vertical map (pr0, pr1)
r sends (h1, · · · , hr) ∈ (Hk1Md

)r to

(pr0(h1), pr1(h1), · · · , pr0(hr), pr0(hr)) ∈ (Md)
2r .

Definition 8.16. We define a 0-cycle classes [ShtrMd
] ∈ Ch0(Sht

r
Md

) as the image of the fundamental class

of (Hk1Md
)r (which is smooth of the same dimension as (Md)

r by Lemma 8.14) under the refined Gysin map

along ΦMd
: (Md)

r → (Md)
2r (which is defined sinceMd is smooth and equidimensional by Lemma 8.11;

see [Kre99, Theorem 2.1.12(xi)])

[ShtrMd
] := (Φr

Md
)![(Hk1Md

)r] ∈ Ch0(Sht
r
Md

).

9. Special cycles of corank one

In this section we prove geometric properties of the special cycles Zr
E (a) when m = rank E = 1 (where

the number field analogues are called “Kudla-Rapoport divisors”). In particular, we show that for a 6= 0,
Zr
E(a) are local complete intersections of dimension r less than ShtrU(n). When a = 0, we show that Zr

E(a)
∗

has dimension at most dimShtrU(n)−r. These geometric properties are proved by studying stratifications
introduced and analyzed in §9.1 and §9.2.
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9.1. Stratification of the special cycle when m = 1. In this section we fix a line bundle L on X ′k and
a ∈ AL(k), i.e., a : L → σ∗L∨ is nonzero Hermitian. We now define a stratification of Z := Zr

L(a)k and
estimate the dimension of each stratum. By Lemma 7.12, we have dimZ = 0 when n = 1. Therefore in this
subsection we will assume n ≥ 2.

For each (L ti−→ Fi)0≤i≤r ∈ Z(k) with legs (x′i)1≤i≤r ∈ X ′(k)r, let Di (0 ≤ i ≤ r) be the divisor on X ′
k

such that ti : L(Di) →֒ Fi is saturated. For each 1 ≤ i ≤ r, we have one of the four cases:

(0) Di = Di−1;
(+) Di = Di−1 + σ(x′i);
(−) Di = Di−1 − x′i;
(±) Di = Di−1 − x′i + σ(x′i).

Since the composition L ti−→ Fi
h−→ σ∗F∨i

σ∗t∨i−−−→ σ∗L∨ is equal to a, we see that Di + σ(Di) is a subdivisor of

the divisor of a. Therefore ν(Di) ≤ Da as divisors on X(k).

9.1.1. Indexing set for strata. Consider the set D of sequences of effective divisors (Di)0≤i≤r on X ′k satisfying

• ν(Di) ≤ Da for all 0 ≤ i ≤ r.
• For each 1 ≤ i ≤ r, the pair (Di−1, Di) falls into one of the cases (0), (+), (−), (±) above for some
x′i ∈ X ′(k).
• Dr =

τD0.

It is clear that D is a finite set. This will be the index set for our stratification of Z.
9.1.2. Definition of strata. Fix D• = (Di)0≤i≤r ∈ D. Let I0 := {1 ≤ i ≤ r|Di = Di−1}. Similarly we define
I+, I− and I± as the set of those i such that (Di−1, Di) falls into case (+), (−) and (±) respectively. Let
Z[D•] be the substack of ZFq

classifying

({x′i} ∈ X ′r; {Fi} ∈ HkrU(n); {L(Di)
t′i−→ Fi}0≤i≤r)

such that every t′i is saturated. Let
π[D•] : Z[D•]→ (X ′

Fq
)I0

be the map recording those x′i for i ∈ I0. Note that for i ∈ I+ ∪ I− ∪ I±, x′i is determined by D•.

Proposition 9.1. Let n ≥ 2.

(1) The substacks Z[D•] for D• ∈ D give a partition of Z.
(2) Each geometric fiber of π[D•] has dimension ≤ (n− 1)|I+|+ (n− 2)|I0|.
(3) We have dimZ[D•] ≤ r(n − 1). The equality can only be achieved when I0 = {1, 2, · · · , r}, i.e., all

Di are equal to the same divisor of X ′, which is then necessarily defined over k. 5

Proof. (1) Each geometric point of z ∈ Z defines a (unique) point D• ∈ D by taking the zero divisor of ti,
and then z ∈ Z[D•] by definition.

(2) Let H[D•] be the substack of the fiber of (HkrM)Fq
over (L, a) ∈ Ad(k) classifying data ({x′i},L

ti−→ Fi)

such that ti extends to a map t′i : L(Di)→ Fi. Note that for i ∈ I+ ∪ I− ∪ I±, x′i is determined by D•. Let
M[Di] be the substack of the fiber of M(1, n)Fq

over (L, a) ∈ A(1, n)(k) classifying maps t : L → F that

extends to a saturated map t′ : L(Di)→ F . Then we have a Cartesian diagram of stacks over Fq

Z[D•]

��

// H[D•]
(p0,pr)

��
M[D0]

(Id,Frob)//M[D0]×M[Dr].

(9.1)

Note since Dr = τD0, the Frobenius morphism sendsM[D0] toM[Dr].
Let

Π[D•] : H[D•]→M[Dr]×X ′I0k

be the projection pr and the map recording x′i for i ∈ I0.
5In this case, Z[D•] can be identified with the open substack Z̊r

L(D0)
(a′) ⊂ Zr

L(D0)
(a′) (where a′ is the map L(D0) →

σ∗L(D0)∨ induced from a) defined by requiring all the maps t′
i
: L(D0) → Fi be saturated.
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Claim 9.2. The map Π[D•] is smooth and representable of relative dimension (n− 1)|I+|+ (n− 2)|I0|.
Assuming the claim, we finish the proof of (2). Indeed, we may apply Lemma 9.3 below to the Cartesian

diagram (9.1) to conclude, except that M[D0] is generally not a scheme. To remedy, we may restrict to a
finite type open substackM[D0]

≤P ⊂M[D0] by bounding Harder-Narasimhan polygon of (F , h), and impose

level structures on the Hermitian bundle (F , h) at a closed point x ∈ |X | to arrive at a scheme M̃[D0]
≤P

which is a torsor overM[D0]
≤P by an algebraic group H . Truncating and imposing the same level structures

to H[D•] gives a scheme H̃[D•]≤P (with legs away from x) such that H̃[D•]≤P /H = H[D•]≤P . Let Z̃[D•]≤P
be defined by a Cartesian diagram similar to (9.1), with H[D•] replaced by H̃[D•]≤P andM[Di] replaced by

M̃[Di]
≤P for i = 0, r. We apply Lemma 9.3 to conclude that the fibers of Z̃[D•]≤P → X ′I0

Fq
have dimension

≤ (n−1)|I+|+(n−2)|I0|. Now Z̃[D•]≤P /H(k)
∼→ Z[D•]≤P and for varying P and x, Z[D•]≤P cover Z[D•],

hence the same dimension estimate holds for Z[D•].
It remains to prove the claim.
For r ≥ j ≥ 0, let H≥j be the moduli stack defined similarly to H[D•] but classifying only {x′i}i∈I0 ∈ X ′I0

and saturated maps {ti : L(Di) → Fi}j≤i≤r (over a, and Fi and Fi+1 are still related to each other by
elementary modifications at x′i+1 for j ≤ i < r). We can factorize Π[D•] as

Π[D•] : H[D•] = H≥0 Π1−−→ H≥1 Π2−−→ · · · Πr−−→ H≥r =M[Dr]×X ′I0k
.

The desired smoothness and relative dimension claims would follow from the following four statements:

(H0) If i ∈ I0, then Πi exhibits H≥i−1 as an open substack in a Pn−2-bundle over H≥i.
(H+) If i ∈ I+, then Πi exhibits H≥i−1 as an open substack in a Pn−1-bundle over H≥i.
(H−) If i ∈ I−, then Πi is an isomorphism.
(H±) If i ∈ I±, then Πi is an open immersion.

We next establish each of these statements.
Proof of (H0). When i ∈ I0, Di−1 = Di. We write the modification Fi−1 99K Fi as

Fi−1 F ♭
i−1/2 Fi

σ(x′i)x′i (9.2)

Here both arrows have cokernel of length one supported at the labelled points. Such modifications of Fi

are parametrized by a hyperplane H in the fiber Fi|σ(x′i). The requirement that ti : L(Di) → Fi should

land in F ♭
i−1/2 is equivalent to the (closed) condition that H should contain the line given by the image of

L(Di)|σ(x′i). This cuts out a Pn−2 in the space of hyperplanes H ⊂ Fi|σ(x′i). The further requirement that

ti−1 : L(Di)→ F ♭
i−1/2 → Fi−1 be saturated is an open condition.

This argument globalizes in the evident way, exhibiting that Πi as an open substack in a Pn−2-bundle.
This applies similarly for the analogous arguments below for the other cases.

Proof of (H+). When i ∈ I+, we have Di−1 = Di − σ(x′i). We write the modification of Fi as in (9.2).

This time the choice of the Fi ← F ♭
i−1/2 is the open subset of those hyperplanes H ∈ P(Fi|σ(x′i)) that do

not contain the image of L(Di)|σ(x′i). The requirement that L(Di−1) = L(Di − σ(x′i))→ F ♭
i−1/2 → Fi−1 be

saturated at x′i imposes a further open condition.
Proof of (H−). When i ∈ I−, we have Di−1 = Di + x′i. We write the modification as

Fi−1 F ♯
i−1/2 Fi

σ(x′i) x′i (9.3)

where both arrows have cokernel of length one supported at the labelled points. Now ti : L(Di) → Fi is

required to extend to L(Di + x′i)→ F ♯
i−1/2. This determines the upper modification Fi → F ♯

i−1/2 uniquely,

which in turn determines the lower modification F ♯
i−1/2 ← Fi−1 as well. We get a map t′i−1 : L(Di−1) =

L(Di + x′i) → F ♯
i−1/2. We claim that t′i−1 automatically lands in Fi−1. Indeed, the claim is equivalent to

saying that under the pairing between Fi|x′i and Fi|σ(x′i), the images of ti(x
′
i) and ti(σ(x

′
i)) pair to zero. The

latter statement is equivalent to saying that the induced Hermitian map a′i : L(Di)→ σ∗(L(Di))
∨ vanishes

at x′i. But we know that the divisor of a′i is ν
∗Da−Di−σ(Di). Since Di−1 = Di+x

′
i satisfies ν(Di−1) ≤ Da

by assumption, we see that ν∗Da − Di − σ(Di) ≥ x′i + σ(x′i), hence a
′
i is guaranteed to vanish at x′i and

σ(x′i). This shows that there is a unique lifting of any point of H≥i to H≥i−1, hence Πi is an isomorphism.
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Proof of (H±). When i ∈ I±, we have Di+ x′i = Di−1 + σ(x′i). We write the modification as in (9.3). As

in the case (H−), the requirement that ti : L(Di) → Fi should extend to L(Di + x′i) → F ♯
i−1/2 determines

the modification. Then we automatically get a map ti−1 : L(Di−1) = L(Di + x′i − σ(x′i)) → Fi−1; the
requirement that ti−1 be saturated is an open condition. Therefore Πi is an open immersion in this case.

(3) By (2) and we have

dimZ[D•] ≤ (n− 1)|I+|+ (n− 2)|I0|+ |I0| = (n− 1)(|I+ ∪ I0|) ≤ r(n − 1).

Equality holds only if I− and I± are empty. However, by degree reasons we have |I+| = |I−|, so in the equality
case we must have I+ = ∅ as well. We conclude that equality can only be achieved if I0 = {1, 2, · · · , r};
in other words, all Di must be the same. In particular, since Dr = τD0, this forces D0 to be defined over
k. �

The Lemma below, a slight variant of [Laf18, Lemma 2.13], was used above.

Lemma 9.3 (Variant of [Laf18, Lemma 2.13]). Let W,Z, T be schemes of finite type over k. Let Z(1) be the

Frobenius twist of Z (i.e., the pullback of Z under the q-Frobenius Spec k→ Spec k). Let h̃ = (h1, hT ) : W →
Z(1) × T be smooth of relative dimension d, and h0 : W → Z be an arbitrary map. Define V as the fibered
product

V W

Z Z × Z(1)

(h0,h1)

(Id,Frob)

Then each fiber of the composition map V →W
hT−−→ T has dimension ≤ d.

Proof. Restricting W over a point t ∈ T (k), we reduce to the case T itself is the point Spec k. We may
assume Z = Spec R where R = k[x1, . . . , xl]/I. Let R(1) = k ⊗k R

∼= k[ξ1, . . . , ξl]/I
(1) be the base change

of R under Frobq, where ξi = 1 ⊗ xi . Since h1 : W → Z(1) is smooth of relative dimension d, by Zariski

localizing we may assume W = k[ξ1, . . . , ξl, y1, . . . , ym+d]/(I
(1), r1, . . . , rm), with ( ∂ri∂yj

)mj=1 having rank m

(ri ∈ k[ξ1, . . . , ξl, y1, . . . , ym+d]). Under h0 : W → Z, the coordinates xi of Z pullback to functions f i on W ,
1 ≤ i ≤ l. We lift fi to polynomials fi ∈ k[ξ1, . . . , ξl, y1, . . . , ym+d].

By definition, V has the form

V ∼= Spec
k[ξ1, . . . , ξl, y1, . . . , ym, ym+1 . . . , ym+d]

(I(1)(ξ), g1, . . . , gl, r1, . . . , rm)

where gi = ξi − f q
i . In particular, V is a closed subscheme of

U := Spec
(
k[ξ1, . . . , ξl, y1, . . . , ym, ym+1 . . . , ym+d]/(g1, . . . , gl, r1, . . . , rm)

)
.

The Jacobian matrix for the defining equations of U has the form



∂gi
∂ξj

l

j=1

∂gi
∂yj

m

j=1

∂gi
∂yj

m+d

j=m+1

∂ri
∂ξj

l

j=1

∂ri
∂yj

m

j=1

∂ri
∂yj

m+d

j=m+1




=

(
Idl 0 0
∗ invertiblem ∗

)
,

which evidently has rank l +m. Hence U is smooth of dimension d. Since V →֒ U , dimV ≤ d. �

9.2. The case m = 1 and a = 0. We keep the notations from §9.1. In this subsection we extend the
discussion in §9.1 to the case a = 0. Fix a line bundle L ∈ Pic(X ′). Recall from Definition 7.8 that Zr

L(0)
∗

is the moduli stack classifying unitary shtukas ({x′i}, {Fi}) together with compatible maps {L ti−→ Fi}) with
ti injective (fiberwise over the test scheme S) and the image of ti being isotropic. In this subsection, let

Z := Zr
L(0)

∗
k
.

If n = 1 then Zr
L(0)

∗ = ∅. We always assume n ≥ 2 below.
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9.2.1. Indexing set for strata. Let I0 ⊔ I+ ⊔ I− be a partition of {1, 2, · · · , r} such that |I+| = |I−|. We
denote this partition simply by I•. For any N ∈ Z≥0, define D(N ; I•) to be the moduli space of sequences
of effective divisors (Di)0≤i≤r on X ′

k
such that

(1) deg(D0) ≤ N .
(2) For ? = 0,+ or −, and i ∈ I?, the pair (Di−1, Di) belongs to the corresponding Case (?) listed in

the beginning of §9.1 (for some x′i ∈ X ′ in the case ? = + or −).
(3) Dr =

τD0.

We have a map recording the points x′i for i ∈ I+ ∪ I−:
(π+, π−) : D(N ; I•)→ (X ′

Fq
)I+ × (X ′

Fq
)I− .

Lemma 9.4. The map π+ : D(N ; I•)→ (X ′
Fq

)I+ is quasi-finite.

Proof. For a fixed geometric point (x′i)i∈I+ ∈ (X ′
Fq

)I+(Fq), its fiber in D(N ; I•) consists of (D0, {x′i}i∈I−)
such that degD0 ≤ N and

D0 +
∑

i∈I+
σ(x′i) =

τD0 +
∑

i∈I−
x′i. (9.4)

Let v ∈ |X ′| be a closed point that intersects suppD0. If deg(v) > N , then D0 cannot contain all geometric
points over v and hence there exists a geometric point y|v such that y ∈ supp τD0 but y /∈ suppD0. By
(9.4), y = σ(x′i) for some i ∈ I+. Therefore points in D0 are either over closed points of degree ≤ N , or in
the Galois orbit of σ(x′i) for some i ∈ I+. This leaves finitely many possibilities for D0, hence for {x′i}i∈I−
as well. �

9.2.2. Definition of strata. For a partition I = (I0, I+, I−) of {1, 2, · · · , r}, define Z[N ; I•] to be the stack
classifying

({Di}0≤i≤r, ({x′i}1≤i≤r, {Fi}0≤i≤r) ∈ HkrU(n), {L
ti−→ Fi}0≤i≤r)

such that {Di} ∈ D(N ; I•) with image {x′i}i∈I? under π? (? = +,−), and ti extends to a saturated embedding
L(Di) →֒ Fi. We have a map

π[N ; I•] : Z[N ; I•]→ (X ′
Fq

)I0 ×D(N ; I•).

The following is the analog of Proposition 9.1 when a = 0.

Proposition 9.5. Let n ≥ 2.

(1) For varying N ∈ Z≥0 and partitions I• of {1, 2, · · · , r} such that |I+| = |I−|, the substacks Z[N ; I•]
give a partition of Z.

(2) The fibers of the map π[N ; I•] have dimension ≤ (n− 1)|I+|+ (n− 2)|I0|.
(3) We have dimZ[N ; I•] ≤ r(n − 1). Moreover, when n ≥ 3, the equality can only be achieved when

I0 = {1, 2, · · · , r}, i.e., all Di are equal to the same divisor of X ′ defined over k.

Proof. (1) is similar to Proposition 9.1(1), except we have to argue that Case (±) cannot appear for points
in Z = Zr

L(0)
∗. Indeed, if Case (±) happens for the modification

Fi−1 ← F ♭
i−1/2 → Fi,

let H ⊂ Fi−1,x′i be the hyperplane that is the image of F ♭
i−1/2. Then H

⊥ ⊂ Fi−1,σ(x′i) is the line along which

the upper modification F ♭
i−1/2 →֒ Fi is performed. Let ℓx′i (resp. ℓσ(x′i)) be the image of L(Di−1) → Fi−1

at x′i (resp. at σ(x′i)). Since the image of L(Di−1) is isotropic (because a = 0), (ℓx′i , ℓσ(x′i)) = 0 under the

pairing between Fi−1,x′i and Fi−1,σ(x′i). The condition Di + x′i = Di−1 + σ(x′i) happens only if ℓx′i 6⊂ H and

ℓσ(x′i) = H⊥. This contradicts the fact that (ℓx′i , ℓσ(x′i)) = 0.

(2) is proved in the same way as Proposition 9.1(2).
(3) Applying (2) and Lemma 9.4 we get

dimZ[N ; I•] = (n− 1)|I+|+ (n− 2)|I0|+ |I0|+ dimD(N ; I•)

≤ (n− 1)|I+|+ (n− 1)|I0|+ |I+| = (n− 1)|I0|+ n|I+|.
Since n ≥ 2, we have n ≤ 2(n− 1), therefore the above is ≤ (n− 1)(|I0|+2|I+|) = r(n− 1). When n ≥ 3, we
have strict inequalities n < 2(n− 1), so equality can only be achieved when I+, hence I−, are all empty. �
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10. Comparison of two cycle classes

The goal in this section is to show the following theorem.

Theorem 10.1. Let E ∈ Bunn,X′(k) and a ∈ AE(k). Let s : E ′ = ⊕n
i=1Li →֒ E be a good framing of (E , a)

in the sense of Definition 7.15. Let a′ : E ′ → σ∗(E ′)∨ be the Hermitian map induced from a. Then we have
an equality in the Chow group

ζrL1,··· ,Ln
(a′)|Zr

E(a)
= [ShtrM(n,n)]|Zr

E(a)
∈ Ch0(Zr

E (a)). (10.1)

In particular, the cycle class [Zr
E(a)] as in Definition-Proposition 7.18 is well-defined (i.e., independent of

the choice of a good framing).

Below we consider the case where X ′ is geometrically connected. At the end of this section (§10.5) we
comment on how to modify the argument in the case X ′ = X

∐
X or X ′ = Xk′ , where k

′/k is the quadratic
extension.

10.1. First reductions. For a vector bundle E on X ′ let µmin(E) ∈ Q be the smallest slope that appears
in the Harder-Narasimhan filtration of E . For E of rank n and a ∈ AE(k), a good framing s : ⊕n

i=1Li →֒ E
for (E , a) is called very good if it satisfies the additional condition

(3) µmin(E) > max{degLi + 2g′ − 1}1≤i≤n.
Most of the work in this section will be devoted to proving the slightly weaker statement below.

Theorem 10.2. Suppose X ′ is connected. Then the identity (10.1) holds if s : E ′ = ⊕n
i=1Li →֒ E is a very

good framing of (E , a).

Lemma 10.3. Theorem 10.2 implies Theorem 10.1.

Proof. Choose effective divisors Di on X
′ (1 ≤ i ≤ n) such that ν(D1 + · · · + Dn) is multiplicity-free and

disjoint from ν−1(Da). Let L′i = Li(−Di). When the Di’s have sufficiently large degree, the resulting map

s′ : ⊕n
i=1L′i →֒ ⊕n

i=1Li →֒ E
is a very good framing. Let a′′ be the induced Hermitian map ⊕L′i → σ∗(⊕L′i)∨. By Theorem 10.2 we have

ζrL′1,··· ,L′n(a
′′)|Zr

E(a)
= [ShtrM(n,n)]|Zr

E(a)
.

Therefore, to prove (10.1) it suffices to show

ζrL1,··· ,Ln
(a′)|Zr

E(a)
= ζrL′1,··· ,L′n(a

′′)|Zr
E (a)
∈ Ch0(Zr

E (a)).

Let U ′ be the complement of ∪ni=1 supp(Di + σDi) in X
′. By construction, U ′ contains ν−1(Da), therefore

Zr
E(a)|U ′r = Zr

E(a) by Lemma 7.12. Let ζi = [Zr
Li
(a′ii)

∗]|U ′r ∈ Chr(n−1)(Zr
Li
(a′ii)

∗|U ′r ). Similarly define ζ′i
using (L′i, a′′ii). Then it suffices to show the equality

(ζ1 · ζ2 · · · · · ζn)|Zr
E (a)

= (ζ′1 · ζ′2 · · · · · ζ′n)|Zr
E (a)
∈ Ch0(Zr

E (a)), (10.2)

where the intersection products are taken over ShtrU(n) |U ′r . Applying Lemma 7.7 to each injection L′i →֒ Li,
we see that Zr

Li
(a′ii)|U ′r →֒ Zr

L′i(a
′′
ii)|U ′r is open and closed. Therefore Zr

Li
(a′ii)

∗|U ′r →֒ Zr
L′i(a

′′
ii)
∗|U ′r is open.

This shows that the fundamental class ζi is the open restriction of ζ′i to Zr
Li
(a′ii)

∗|U ′r . The equality (10.2)
then follows. �

10.2. Auxiliary moduli spaces. Let d = (di)1≤i≤n ∈ Zn
≥0 and e ∈ Z≥0. Write d =

∑
di.

Recall that Me ⊂ M(n, n) is the open-closed substack where χ(X ′, E) = −e. Let Md be the moduli
stack classifying ({Li}1≤i≤n, (F , h), {t′i : Li → F}1≤i≤n) where

• Li is a line bunde on X ′ with χ(X ′,Li) = −di for 1 ≤ i ≤ n;
• (F , h) ∈ BunU(n) satisfying

µmin(F) > max{−di + 3g′ − 2}1≤i≤n. (10.3)

• For each 1 ≤ i ≤ n, t′i : Li → F is an injective map (fiberwise over the test scheme).
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We define HkrMd
to be the moduli stack classifying

({Li}1≤i≤n, ({x′i}1≤i≤r, {(Fj, hj)}0≤j≤r) ∈ HkrU(n), {t′ij : Li → Fj})

where Li are the same as inMd, each Fj satisfies the analogue of (10.3) with F replaced by Fj , and fiberwise
injective maps t′ij : Li → Fj are compatible with the isomorphisms between Fj−1 and Fj away from x′i.

Lemma 10.4. The stacks Md and Hk1Md
are smooth stacks of pure dimension dn− (n2 − 2n)(g − 1).

Proof. We first prove the statement for Md. Consider the map γd : Md →
∏n

i=1 Pic
−di+g′−1
X′ ×BunU(n)

sending ({Li}, (F , h), {ti}) to ({Li}, (F , h)). For (F , h) ∈ BunU(n) and Li ∈ Pic−di+g′−1
X′ , the condi-

tion µmin(F) ≥ max{−di + 3g′ − 2}1≤i≤n = max{degLi + 2g′ − 1}1≤i≤n guarantees that Ext1(Li,F) =
Hom(F ,Li⊗ωX′)

∨ = 0. Noting that degF = n(g′− 1), the Riemann-Roch formula implies that γd exhibits
Md as an open substack of a vector bundle of rank dimHom(⊕Li,F) = −n∑i degLi = dn − n2(g′ − 1)

over the base. In particular, Md is smooth and equidimensional. Since dimPic−di+g′−1
X′ = g′ − 1 and

dimBunU(n) = n2(g − 1), we conclude that

dimMd = dn− n2(g′ − 1) + n(g′ − 1) + n2(g − 1) = dn− (n2 − 2n)(g − 1).

The argument for Hk1Md
is similar. The natural map

Hk1Md
→

n∏

i=1

Pic−di+g′−1
X′ ×Hk1U(n)

exhibits Hk1Md
as an open substack of a vector bundle of rank dimHom(⊕Li,F0 ∩ F1) = dn − n (using

that deg(F0 ∩ F1) = n(g′ − 1) − 1) over the base. Here we need the stronger inequality µmin(F0) >
max{−di + 3g′ − 2} to guarantee µmin(F0 ∩ F1) ≥ max{−di + 3g′ − 2}. In particular, Hk1Md

is smooth and

equidimensional, and

dimHk1Md
= dn− n− n2(g′ − 1) + n(g′ − 1) + dimHk1U(n)

= dn− n− 2n2(g − 1) + 2n(g − 1) + n+ n2(g − 1) = dimMd,

as desired. �

LetMd,e be the moduli stack of ({Li}1≤i≤n, E ,F , h, s, t) where
• Li ∈ PicX′ satisfies χ(X

′,Li) = −di for i = 1, · · · , n;
• E ∈ BunGL′n satisfies χ(X ′, E) = −e;
• (F , h) ∈ BunU(n);
• t : E → F is an injective map;
• s : ⊕n

i=1Li → E is a very good framing for (E , a), where a = σ∗t∨ ◦ h ◦ t is the induced Hermitian
map on E .

Note that being a very good framing requires −di < µmin(E) − (3g′ − 2) for all i, which imposes an open
condition on E . We viewMd,e as a correspondence

Md,e

w1

||②②
②②
②②
②② w2

##❋
❋❋

❋❋
❋❋

❋

Md Me .

(10.4)

Here w1 records ⊕n
i=1Li

t◦s−−→ F and w2 records E t−→ F .
We denote the Hitchin bases forMd,Me andMd,e by Ad, Ae and Ad,e respectively. Here Ad parametrizes

({Li}1≤i≤n, a′ = (a′ij)) (where a′ij : Lj → σ∗L∨i ) such that a′ : ⊕Li → σ∗(⊕Li)∨ is an injective Hermitian
map. The base Ae classifies (E , a) with a an injective Hermitian map. The base Ad,e is the moduli stack of
({Li}1≤i≤n, E , s, a) where (E , a) ∈ Ae, s : ⊕n

i=1Li → E is a very good framing of (E , a) and Li ∈ PicX′ with
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χ(X ′,Li) = −di. We view Ad,e as a correspondence

Ad,e

u1

}}④④
④④
④④
④④ u2

""❉
❉❉

❉❉
❉❉

❉

Ad Ae .

(10.5)

We have Hitchin maps

fd : Md → Ad,

fe : Me → Ae,

fd,e : Md,e → Ad,e.

These maps together give a map of correspondences (10.4) to (10.5). Note fd is not necessarily proper
because we have imposed an open condition on the minimal slope of F .

Similarly we define the Hecke version HkrMd,e
ofMd,e as the moduli stack of ({x′i}1≤i≤r, {E → Fi}0≤i≤r) ∈

HkrMe
together with a very good framing s : ⊕Li →֒ E for (E , a) with χ(X ′,Li) = −di. Again we view HkrMd,e

as a correspondence

HkrMd,e

h1

zz✈✈
✈✈
✈✈
✈✈
✈

h2

$$■
■■

■■
■■

■■

HkrMd
HkrMe

.

Lemma 10.5. The maps w1, u1 and h1 are étale.

Proof. We first prove that u1 is étale. Let (Xd−e × Xe)
♥ be the open subscheme of divisors (D1, D2) ∈

Xd−e × Xe such that D1 is multiplicity-free and disjoint from D2; let (X ′d−e × Xe)
♥ be the preimage of

(Xd−e×Xe)
♥ in X ′d−e×Xe. We have a map α : X ′d−e×Xe → Xd sending (D′1, D2) to ν(D1) +D2. Let α

♥

be the restriction of α to (X ′d−e ×Xe)
♥. By factorizing α♥ as the composition

(X ′d−e ×Xe)
♥ νd−e×Id−−−−−→ (Xd−e ×Xe)

♥ add−−→ Xd

we see that α♥ is étale. From the definition we have a map

j = (u1, j
′
d−e, je) : Ad,e → Ad ×Xd

(X ′d−e ×Xe)
♥.

where j′d−e : Ad,e → X ′d−e sends ({Li},⊕Li s−→ E , a) to Div(s) (the divisor of det(s)) and je : Ad,e → Xe

sends it to Da (see Definition 7.3). The map Ad → Xd used in the fiber product records the divisor Da′ of
the Hermitian map a′ on ⊕Li. We claim that j is an open immersion. Indeed, given ({Li}, a′) ∈ Ad and

(D′1, D2) ∈ (X ′d−e×Xe)
♥ such that ν(D1) +D2 = Da′ , by the disjointness of D′1, σ(D

′
1) and ν

−1(D2), there
is one and only one coherent sheaf E such that ⊕Li ⊂ E ⊂ σ∗(⊕Li)∨, E/ ⊕ Li is supported on D′1, and
σ∗(⊕Li)∨/E is supported away from D′1. This would give a very good framing of E if the open condition
µmin(E) > max{−di + 3g′ − 2}1≤i≤n is satisfied. This shows that j is an open immersion. Since α♥ is étale,
we conclude that Ad,e is étale over Ad.

To show w1 is étale, we observe thatMd,e
∼=Md ×Ad

Ad,e. Since u1 is étale, so is w1.
Finally, HkrMd,e

is the open substack of HkrMd
×Ad
Ad,e where the legs avoid Div(s). Since u1 is étale, so

is h1. �

10.3. Auxiliary Hitchin shtukas. We define ShtrMd
and ShtrMd,e

as the fiber product

ShtrMd

��

// HkrMd

(pr0,prr)

��

ShtrMd,e

��

// HkrMd,e

(pr0,prr)

��
Md

(Id,Frob)//Md ×Md Md,e
(Id,Frob)//Md,e ×Md,e

(10.6)
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The maps wi and hi induce maps

ShtrMd,e

u1

zz✉✉
✉✉
✉✉
✉✉
✉

u2

$$■
■■

■■
■■

■■

ShtrMd
ShtrMe

(10.7)

The stack ShtrMd,e
decomposes into a disjoint union of open-closed substacks indexed by ({Li},⊕Li s−→

E , a) ∈ Ad,e(k)

ShtrMd,e
=

∐

(⊕Li→E,a)∈Ad,e(k)

Zr
E(a).

Correspondingly, the diagram (10.7) decomposes into the disjoint union indexed by Ad,e(k) of diagrams of
the form

Zr
E(a)
k
K

u1

yyss
ss
ss
ss
s

u2

●●
●●

●●
●●

●

●●
●●

●●
●●

●

Zr
⊕Li

(a′)♥ Zr
E(a)

Here Zr
⊕Li

(a′)♥ ⊂ Zr
⊕Li

(a′) (where a′ is the Hermitian map on ⊕Li induced from a) is cut by the open
condition µmin(Fj) > max{−di + 3g′ − 2} for all 0 ≤ j ≤ r. From this description and Corollary 7.17, we
see that:

Lemma 10.6. The map u1 (resp. u2), when restricted to each connected component of ShtrMd,e
, is an

isomorphism onto a connected component of ShtrMd
(resp. ShtrMe

).

10.4. Zero cycles on auxiliary Hitchin shtukas. Similar to the definition of [ShtrMe
] given in §8.6, we

define 0-cycles supported on ShtrMd,e
and ShtrMd

as follows.

We rewrite ShtrMd
as the fiber product

ShtrMd

��

// (Hk1Md
)r

(pr0,pr1)
r

��
(Md)

r
ΦMd // (Md)

2r

Here ΦMd
= Φr

Md
is defined in Definition 8.15. By the smoothness of Hk1Md

andMd proved in Lemma 10.4

and the dimension calculation there, we define

[ShtrMd
] := Φ!

Md
[(Hk1Md

)r] ∈ Ch0(Sht
r
Md

).

Similarly, using the Cartesian diagram

ShtrMd,e

��

// (Hk1Md,e
)r

(pr0,pr1)
r

��
(Md,e)

r
ΦMd,e // (Md,e)

2r

(10.8)

and the smoothness and dimension calculations of Hk1Md,e
and Md,e (which follow from Lemma 10.5 and

Lemma 10.4), we define

[ShtrMd,e
] := Φ!

Md,e
[(Hk1Md,e

)r] ∈ Ch0(Sht
r
Md,e

).

Lemma 10.7. We have u∗1[Sht
r
Md

] = [ShtrMd,e
] ∈ Ch0(Sht

r
Md,e

).

Proof. This is because the maps w1 and h1 are both étale by Lemma 10.5. �

Lemma 10.8. We have u∗2[Sht
r
Me

] = [ShtrMd,e
] ∈ Ch0(Sht

r
Md,e

).
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Proof. The diagram (10.8) is obtained from (8.6) (forMd replaced byMe) by base changing termwise along
the map of the following two Cartesian diagrams induced by u2 : Ad,e → Ae:

Ad,e(k) //

��

(Ad,e)
r

∆r

��

Ae(k) //

��

(Ae)
r

∆r

��
(Ad,e)

r
ΦAd,e // (Ad,e)

2r (Ae)
r

ΦAe // (Ae)
2r

Note that u2 : Ad,e → Ae is smooth since it exhibits Ad,e as an open substack of a vector bundle over Ae

(using the condition µmin(E) > max{−di + 3g′ − 2}). We conclude by applying Proposition 10.9 below. �

10.4.1. Compatibility of cycle classes under Hitchin base change. To state the next result, we need some
notations. Suppose we are given:

• stacks S,M and H that are locally of finite type over k and can be stratified into locally closed
substacks that are global quotient stacks;
• the stack M is smooth of pure dimension N with a map f :M → S;

• a map h̃ : H → Sr×∆r,S2r M2r (the fiber product uses the r-fold product of the diagonal ∆r : Sr →
S2r).

Let h : H →M2r be the projection to M2r. Form the Cartesian square

ShtH

��

// H

h
��

M r ΦM // M2r

Let u : S′ → S be a smooth representable morphism of pure relative dimension D. Let M ′ = M ×S S
′,

H ′ = H ×Sr S′r with natural maps h̃′ : H ′ → S′r ×∆r,S′2r M
′2r. Let h′ : H ′ → M ′2r be the resulting map.

Let uM :M ′ →M and uH : H ′ → H be the natural maps. Form the Cartesian square

Sht′H

��

// H ′

h′

��
M ′r

ΦM′ // M ′2r

(10.9)

Since Sr ×ΦS,S2r ,∆r Sr = S(k), ShtH decomposes as

ShtH =
∐

s∈S(k)

ShtH(s).

Similarly Sht′H decomposes into the disjoint union of Sht′H(s′) indexed by s′ ∈ S′(k). Then the natural map
uSht : Sht

′
H → ShtH lifts to an isomorphism

Sht′H = ShtH ×S(k)S
′(k) =

∐

s′∈S′(k)
ShtH(u(s′)).

Proposition 10.9. Let ζ ∈ Ch∗(H), then we have

u∗ShtΦ
!
M (ζ) = Φ!

M ′u
∗
H(ζ) ∈ Ch∗−rN(Sht′H).

Proof. Consider first the diagram where all squares are Cartesian

ShtH ×SrS′r //

v

��

H ′ //

uH

��

S′r

ur

��
ShtH //

��

H //

h
��

Sr

M r ΦM // M2r
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Here the top vertical arrows are smooth and representable. By the compatibility of Gysin map with flat
pullback [Kre99, Theorem 2.1.12(ix)], we have

v∗Φ!
M (ζ) = Φ!

Mu
∗
H(ζ) ∈ Ch∗−rN+rD(ShtH ×SrS′r). (10.10)

Here we recall that D is the relative dimension of u. We have

ShtH ×SrS′r =
∐

s∈S(k)

ShtH(s)× (S′s)
r (10.11)

where S′s = u−1(s), which is a smooth scheme over k. Factorize uSht as the composition

Sht′H ShtH ×Sr (S′r) ShtH .i v

From (10.11) we see that i is a regular embedding of codimension rD. Now v and uSht are both smooth.
Applying [Kre99, Theorem 2.1.12(ix)] we have u∗Sht(−) = i!v∗ as maps Ch∗(ShtH)→ Ch∗(Sht

′
H). Therefore

u∗ShtΦ
!
M (ζ) = i!v∗Φ!

M (ζ) ∈ Ch∗−rN(ShtH). (10.12)

On the other hand, consider the following diagram where all squares are Cartesian

Sht′H
i //

��

ShtH ×SrS′r //

��

H ′

h′

��
M ′r

Φ1 // M r ×ΦS◦fr,S2r S′2r
Φ2 //

��

M ′2r

u2r
M

��
M r ΦM // M2r

Here Φ1 is the base change of ΦS′ and Φ2 is the base change of ΦM . The outer square of the top rows give
(10.9). By the transitivity of Gysin maps, we have

Φ!
M ′u

∗
H(ζ) = Φ!

1Φ
!
2u
∗
H(ζ)

Since u2rM is smooth representable, we have Φ!
2u
∗
H(ζ) = Φ!

Mu
∗
H(ζ). Hence

Φ!
M ′u

∗
H(ζ) = Φ!

1Φ
!
Mu
∗
H(ζ).

Since both Φ1 and i are regular embeddings of the same codimension, we have Φ!
1(−) = i!(−) as maps

Ch∗(ShtH ×SrS′r)→ Ch∗−rD(Sht′H), by [Kre99, Theorem 2.1.12(xi)] and [Ful98, Theorem 6.2(c)]. Therefore

Φ!
M ′u

∗
H(ζ) = i!Φ!

Mu
∗
H(ζ) ∈ Ch∗−rN (Sht′H). (10.13)

Combining (10.10), (10.12) and (10.13) we conclude

u∗ShtΦ
!
M (ζ) = i!v∗Φ!

M (ζ) = i!Φ!
Mu
∗
H(ζ) = Φ!

M ′u
∗
H(ζ) ∈ Ch∗−rN(Sht′H).

�

Lemma 10.10. Let ({Li}1≤i≤n, a′) ∈ Ad(k) and E ′ := ⊕n
i=1Li. Then we have an equality

[ShtrMd
]|Zr
E′ (a

′) = ζrL1,··· ,Ln
(a′) ∈ Ch0(Zr

E′(a
′)).

For the definition of ζrL1,··· ,Ln
(a′) see §7.8.

Proof. We will apply the Octahedron Lemma [YZ17, Theorem A.10] to a diagram of moduli stacks in our
setting. Since the Octahedron Lemma requires certain stacks in question to be Deligne-Mumford, we need to
rigidify our moduli stacks to satisfy these requirements. This is a minor technical issue which we encourage
the reader to ignore: it is simply because the Octahedron Lemma in [YZ17] is not stated and proved in the
most general form.

Let v ∈ |X ′|. Let Pv be the moduli space (a scheme!) of line bundles on X ′ together with a trivialization

of their fibers over v. Let Gv = Reskv

k Gm. Then Pv → PicX′ is a Gv-torsor.
Now for each moduli stacks Md,Ad and HkrṀd

that involve an n-tuple of line bundles {Li}, we write

Ṁd, Ȧd and Ḣk
r

Ṁd
to mean their rigidified versions where Li ∈ PicX′ is replaced by L̇i ∈ Pv. Note that

we do not impose any compatibility condition between the rigidifcation on Li and the rest of the structures
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classified by these moduli stacks. Define ShtrṀd
using the dotted version of the left one of the Cartesian

diagrams in (10.6).

Note that Ṁd, Ȧd and Ḣk
r

Ṁd
are now schemes, and they are Gn

v -torsors over their undotted counterparts.

The dotted version of Lemma 10.4 remains valid if we add n deg(v) = dimGn
v to the dimensions. Also,

ShtrṀd
≃ ShtrMd

×Ad(k)Ȧd(k). Since Ȧd(k) → Ad(k) is surjective, to prove the Lemma, it suffices to prove

its dotted version: for any ({L̇i}, a′) ∈ Ȧd(k), writing E ′ := ⊕n
i=1Li, then there is an open and closed

embedding Zr
E′(a

′) →֒ ShtrṀd
(using the rigifications L̇i of Li); then we shall prove

[ShtrṀd
]|Zr
E′ (a

′) = ζrL1,··· ,Ln
(a′) ∈ Ch0(Zr

E′(a
′)). (10.14)

For i = 1, · · · , n, letNdi be the open substack ofM(1, n) consisting of points (L →֒ F , h) where χ(X ′,L) =
−di and µmin(F) > −di +3g′− 2. Similarly define Hk1Ndi

and ShtrNdi
; these are open substacks of Hk1M(1,n)

and ShtrM(1,n) respectively.

Let Ṅdi ,Hk
1
Ṅdi

be the rigidified versions of Ndi and Hk1Ndi
where L ∈ PicX′ is replaced by L̇ ∈ Pv. Let

ωi : Ṅdi → BunU(n) and ω̃i : Hk
1
Ṅdi

→ Hk1U(n) be the forgetful maps.

We shall apply the Octahedron Lemma [YZ17, Theorem A.10] to the following diagram:

(Hk1U(n))
r ∆ //

(pr0,pr1)
r

��

∏n
i=1(Hk

1
U(n))

r

∏
(pr0,pr1)

r

��

∏n
i=1(Hk

1
Ṅdi

)r
∏

ω̃r
ioo

∏
(pr0,pr1)

r

��
Bun2r

U(n)
∆ // ∏n

i=1 Bun
2r
U(n)

∏n
i=1 Ṅ 2r

di

∏
ω2r

ioo

Bunr
U(n)

∆ //

ΦBunU(n)

OO

∏n
i=1 Bun

r
U(n)

∏
ΦBunU(n)

OO

∏n
i=1 Ṅ r

di

∏
ΦṄdi

OO

∏
ωr

ioo

(10.15)

The fiber products of the three columns are

ShtrU(n)
∆ // ∏n

i=1 Sht
r
U(n)

∏n
i=1 Sht

r
Ṅdi

oo (10.16)

where

ShtrṄdi

=
∐

L̇i∈Pv(k),
χ(X′,Li)=−di


Zr
Li
(0)∗

∐

 ∐

a′ii∈ALi (k)
Zr
Li
(a′ii)




 . (10.17)

LetMd be the moduli stack of ({L̇i},⊕n
i=1Li

t′−→ F , h) defined similarly as Ṁd but without the condition

that t′ be injective, only that t′i = t|Li be injective. Then Ṁd →֒ Md is open. Similarly define Hk1Md
and

ShtrMd
. Note thatMd is exactly the fiber product of

BunU(n)
∆ // ∏n

i=1 BunU(n)

∏n
i=1 Ṅdi .

∏
ωioo (10.18)

Similar remarks apply to Hk1Md
. Therefore the fiber products of the three rows of (10.15) are

(Hk1Md
)r

(pr0,pr1)
r

��

M2r

d

Mr

d

ΦMd

OO

(10.19)
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The common fiber product of (10.16) and (10.19) are

ShtrMd
=

∐

(L̇i,a′ii)1≤i≤n

Zr
L1,··· ,Ln

(a′11, · · · , a′nn)∗

where the union is over (L̇i, a′ii)1≤i≤n where L̇i ∈ Pv(k) with χ(X
′,Li) = −di and a′ii : Li → σ∗L∨i injective

Hermitian.
We check that the assumptions for applying the Octahedron Lemma are satisfied (the numbering below

refers to that in [YZ17, Theorem A.10]).

(1) All members in the diagram (10.15) are smooth and equidimensional. This is clear for BunU(n)

and HkrU(n). The same argument as in Lemma 10.4 proves that Ṅdi and Hk1Ṅdi

are smooth of pure

dimension din+ (n2 − 2n+ 2)(g − 1) + deg(v).
(2) We check that, in forming the fiber products of the middle and bottom rows and the left and middle

columns, the intersections are proper intersections with smooth equidimensional outcomes with the
expected dimension. Here we use Lemma 6.8 and 6.9 to argue for the left and middle columns. For
the rows, the same argument as in Lemma 10.4 proves thatMd and Hk1Md

are smooth of the same

dimension as Ṁd, which is dn− (n2 − 2n)(g − 1) + n deg(v). This is the virtual dimension forMd

as the fiber product of (10.18), since

n∑

i=1

dimNdi − (n− 1) dimBunU(n) =

n∑

i=1

(
din+ (n2 − 2n+ 2)(g − 1) + deg(v)

)
− n2(n− 1)(g − 1)

= dn− (n2 − 2n)(g − 1) + n deg(v).

(3) We check the fiber products of the top row and right column of (10.15) satisfy the conditions for
[YZ17, A.2.10]. The fiber product of the top row is also a proper intersection: this follows from the
same calculation as for the middle and bottom rows. The fiber product of the right column is also
a proper intersection: this uses the decomposition (10.17) and the calculation of the dimension of
Zr
Li
(0)∗ in Proposition 9.5 and the dimension of Zr

Li
(a′ii)

∗ in Proposition 9.1.

The only issue is that (Hk1Md
)r may not be a Deligne-Mumford stack, which was part of the

requirement of [YZ17, A.2.10]. However, we argue that this is not really an issue. The proof of
the Octahedron Lemma allows the following flexibility: since eventually we only care about the
0-cycles restricted to ShtrṀd

, in the middle steps of forming the fiber products, we may restrict to

open substacks as long as the final fiber product contains ShtrṀd
and only need check the relevant

requirements there. Now in (10.19) we may restrict to the open substack (Hk1Ṁd
)r ⊂ (Hk1Md

)r,

which is a scheme.
(4) The same remark as above shows that it suffices to check that the fiber squares obtained from (10.16)

and (10.19), after replacingMd by Ṁd, each satisfy the condition [YZ17, A.2.8]. Therefore it suffices
to check
• ShtrṀd

admits a finite flat presentation in the sense of [YZ17, Definition A.1]. This is true

because ShtrṀd
is a scheme.

• The diagonal map ∆ : ShtrU(n) →֒
∏n

i=1 Sht
r
U(n) is a regular local immersion. This is true

because ShtrU(n) is a smooth Deligne-Mumford stack.

• The map ΦṀd
: Ṁr

d → Ṁ2r
d is a regular local immersion. This is true because Ṁd is a smooth

equidimensional scheme by the dotted version of Lemma 10.4.

The conclusion of the (variant of) Octahedron Lemma says that the following two elements in Ch0(Sht
r
Md

)

Φ!
Md

∆!
(Hk1

U(n)
)r [

n∏

i=1

(Hk1Ṅdi

)r] and ∆!
Shtr

U(n)
(
∏

ΦṄdi
)![

n∏

i=1

(Hk1Ṅdi

)r]

become the same when restricted to ShtrṀd
. Further restricting to the open-closed subscheme Zr

E′(a
′) we

get the desired identity (10.14). �
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Proof of Theorem 10.2. Restricting the equality in Lemma 10.10 to Zr
E(a), which is open and closed in

Zr
E′(a

′) by Corollary 7.17, we get

ζrL1,··· ,Ln
(a′)|Zr

E (a)
= [ShtrMd

]|Zr
E(a)

. (10.20)

For fixed (⊕Li →֒ E , a) ∈ Ad,e(k), Zr
E(a) can be viewed as an open-closed substack in ShtrMd

, ShtrMd,e
and

ShtrMe
by Lemma 10.6. By Lemma 10.7 and Lemma 10.8 we have

[ShtrMd
]|Zr
E (a)

= [ShtrMd,e
]|Zr
E(a)

= [ShtrMe
]|Zr
E(a)

.

Combining this with (10.20) proves the theorem. �

10.5. Proof of Theorem 10.1 for X ′ = X
∐
X or Xk′ . Here k′/k is the quadratic extension.

In the case X ′ = X
∐
X , we have BunU(n)

∼= BunGLn
. We shall identify a Hermitian bundle F on X ′

with a pair of vector bundles (F1,F2) equipped with an isomorphism F2
∼= F∨1 , each living on one copy of

X . A vector bundle E on X ′ of rank n corresponds to two rank n vector bundles (E1, E2), each living on one
copy of X . Now AE(k) is the set of injective maps a : E1 → E∨2 . A good framing s : ⊕n

i=1Li →֒ E for (E , a)
now consists of line bundles Li = (Li,1,Li,2) (1 ≤ i ≤ n) satisfying the same conditions in Definition 7.15; it
is called very good if it satisfies the additional conditions

(31) µmin(E1) > max{degLi,1 + 2g − 1}1≤i≤n, and
(32) µmin(E2) > max{degLi,2 + 2g − 1}1≤i≤n.

The same argument of Lemma 10.3 shows that it suffices to prove the analogue of Theorem 10.2, i.e., prove
Theorem 10.1 for very good framings.

In both the X ′ = X
∐
X and X ′ = Xk′ case, we need to modify the definitions of Md and Md,e as

follows. In the definition ofMd,e, we use the notion of very good framing just defined over geometric fibers
of X ′S → S (which are of the form Xs

∐
Xs). In the definition of Md, we change the inequality (10.3) to

two inequalities over the geometric fibers of X ′S → S

µmin(F1) > max{degLi,1 + 2g − 1}1≤i≤n,
µmin(F2) > max{degLi,2 + 2g − 1}1≤i≤n.

The same inequalities should be imposed in the definition of Ndi that appear in the proof of Lemma 10.10.
With these changes, the argument for proving Theorem 10.2 goes through.

11. Local intersection number and trace formula

11.1. Local nature of the intersection problem. In this subsection we show that the 0-cycle class
[Zr
E(a)] depends only on the Hermitian torsion sheaf Q = coker(a).
Recall the stacks Herm2d = Herm2d(X

′/X) and Lagr2d from §4. We have a self-correspondence HkrLagr2d of

Lagr2d over Herm2d: it classifies (Q, h, {Li}0≤i≤r) where (Q, h) ∈ Herm2d, Li ⊂ Q are Lagrangian subsheaves
such that Li/(Li ∩ Li−1) has length one for 1 ≤ i ≤ r. Define the local version ShtrLagr2d of ShtrMd

by the
Cartesian diagram

ShtrLagr2d

��

// HkrLagr2d

(pr0,prr)

��
Lagr2d

(Id,Frob)// Lagr2d×Lagr2d

(11.1)

We have a decomposition into open-closed substacks

ShtrLagr2d =
∐

(Q,h)∈Herm2d(k)

Zr
Q.

Lemma 11.1. The stack Hk1Lagr2d is smooth of dimension zero.

Proof. We may identify Hk1Lagr2d with the moduli stack of (0 ⊂ L′ ⊂ L ⊂ Q, h) where (L ⊂ Q, h) ∈ Lagr2d
and L/L′ has length one. Under the local chart for Herm2d described in Lemma 4.3, Hk1Lagr2d becomes [p/P ],

where P ⊂ O2d = O(V ) is the parabolic subalgebra stabilizing a pair of subspaces L′ ⊂ L with L Lagrangian
and dimL′ = d− 1. This local description implies that Hk1Lagr2d is smooth of dimension zero. �
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Rewriting ShtrLagr2d as the fiber product

ShtrLagr2d
//

��

(Hk1Lagr2d)
r

(pr0,pr1)
r

��
(Lagr2d)

r
ΦLagr2d// (Lagr2d)

2r

(11.2)

we define a 0-cycle class

[ShtrLagr2d ] := Φ!
Lagr2d

[(Hk1Lagr2d)
r] ∈ Ch0(Sht

r
Lagr2d

).

Restricting to Zr
Q we get

[Zr
Q] := [ShtrLagr2d ]|Zr

Q ∈ Ch0(Zr
Q).

Recall the maps gM : Md → Lagr2d and g : Ad → Herm2d defined in §8.4. We also have a map

gHk : HkrMd
→ HkrLagr2d sending ({x′i}, {E

ti−→ Fi}) to (Q = coker(a), hQ, {coker(ti)}) (a is the induced

Hermitian map on E). The maps gHk, gM and g exhibit the diagram (8.5) as the pullback of the diagram
(11.1) via the base change g : Ad → Herm2d. In particular we have a natural map

gSht : Sht
r
Md
→ ShtrLagr2d .

For fixed (E , a) ∈ Ad(k) with image Q = coker(a) ∈ Herm2d(k), gSht restricts to an isomorphism to the
open-closed subschemes

gSht|Zr
E(a)

: Zr
E(a)

∼→ Zr
Q. (11.3)

Proposition 11.2. We have an equality

[ShtrMd
] = g∗Sht[Sht

r
Lagr2d

] ∈ Ch0(Sht
r
Md

). (11.4)

Proof. Apply Proposition 10.9 to the diagram (11.2), the fundamental class ζ = [(Hk1Lagr2d)
r] and the base

change map u = g : Ad → Herm2d. By Proposition 8.12, g is smooth. We then have

Φ!
Md

g∗Hk[(Hk
1
Lagr2d

)r] = g∗ShtΦ
!
Lagr2d

[(Hk1Lagr2d)
r] ∈ Ch0(Sht

r
Md

).

Since gHk is smooth, g∗Hk[(Hk
1
Lagr2d

)r ] = [(Hk1Md
)r]. The above equality then becomes (11.4). �

Combined with Theorem 10.1, we get a local description of the cycle class [Zr
E (a)]:

Corollary 11.3. For any (E , a) ∈ Ad(k) with image Q = coker(a) ∈ Herm2d(k), [Zr
E(a)] is the same as

[Zr
Q] under the isomorphism (11.3). In particular,

deg[Zr
E(a)] = deg[Zr

Q].

11.2. Sheaves on Herm2d. To describe the direct image complex Rf∗Qℓ on Ad, by the Cartesian diagram
(8.4), we first need to understand R(υ2d)∗Qℓ on Herm2d.

Lemma 11.4. The perverse sheaf R(υ2d)∗Qℓ on Herm2d is canonically isomorphic to (SprHerm
2d )Sd (see

Proposition 4.5(2)). Here the Sd-action on SprHerm
2d is the restriction of the Springer Wd-action.

Proof. We have a Cartesian diagram

H̃erm2d

λ2d

��

ε̃d // C̃ohd(X ′)

πCoh
X′,d

��
Lagr2d

ε′d // Cohd(X ′)

where ε′d sends (Q, hQ,L) to L and ε̃d sends (Q1 ⊂ · · · ⊂ Qd ⊂ · · · ⊂ Q, h) to (Q1 ⊂ · · · ⊂ Qd). By proper
base change

Rλ2d∗Qℓ
∼= ε′∗d Sprd,X′ .

In particular, Rλ2d∗Qℓ carries an action of Sd. Moreover, the induced Sd-action on SprHerm
2d

∼= R(υ2d)∗Rλ2d∗Qℓ

is the restriction of the SpringerWd-action to Sd: this can be easily checked over Herm◦2d, and then the state-

ment holds over Herm2d since SprHerm
2d is the middle extension from its restriction to Herm◦2d by Proposition
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4.5(2). Since (Rλ2d∗Qℓ)
Sd ∼= ε′∗d (Sprd,X′)

Sd ∼= Qℓ, we conclude that (SprHerm
2d )Sd ∼= R(υ2d)∗(Rλ2d∗Qℓ)

Sd ∼=
R(υ2d)∗Qℓ, as desired. �

It is an elementary exercise to see that IndWd

Sd
1 decomposes into irreducible representations

IndWd

Sd
1 =

d⊕

i=0

ρi (11.5)

where ρi = IndWd

(Z/2Z)d⋊(Si×Sd−i)
(χi ⊠ 1), and χi : (Z/2Z)

d ⋊ (Si × Sd−i) → {±1} is the character that is

nontrivial on the first i factors of (Z/2Z)i, trivial on the rest and trivial on Si × Sd−i. The decomposition
also shows up in [YZ17, §8.1.1].

Recall the notation SprHerm
2d [ρ] from Definition 4.7.

Corollary 11.5. There is a canonical decomposition

R(υ2d)∗Qℓ
∼=

d⊕

i=0

SprHerm
2d [ρi]. (11.6)

Proof. By Lemma 11.4 and Frobenius reciprocity, we have

R(υ2d)∗Qℓ
∼= HomWd

(IndWd

Sd
1, SprHerm

2d ) = SprHerm
2d [IndWd

Sd
1].

The desired decomposition then follows from (11.5). �

Definition 11.6. Define the graded perverse sheaf on Herm2d(X
′/X)

KInt
d (T ) :=

d⊕

i=0

SprHerm
2d [ρi]T

i.

The fundamental class of the self-correspondence Hk1Lagr2d of Lagr2d is viewed as a cohomological cor-

respondence of the constant sheaf on Lagr2d with itself. It induces an endomorphism (see notation from
[YZ17, A.4.1])

(υ2d)![Hk
1
Lagr2d

] : R(υ2d)∗Qℓ → R(υ2d)∗Qℓ.

Proposition 11.7. The action of (υ2d)![Hk
1
Lagr2d

] on R(υ2d)∗Qℓ preserves the decomposition (11.6), and it

acts on SprHerm
2d [ρi] by multiplication by (d− 2i).

Proof. By Proposition 4.5(2), SprHerm
2d [ρi] is the middle extension from its restriction to Herm◦2d, it suffices

to prove the same statement on Herm◦2d. Now over Herm◦2d, the map Herm◦2d → X◦d is smooth, and Hk1Lagr2d
is the pullback of the incidence correspondence I ′d over X ′d (see [YZ17, proof of Proposition 8.3]). This in
turn reduces to checking the statement for the action of [I ′d] on the direct image sheaf of νd : X ′d → Xd,
which is done in the proof of [YZ17, Proposition 8.3]. �

11.3. Lefschetz trace formula. We shall give a slight generalization of the Lefschetz trace formula [YZ17,
Proposition A.12] expressing the intersection number of a cycle with the graph of Frobenius as a trace.
Instead of the graph of Frobenius, we need to intersect along ΦM : M r → M2r. Consider the following
situation:

• Let S be an algebraic stack locally of finite type over k = Fq. Assume S can be stratified by locally
closed substacks that are global quotients.
• Let M be a smooth equidimensional stack over k = Fq of dimension N with a proper representable
map f :M → S.
• For 1 ≤ i ≤ r, let (pri0, pr

i
1) : Ci → M ×S M be a self-correspondence of M over S. Assume pri0 is

proper and representable.

Form the Cartesian diagram

ShtC //

��

∏n
i=1 Ci

(pri0,pr
i
1)1≤i≤r

��
M r ΦM // M2r .

(11.7)
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Then ShtC decomposes as

ShtC =
∐

s∈S(k)

ShtC(s).

Suppose we are given cycle classes

ζi ∈ ChN (Ci), 1 ≤ i ≤ r.
The cycle class cl(ζi) ∈ HBM

2N (Ci,Qℓ(−N)) is viewed as a cohomological correspondence between the constant
sheaf on M and itself. Therefore it induces an endomorphism of Rf!Qℓ which we denote by f! cl(ζi).

Proposition 11.8. For each s ∈ S(k) we have

deg((Φ!
M [ζ1 × · · · × ζr])|ShtC(s)) = Tr(f! cl(ζ1) ◦ · · · ◦ f! cl(ζr) ◦ Frobs, (Rf!Qℓ)s).

Proof. We first prove the formula when S is a scheme of finite type. In this case M,Ci are also schemes of
finite type over k. Let C = C1×M × · · ·×M Cr be the composition correspondence, with maps pri : C →M
for 0 ≤ i ≤ r. Consider the diagram where all squares are Cartesian

ShtC

��

// C //

(pr0,··· ,prr)
��

∏r
i=1 Ci

(pri0,pr
i
1)

��
M r

pr0

��

Φ1 // M r+1

(pr0,prr)

��

Φ2 // M2r

M
(Id,FrobM )// M ×M

Here

Φ1(ξ0, · · · , ξr−1) = (ξ0, · · · , ξr−1,FrobM (ξ0)),

Φ2(ξ0, · · · , ξr−1, ξr) = (ξ0, ξ1, ξ1, · · · , ξr−1, ξr−1, ξr).
We have ΦM = Φ2 ◦ Φ1. Let ζ = Φ!

2(ζ1 × ζ2 × · · · × ζr) ∈ ChN (C).
On the one hand, by the transitivity of the Gysin maps,

Φ!
M (ζ1 × · · · × ζr) = Φ!

1(ζ) = (Id,FrobM )!(ζ). (11.8)

Applying the Lefschetz trace formula [YZ17, Proposition A.12], we get

deg((Id,FrobM )!(ζ)|ShtC(s)) = Tr(f! cl(ζ) ◦ Frob, (Rf!Qℓ)s). (11.9)

One the other hand, by a diagram chase, we see that cl(ζ) is the composition of the cohomological correspon-
dences cl(ζi) (1 ≤ i ≤ r), hence f! cl(ζ) ∈ End(Rf!Qℓ) is the composition of f! cl(ζ1) ◦ f! cl(ζ2) ◦ · · · ◦ f! cl(ζr).
Combining this fact with (11.8) and (11.9) we get the desired formula.

Now consider the general case where S is a stack locally of finite type over k and we aim to prove the
formula for s ∈ S(k). We claim that there exists a scheme S′ of finite type over k and a smooth map
u : S′ → S such that u(S′(k)) contains s. Indeed, pick any smooth map u1 : S1 → S with S1 a scheme of
finite type over k, such that s is contained in the image of u. Let s1 ∈ S1(Fqm) be a point that maps to s.

Let (S1/S)
m be the m-fold fibered product of S1 over S, based changed to k. We equip (S1/S)

m with the
Frob-descent datum given by (x1, · · · , xm) 7→ (Frob(xm),Frob(x1), · · · ,Frob(xm−1)). This gives a descent
of (S1/S)

m to a scheme S′ over k equipped with a map u : S′ → S which is still smooth since u1 is. Now s1
gives rise to a k-point s′ = (s1,Frob(s1), · · · ,Frobm−1(s1)) ∈ S′(k) such that u(s′) = s.

Let M ′ =M ×S S
′, C′i = Ci ×S S

′ and let uCi : C
′
i → Ci be the projection. Define Sht′C using the analog

of the diagram (11.7) with M and Ci replaced by M ′ and C′i. Then Sht′C ∼= ShtC ×S(k)S
′(k). For s′ ∈ S′(k)

such that u(s′) = s, we get an isomorphism Sht′C(s
′)
∼→ ShtC(s). Let ζ

′
i = u∗Ci

ζi. Now we apply Proposition
10.9 to the diagram (11.7) along the base change map u : S′ → S to get

u∗ShtΦ
!
M (ζ1 × · · · × ζr) ∼= Φ!

M ′ (ζ
′
1 × · · · × ζ′r) ∈ Ch0(Sht

′
C).

Restricting to Sht′C(s
′) ∼= ShtC(s) and taking degrees we get

deg((Φ!
M (ζ1 × · · · × ζr))|ShtC(s)) = deg((Φ!

M ′ (ζ
′
1 × · · · × ζ′r))|Sht′C(s′)). (11.10)
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On the other hand, letting f ′ :M ′ → S′, by smooth base change we have

Tr(f! cl(ζ1) ◦ · · · ◦ f! cl(ζr) ◦ Frobs, (Rf!Qℓ)s) = Tr(f ′! cl(ζ
′
1) ◦ · · · ◦ f ′! cl(ζ′r) ◦ Frobs′ , (Rf ′!Qℓ)s′ ). (11.11)

Since the right sides of (11.10) and (11.11) are equal by the scheme case that is already proven, the left sides
of (11.10) and (11.11) are also equal, proving the proposition in general. �

Recall the graded perverse sheaf KInt
d (T ) on Herm2d from Definition 11.6.

Corollary 11.9. Let (Q, hQ) ∈ Herm2d(k). We have

deg[Zr
Q] = Tr([Hk1Lagr2d ]

r ◦ Frob, (R(υ2d)∗Qℓ)Q) =
d∑

i=0

(d− 2i)r Tr(Frob, SprHerm
2d [ρi]Q)

=
1

(log q)r

(
d

ds

)r ∣∣∣
s=0

(
qds Tr(Frob,KInt

d (q−2s)Q)
)
.

Proof. The first equality is an application of Proposition 11.8 to the case S = Herm2d, M = Lagr2d,
Ci = Hk1Lagr2d and ζi = [Hk1Lagr2d ]. The second equality follows from Proposition 11.7. The third one is a
direct calculation. �

Combining Corollary 11.9 with Corollary 11.3 we get:

Corollary 11.10. Let (E , a) ∈ Ad(k) with image (Q, hQ) ∈ Herm2d(k). Then we have

deg[Zr
E(a)] =

1

(log q)r

(
d

ds

)r ∣∣∣
s=0

(
qds Tr(Frob,KInt

d (q−2s)Q)
)
.

11.4. Symmetry. This subsection is not used in the proof of the main theorem. The graded perverse sheaf
KInt

d (T ) has a palindromic symmetry that we spell out. First, the étale double covering ν : X ′ → X gives a
local system ηX′/X on X with monodromy in ±1. It induces a local system ηd on Xd with monodromy in

±1: its stalk at a divisor x1 + · · ·+ xd ∈ Xd(k) is ⊗d
i=1(ηX′/X)xi . Let

ηHerm
2d := sHerm ∗

2d ηd,

where sHerm
2d : Herm2d → Xd is the support map. This is a rank-one local system on Herm2d with monodromy

in ±1.
Lemma 11.11. We have a canonical isomorphism of perverse sheaves on Herm2d:

SprHerm
2d [ρd] ∼= ηHerm

2d .

Proof. By Proposition 4.5(2), SprHerm
2d [ρd] is the middle extension of its restriction to the open dense substack

Herm◦2d (preimage of X◦d). The same is true for ηd because it is a local system and Herm2d is smooth.
Therefore it suffices to check their equality over Herm◦2d, over which both are obtained by pushing out the
Wd-torsor (X

′d)◦ → X◦d along the character χd :Wd → {±1}. �

Lemma 11.12. There is an isomorphism of graded perverse sheaves on Herm2d

T dKInt
d (T−1) ∼= ηHerm

2d ⊗KInt
d (T ).

Proof. The equality amounts to

SprHerm
2d [ρd−i] ∼= ηHerm

2d ⊗ SprHerm
2d [ρi].

Both sides are middle extensions from Herm◦2d by Proposition 4.5(2), over which they correspond to repre-
sentations ρd−i and χd ⊗ ρi of Wd. By definition,

χd ⊗ ρi ∼= χd ⊗ IndWd

Wi×Wd−i
(χi ⊠ 1).

Inserting χd|Wi×Wd−i
∼= χi ⊠ χd−i to the right side above gives

IndWd

Wi×Wd−i
(χd|Wi×Wd−i

⊗ (χi ⊠ 1)) ∼= IndWd

Wi×Wd−i
(1⊠ χd−i) ∼= ρd−i.

�

Lemma 11.13. If (Q, hQ) ∈ Herm2d(k) is the image of some (E , a) ∈ Ad(k), then Tr(Frob, ηHerm
2d |Q) = 1.
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Proof. If X ′/X is split, then ηHerm
2d is trivial, and there is nothing to prove. Below we assume X ′/X is

nonsplit. The local system ηd on Xd is pulled back from a local system ηPic on PicX via the Abel-Jacobi
map AJd : Xd → PicdX ⊂ PicX . The Frobenius trace function of ηPic is the idèle class character

ηF ′/F : F×\A×F /Ô× = PicX(k)→ {±1}
trivial on the image of NmX′/X : PicX′(k)→ PicX(k). Denote by detX(Q) the image of Q under Herm2d →
Xd

AJd−−→ PicdX . We have ηHerm
2d |Q ∼= ηPic|detX(Q) as Frob-modules. Now (Q, hQ) comes from (E , a), which

implies

detX(Q) ∼= NmX′/X(det E)−1 ⊗ ω⊗nX .

By [Wei95, p.291, Theorem 13], ωX is a square in PicX(k), hence ηF ′/F (ω
⊗n
X ) = 1. Since ηF ′/F (NmX′/X(det E)) =

1, we see that ηF ′/F (detX(Q)) = 1, hence Tr(Frob, ηHerm
2d |Q) = 1. �

Corollary 11.14. Let (E , a) ∈ Ad(k) with image (Q, hQ) ∈ Herm2d(k). Then s 7→ qdsTr(Frob,KInt
d (q−2s)Q)

is an even function in s. In particular, its odd order derivatives at s = 0 vanish.

By Corollary 11.10, this implies deg[Zr
E(a)] = 0 for r odd. However, we know from Lemma 6.7 that

ShtrU(n) = ∅ when r is odd, which implies Zr
E(a) = ∅.

Part 3. The comparison

12. Matching of sheaves

12.1. Recap. Let

Ẽa(m(E), s,Φ) = Ea(m(E), s,Φ) · χ(det(E))−1qdeg(E)(s−n
2 )+ 1

2n
2 deg(ωX) ·Ln(s) = Den(q−2s, (E , a)) (12.1)

where the notation is as in Theorem 2.7, be a renormalization of the ath Fourier coefficient of Ea(m(E), s,Φ).
We emphasize that, in keeping with §1.3, X is proper and ν : X ′ → X is a finite étale double cover

(possibly trivial).

Theorem 12.1. Keep the notations above. Let (E , a) ∈ Ad(k). Then we have

deg[Zr
E(a)] =

1

(log q)r

(
d

ds

)r ∣∣∣
s=0

(
qdsẼa(m(E), s,Φ)

)
. (12.2)

In the previous parts, we have found sheaves on Ad which correspond to the two sides of (12.2), in the
sense of the function-sheaf dictionary. Let us summarize the situation.

On the analytic side, we proved a formula expressing the non-singular Fourier coefficient of the Siegel–
Eisenstein series in terms of the Frobenius trace of a graded virtual perverse sheaf KEis

d (T ) on Herm2d(X
′/X).

Theorem 12.2 (Combination of Theorems 2.7 and 5.3). Let (E , a) ∈ Ad(k). Then we have

Ẽa(m(E), s,Φ) = Tr(Frob,KEis
d (q−2s)Q). (12.3)

On the geometric side, in Corollary 11.10, we found a formula expressing the degree of the special 0-cycle
in terms of rth derivative of the Frobenius trace of another graded perverse sheaf KInt

d (T ) on Herm2d(X
′/X),

repeated below:

deg[Zr
E(a)] =

1

(log q)r

(
d

ds

)r ∣∣∣
s=0

(
qds Tr(Frob,KInt

d (q−2s)Q)
)
. (12.4)

12.2. Proof of main theorem. Comparing (12.3) and (12.4), we see that in order to prove Theorem 12.1,
it remains to match the graded sheaves KInt

d (T ) and KEis
d (T ) on Herm2d(X

′/X).

Proposition 12.3. We have KInt
d (T ) ∼= KEis

d (T ) as graded perverse sheaves on Herm2d(X
′/X).

Proof. Both sides can be written as SprHerm
2d [ρ] some graded virtual representation ρ of Wd. The sheaf

KInt
d (T ) corresponds to

ρKInt
d
(T ) =

d∑

i=0

IndWd

Wi×Wd−i
(χi ⊠ 1)T i
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and the (a priori virtual) sheaf KEis
d (T ) corresponds to

ρKEis
d

(T ) =

d∑

i=0

i∑

j=0

(−1)j IndWd

Si−j×Wj×Wd−i
(1⊠ sgnj ⊠ 1)T i.

The desired statement then follows from the Lemma below (whose notation has been re-indexed) by com-
paring each coefficient. �

Lemma 12.4. We have the identity of virtual representations of Wd:

χd =

d∑

j=0

(−1)j IndWd

Sd−j×Wj
(1⊠ sgnj).

Proof. We will prove this by comparing traces of an arbitrary element g ∈ Wd. For g ∈Wd,

Tr(g, IndWd

Sd−j×Wj
(1× sgnj)) =

∑

w∈Wd/(Sd−j×Wj)

w−1gw∈Sd−j×Wj

sgnj(g
′′) (12.5)

Here, when w−1gw ∈ Sd−j ×Wj , we write w−1gw = (g′, g′′) for g′ ∈ Sd−j and g′′ ∈Wj .
IdentifyWd with the group of permutations of {±1, . . . ,±d} that commute with the involution σ exchang-

ing j ↔ −j for all 1 ≤ j ≤ d. The subgroup Sd−j ×Wj is the stabilizer of {1, 2, · · · , d− j}. Therefore the
coset space Wd/(Sd−j ×Wj) is in natural bijection with subsets J ⊂ {±1, . . . ,±d} such that |J | = d− j and
J ∩ (−J) = ∅. Let Jg be the set of J ⊂ {±1, . . . ,±d} such that |J | = d− j, J ∩ (−J) = ∅ and gJ = J . Let
g′′J be the permutation of g on {±1, . . . ,±d}\(J ∪ (−J)). Combining this with (12.5), we obtain

d∑

j=0

(−1)j Tr(g, IndWd

Sd−j×Wj
(1× sgnj)) =

∑

J∈Jg

(−1)d−|J|sgn(g′′J).

For any g ∈ Wd, the cycle decomposition of g can be grouped into a decomposition g = g1 . . . gr (unique
up to reordering) where gi is one of the two forms:

• (positive bicycle) gi is a product of two disjoint cycles ciσ(ci) (in particular, no two elements ap-
pearing in ci are negatives of each other).

• (negative cycle) gi is a single cycle invariant under the involution σ.

Let C+
g be the set of cycles of g that are part of a positive bicycle (i.e., C+

g contains both ci and σ(ci) for
each positive bicycle gi). For any x ∈ Wd we denote by x ⊂ {±1, · · · ,±d} the set of elements that are not
fixed by x. For a cycle c we let |c| be its length. From this description we see that J ∈ Jg if and only if J is
a union of c for a subset of cycles c ∈ C+

g . In other words, consider the set Ig of subsets I ⊂ C+
g such that

I is disjoint from σ(I). Then we have a bijection Ig
∼→ Jg sending I ∈ Ig to J := ∪c∈Ic.

For I ∈ Ig, let g
′
I be the product of gi such that gi contains a cycle in common with I; let g′′I be the

product of the remaining gi’s. The above discussion allows us to rewrite

d∑

j=0

(−1)j Tr(g, IndWd

Sd−j×Wj
(1× sgnj)) =

∑

I∈Ig

(−1)
∑

c∈C+
g
|c|
sgn(g′′I ).

This sum factorizes as a product over the gi with individual factors as follows:

• For a positive bicycle gi = ciσ(ci), the local factor is the sum of three contributions, corresponding
to whether ci ∈ I, σ(ci) ∈ I or neither ci nor σ(ci) is in I. The first two cases each contribute 1.
The last case leads to a contribution of (−1)|ci| sgn(ci) = −1. The total contribution of the factor
corresponding to a positive bicycle gi is therefore 1 + 1 + (−1) = 1.

• For each negative cycle gi, since it always appears in g
′′
I , its contribution is (−1)|gi|/2sgn(gi). Let gi be

the image of gi in Sd, which is a cycle of length |gi|/2. Then (−1)|gi|/2sgn(gi) = (−1)|gi| sgn(gi) = −1.
Therefore the contribution of the factor corresponding to a negative cycle gi is −1.

Summarizing, we have found

d∑

j=0

(−1)j Tr(g, IndWd

Sd−j×Wj
(1× sgnj)) =


 ∏

gi positive

1


 ·


 ∏

gi negative

(−1)


 . (12.6)
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On the other hand, we have

χd(gi) =

{
1, gi is positive;

−1, gi is negative.

Indeed, if gi = ciσ(ci) is positive, then we have χd(ci) = χd(σ(ci)) = 1 because both ci and σ(ci) can be
conjugated into Sd. If gi is negative, then up to conjugacy we may assume gi is the cyclic permutation
(1, 2, · · · ,m,−1, · · · ,−m) for some 1 ≤ m ≤ d. Then gi = (1,−1)(1, 2, · · · ,m)(−1,−2, · · · ,−m), from
which we see χd(gi) = −1.

We conclude that the right side of (12.6) is
∏
χd(gi) = χd(g). This completes the proof.

�

12.3. The split case X ′ = X
∐
X. We make our result more explicit in the split case X ′ = X

∐
X .

On the analytic side in §2.1, the group Hn = GL2n,F and Pn is the standard parabolic corresponding to
the partition (n, n), with Levi Mn ≃ GLn,F ×GLn,F . We then have the degenerate principal series

In(s) = Ind
Hn(A)
Pn(A)

(| · |s+n/2
F × | · |−s−n/2F ), s ∈ C.

Let E = (E1, E2) ∈ BunMn(k) ≃ BunGLn
(k) × BunGLn

(k), and let a : E1 → E∨2 be an injective map of OX -
modules. Then by §2.6 the Siegel–Eisenstein series has a well-defined ath Fourier coefficient Ea(m(E), s,Φ)
at (E1, E2). By Theorem 2.7 and 5.1 we have

Ea(m(E), s,Φ) = q−(deg(E1)+deg(E2))(s−n/2)− 1
2n

2 degωXLn(s)
−1 Den(q−2s, E∨2 /E1),

where Ln(s) =
∏n

i=1 ζF (i + 2s) and, for a torsion OX -module Q, the density polynomial is given by

Den(T,Q) =
∑

0⊂I1⊂I2⊂Q
T dimk I1+dimkQ/I2

∏

v∈|X|
mv(tv(I2/I1);T deg(v)).

Here see (2.1) for mv(tv;T ). The normalized Fourier coefficient (12.1) is

Ẽa(m(E), s,Φ) = Den(q−2s, E∨2 /E1).
Next we come to the geometric side. We have a natural partition

(X ′)r =
∐

µ∈{±1}r
Xr.

The moduli of unitary shtukas ShtrU(n) defined in §6 is then partitioned into

ShtrU(n) =
∐

µ∈{±1}r
ShtµU(n),

and there is a natural isomorphism

ShtµU(n) ≃ ShtµGLn
.

Here we recall that ShtµGLn
is the moduli of shtukas for GLn, cf. [YZ17], whose S-points are given by the

groupoid of the following data:

(1) xi ∈ X(S) for i = 1, . . . , r.
(2) F0, . . . ,Fn ∈ BunGLn

(S).
(3) An elementary modification fi : Fi−1 99K Fi at the graph of xi, which is of upper of length 1 if

µi = +1 and of lower of length 1 if µi = −1.
(4) An isomorphism ϕ : Fr

∼= τF0.

In particular, ShtµGLn
is empty unless

∑r
i=1 µi = 0.

For the special cycle Zr
E (cf. Definition 7.1) associated to E = (E1, E2) above, we have a partition

Zr
E =

∐

µ∈{±1}r
Zµ
E ,

where an object in Zµ
E (S) is an object as above in ShtµGLn

(S) together with maps

E1 ⊠OS
t
(1)
i−−→ Fi

t
(2)
i−−→ E∨2 ⊠OS , i = 1, . . . , r, (12.7)
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such that the diagram commutes

E1 ⊠OS E1 ⊠OS . . . E1 ⊠OS
τ (E1 ⊠OS)

F0 F1 . . . Fr
τF0

E∨2 ⊠OS E∨2 ⊠OS . . . E∨2 ⊠OS
τ (E∨2 ⊠OS)

t
(1)
0 t

(1)
1

∼

t(1)r
τ t

(1)
0

t
(2)
0

f0 f1

t
(2)
1

fr

t(2)r

∼

τ t
(2)
0

∼

Let a : E1 → E∨2 be a map of OX -modules. Then Zµ
E (a) is the open-closed subscheme of Zµ

E such that the
common composition (12.7) is equal to a⊠ IdOS .

For an injective a : E1 → E∨2 , our §7 shows that Zµ
E (a) is proper over Spec k and defines a class [Zµ

E (a)] ∈
Ch0(Zµ

E (a)) for each µ ∈ {±1}r. Then our main Theorem asserts

∑

µ∈{±1}r
deg[Zµ

E (a)] =
1

(log q)r

(
d

ds

)r ∣∣∣
s=0

(
qdsẼa(m(E), s,Φ)

)
,

where d = −(χ(X, E1) + χ(X, E2)). We remark that deg[Zµ
E (a)] is not independent of µ ∈ {±1}r, even if we

restrict our attention to those µ with
∑r

i=1 µi = 0.
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