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HIGHER SIEGEL-WEIL FORMULA FOR UNITARY GROUPS:
THE NON-SINGULAR TERMS

TONY FENG, ZHIWEI YUN, WEI ZHANG

ABSTRACT. We construct special cycles on the moduli stack of unitary shtukas. We prove an identity
between (1) the rtP central derivative of non-singular Fourier coefficients of a normalized Siegel-Eisenstein
series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of unitary shtukas
with r legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has
the additional feature of encompassing all higher derivatives of the Eisenstein series.
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1. INTRODUCTION

The classical Siegel-Weil formula ([Sie51l [Wei65]) relates the special values of Siegel-Eisenstein series on
the symplectic group (resp. the unitary group) to theta functions, which are generating series of represen-
tation numbers of quadratic (resp. Hermitian) forms over number fields. In particular, by exploiting the
factorization of the non-singular Fourier coefficients into a product of local terms, one arrives at Siegel’s
formula for representation numbers of global quadratic or Hermitian forms in terms of local representation
densities.

In [Kud97] Kudla began to study an arithmetic version of the Siegel-Weil formula and he discovered a
relation between an “arithmetic theta function” — a generating series of arithmetic cycles on an integral
model of a Shimura curve—and the first central derivative of a Siegel-Eisenstein series on Sp,. In a series
of papers, Kudla and Rapoport developed this paradigm by defining the non-singular terms of a generating
series of special cycles on suitable integral models of Shimura varieties for SO(n — 1,2) with n < 4 and for
all U(n — 1,1). Of particular relevance to our paper, in Kudla and Rapoport defined the
sought-after special cycles on integral models of unitary Shimura varieties, now known as Kudla—Rapoport
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cycles, and conjectured a relationship to the non-singular Fourier coefficients of the central derivative of the
Siegel-Eisenstein series. Their conjecture has been recently proved by Li and one of us [LZ20]; we also refer
to the introduction of [LZ20] for a more detailed account of recent advances in some other related directions.

In this paper and its sequel we study a function field analogue of the arithmetic Siegel-Weil formula, for
unitary groups. In particular, we will construct special cycles on the moduli space of unitary shtukas. Then
we prove the analogue of the Kudla-Rapoport conjecture for derivatives of arbitrary order at the center of
the Siegel-Eisenstein series, relating the non-singular Fourier coefficients of such higher derivatives to the
degrees of special cycles. In the sequel, we will construct the complete generating series of special cycles
(including singular terms) and give evidence for their modularity.

1.1. Statement of main result. To formulate the result, let X be a smooth, proper and geometrically
connected curve over k = F, of characteristic p # 2, and v: X’ — X be an étale double cover, with the
non-trivial automorphism denoted ¢ € Aut(X’/X). Let F be the function field of X and let F’ be the
ring of rational functions on X’ (we allow X’ = X [[X). Let U(n) — X be the reductive group scheme
corresponding to the standard F’/F-Hermitian space of dimension n. In §8 we define the moduli stack
Shty;(,,) parametrizing rank n “unitary shtukas” with r legs. It admits a fibration Shty;,,) — (X')", and will
play the role of Shimura varieties in the function field context.

1.1.1. Special cycles. Drawing inspiration from the construction of Kudla-Rapoport cycles on unitary Shimura
varieties [KR14], we introduce in §7 certain special cycles Zz(a) indexed by &, a vector bundle of rank m
with 1 <m < mnon X', and a Hermitian map a: & — 0*&" where £ := Hom(€,wx) is the Serre dual of £.
For general £ the dimension of Z}(a) differs from the “virtual dimension”, but when € = £ is a line bundle
and a is injective, Z7(a) has the expected dimension (cf. Proposition and Remark [[.I0) and serves as
the analogue of the Kudla-Rapoport divisor.

We will then be particularly interested in the case m = n. Then the “virtual dimension” of ZZ(a) is
0. However, as is already seen in the number field context [KR14], the literal dimension of Zf is often
significantly larger; this problem is exacerbated as r increases. Nevertheless, under the assumption that
a: & — o*&Y is injective, we are able to construct an appropriate “virtual fundamental cycle” [Z%(a)] €
Cho(Z%(a))q. When £ = @7, L; is a direct sum of line bundles, the class [ZZ(a)] € Cho(Z%(a))q can be
defined as (the restriction to ZZ(a) of) the intersection product of ZJ. (a;;) for the diagonal entries a;; of a;
this is similar to the number field case. However, a new feature arises when £ is a not a direct sum of line
bundles. We overcome this difficulty in §7.9 by introducing the notion of a good framing for £ to reduce to
the case of a sum of line bundles. A nontrivial task is to verify that the cycle class [ZZ(a)] is independent of
the choice of the good framing, which occupies much of the sections §8-§10

When a is injective, it turns out that ZZ(a) is proper, so that [Z{(a)] has a well-defined degree deg[Z%(a)] €

Q.

1.1.2. The main result. Let E(g,s, ®) be the Siegel-Eisenstein series for the standard split F’/F-skew-
Hermitian space of dimension 2n, with respect to the unramified standard section ®. For a rank n vector
bundle £ on X’ as above, F(g,s, ®) admits a Fourier expansion with respect to £ indexed by Hermitian
maps a: £ — o*EV. We let Ea(m(é'), s, ®) be the a'" Fourier coefficient multiplied by certain normalization
factors, explained precisely in ([I21).

In our normalization, s = 0 is the center of the functional equation for E (m(€),s,®). Our main theorem
relates the Taylor expansion at this central point to the degrees of special cycle classes.
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Theorem 1.1. Let £ be a rank n vector bundle on X' and a: € — o*EY be an injective Hermitian map.

Then we have
IR AN
(logq)” \ds /) ls=o0

where d = — deg(€) + ndegwx = —x (X', &).

(4 Ea(m().5,9)) = deg[ZE (a)], (1.1)

1.1.3. Comments on the proof. Let us stress that (II]) holds for all r, regardless of the order of vanishing of
Ea(m(é’ ),s,®) at s = 0. The first results of this nature, giving motivic interpretations of Taylor coefficients
of automorphic L-functions even “beyond the leading term”, were proved in [YZ17, YZ19] for PGLy. Our
results here are the first higher derivative formulas to be proved for groups of arbitrary rank. Our proof
shares some common ingredients with these earlier works, but also has a number of interesting new ones.
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For example, a key discovery for us was a connection between the Fourier coefficients of Siegel-Eisenstein
series and certain perverse sheaves arising from Springer theory. Another key realization was that the special
cycles are governed by certain variants of the Hitchin fibration, whose geometry can also be described in
terms of Springer theory. An overview of the proof will be given in §I.21

Another feature of the proof of Theorem [[.I]is that it is completely uniform in 7, and in particular unites
the “Siegel-Weil formula” and “arithmetic Siegel-Weil formula” in the same framework. For this reason, we
propose to call (1) a higher Siegel-Weil formula.

Remark 1.2. When r = 0, the coarse moduli space of Sht[’}(n) is just the discrete set of points which form
the domain of everywhere unramified automorphic forms for U(n). In that case, Theorem [[T] specializes to
(the non-singular Fourier coefficients of) the classical Siegel-Weil formula.

One should imagine that when r = 1, Shty;(,,) — X' is analogous to (the integral model of) a unitary
Shimura variety. Now, under the technical assumptions of the present paper (namely the everywhere unram-
ifiedness assumptions) this space is always empty, corresponding to the fact that the sign of the functional
equation for the Siegel-Eisenstein series is +1 (so that all odd order derivatives vanish). However, the same
methods may be used to prove generalizations of Theorem [[11] that incorporate certain level structure, for
which the » =1 case is interesting.

When r > 1, no analogue of the spaces Sht’g,(n) is presently known in the number field setting. Conse-
quently, we do not know how to formulate an analogue of the main result for number fields.

1.1.4. Singular coefficients. We say that a Hermitian map a: & — o*&Y non-singular if it is injective as a
map of coherent sheaves, in analogy to the terminology of [KR14]. Theorem [I1] only concerns the special
cycles for £ of rank n and a non-singular; indeed, when a is singular it is quite non-trivial even to define an
appropriate virtual fundamental class [ZZ(a)].

Our companion paper [FYZ21] proposes a solution to this problem. There, we construct cycle classes
[ZE(a)] for all € of rank < n and possibly singular a: € — 0*EY. Moreover, we conjecture that they can be
assembled appropriately into generating series valued in the Chow groups of ShtTU(n) which are automorphic,
in analogy to known results over number fields [BHK™20|, which fall under the umbrella of the Kudla
program.

1.2. Method of proof. To summarize, we prove Theorem [[.1] by constructing two perverse sheaves that
encode the two sides of (II) in the sense of sheaf-function correspondence, and then identifying these
two perverse sheaves using a Hermitian variant of Springer theory, which labels these perverse sheaves by
representations of the appropriate Weyl group. In this way, Theorem [[.1] is eventually unraveled into an
elementary identity between representations of the Weyl group for type B/C.

On the geometric side, the connection between special cycles and Springer theory comes via the geometry
of a moduli stack that resembles the Hitchin moduli space. On the other side, the connection between the
Fourier coefficients of Siegel-Eisenstein series and Springer theory goes through local density formulas of
Cho-Yamauchi.

Let us briefly explain the connection between the higher Siegel-Weil formula and the Hitchin moduli stack
and Hermitian Springer theory, and refer more details to the later paragraphs. The degree of the special
cycle that appear on the right side of (L)) is essentially an intersection number of cycles on ShtTU(n). We
follow the strategy of [YZ17] to compute this intersection number: doing linear intersections (those not
involving the Frobenius map) first, and leaving the Frobenius semi-linear intersection till the last step (cf.
(I013) — (I0I9)). In this process, a Hitchin-type moduli stack M, appears naturally as we perform linear
intersections (cf. (I0I8)). The degree of the special cycle [ZZ(a)] can be expressed as a weighted counting
of k-points on the fiber of a map fq : My — Ay (analogue of Hitchin fibration) over the point (€, a) € A(k),
where (£, a) are as in the statement of Theorem [[11

The cokernel Q@ = coker(a) is a torsion sheaf on X’ with a Hermitian structure inherited from a. This
motivates the introduction of the moduli stack Hermsoq(X'/X) that parametrizes torsion coherent sheaves
on X’ of length 2d together with a Hermitian structure, so that Q is a k-point of Hermgy(X'/X) (where
2d = dimy I'(X’, Q)). We show that the fiber of f4 : Mg — Ay over (£,a) depends only on Q = coker(a),
therefore the degree of [Z{(a)] depends only on the k-point Q of Hermog(X'/X).

On the other hand, the Eisenstein series side of (LI)) can be written as a product of local terms —
representation density functions for Hermitian lattices. These density functions again only depend on the
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torsion sheaf Q together with its Hermitian structure, i.e., a k-point in Hermoq(X'/X).

Therefore we reduce to proving that two quantities attached to a k-point in Hermoy(X'/X) are equal.
A key realization is that both quantities are of motivic nature: they come by the sheaf-to-function corre-
spondence from two (graded, virtual) perverse sheaves on Hermyq(X’/X). This is where Hermitian Springer
theory enters. Classically, starting with a reductive Lie algebra g, Springer theory outputs a perverse sheaf
Spry on g, defined as the direct image complex of the Grothendieck-Springer resolution g : g — g, together
with an action of the Weyl group W. In our setting, Hermsyg(X’/X) will play the role of g. In §4l, we construct
a perverse sheaf Spri™ on Hermyg(X’/X) together with an action of Wy = (Z/2Z)® x Sy analogous to the
Springer sheaf. If Hermog(X'/X) is replaced by Cohg(X), the moduli of torsion coherent sheaves on X of
length d, such a Springer sheaf was constructed by Laumon [Lau87]. The Springer sheaf on Cohy(X) (resp.
Hermoq(X'/X)) can be viewed as a global version of the Springer sheaf for gl; (resp. 024). The perverse
sheaves on Hermsoq(X’/X) that govern both sides of (1) will be constructed from direct summands of the
Hermitian Springer sheaf Spris™

Thus, the proof of Theorem [[.1]is completed in three steps:

(1) Construct a graded perverse sheaf on Hermgg(X'/X)

d
Eis __ Eis
K = Py

=0
whose Frobenius trace at Q is related to the LHS of (II]). More precisely,

d

Ea(m(g)a S, (I)) = Z ’I‘I'(Fl"ObQ7 (K:g{iis)g)qfﬂs'
i=0

(2) Construct a graded perverse sheaf on Hermgg(X'/X)

d
Int _ Int
K = DK
=0

whose Frobenius trace at Q is relate to the RHS of (ILT)). More precisely,

d

deg[Z%(a)] = ) Tr(Frobg, (Ki¥)o) - (d — 2i)". (1.2)
=0

(3) Prove that
KChs = kit (1.3)
as graded perverse sheaves on Hermgq(X'/X).

These three steps correspond to the three parts of the paper. We elaborate on the main ideas involved in
each step.

1.2.1. Step (1). After a standard procedure expressing the nonsingular Fourier coefficients of Eisenstein
series in terms of local density of Hermitian lattices, we use the formula of Cho and Yamauchi [CY20] for
these densities (more precisely, the unitary variant developed in [LZ20]). We also need an extension of their
formula in the split case (Theorem 2:2)). The formula of Cho and Yamauchi depends only on the Hermitian
torsion sheaf Q = coker(a), which gives the hope that the local density, as a function on the set of Hermitian
torsion sheaves, comes from a sheaf on Hermgg(X’/X) via Grothendieck’s sheaf-to-function dictionary. We
do this by developing an analog of Springer theory over Hermoy(X'/X) (§3144).

The key observation here is that the term in the Cho—Yamauchi formula resembles the Frobenius trace
function for a certain linear combination of Springer sheaves for gl; or Cohy(X), except for some signs. To
match the signs exactly we consider an analogous linear combination of Springer sheaves on Hermgg(X'/X),
and we compare the Frobenius actions on the cohomology of Springer fibers over Cohg(X') and over Hermaq (X' /X)),

see §4.5] and §4.6
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1.2.2. Step (2). This step consists of three substeps.

e First, we define special cycles for nonsingular a (§6-§7)). When & is a direct sum of line bundles £;, we
define, following Kudla and Rapoport, [Z§(a)] as the intersection of cycle classes [Z} (as)], which,
despite not being divisors in our setting, always have the “expected” dimension (more precisely,
codimension r in Shtyy(,)). The definition of [ZZ(a)] for general vector bundles & requires choosing
a “good framing” on &, i.e., an injective map from a direct sum of line bundles & = @7 L; — &
satisfying certain conditions. In any case, the RHS of (II]) is an intersection number of cycles on

e The well-definedness of [Z(a)| is proved in the second substep (§8-§I0), which also gives a differ-
ent definition of these cycle classes without any choices. The idea is similar to the one used in
[YZ17], namely by exchanging the order of intersection, we perform “linear intersections” first to
form Hitchin-type moduli stacks (denoted M, making sense over any base field), and in the last
step we perform a shtuka-type construction by intersecting with the graph of Frobenius.

e In the last substep (§II) we use the Lefschetz trace formula to express the degree of [ZZ(a)], for-
mulated using the Hitchin-type moduli stack My, as the trace of Frobenius composed with the rth
power of an endomorphism C on the direct image complex Rf.Q, of the Hitchin map f : My — Aqg.
Now, the “Hitchin base” A4 has a canonical smooth map to Hermyy(X'/X), and it turns out that
Rf.Q, together with its endomorphism C descends through this map to a perverse sheaf ICfl“t on
Hermoy(X’/X) with an endomorphism C. The decomposition of K" into graded pieces lC}i‘} is

according to the eigenvalues of the C-action, which are of the form (d — 2i). Combining these facts

we get (L2).
Herm

1.2.3. Step (3). Both K5 and KI'* are linear combinations of isotypical summands of Spray™ under the
action of Wy. The isomorphism (L.3)) then comes from an isomorphism of two graded virtual representations
of Wy, which we verify directly.
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1.3. Notation. Throughout this paper, k = F, is a finite field of odd characteristic p. Let £ # p be a

prime. Let ¢ : k — Qéx be a nontrivial character. For a stack over k, we write Frob = Frob,, for its g-power
Frobenius endomorphism.

Let X denote a smooth curve over k. With the exception of §land §4 X is assumed to be projective and
geometrically connected. Let wyx be the line bundle of 1-forms on X.

Let F' = k(X) denote the function field of X. Let | X| be the set of closed points of X. For v € |X]|, let O,
be the completed local ring of X at v with fraction field F), and residue field k,. Let A = Ar denote the ring
of adeles of F, and O = [Toe x| Ov- Let deg(v) = [ky : k], and ¢, = q48(") = 4k, A uniformizer of O, is
typically denoted w,. Let |- |, : F, — ¢Z be the absolute value such that |w,|, = ¢, !. Let |- |r : AX — ¢%
be the absolute value that is |- |, on F,*.

Let X’ be another smooth curve over k and v : X’ — X be a finite map of degree 2 that is generically
étale. We denote by o the non-trivial automorphism of X’ over X. With the exception of §4.1] and §4.2 v
is assumed to be étale. We emphasize that the case X’ = X [[ X is allowed. Let F’ be the ring of rational
functions on X', which is either a quadratic extension of F' or F' x F. We let k' be the ring of constants in
F', which is either F 2 or F, x F,. The notations wx, | X'|, F},, Oy, ko, Apr,| - |, | - |77, @ and deg(v”) (for
v’ € |X']) are defined similarly as their counterparts for X. Additionally, for v € | X|, we use O, to denote
the completion of Ox/ along v~!(v), and define F to be its total ring of fractions.

For a vector bundle £ on X', let &Y = Hom(&,wx/) be its Serre dual. For a torsion sheaf 7 on X', let
TV = Ext'(T,wx/).

When X (hence X') is projective, let Bungr, (resp. Bungr) be the moduli stack of rank n vector
bundles over X (resp. X’). Let g be the genus of X and ¢’ = 2g — 1 be the arithmetic genus of X'.

For a stack ), Ch())) denotes its rationalized Chow group and D®(Y, Q,) its bounded derived category
of constructible Q,-sheaves.
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Part 1. The analytic side
2. FOURIER COEFFICIENTS OF EISENSTEIN SERIES

In this section we will define the Siegel-Eisenstein series featuring into our main theorem, and explain
how to express their non-singular Fourier coefficients in terms of local density polynomials, which will be
geometrized in later sections.

2.1. Siegel-Eisenstein series. For any one-dimensional F-vector space L, let Herm,, (F, L) be the F-vector
space of F'/F-Hermitian forms h : F'" x F" — L@p F’ (with respect to the involution 1®c on L& F”). For
any F-algebra R, Herm, (R, L) := Herm, (F, L) ®p R is the set of L ® p R’-valued R’/R-Hermitian forms on
R'™, where R' = RQpF’'. When L = F we write Herm,,(F') = Herm,, (F, F') and Herm,,(R) = Herm,,(F)®FrR
for any F-algebra R.

Let W be the standard split F’/F-skew-Hermitian space of dimension 2n. Let H, = U(W). Write
A := Ap for the ring of adeles of F. Let P,(A) = M, (A)N,(A) be the standard Siegel parabolic subgroup
of Gy, (A), where

mu(w) = fimte) = (5 1) € CLatar}.

waw = fu) = () s e e |

Let n : Aj/F* — C* be the quadratic character associated to F'/F by class field theory. Fix x :
A%, /F'™™ — C* a character such that X|A; = n". We may view x as a character on M, (A) by x(m(a)) =
x(det(a)) and extend it to P,(A) trivially on N,(A). Define the degenerate principal series to be the
unnormalized smooth induction

n (A s+n
L.(s,x) = Indgn((A))(x~ | - F-i,_ /2), seC.

For a standard section ®(—,s) € I,,(s, x), define the associated Siegel-FEisenstein series

E(g,5,®) = > ®(vg,s), g€ Hy(A),
YEP,(F)\Hn(F)

which converges for R(s) > 0 and admits meromorphic continuation to s € C. Notice that E(g, s, ®) depends
on the choice of x.
In this paper, we will choose x to be unramified everywhereﬂ Then I,,(s, x) is unramified and we fix

~

®(—,s) € In(s,x) as the unique K = H, (O)-invariant section normalized by
(I)(lgn, 8) =1.

Similarly we normalize ®,, € I,(s, xv) for every v € | X| and we then have a factorization ® = &), ¢| x| Po-

2.2. Fourier expansion. Let wr be the generic fiber of the canonical bundle of X, and A,, = A ®r wp.
The residue pairing Res : A, X Ar — k induces a pairing

(,+) : Herm,, (A, wr) x Herm,, (A) — k

given by (T,b) = Res(— Tr(Tb)). Composing this pairing with the fixed nontrivial additive character vy :
k — C* exhibits Herm,, (A, wp) as the Pontryagin dual of Herm,,(A). Moreover, it exhibits Herm,, (F,wp)
as the Pontryagin dual of Herm,,(F)\ Herm, (A) = N,,(F)\N,(A). The global residue pairing is the sum of
local residue pairings (-, ), : Herm,, (F,,wr) x Herm,,(F,) — k defined by (T, b), = try, /i Res,(— Tr(T')).

ITo see that such x exists, observe that by Baer’s criterion, it suffices to check that 5™ is trivial on ker(Pic(X) — Pic(X")).
If X'/X is the trivial double cover or the double cover corresponding to F 2 /Fg, then then this kernel is trivial so the result is
immediate. Otherwise, the cover is geometrically non-trivial. Since char(k) # 2, the kernel consists of the 2-torsion line bundle
whose class in H' (X, u2) agrees with n € H'(X,Z/2Z) under the isomorphism po = Z/2Z. If n is even then there is nothing
to check; if n is odd then the desired vanishing property amounts (when char(k) # 2) to the alternating property of the cup
product pairing H' (qu, Z/2Z) x Hl(qu,Z/2Z) — Z/2, which follows from the graded commutativity of the cup product

and the fact that the geometric Za-cohomology of curves in characteristic # 2 is torsion-free.
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We have a Fourier expansion

E(Q,S,(I)): Z ET(gusuq))a
TeHerm,, (F,wr)
where
Erlg.s.8) = [ En(b)g. s, @) ((T25)) dn(b),
Nn(F)\Nn(A)

and the Haar measure dn(b) is normalized such that N,,(F)\N,(A) has volume 1. For any o € M,,(A) we
have
Er(m(a)g, s,®) = x(det(a)) | det(c) ;,SJr"/QEtaTa(g, s, D). (2.1)
When T is nonsingular, for a factorizable ® = ®U€| x| v we have a factorization of the Fourier coefficient
into a product (cf. [Kud97, §4])

ET(Q,S,‘I)) - |WX|F /2HWT.,U(Q'U757(I)’U)7 (22)
where the local (generalized) Whittaker function is defined by

Wralgo s @)= [ @m0 9in(T B0 ), we= (] )

and has analytic continuation to s € C. Here the local Haar measure d,n(b) is the one such that the volume

of N,(O,) is 1. The factor |wX|;n2/2 is the ratio between the global measure dn and the product of the
local measures [[, dyn.
Note that for a € M,,(Fy),
Wr.o(m(a),s, ®,) = x(det(a)) | det(a) ;,S+"/2Wno—éTaﬁv(1, 3, Dy). (2.3)

We define the regular part of the Eisenstein series to be

E'8(g,s,®) = > Er(g,s9). (2.4)

TcHermy, (F,wp)
rank T'=n

2.3. Local densities for Hermitian lattices. The local density for Hermitian lattices in the non-split
case has been studied in [LZ20, §3] following the strategy of Cho—Yamauchi [CY20]. Here we recall the
result of [LZ20] and extend the results to the split case.

From now on until §275] let F' to be a non-archimedean local field of characteristic not equal to 2 (but
possibly with residue characteristic 2). Let F’ be either an unramified quadratic field extension or the split
quadratic F-algebra F’ = F' x F. Denote by O (resp. Op) the ring of integers in F' (resp. F”’). In the
split case we have Opr = Op x Op. Let 1 = np/jp : F* — {£1} be the quadratic character attached to
F'/F by class field theory. Let @ be a uniformizer of F, k the residue field, ¢ = #k.

Let L, M be two Hermitian Op-lattices. In the split case, the datum of a Hermitian Op:-lattice L is a
pair (L1, La) of Op-lattices together with an Op-bilinear pairing

(',')2L1XL2—>0F

that is perfect after base change to F'. We will define LY = (LY, Ly) where LY = {z € L1 ®0, F : (z,L2) C
Op} and similarly for Ly.

Let Repy, 1 be the scheme of integral representations of M by L, an Op-scheme such that for any Op-
algebra R,

RepM7L(R) =Herm(L ®p, R,M ®o, R),

where Herm denotes the set of Hermitian R-module homomorphisms. In the split case, if we write L
and M in terms of pairs (L1, La) and (M;, Ms) with their Op-bilinear pairings, then a Hermitian module
homomorphism consists of a pair of R-linear maps ¢; : L; ® o, R — M; ®0o, R preserving the base change
to R of the Op-bilinear pairings.

The local density of integral representations of M by L is defined to be

. #RepM,L(OF/wN)
DGD(M, L) L= N];I}EOO qN.dim(RepM,L)p '
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Note that if L, M have Op/-rank n,m respectively and the generic fiber (Rep,, 1 )r # @, then n < m and

dim(Rep,, 1)r = dim Uy, — dim Uy, = 1 - (2m — n).

2.4. Cho—Yamauchi formula for local density.

Definition 2.1. For a € Z>( we define a polynomial of degree a

a—1

m(a;T) == [[(1 = (n(@)q)'T) € Z[T).
=0

Note that m(a; T') depends on F’'/F.
In both the non-split and the split cases, for a finite torsion Op-module T we define

£(T) := length of T as an Op-module;
HT) = dimg(T ®o, k).
For an Op/-Hermitian lattice L, we define its type
t(L) :==t(LY/L)

where we view the finite torsion Op/-module LY /L as an Op-module.
When F'/F is non-split, for a finite torsion Op,-module T we define

(T) := length of T as an Op/-module;
t/(T) = dimp (T R0, k/).
Then we have
UT)=20(T), t(T)=2t'(T). (2.5)

When F' = F x F is split, for a finite torsion Op,-module T we may define ¢(7) and ¢ (7) by (3.
Moreover, for Op-Hermitian lattices L = (Lq, L) and L' = (L}, L}) such that L C L’ (meaning that
L, C L] and Ly C L}), we have
(L' /L) = £(Ly /L) + £(L5/ Lo)
and
t'(LY/L) = t(Ly/L1) = t(Ly /L)
In both the split and non-split case, we define
t'(L) =t'(LY/L).
We have the following analog of Cho—Yamauchi formula [CY20].

Theorem 2.2. Let j > 0 be an integer. Let (1) be the self-dual Hermitian O -lattice of rank j with
Hermitian form given the identity matriz 1;. Let L be a Hermitian Op -lattice of rank n.

(1) We have

n

Den((1)",(1)") = [[(1 = (n(@)q) ™' T)

i=1 T=(n(w)q)~7
(2) There is a (unique) polynomial Den(T, L) € Z[T)], called (normalized) local Siegel series of L, such
that for all j > 0,
~ Den((1)"*7,L)
~ Den((1)"H,(1)m)’

Den((n(w)q) ™/, L)

(8) We have
Den(T,L)= Y T*@E/ Mm@/ (L);7). (2.6)
LCL'CL'VCLY

Here the sum is over Op: -lattices L' containing L on which the Hermitian form is integral.
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Proof. The non-split case is proved in [LZ20, Thm. 3.5.1] and here we indicate the necessary change in the
split case. Now suppose F’ = F' x F and hence k' = k x k. Let Ly, = L®o, k and (1)1 = (1)1 ®o k, which
are free k’-modules with the induced k’/k-Hermitian forms. In particular, (1)7* is non-degenerate and the
radical of Ly = L®o,, k has k'-rank equal to t'(L) = ¢(Ly' /L1) = t(L3/L2). Let Isomyym 1, be the k-scheme
of “isometric embeddings” from L to (1)}, i.e., injective k’-linear maps from L to (1)7* preserving the
Hermitian forms.

Similar to the orthogonal case [CY20, §3.3], we have

Den(<1>m, L) =q dim Rep((1)™,L) Z #(L//L)—(m—n)# ISOIn(l);C",Lk (k),
LCL/CLY
where dim Rep({(1)™, L) = m? — (m — n)? = 2mn — n>.
It remains to show that
n+a—1
2_(m—n)? i—m
# Isompym 1, (k) =q™ ( . H (I—q™) (2.7)
i=0
where a = t/(L) is the k’-rank of the radical of L. Note that up-to-isomorphism, L is determined by its
rank and the rank of its radical. Let U,_,  be a k’'/k-Hermitian space of rank n with radical of rank a. Let
Vin = Um0 be a (non-degenerate) k'/k-Hermitian space of dimension m > n. Then it is easy to see that
Un—a,a =~ Up—a,0 2] UO,a and
#Isomy,, v, , (k) = #1Isomy,, v, , (k) FIsomy, _ . v, (k).

By 1) (note that # Isomyym 1, (k) = #Isomvy,, v, _, ., (k)), it suffices to show (7)) in the two extreme
cases: ¢ =0 and a = n.

First we consider the case a = m. Then, to give an isometric embedding from U = Uy, = k™ to
V = Unm,o = k'™ is equivalent to give an injective k-linear map ¢ : k™ — k™ and then an injective k-linear
map ¢ : k" — Im(¢)t C k™. Therefore, denoting by Homj (k™, k™) the set of injective k-linear maps
¢ k™ — k™, we have

#Isomy,, v, (k) =# Homy, (K", k™) - # Homy, (K", E™™™)

n—1 n—1
:qmn H (1 _ qum) . q(mfn)n H (1 _ quern)
=0 =0
, 2n—1
:q2mn—n H (1 _ qz—m)_
=0

It remains to consider the case a = 0. Then a similar argument shows

#Isomvy,, v, ,(k) =# Homy (k" k™) - # Homy (K", k™™ ")

n—1
:qmn H(l _ qlfm) . q(mfn)n
=0
, n—1
:qun—n H (1 _ qz—m)-
=0

This completes the proof.
O

Remark 2.3. By Theorem [2.2] the degree of the polynomial Den(T, L) is equal to ¢'(LV /L). Moreover, the
polynomial Den(T, L) depends only on the induced Hermitian form on the torsion module LY /L. Therefore
for a Hermitian torsion moduld] Q we may define Den(T, Q) by (Z0).

Remark 2.4. In the split case, writing L = (L1, Lo) and L' = (L}, L}). Then the formula reads

Den(T, L) = Z TZ(LQ/L1)+5(L’2/L2)m(t(L/2V/L/1); ).
LiCL,CLyYCLY

2By this we mean a torsion Op/-module with an O/ /Op-Hermitian form.
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Remark 2.5. The local Siegel series satisfies a functional equation
1oy 1
Den(T, L) = (n(w)T)" & /B . Den (T’ L) :

See Corollary [[T.14] for the geometric analog.

5. Relation with local Whittaker functions. We continue to let F' be a local field. Define the local

L-function
n n

L p(8) = H (i +2s,1") H T 5o

1 —i—
=1 =1 TI

Lemma 2.6. Let L be a Hermitian Op:-lattice of rank n. Let T = ((z;,2;))1<sij<n be the fundamental
matriz of an Ops-basis {x1,...,x,} of L, an n X n Hermitian matriz over F. Let 6 be a generator of wo,

so that TO € Herm,, (F,wg). Then
Wro(1,s,®) = fnypl/p(s)_l Den(q~2%,L).
Here ® is the local unramified section normalized by ®(1a,,s) = 1.
Proof. Note that by Theorem
Loy (§) = Den((D)", (1)") 7,
It is known that Wry(1, s, @) is a rational function in ¢°. Therefore the formula is equivalent to
Wrg(1, 4, ®) = Den((1)"**, L).

for all integer j > 0. In the non-split case this is essentially [KR14, Prop. 10.1] (cf. [LZ20, §3.3]), which can
be easily modified to the split case. O

2.6. Fourier coefficients revisited. Now we return to the global situation. We need the following global
L-function to normalize the Eisenstein series

ZLn(s) =[] LG +2s,7").
i=1

The regular part E™8(-,s,®) (as a function in g € H,(A), cf. (24)) is determined by its restriction to
the Levi subgroup M, (A). Since the restriction is left M, (F)-invariant and right K-invariant, it descends
to a function on

My, (F)\M,(A)/M,(0) ~ Bunyy, (k) ~ Bungy, (k),

via the canonical identifications. From now on we will freely switch between g = m(«) € M, (A) and the
corresponding element £ € Bungy, (k) and we will write

E™&(m(&),s,®) = E*¥(m(a), s, D).
Note that the absolute value on A%, is normalized such that | det(a)|p = ¢4°&(€). By abuse of notation we
also view x as a function on Bungy (k).

Recall that &Y = Ho_mox,(é’ ,wx) denotes the Serre dual of £. Consider a rational Hermitian map
a:& --+0*&V (ie., defined at the generic point of X’). Given a pair (£,a) as above, we shall define the
Fourier coeflicient

E.(m(&),s,®)
as follows. For any generic trivialization 7 : £ 5 (F)™, the pair (€,7) gives a point a = «a(€,7) €

M, (A)/M,(O) such that € is glued from (F’)" and the lattices ayOf, . Under 7, the restriction of a at the

generic point gives an wp/-valued Hermitian form on (F’)™ which we denote by T = T(a, 7). Then we define

E,(m(€),s,®) := ET(mT)(m(a(E,T)),s,(I)). (2.8)

If we change 7 to y7 for some y € M, (F) = GL,(F'), then a(€,v7) = ya(&,7) and T'(a,y7) = 5 T (a, 1)y~ L.
By (21I), we have

Eraqmy(m(a(E,77)),5,®) = Ep,(m(a(£,T1)),s,®)
for all v € M, (F). Therefore E,(m(£), s, ®) is well-defined.
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Now suppose a : £ < ¢*€V is an injective Hermitian map. Let (€,,a) denote the Hermitian O/ -lattice
induced by a at v € | X|. Define

Den(q™2, ( H Deny, (g, =°, (Ey, a)).
veE|X|
Here Den, (—) is the density polynomial (2.6 defined using F}/F,. Note that the degree of Den(q2¢, (£, a))
(as a polynomial of ¢~%) is
deg(0*EY) — deg(€) = —2deg(&) + 2ndegwy.
Theorem 2.7. Let £ be a vector bundle over X' of rank n. Then
Ercg(m(g),s,q)) = Z Ea(m(g)asaq)) (29)
a:E—o*EV
where the sum runs over all injective Hermitian maps a : £ — o*EV. Moreover, we have
Eo(m(€),s,®) = x(det(&))q~ desEemn/2=gndegex & ()1 Den(q~2, (€, a)). (2.10)
Proof. From the definitions it is clear that
Emg(m(g)vsv(p) = Z Ea(m(g)vsv(p)
a:E--+0*EV

where a runs over rational Hermitian maps £ — ¢*£" that are generically nonsingular.

Now let a : £ --» 0*&Y be such a rational nonsingular Hermitian map. Choose a generic trivialization
7 Em 5 (F')", and use it to identify & with a € M, (A)/M,(O) such that &, = oy, L,, where L, = O/
Using 7, the map a induces T' € Herm,, (F,wr), which gives an wp ® g F-valued Hermitian form T, on (F))"
for every v € |X|. By definition (2.8)) we have

E,(m(£),s,®) = Er(m(a),s,®). (2.11)
By (22) and (23), and note that the character x is trivial on the norm of A},, we have
Er(m(a), s, ®) = x(det(a)|al " *lwx| 75 ] Wr, (1,5, @.). (2.12)
ve|X|

If T, does not have integral entries, then Wr, (1,s,®,) = 0 (since ® is invariant under N, (O,)). Therefore
Er(m(a), s, ®) is nonzero only when T;, is integral for all v, i.e., a is an everywhere regular Hermitian map
E — o*&Y. This proves (2.9).

For such a : € < 0*&Y, by Lemma [2.6] the right side of [2.12) is

1

det(a))|a] st 2wy |2 —— Den(q; %, (L, Ty)). 2.13
x(det(a))]afp " |wx| Uglfn,Fg/m(S) (g, ( ) (2.13)
Note that x(det(«)) = x(det(£)), |a|p = qdeg(g), and
Den(q~2%,(£,a)) = H Den(q, **, (€, ay)) H Den(q, **, (Ly, Ty))-
vE|X]| ve|X]|

Combining these facts with (ZI1)), 212) and (Z1I3)), we get 2.10).

3. SPRINGER THEORY FOR TORSION COHERENT SHEAVES

In this section we review the construction of the Springer sheaf on the moduli stack of torsion coherent
sheaves on a curve following Laumon [Lau87]. We also compute the Frobenius trace function of a particular
summand of the Springer sheaf called the Steinberg sheaf.

In this section let X be any smooth (not necessarily projective or connected) curve over k = F,. For
d € N, let X, be the d'" symmetric power of X.
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3.1. Local geometry of Cohy. Let Cohy = Cohg(X) be the moduli stack of torsion coherent sheaves on X
of length d. Let sg"h : Cohy = X4 be the support map. When X = A!, we have a canonical isomorphism

Cohg(A') = [gl,/ GL4]

given as follows. For Q € Cohg(A')(S), T'(AL, Q) is a locally free rank d Og-module equipped with an
endomorphism given by the affine coordinate t for A, giving an S-point of [gl,;/ GL4]; conversely, an S-point
of [gl;/ GLg4] is the same as a locally free Og-module V of rank d together with an Og-linear endomorphism
T :V — V, which corresponds to Og[t]-module Q (viewed as a coherent sheaf on AY) with ¢ acting as 7.

Let U C X% be open and f : U — A% be an étale map. Such a pair (U, f) is called an étale chart
for X7. It induces a map f§°h : Cohy(U) — Cohd(A%) sending Q to f,Q which is compatible with the
symmetric power fgq : Uy — (A%)d under sdc"h. Let ©g a1 C (Al)d and D4y C Uy be the discriminant
divisors, i.e., they parametrize divisors with multiplicities. Clearly D4 C f; 1(@,17 A1), therefore we may
write f;1(Dga1) = Dau + Ra, s as Cartier divisors on Uy. A divisor D of degree d lies in Uyg\Rq, s if and
only if for all pairs of distinct points x,y in the support of D, f(z) # f(y). Finally let Cohy(U)/ C Coh,(U)
be the preimage of Ug\Rq,s. Then Cohy(U)7 is an open substack of Cohy(X ) = Cohg(X7).

The following lemma shows that Coh,(X) is étale locally isomorphic to Cohy(A') 22 [gl,;/ GL4).

Lemma 3.1. (1) For any étale chart (U, f) of Xz, the map f$°" : Cohy(U) — Cohgq(Al)f is étale when
restricted to Cohg(U)f.
(2) The stack Cohq(X)g is covered by the substacks Cohg(U)? for various étale charts (U, f) of Xz.

Proof. (1) For any Q@ € Cohy(U)/(k), the tangent map of f$° at Q is Ext(;(Q, Q) — Exti:(f.Q, f+ Q).
Since different points in the support of @ map to different points in A', the above map is the direct sum
of 7. : Extp, (Q:,Q:) — Extp | P )(Qz, Q) over z € supp(Q). Since f is étale at each such z, 7, are
isomorphisms, and hence fg"h is étale at Q by the Jacobian criterion.

(2) For every point Q € Cohy(X)(k) we will construct an étale chart (U, f) such that Q € Cohg(U)7 (k).

Let Z C X (k) be the support of Q. For z € Z, let O, be the completed local ring of X3 at z with a
uniformizer w,. The map of sheaves r : Ox. — Brez0,/w? is surjective. Let ¢ : Z — k be any injective
map of sets. Then there exists an open neighborhood Uy of Z and f € O(Uy) such that 7(f) = (¢, + @) .ez-
Viewing f asamap f:U; — A%, it is then étale at Z, hence étale in an open neighborhood U C U; of Z,

i.e., (U, f) is an étale chart. Since {f(z) = ¢, }.ecz are distinct points in A%, we see that Q € Cohd(U)g. O

3.2. Springer theory for Cohy. Let (/]?)Bd(X ) be the moduli stack classifying a full flag of torsion sheaves
on X

0CQ1CQC--CQr=09
where Q; has length j. Let

7$% : Cohg(X) — Cohg(X)
be the forgetful map recording only Q = Q4.

Lemma 3.2 (Laumon [Lau87, Theorem 3.3.1]). The stacks 6;)/hd(X) and Cohg(X) are smooth of dimension

zero, and the map wg"h is proper and small.

Proof. 1t is enough to check the same statements after base change to k. We give a quick alternative proof
using Lemma[3 Il for an étale chart (U, f) (over k), we have a diagram in which both squares are Cartesian:

Cohg(X ) <——Cohy(U)! — Cohg(AY);
l/ Coh ‘/ Coh lﬂ,COh
Ta, X Tq,U d4,Al
Coh
Cohg(X )z =<——Cohg(U)! 2 Cohy(Al);

Here é\o/hd(U )/ is the preimage of Cohy(U)7 in 6;)/hd(U ). Since the horizontal maps are étale and the
Cohy(U)f cover Cohg(X )i by Lemma [3.T] the desired properties of wg‘}? follow from the same properties of

wg‘j{ll, which is the Grothendieck alteration gy, : [,/ GL4] — [al,/ GL4). O
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Let X3 C X4 be the open subset of multiplicity-free divisors (i.e., the complement of D4 x), and let
Cohgy(X)° (resp. Cohg(X)°) be its preimage under s§°" (resp. under s§° o 7§°"). Then Cohy(X)° —
Cohy(X)° is an Sy-torsor.

Corollary 3.3 (Laumon [Lau87) p.320]). The complex
Spry == Rrg"Q, € D*(Cohq(X), Q)

is a perverse sheaf on Cohg(X) that is the middle extension from its restriction to Cohy(X)°. In particular,
the natural Sq-action on Spr |cen,(x)e evtends to the whole Spry.

3.3. Springer fibers. Let @ € Coh,(X)(k) with image D in X4(k), an effective divisor of degree d. Let
Z = (supp D)(k). Let ¥(Z) be the set of maps y : {1,2,---,d} — Z such that Zle y(i) = D. Let Bg be
the fiber of 7TdCOh over Q. Then By classifies complete flags of subsheaves 0 C Q1 C Q2 C --- C Q41 C Q.
By Corollary B3l H*(Bg) = (Spr,) o carries an action of Sg.

For y € ¥(Z), let Bg(y) be the open and closed subscheme of Bg defined by the condition supp Q;/Q;—1 =
y(i). Then Bg is the disjoint union of Bg(y) for y € 3(Z). Hence

H*(Bo)= P H (Baly)):

yEX(2)
There is an action of Sy on X(Z) by precomposing.

Lemma 3.4. The action of w € Sq on H*(Bg) sends H*(Bg(y)) to H*(Bo(yow™1)), for all y € X(Z).

Proof. Tt suffices to check the statement for each simple reflection s; switching ¢ and i +1 (1 <i¢ <d—1).

Let (/]?)B;(X ) be the moduli stack classifying chains of torsion coherent sheaves 0 C Q; C -+- C Q;—1 C
Qi+1 C -+ C Qg with Q; missing. Then we have a factorization

79oM . Cohg(X) 25 Cohy(X) 5 Cohg(X).

The map p; is an étale double cover over the open dense locus (/ﬂl;’@(x ) where Q;11/Q;—1 (which has
length 2) is supported at two distinct points. The map p; is small, and Rp;.Q, carries an involution 3;,
which induces an involution s; on R/]Ti*Rpi*Gg & Spry. This action coincides with the action of s; over
Cohy(X)°, hence coincides with s; everywhere.

Let BiQ =m; 1(Q). By considering the support of the successive quotients, we have a decomposition of
By by the orbit set ¥(Z)/(s;). When y € ¥(Z) satisfies y # y o s;, the s;-orbit n = {y,y o s;} gives an

open and closed substack B (1) C By, such that pz_l(BZQ(n)) = Bo(y)[1Ba(y o si), and B (n) C Coh;’;.
Therefore in this case the action of 5; on H*(p; ! (Bu(n))) comes from the involution on Bg(y) [ Bo(y o s:)
that interchanges the two components. Since s; = s;, this proves the statement for s; and y such that
y # yos;. For y =y os; the statement is vacuous. This finishes the proof. ]

Let Q, be the direct summand of Q supported at € Z. Let d, = dimz Q,. Then for any y € X(2),
there is a canonical isomorphism over k

By : Ba(y) = [[ Be. (3.1)
rEZ
sending (Q;) € Bo(y) to the full flag of Q. given by taking the summands of Q; supported at x.
The proof above implies the following statement that we record for future reference.

Lemma 3.5. Let y,y’ € X(Z) and let w € Sy be such that yow™' = y'. Assume that w has minimal
length (in terms of the simple reflections s1,--- ,84—1) among such elements (such w is unique). Then the
Springer action w : H* (Bgo(y)) — H*(Ba(y')) is induced by the composition of the canonical isomorphisms
By = B;,loﬁy : Bo(y) = Ba(y'). In particular, w sends the fundamental class of Bo(y) to the fundamental

class of Bo(y').

Proof. Let w™! = s;, -+ i be a reduced word for w='. Let y; = ys;, ---si;, 1 < j < N. Let yo = y, and
y' = yn. Since w has minimal length among w’ € Sy such that yow'~! =4/, for each 1 < j < N, y,;_1 # y;
for otherwise one could delete s;; to shorten w. Since y; = y;_108;; # yj—1, the proof of Lemma [3.4] shows
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that the Springer action of s;; : H*(Bg(y;-1)) — H"(Bg(y;)) is induced by the canonical isomorphism
0j = Byt o By, s : Balyj—1) 5 Bo(y;). The action w : H*(Bg(y)) — H*(Bg(y')), being the composition
on ©---0 07, is then equal to By_/l o By, : Baly) = Ba(y). O

Corollary 3.6. Lety € 3(Z) and S, =[]
of graded Sq-representations

wcz Sa, be the stabilizer of y under Sq. There is an isomorphism

H'(Bo)  Ind§* H* (Bo(y)) = Ind <® H*(ng») .
T€EZ
Here on the right side, each factor Sq, of Sy acts on the tensor factor indexed by x (for x € Z) via the
Springer action in Corollary[3.3 on (Spry_ )o, -

Proof. By Lemma B4 H*(Bg(yow™!)) = wH*(Bg(y)) for w € Sy. In particular, H*(Bg(y)) is stable
under Sy, and H*(Bg) & Indgj H*(Bg(y)). By @BI) and the Kiinneth formula, we have H*(Bg(y)) =
®z€ZH*(BQx)'

It remains to check that the action of S, on H*(Bo(y)) (as the restriction of the Sg-action on H*(Bg)) is
the same as the tensor product of the Springer action of Sy, on H*(Bg,). Since the action of S; on %(Z) is
transitive, it suffices to check this statement for a particular y € 3(Z).

Order points in Z as x1,- -+ ,2,. Let yo € 3(Z) be the unique increasing function, i.e. such that if i < j
then the index of yo(i) is less than or equal to the index of yo(j). Let d; = dg,. Let § = (0;)1<i<r be the
increasing sequence 0; = dj + - - - + d;. Let Cohs(X) be the moduli stack of partial chains of torsion coherent
sheaves 0 C Qs, C --- C Qs,_, C Qs = Q such that Qj, has length §;. The map wg‘)h then factorizes as

Cohg(X) =2 Cohs(X) 22 Cohg(X).
We have a Cartesian diagram

Cohg(X) ——[];_, Cohy, (3.2)

e

Cohs(X) —=—[];_, Cohg, (X)

where ¢ sends (Qs,) to (Qs5,/Qs,_,). By proper base change we have Rms,Q, = ¢*(KI_, Spr, ), and the
latter carries the Springer action of Sy, x --- x Sg. = Sy, (pulled back along ¢). Pushing forward along vs,
this induces an action of S, on Rvs. Rm5.Q, = Spr,. This action coincides with the restriction of the action
of Sy because both actions come from deck transformations over Cohg(X)°.

Now v;'(Q) contains the point Qf € Cohs(X) where supp Qs,/Qs, , = {x;} for 1 < i < r. This is
an isolated point in v; '(Q), and Bo(yo) = 7; '(QF). Moreover, the isomorphism (BI)) is the one given by
taking the Cartesian diagram ([.2)) and restricting to Qf € Cohs(X). The above discussion shows that the
action of Sy, C Sq on H*(Bg(yo)) C H*(Bg) is the same as the Springer action of [[; Sq, on @;H"(Bg,,)

via the isomorphism (B.1]). O

3.4. The Steinberg sheaf. Let St; € D°(Cohy(X), Q) be the direct summand of Spr, where S; acts
through the sign representation. We will describe its Frobenius trace function below. The result is well-
known but we include a self-contained proof.

We call @ € Cohy(X)(k) semisimple if it is a direct sum of skyscraper sheaves at closed points.

Proposition 3.7. (1) If Q € Cohy(X)(k) is not semisimple, then the stalk of Sty at Q is zero.
(2) Let Q = Dye|x kT € Cohy(X)(k) be semisimple. Then the stalk of Stq at Q is 1-dimensional, and
Frob acts on the stalk Stq,o by the scalar

£(Q) H qgv(dv_l)/2
vEsupp Q

where €(Q) € {£1} is the sign of Frobenius permuting the geometric points in the support of Q
counted with multiplicities (as a multi-set of cardinality d).
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Proof. Let Q € Cohy(X)(k). Let Z C X (k) be the geometric points in the support of Q and y € £(Z). By
Corollary and Frobenius reciprocity,

Sta, = Homyg, (sgn, Indg* (2H" (B, ))) = Homs, (sgn, ®H" (B, ))
= ®gez Homg, (sgn, H"(Bg,)) & ®uecz Sta, 0, - (3.3)

(1) By the above factorization of Stq, o, it suffices to show that if Q, is not semisimple, then Stq_ o, = 0.
By Lemma B.I] we may reduce to the case X = A' and Q is concentrated at « = 0. In this case Spr is
the usual Springer sheaf on [gl;/ GLg4], and Q corresponds to a nilpotent element e € Ay C gl; (here A7 is
the nilpotent cone in gl;). It is well-known that Stq| s, = do[—d(d — 1)] where g is the skyscraper sheaf
at 0 € A5 (this can be seen by identifying Spr| 4, with the direct image complex of the Springer resolution
%—) Ag). In particular, Stg. = 0 for all nilpotent e # 0.

(2) Let Q@ € Cohg(X)(k) be semisimple. Let |Z| be the set of closed points in the support of Q. The
above discussion shows that Stq, o, = H!P(Bg,) = H% (%=~ (F1, ) where Flg, is the flag variety for GLg, .
By 33), Stq,o is 1-dimensional and is in the top degree cohomology of H*(Bg). Let

N=dimBg =Y du(d, —1)/2=Y_ deg(v)dy(d, —1)/2

T€Z veE|Z|

(here d,, = d for any z|v). Let 0 # £ € Sty,0 C @yex(zH*Y (Ba(y)). Let F: By 7 —+ Bg 7 be the Frobenius
morphism. We need to show that F*¢ = &(Q)qN¢.

For y € %(Z), let 5, € H*N(Bg(y)) be the fundamental class of Bo(y). Then F sends Bg(y) onto
Bo(F(y)) (here F(y) means post-composing y with the Frobenius permutation on Z), and hence F*np(,) =
q¥n,. On the other hand, let w € S; be the minimal length element such that F(y) = yow~!. By
Lemma 3.3 the Springer action of w satisfies wn, = np(,). Write & = (§,)yex(z) where §, = ¢,n, for some

—X
cy € Q. Since w€ = sgn(w)E, we see that wé, = sgn(w)&p(y). Since wn, = np(,), we have ¢, = sgn(w)cp(y)-
Therefore

(F*8)y = F*(Epy) = crup)F e = 0" cryyny = sen(w)g” eyny, = sgn(w)g™VE,.

Note that, for any choice of y and w above, sgn(w) is equal to the sign of the Frobenius permutation of the
multiset {y(i)}1<i<a, which is £(Q). This implies F*¢ = £(Q)qV¢ as desired. O

4. SPRINGER THEORY FOR HERMITIAN TORSION SHEAVES

In this section we extend the construction in §3] to the case of Hermitian torsion sheaves. The main
output is a perverse sheaf Sprb®™ on the moduli stack of Hermitian torsion sheaves with an action of
Wy := (Z/2Z)" x S;. We will compare the stalks and Frobenius trace functions of Spros™ with those of
Spry.

Asin 3l X is a smooth curve over k (not necessarily projective or connected). Let v : X’ — X be a finite
map of degree 2 that is assumed to be generically étale. We develop the Hermitian Springer theory in this
generality. Starting from §4.3] we will assume v to be étale, which is the case needed for proving the main

theorem. Let o € Gal(X'/X) be the nontrivial involution.
4.1. Local geometry of Hermy. Let d € N. Let
Herm,(X'/X), or simply Hermg

be the moduli stack of pairs (Q,h) where Q is a torsion coherent sheaf on X’ of length d, and h is an
isomorphism Q = ¢*QVY := a*@l(Q, wx) satisfying o*hY = h.

We offer two other ways to think about a Hermitian torsion sheaf (Q, h). For a torsion sheaf Q on X' of
length d, the datum of a h is equivalent to either

(1) a symmetric k-bilinear nondegenerate pairing
(,): VXV =k

on V = T'(X’, Q) satistying (fv1,v2) = (v1,0*(f)ve) for any function f on X' regular near the
support of Q, or



16 TONY FENG, ZHIWEI YUN, WEI ZHANG

(2) an Ox-sesquilinear nondegenerate pairing
<~, > 19O x Q— wp//wx/

satisfying (vi,ve) = o*(vg,v1). Here wps is the constant quasi-coherent sheaf on X’ whose local

sections are the rational 1-forms on X'.
We refer to h, or any of the above equivalent data, as a Hermitian structure on Q.

We have the support map
sHerm . Hermy (X' /X)) — (X)})°.

Note that we have an isomorphism (X} ;)7 = X, sending a o-invariant divisor on X’ to its descent on X.
so we will also allow ourselves to view the support map as s{™ : Hermg(X'/X) — Xg.

Remark 4.1. When v is étale and d is odd, (X})? = @ hence Herm,(X'/X) = @.

In general, when v is ramified over the points R C X (k), (X/)? has a decomposition into open and closed
subschemes according to the parity of the multiplicities of the divisor at each point z € R.

Let Ai/f — A} be the square map of affine lines.

Lemma 4.2. There is a canonical isomorphism
Hermd(Ai/E/A%) = [Ud/Od].

Here Oy denotes the orthogonal group on a d-dimensional quadratic space over k and o4 is its Lie algebra
(the stack [04/Oq) is independent of the quadratic form).

Proof. We give the map Hermd(A}/E/A;}) — [04/04] on S-points. For an S-point (Q, h) of Hermd(Ai/E/A}),
V =T(AL, Q) is a locally free Og-module of rank d with a nondegenerate symmetric self-duality (-,-), i.e.,
an Og-torsor over S. Moreover the action of v/t on V satisfies (v/tvy,v2) = —(v1, Vtve) since o*vt = —/t.

Therefore v/t gives a section of the adjoint bundle of V. It is easy to check this map is an equivalence of
groupoids Hermd(Ai/E/A%)(S) 5 [0a/04](9). O

An o-equivariant étale chart of Xé is a pair (U, f), where U C Xy is an open subset (with preimage
U’ C X7) and a regular function f: U’ — Ai/ZE that is an étale map satisfying o* f = —f. Note that if v is
étale, the image of f has to lie in Ai/EE\{O}

A o-equivariant étale chart (U, f) of Xé induces a map
fHem s Hermy (U’ /U) — Hermd(Ai/z/A%)g

by sending Q to f.Q. Let Hermy(U’/U)f be the preimages of (Uy)7\RG ; under the support maps (here
Ra,r C U} is defined using the map f: U’ — Ai/fﬁ; see §3.1)).
We have an analog of Lemma Bl in the Hermitian setting.
Lemma 4.3. (1) Let (U, f) be a o-equivariant étale chart for X%. Then the map fHe™ s étale when
restricted to Hermg (U’ /U)Y.
(2) Assume v is ramified at at most one point (over k). Then the stack Hermq(X'/X )z is covered by
Hermy (U’ /U for various o-equivariant étale charts (U, f) of Xi. In particular, Hermq(X'/X) is
étale locally isomorphic to [04/0O4).
(8) In general, Hermy(X'/X) is smooth of dimension 0.

Proof. (1) is similar to that of Lemma B.1](1).

(2) We only need to construct for (Q, h) € Hermy(X'/X)(k), a o-equivariant étale chart (U, f) such that
(Q,h) € Hermy(U'/U)/. Let Z' be its support in X', which is the preimage of Z C X (k) under v. Let
L= (V*Oxé)":_l, a line bundle over X. Then the map r = (r,),cz : £ — ®.ezL./w? is surjective. Let
Zy C Z be the points over which v is étale (so Z — Zj is empty or has one point). For each z € Zy, upon
choosing 2’ € Z' over z, we may identify £, with O, = k[[w.]]; changing 2’ to o(2’) changes the identification
by asign. If 2 € Z — Zp, then £, & /@, k[[w.]]. Choose a map c: Zy — k" such that c(z)? are distinct for
z € Z. Let f be a section of £ over some open neighborhood U; C X3 of Z such that r.(f) = ¢(2) 4+ w. for
z € Zp under one of the two identifications £, = O, and r.(f) = \/w. mod w, for z € Z — Zy. Then f
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restricts to an étale map U’ = v~ 1(U) — Ai/_7 for some open neighborhood U of Z in U;. The definition of

L implies 0*(f) = —f. Now {f(2')|z" € Z'} is the union of {c(z), —c(2)|z € Zo} and possibly {0} if Z - Z is
nonempty, which are all distinct points in Ai/_— by construction. We conclude that (Q, h) € Hermy (U’ /U)/.

(3) Let R C Xy be the ramification locus of v. The case |R| < 1 is treated in (2), so we may assume
|R| > 2. For z € R let Y, = X\(R\{z}) and let Y/ = v=1(Y,.). For any function 6 : R — Z>( such that
> zerd(z) = d we have a map Qs := [[,ep(Y 4))7 = (X3)7 by adding divisors. Let 5 C Vs be the
open locus where the divisors indexed by different © € R are disjoint. It is clear that 2)? — (X})7 is étale
and for varying d their images cover (X})?. To prove the statement it suffices to show that the base change
Hermy (X'/X)|q)5v is smooth of dimension 0 for each 4. Observe that Hermd(X’/X)bJ? is isomorphic to the

restriction of the product [], . p Hermg(, (Y, /Yz) to 95 . Since v|y, : Y/ — Y, is ramified at one point, by
(2) Hermg (. (Y, /Y,) is smooth of dimension 0. Therefore Hermd(X’/X)BJ? = HmeRHerm(;(m)(Yz’/Yzﬂ@?
is smooth of dimension 0. O

Remark 4.4. There is an obvious notion of skew-Hermitian torsion sheaves. Let SkHmg4(X'/X) be the
moduli stack of skew-Hermitian torsion sheaves on (X', o) of length d. Then d is even if SkHmy(X'/X) # &.
The skew-Hermitian analog of Lemma 3] says that SkHm;(X’/X) is étale locally isomorphic to [sp,/ Spgl,
at least when v is étale.

4.2. The Hermitian Springer sheaf. Let I/{;z\rr/nd(X’/X) be the moduli stack classifying (Q, h) € Herm,(X'/X)
together with a full flag

0CQC--CQC--CQu1=91CQi=29,

where Q; has length i and Q4_; = Q; (the orthogonal of Q; under the Hermitian pairing Q x Q — wgr /wx/).
Let

aHerm . Hermg(X'/X) — Herma(X'/X)

be the forgetful map. Let Herm4(X’/X)° C Hermy(X'/X) be the preimage of the multiplicity-free part X
under the support map chrm

We recall the Grothendleck alteration for the full orthogonal group O(V, Q) for some vector space V of
dimension d over k and a nondegenerate quadratic form @ on V. Let F1(V,Q) be the flag variety that
parametrizes full isotropic flags Vo = (V4 C --- C V3 = V) in V. Note that when d is even, this is different
from the flag variety of SO(V, Q) but rather a double cover of it because there are two choices for V5 given
the rest of members of a flag. Let o(V, Q) be the Lie algebra of O(V, Q). Let o(V,Q) be the moduli space
of pairs (A,Vs) € o(V, Q) x FI(V, Q) such that AV; C V; for all i. The Grothendieck alteration for O(V, Q)
is the O(V, Q)-equivariant map o(V, Q) — o(V, Q) forgetting the flag. The quotient stacks [0(V,Q)/O(V, Q)]
and [0(V,Q)/O(V, Q)] are canonical independent of the quadratic form @ and only depends on d = dim V.
Therefore we also write the Grothendieck alteration as 7o, : [04/O4] — [04/Oa4)-

Herm

Proposition 4.5. (1) If v is ramified at at most one point, then the map
phic to the Grothendieck alteration wo, : [04/04] — [04/O0a4).

(2) In general, ﬁe\r_r/nd( X'/X) is smooth of dimension 0 and m,
complex

1s €tale locally isomor-

Herm 4o o small map. In particular, the

Sercrm . RTr(Ij—IcerZ
is the middle extension perverse sheaf of its restriction to Hermy(X'/X)°.

Proof. (1) The proof is similar to that of Corollary[3.3l For a o-equivariant étale chart (U, f) for X; we have
a diagram with Cartesian squares and étale horizontal maps by Lemma [£.3]

Hermd(X’/X) <—)Hermd(U'/U)f—>Hermd(A1 /Al)
Lw?,%?“/x Lt l VAN

fHerm

Hermy(X'/X )z =<——Hermy (U’ /U)/ = Hermy(A T/E/A%)F
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Using the isomorphism in Lemma [£2] we identify WE‘X’;; /Al with the Grothendieck alteration mp,. Since

Hermy (U’ /U)? cover Hermy(X'/X) by Lemma E3(2), F;I?)?,I}X is étale locally isomorphic to lei_l,i?/l?/A} =
TOg4-

(2) We use the notation from the proof of Lemma [£3{(3). We may assume |R| > 2. For each function
§: R — Zsg satisfying 3°__d(x) = d, the base change of 7™ along 97 — (X/)7 is a disjoint union of

the restriction of

TER

HwHerm : H Hermg(x)(Y /Y:) — H Hermg () (Y, /Yz)

TER TER
to 2)50. The disjoint union comes from different rent ways to distribute supp(Q;/Q;_1) among various factors in
the product [T, (Y} 5.,))7- By (1), = (er)m Hermg(x)(Y /Yz) — Hermgy(y (Y, /Yz) has smooth O-dimensional

source and is small for each z € R, the same holds true for the base change of 7™ to Q_)?. Since {97 Jts

form an étale covering of (X/)?, the same is true for mierm, O

4.3. The action of Wy. From now on we assume that v : X’ — X is an étale double cover. In this case,
(X},)° can be identified with X4 via v=1(D) <> D. Let

Wy = (Z/2Z) x S,
be the Weyl group for Ogy. Then WHcrm is a Wy-torsor over Hermoy(X'/X)°.

Corollary 4.6 (of Proposition I5(1)). If v : X' — X is an étale double cover, then there is a canonical
action of Wy on Sprys™ extending the geometric action on its restriction to Hermag(X'/X)°.

Herm[

Definition 4.7. (1) For any representation p of Wy, we define Spr p|] to be the perverse sheaf on

Hermoyy(X'/X):

Sercrm[p] ( ® Sercrm)Wd c Db(HGI‘de(X//X)a Qé)

(2) We define the Hermitian analog of the Springer sheaf Spr as
HSpr, := (Spris™)(2/22)" ¢ D (Hermaq(X'/X), Q,).

Note that the notation shifts from the subscript 2d to d. By Corollary 6] HSpr, carries a canonical
Sg-action.

Remark 4.8. In the case v is ramified with ramification locus R C X (k), the stack Hermg4(X'/X )z decom-
poses into the disjoint union of open and closed substacks Hermg(X'/X); indexed by € : R — {0, 1} where
the length of Q, has parity e(x) for all z € R. Then Sprf}e”“ |Hcrm§ (X'/X), carries a canonical action of Wy

where d' = (d =Y cpe(x))/2.

4.4. The Springer fibers over Herms,. Let (Q,h) € Hermay(X'/X)(k) and consider its Hermitian
Springer fiber

Bgerm — 7_rHorm 71(9 h)

This is a proper scheme over k. In this subsection we prove the Hermitian analogs of results in §3.31

Let Z' = supp Q C X'(k). Let D' = sflerm(Q) € (X} ,)7(k), which is of the form D’ = v~(D) for some
D € X4(k). Let Z =v(Z'), the support of D. Write D' =3 __,, d.z.

Let X(Z') be the set of maps y' : {1,2,---,2d} — Z’ satisfying y'(2d + 1 — i) = o(y/'(¢)) for all 4
and Zfil y' (1) = D’'. Identifying Wy with permutations of {1,2,---,2d} commuting with the involution
i+ 2d+ 1 — i, we get an action of Wy on X(Z’) by w: ¢y’ — ¢/ ow™!.

Similarly let £(Z) be the set of maps y : {1,--- ,d} — Z such that Zle y(7) = D. Then the natural map
Y(Z") — B(Z) (sending y' to y defined by y(i) = v(y'(1))) is a (Z/2Z)%torsor.

For y' € X(Z'), let BG*™(y') be the subscheme of Bg®™™ consisting of isotropic flags Qe such that
supp(Q;/Qi—1) = v'(4) for all 1 <4 < 2d. Then we have a decomposmon into open and closed subschemes

Bgerm _ H Bgerm (yl) )

y'EX(Z’)
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Accordingly we get a decomposition of cohomology

H* (Bgcrm) _ @ H*(Bgcrm(y/»'
y'en(2’)
Lemma 4.9. The action of w € Wq on H*(BG™) sends the direct summand H*(Bg™™(y')) to the direct
summand H*(B&™™(y o w™)).

Proof. Tt suffices to check the statement for each simple reflection s;, i = 1,---,d. Here, for 1 <i <d -1,

si=(,i+1)(2d—i,2d+1—1i); fori =d, sq = (d,d+1). For 1 <i <d, let ﬁe\r_r?l;d be the moduli stack
classifying isotropic flags that only misses the terms Q; and Qs4—; (for i = d only misses Q4). Then we have
a factorization

o i
Pi T
TR Hermyy 25 Hermy, — Hermoy, .

The map p; is an étale double cover over the open dense locus I/{_e\rr/n;j where Q;11/Q;—1 (which has length
2) is supported at two distinct points. The map p; is small, and Rp;«Q, carries an involution 3;, which
induces an involution s; on Rm*Rpi*Qg = Rﬁgjjmﬁg. This action coincides with the action of s; over
Hermsj,, hence coincides with s; everywhere.

Let (Q, h) € Hermaq(k), and B = 7;'(Q, h). We have a decomposition of BY by the orbit set (Z’)/(s;).
When y' € X(Z’) satisfies y' # y' o s;, the s;-orbit of ' = {y',y’ o s;} gives an open closed substack
Bh(n') C By, such that p; ' (BS (1)) = Ba(y') [1Ba(y' o s;), and By (1) C I/{_e\r;l;:. Therefore in this case
the action of 5; on H*(p; ' (B4 (n'))) comes from the involution on Bo(y') [[ Bo(y o's;) that interchanges the
two components. Since 5; = s;, this proves the statement for s; and 4’ such that ¢y’ # 3’ os;. Fory =4 os;
the statement is vacuous. This finishes the proof. O

Choose Z* C Z' such that Z*[[o(Z*) = Z'. Then for each = € Z there is a unique z* € Z* above z. For
Yy € X(Z') with image y € ¥(Z), we have an isomorphism

Vze gyt BE(W) S Bu.ol,,y () = [] Be., (4.1)
r€”Z

mapping (Q;)1<i<2q to the (non-strictly increasing) flag (Q; ,z) of Q.
If ', y" € X(Z'), the composition

Yy oyt = 72:1177;'/ O Yz y :Bgcrm(y/) :> Bgcm’(y”)

is independent of the choice of Z*.
Lemma 4.10. Let 3/, y" € X(Z') and let w € Wy be a minimal length element such that y" = y' o w™!.

Then the Springer action w : H*(BE™(y)) — H*(BE™™(y")) is induced by the isomorphism yy: .

Proof. Similar to the proof of Lemma O

4.5. Comparing stalks of HSpr; and Spr,. In this subsection we abbreviate Hermaq(X'/X) by Hermag.
Consider the stack Lagr,, classifying pairs (£ C Q) where Q € Hermgy and £ C Q is a Lagrangian subsheaf,

i.e., £ has length d and the composition £ — Q LUNpE QY — o*LV is zero. We have natural maps

Hermyg <—=— Lagro, L Cohy(X") —=> Cohy(X)

where voq4(L C Q) = Q and &/(L C Q) = L. Let eq = v, o ¢} : Lagry; — Cohg(X).
Let (X})® C X/, be the open subscheme parametrizing D € X/, such that D No(D) = @. Let Lagrgd C

, Coh
Lagr,y, be the preimage of (X/)¢ under the map Lagr,, Z9y Cohg(X') 225 X/). Tt is easy to see that ¢/,
restricts to an isomorphism
LagrS, = Cohg(X')®

whose inverse is given by L= (L C Q=L @& o*LY).
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Let U2d and sd be the restrictions of vog and &4 to Lager Thus we view Lagrgd &~ Cohd(X')<> as a
correspondence between Hermoy and Cohg(X)

Uzod 53
Hermoy <—— Lagrgd — Cohy(X)

Note that both vgi and ado are surjective. Now both Hermgg and Cohg(X) carry Springer sheaves HSpr,; and
Spr, with Sg-actions. The following proposition says that they become isomorphic after pullback to Lagrgd.

Proposition 4.11. There is a canonical Sq-equivariant isomorphism of perverse sheaves on Lagrgd
’U2d “HSpr, ;" Spry.
Proof. The map mile™ factors as

wglerm : Hermgd Aza, Lagrsy, 2245 Hermay .

O
Let /\gd : Hermy,; — Lagrgd be the restriction of Aggq to Lagrgd. We have a commutative diagram

O T e
Hermag x x, X% <—— Hermy, LN Cohg(X')® ——= Cohy(X) (4.2)

ﬂ_Herm,(}
2d Coh,
<& > Coh
Sy TXx!.d T
I /<

Hermgg <———— Lagry, —= Cohy(X’)® = Cohg(X)
o
\Ed_/

Here Cohy(X’)¢ and CAo/hgl(X’)Q are the preimages of (X/)¢ under the support map. We have:

e The middle square is Cartesian. This is true even before restricting to the <) locus.
e Since 5&0 is an isomorphism, so is ?f.
e The rightmost square is Cartesian.

From these properties we get maps
a: v2d HSpr, — v2d Sprierm — Ugd*RUQd*R)\Qd*QZ — U3 *Rv2d*R/\§d*Q4
— R}\Qd*Qg =~ $*rfohQ, = Ed *Spry .

To check « is an isomorphism, it suffices to check on geometric stalks. Let £ € Cohg(X’)® (k) with
support Z¥ C X'(k). Let Q = L ® 0*L" € Hermag(k). The support of Q is Z' = Z#[[o(Z*%), with image
Z c X(k). We have (£ C Q) € LagrS,(k), with image v.£ € Cohy(X)(k). The stalk of o at (£ C Q) is

* erm d * — ~ *
acco)  HY(BE™) P22 5 HY (A (L € Q)) 5 HY(B,.) (4.3)
Recall Bg™ = I, esz) BEem(y'). Let %(Z%) € ©(Z') be the set of y' such that y/(i) € Z* for 1 <
i < d. Then we have a natural bijection ¥(Z) < $(Z*),y — y*. The fiber A, (£ C Q) is the disjoint

union [, ez B&e™(y*). Recall the isomorphism vz : : BE™™(y*) = By, (y) from (@I). Using these
descriptions we may rewrite (@3] as

* rm d * rm ~ * *
H*(BE™) 228" = & sz H (BET™(Y)) = @yes)H (B £(y)) = H* (B, z).

It remains to show that the composition of the first two maps above is an isomorphism. But this follows
from the fact that (Z/2Z)% acts freely on ¥(Z') with orbit representatives ¥(Z#), and Lemma This
shows that « is an isomorphism.

Finally we show that « is S4-equivariant. By Proposition 5] 75;™ and hence Aog is small, RX\24:Q, is
the middle extension from a dense open substack of Lagry,;. T herefore the same is true for R\; d*Qe Since «

Herm

is an 1som0rph1sm both ’U 7 HSpr, and sd * Spr,; are middle extension perverse sheaves from a dense open
substack of Lagrzd. To check that « is Sg-equivariant it suffices to check it over the dense open substack
which is the preimage of the multiplicity-free locus X3. Over X3, all squares in ([£2) are Cartesian, and
all vertical maps are Sg-torsors. The S4-actions on HSpr, |H0rm§d and Spr |con,(x)e come from the vertical
Sg-torsors in the diagram, so o is S4-equivariant when restricted over X 7. This finishes the proof. g
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4.6. Comparing Frobenius traces of HSpr; and Spr,. In this subsection we will prove a relationship

between Frobenius trace functions for HSpr,; and for Spr,;. Since these sheaves live on different stacks, to

make sense of the comparison we first need to identify the isomorphism classes of the k-points of these stacks.
For a groupoid G, let |G| denote its set of isomorphism classes.

Lemma 4.12. There is a canonical bijection of sets
| Hermaq (X'/X) (k)| = | Coha(X) (k)]
respecting the support maps to Xq(k).

Proof. Let P(d) be the set of partitions of d € Z>¢, and P = [[;~,P(d). Let P x| be the set of functions A :
| X| — P such that A(v) is the zero partition for almost all v € |X|. For A € Pjx|, let [A| = >, [A(v)| deg(v).
Let P|x|(d) be the subset of those A\ € Pjx| with [A\| = d. Let s4 : Px|(d) = Xa(k) be the map sending A
to the divisor ), [A(v)|v.

By taking the Jordan type of a torsion sheaf at each closed point, we get a canonical bijection Adcoh :
| Cohg(X) (k)| = P|x|(d). The map s§°" : | Cohq(X)(k)| — Xa(k) corresponds to sq under this bijection.

We define a map AY™ : |Hermaq(X'/X) (k)| — Pix|(d) as follows. For (Q,h) € Hermoq(X'/X)(k)
and v € |X|, let A(v) be the Jordan type of Q, (the summand Q,  supported at v') for any v € |X’|
above v. When v is split in X', the two choices of v’ give the same Jordan type. The support map
stlerm s | Hermog (X' /X)) (k)| — Xa(k) is the composition s4 o Allerm,

We claim that AJe™ is a bijection. Then ASOhﬁl o Aferm .| Hermag(X'/X) (k)| = | Cohg(X) (k)| is the
desired bijection.

To prove the claim, it suffices to show for a fix closed point v € |X|, the set of isomorphism classes
| Herm,, | of Hermitian torsion sheaves supported above v maps injectively to P by the restriction of Agerm.

If v splits into v" and v in |X’|, then any (Q, h) € | Herm, | has the form Q. @ 0*Q, equipped with the
canonical Hermitian structure. In this case we see that the isomorphism class of (Q, h) is determined by the
Jordan type of Q,.

If v is inert with preimage v’ € |X'|, let (Q,h) € |Herm, | be of length d over k,,. Then V = T'(X’, Q)
is a d-dimensional Hermitian k. -vector space with a self-adjoint nilpotent endomorphism e given by the
action of a uniformizer w € O,. Fix a d-dimensional Hermitian space (Vy, h) over k, (unique up to
isomorphism), then the isomorphism classes of (Q,h) € |Herm, | with length d over k, is in bijection
with the adjoint orbits of the unitary group U(Vg, h)(k,) acting on the nilpotent cone N (Vy, h)(k,) of self-
adjoint nilpotent endomorphisms of V;. Being a Galois twisted version of the usual nilpotent orbits under
GLyg, the orbits N'(Vg, h)(ky)/U(Va, h)(ky) are again classified by partitions of d according the Jordan types
of e € N(Vy, h)(ky) (here we use that the centralizer Cqr,,(e) is connected, and Lang’s theorem implies
H'(k,,Car,(e)) = {1}). Therefore the isomorphism class of (Q, h) € | Herm, | is determined by the Jordan
type of Q. This shows that AFe™ is a bijection. O

4.6.1. Further notations. Now let (Q, h) € Hermaq(k). We write Qf for the base change of Q over X7, and

adapt the notations Z' C X'(k),Z C X(k),X(Z"),X(Z) from §&4 Let |Z'| and |Z]| be the set of closed
points contained in Z’ and Z. We have a decomposition

12l =121 ]T12l;

into split and inert places. For each closed point v € |Z| we choose a geometric point z] € Z’ above v and
denote its image in Z by z,.
Let F': X’ — X’ be the Frobenius morphism. Let Z* be the following subset of Z’

7' = {Fi(z)):ve|Z],0 <i<deg(v)}.

When v splits into v’,v” in |X’|, with 2/ |v’, then Z* contains all geometric points above v’ and not any
above v”. When v is inert with preimage v’ € |X’|, Z* contains half of the geometric points above v which
form a chain under the Frobenius, starting with @. Therefore Z' = Z*[[o(Z¥). For x € Z let 2% € Z* be
the unique element above x. This induces a section X(Z) = X(Z*) C ¥(Z’) which we denote y — y*.
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Let Q" € Cohy(X)(k) be the point corresponding to the isomorphism class of (Q, h) under the bijection
in Lemma [£.12] Then Q% > 1,(Q|z4). Recall the isomorphism B.1]) for each y € ¥(Z)

By : Bor(y) 5 [] Bas -
rcZ
From this and the Kiinneth formula we get an identification
H*(Bos (1)) = (R (Boy ).
T€EZ
By [HST7, Corollary 2.3(1)], H*(Bg; ) is concentrated in even degrees. Let H*(Bgs(y))* be the direct sum
of all @, zH? (Bgy) (for varying (iz)zez) such that
>ve|z|; o, 1S even. (4.4)

Similarly, let H*(Bgs (y))~ be the direct sum of all ®,ezH*"* (Bgy ) such that the quantity in (£4) is odd.
We have

H* (B (y)) = H"(Bg» ()" & H" (B ()~ (4.5)
Taking direct sum over all y € 3(Z) we get a decomposition
H*(Bg») = H* (Bg )t @ H* (Bgs) ™. (4.6)

Note that this decomposition depends on the choice of a geometric point z, over each inert v. By Corollary
3.6, the action of S, C Sy on H*(Bgs (y)) preserves the decomposition (4H) since it is the same as the tensor
product of the Springer actions on each factor H*(Bgs ). Therefore the decomposition (6] is stable under
the Sy-action.

Now (Q|z+ C Q) gives a geometric point of Lagrgd, which is not defined over k if |Z|; # &. Using this
geometric point in Lagrgd, Proposition EIT] gives an isomorphism af := (9|4 c) on the level of stalks (see
@3)):

d
of L Y (BEer™) (222" = ¥ (B,).
This isomorphism is Sg-equivariant. Both sides now carry geometric Frobenius actions which we denote by

Frobg and Frobgs, which are not necessarily intertwined under of because the point (Q|z: C Q) is not
necessarily defined over k. The next result gives the relation between the two Frobenius actions.

Proposition 4.13. Let § be the involution on H*(Bgs) which is 1 on H*(Bgs )t and —1 on H*(Bgs)~. Then
under the isomorphism of, Frobg corresponds to Frobgs of.

Proof. Recall from the proof of Proposition 1] that of is the composition

* erm d ~ * erm *
H*(BE™™)#/22)" = (B H(B&™™(y")) P 1 Bo ).
yeX(2) yeX(Z)

DYzt yt
e

Here vz: ¢ is defined in (@T).

Let F' be the g-Frobenius morphism for stacks defined over k = F,. Then F* on H*(Bgerm) maps
H*(BE™(F(y%))) to H*(BS™(y%)). Note that F(y*) and (Fy)* are in general different: if y(i) = F~'(z,)
for some inert v, then F(y*)(i) = o(z!) while (Fy)*(i) = 2/. In other words, the only difference between
F(y*) and (Fy)* is the switch of all 2/, and o(x) for all inert v. Therefore there is a unique element
7y € (Z/2Z)% such that (Fy)* = F(y*) o 7,.

Identifying H* (Bgerm)(z/QZ)d with ®yex(2)H* (BE™™ (y%)), the geometric Frobenius endomorphism Frobg

on H*(Bgerm)(z/ 22)* is the direct sum of the following compositions

H*(Bgerm((Fy)ﬁD T_y> o (Bléerm(F(yﬁ))) _F_*_> H*(Bgerm(yﬁ))

Herm

where the first map is the Springer action of 7, € Wy on (Spryg™)e.
On the other hand, let w, € W, be the minimal length element such that (Fy)* = F(y*) o w,. Write

7, = Wy, for a unique u, € Stabw, ((Fy)*) = Stabg, (Fy) C S4.
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Note that Stabs, (Fy) = [[,c, S1, where I, C {1,2,---,d} is the preimage of z under y. An easy calculation
shows that uy = (uy,z)zcz Where uy , € Sy, is

S LU if x =z,,v € |Z],,
Yo = .
1, otherwise.

Here wy, € Sy, is the involution that reverses the order of I,.
We use abbreviated notation

H(y') := H* (B&™™ (), for y' € X(Z'),
C(y) =H" (B (y)), for y € X(2).
For each y € 3(Z), consider the following diagram
H((Fy)}) — H((Fy)}) ——— H(F(y")) = H(y}) (4.7)
lvzu,(mu lvzu% lvp(zm,p(yu) l'yzﬁ,yﬁ
C(Fy) —— C(Fy) = C(Fy) ——C(y)

The left square is commutative by the Sy-equivariance of o proved in Proposition 1Tl (here u,, € Stabyw, ((Fy)*) C
S4). The middle upper triangle is commutative by Lemma The map ¢* is defined to make the lower
middle triangle commutative. The right square is clearly commutative. The composite of the upper row is
the restriction of Frobg to H((Fy)*). Let us compute the composite of the lower row.

The map 0* is the pullback along the automorphism § of Bg»(Fy) that makes the following diagram
commutative

BE™ (F(y))

Yzt Pyt
/ J/"*F(Z“),F(yﬁ)

Bg (Fy) <—— Bg. (Fy)

Under the isomorphism Sry : Bgs (Fy) 5 [lcz ng, 4 is the product of automorphisms ¢, for each BQ;.
If 2 is not of the form = = x, for v € |Z|;, 6, is the identity. If x = x,, for some v € |Z|;, then Q’, = Qur,
and the Hermitian structure on Q gives an isomorphism ¢ : QU(I/) = QV On the other hand, F deg(v) gives
an isomorphism ¢ : Q.1 = Qg (. since o(z),) = Fdeeg(®)(z/ ). Combining ¢ and ¢ we get a perfect symmetric
pairing (-, )z, on Qg itself. Then d, sends a full flag R, of QZU = Q, to Ry under the pairing (-, )4,

By the description of u, and 6 above, under the isomorphism Sr,, the composition §* o u, takes the form

®(05 0 uy.) : QR H (Bgy) = Q) H* (Bg;).

reZ reZ

The automorphisms ¢% o u, , are the identity maps except when x = z, for some v € |Z|;, in which case
Uy, = wy,. Let us compute §; owy, on H(Bg, ) for z = x, and v € [Z];. For this we switch to the following
notation. Let V = Qz/ = Qw , a vector space of dimension m over k. We have argued that V carries a
symmetric self-duality ( -); the action of a uniformizer at z, gives a nilpotent element e € Endy(V'), which
is self-adjoint under (-,-). Let B be the flag variety of GL(V) and B, be the Springer fiber of e. Then S,
acts on H*(B.). Let wy be the longest element in S,,. Let § : B, = B, be the map sending a flag V, to V;-.
We claim that 6* o wg acts on H*(B.) by (—1)*. Indeed, by [HS77, Corollary 2.3(2)], the restriction map
H*(B) — H*(B,) is surjective and is clearly equivariant under §* o wy, so it suffices to show that ¢* o wg acts
by (—1)* on H*(B). Since 6* o wy preserves the cup product on H*(B), it suffices to show it acts by —1 on
H?(B). For 1 < j < m, let &; be the Chern class of the tautological line bundle on B whose fiber at V, is
V;/V;_1. Then H?*(B) is spanned by ¢; for 1 < j < m. Now we have wy(&;) = &up1—; since H*(B) is the
reflection representation of Sy,, and §*¢; = —&p,41—; by the definition of . Therefore 6* o wy(§;) = —§; for
all 1 < j < m, which proves that 6* o wy acts by —1 on H*(B), and hence acts by (—1)* on H*(B) and on
H*(B,).
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The above argument shows that 0* o u, acts by 1 on H*(Bgs (Fy))* and acts by —1 on H*(Bg, (Fy)) ™.
Therefore the bottom row of {.7) is Frobg, of. By the commutativity of (@.T), Frobgs of corresponds under
a* to the composite of the top row, which is Frobg. This finishes the proof. 0

5. GEOMETRIZATION OF LOCAL DENSITIES

The goal of this section is to give a sheaf-theoretic interpretation of the formula of Cho-Yamauchi on the
representation density of Hermitian lattices, see Theorem This will complete the geometrization of the
analytic side of our proposed Siegel-Weil formula, at least for non-singular Fourier coefficients. The technical
part of the proof of the theorem is a Frobenius trace calculation that uses properties of the Hermitian
Springer action proved in §4.61

5.1. Density function for torsion sheaves. Following Remark 23] for any Hermitian torsion sheaf
(Q,h) € Hermyq(X'/X)(k), we may define the density polynomial Den(T, Q) using the Cho-Yamauchi
formula as follows. Let Q, be the summand of Q supported over v € |X|, we define

Den(T, Q) : H Den,, (T9°"), Q,)
ve|X|
where
Den,(T,Q,) =y T*@m,(t,(I*/1);T).
0CICI+CQ,

Here the sum is over all subsheaves of Q, that are isotropic under h, = h|g,, and we write m,(—) to
emphasize the dependence of m(a;T) on F)/F, (see Definition [2]). The functions ¢, (—) and t, (—) are the
functions ¢'(—) and #'(—) defined in (2.5), (2.5) and 28] for F)/F,.

Expanding the product into a summation, we see

Den(7,Q) = Y T [T my(t,(Z/T); T=M). (5.1)
0CZICcZtcQo ve|X|

Moreover, we may restate Theorem 2.7 as follows.

Theorem 5.1. Let £ be a rank n vector bundle over X' and a : € < o*EV be an injective Hermitian map.

Then
E.(m(&),s,®) = x(det(E))qg™ dee®)s—n/2)= 3’ deg(wx) (s)7! Den(q~2%, coker(a)).

5.2. Density sheaves. We will define a graded perverse sheaf on Hermay(X’/X) whose Frobenius trace at
Q recovers Den(T, Q). We will suppress X’/ X from the notations.
For 0 < ¢ < d, let Herm; o4 be the stack classifying

{(Z,(Q,h)) € Coh;(X") x Hermay: Z C Q and is isotropic under h}.
We have the following maps

Herm; 2q

?/ \\”)
Coh,(

Hermsy, ) x Hermy g

Here 71 takes (Z, (Q, h)) to (Q, h), ?; takes it to Z and ?;’ takes it to Z+/Z with the Hermitian structure
induced from h.

Recall the perverse sheaf HSpr,; on Hermsy from Definition .7)2). It is obtained from the Springer sheaf
on Hermyy by taking (Z/2Z)%-invariants, and HSpr,, carries an action of Sy.

Definition 5.2. We define the following graded virtual perverse sheaves on Hermsyg. (In the notation below,
the degree of the formal variable T encodes the grading.)

(1) md(T) :@j O( )‘(HSpr )(s.xsd j,sgn.[zl)Tj
(2) KE(T) = Do R R 1 1 (@ T X Pa—i(T)).
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Theorem 5.3. For any Q € Hermoq(k), we have
Den(T, Q) = Tr(Frob, K5*(T) o).
Proof. By the Grothendieck-Lefschetz trace formula, we have
Tr(Frob, KFS(T) o) = > T4 L Ty(Frob, P i(T) 72 /7).
(Z,Q)EHermigd(k)
Comparing with the expansion (&) for Den(T, Q), it suffices to prove, changing notation d — i to d and
T+ /T to Q, that
Tr(Frob, Ra(T)o) = [ mu(t,(Q); T4M). (5.2)
ve|X|
This will be proved in Proposition (5.7 O

The rest of the section is devoted to the proof of (52). The idea is to relate the Frobenius trace to a
similar Frobenius trace of a graded perverse sheaf on Cohy(X) using results from §4.6, and then calculate
the latter explicitly.

5.3. Comparison of two graded Frobenius modules. For (Q, /) € Hermy,(k), write
d d
Po(T) =Pa(T)o = @(_1)3' (HSprd)(QSjXSdfj’sgnj gl)Tj - @(_1)jH*(BSCrm)(W]‘ XWa_;5en; K1) i
Jj=0 j=0
Here 5gn; is the inflation of the sign representation of S; under W; — S;. We view Po(T) as a Z-graded

virtual Frobenius module, with the Z-grading indicated by the power of T. Let Q° € Cohg(X)(k) be in the
isomorphism class that corresponds to (Q, k) under the bijection in Lemma Define
d d
Por (1) = P17 (Spra) g™ T = P17 H (By) 5 Smsens B0,
Jj=0 Jj=0
Define the Frobenius traces
Po(T) := Tr(Frob,Bo(T)), Pgs(T) := Tr(Frob,Bo:(T)) € Q,[T].

The goal is to get a relationship between Pgo(T') and Pgs (T'). Note that By (T') is a special case of Po(T)
when the double cover X’ = X U X (and Q is the direct sum of Q’ on one copy of X and Q" on the other).
We shall apply Proposition to express Pg(T) in terms of Pgs (T"). For this we need to calculate the
decomposition of P (1) given in ([E.H).

Recall notations Z, Z',%(Z) and X(Z’) from §4.41 First we show that P o, (T') factorizes according to the
support of Q in X. Let |Z| be the set of closed points in Z. For v € | Z|, let Q’, denote the direct summand
of Q" whose support is over v.

Lemma 5.4. We have a natural isomorphism of graded Frob-modules
Por (T) = Q) Pos (1)
veE|Z|

In particular,

Proof. Choose any y € ¥(Z) and let |y| be the resulting map {1,2,---,d} — |[Z|. Let S},| = Stabg,(|y|), then
Syl = Hue\Zl S;,, where I, = |y|~'(v). Applying Corollary B8l to Q" and to each Q°, gives an isomorphism
of (Sg4, Frob)-modules

H*(Bg) = Indg! Q) H*(Bg,) | - (5.3)
v€E|Z|
Here the factor Sy, of S|, acts on H*(Bgs ) by the Springer action.
Write H, = H"(Bgs ) as a (Sr,, Frob)-module. Let d, = #1I,. By Mackey theory, the (S; x Sq—;,sgn; X1)-
isotypical part of the right side of (5.3)) is a direct sum over double cosets (S; x Sa—;)\Sa/S|y, which can
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be identified with the set of functions i : |Z| = Z>q, v+ i, < dy, such that ) i, = j. The stabilizer of the
S; x S4—j-action on the orbit indexed by ¢ is isomorphic to Hve|Z\ Si, X Sq,—q, (where the S; factor lies
in Sj, Sq,—i, lies in Sy_;, and S;, x Sq,—;, is naturally a subgroup of Sy, = Sy,). The contribution of the

summand indexed by ¢ is
® H(Siv XSy —iy,580;, K1)
v .

vE|Z|
This implies that
Por(T) = Z (—1)Z i ® St ¥ Sty i s, B ) s,
| Z| 52> 0,iv <dy ve|Z|
dy
= @ (Sermn ) - @ e
ve|Z| \ip=0 ve|Z|

O

Let Q, be the direct summand of Q supported over v. Then Q, and QZ correspond under the bijection
in Lemma 4

For any Frobenius module M with integral weights, let Gr M be the pure of weight ¢ part of M. This
notation applies also to graded Frobenius modules by taking Grl on each graded piece.

Proposition 5.5. Let Q € Hermoy(k).

(1) We have
(T)= @ PBo.(T), Po(T)= [] Po.(T). (5.4)
ve|Z| ve|Z|
(2) If v €|Z| is split in X', then
Po,(T) = Poy (1) (55)
(3) If v € |Z| is inert in X', then
Po,(T) =) (1) Tx(Frob, Gry ey By (1)). (56)

Moreover, Tr(Frob, Gr}” PBo: (T)) =0 if i is not a multiple of 2 deg(v).

Proof. We will use the notations from §LG1l For each y € ¥(Z), the summand H*(Bgs (y)) = ®zezH"(Bg )
is graded by multidegree i : Z — Z>g
H21 ng ® HZI(;E)
T€Z

We define H*(Bg,) as the direct sum of H*(Bg,(y)) over all y € 5(Z). Then each H*(Bg,) is sta-
ble under S4. Accordingly, Bo» (T') decomposes into the direct sum of ‘ng (T"), which is by definition
@?:O(—l)szi(BQb)(SfXsd*j’sgni MT3. Let i, be the restriction of i to those z|v, then under the factoriza-
tion isomorphism in Lemma [5.4] we have

= @ By (T (5.7)

v€E|Z|

(1) Recall the involution # on H*(Bg,) in Proposition [£.I13] Using the above notation, we see that 6 acts
on H2i(BQb) by Hve|Z\i(—1)i(z”) (where z, € Z is a chosen geometric point over v, as in §4.6.1]). Because of
(B.7), the action of 6 on B s (T') factorizes as the tensor product of the similarly-defined 6, on each B o, (T).
By Proposition .13 Po(T) is the Frobenius module obtained by modifying the Frobenius action on g (T')
by composing with §. By Lemma [5.4] this modified Frobenius structure on B (7') is the tensor product of
the similarly modified Frobenius modules o, (T'), which in turn are isomorphic to Po, (T') by Proposition
This implies (5.4).

(2) From the definition we see that if v is split, then 6, is the identity on B g, (T'). HenceBo, (1) = Pos (T)
and Pg, (T') = Pg, (T).
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(3) Since the cohomology of Bgs is pure by [HS77, Corollary 2.3(3)], we see that Gr}Y PBo» (T') is the sum of
‘32‘”( ) where iy : {z € Z : z|v} — Z> satisfies }_ |, 2i,(z) = i. The action of Frobenius sends ‘Bm“( ) to

’IJQF 1”( ), where F*i, means precomposing i, with Frobenius. Therefore only constant multi-degrees (i.e.,

constant functions i,) contribute to the Frobenius trace of % o» (7). This implies Tr(Frob, Gr}" B (1) =0
unless ¢ is a multiple of 2 deg(v).
By the discussion above,

Po,(T) = Tr(Frobofy, P, (T)) = > Tr(Frob of), m“‘” 22 (7)),

>0
. .. (2¢,21,--+,24)

Since v is inert, 6, acts by (—1)* on ‘,B (T'), hence

Tr(Frob of,, fp@l 2520 (7)) = (—1)F Tr(Frob, fp@l 202 (7)Y,
On the other hand, Tr(Frob, Griy, deg(v) By (1)) is the sum of Tr(Frob, ‘,B2‘v (T)) with total degree 3 |, 2i,(z) =
2ideg(v). Since only constant multi-degrees contribute to the trace, we again conclude

Te(Frob, Gl eg(v) By (7)) = Tr(Frob, 51> *(T)).
Combining the above identities we get (B.0)). O

5.4. Calculation of Py, (T) and Po(T). Let Q° € Cohy(X)(k) with support Z C X (k). For each v € |Z|
recall ,(Q°) from (2.5) for the local field F,,.

Proposition 5.6. For Q" € Cohy(X)(k), we have
Pos(T) = T (1 - THE)(1 = g, T80 .. (1 — glo(@)-17den(w))
v€E|Z|
Proof. We write Cohy(X) simply as Cohy in the proof. For 0 < j < d, consider the correspondence
Coh; 4

/ \

Cohy Coh; x Cohg—_; .
Here Coh; 4 classifies pairs (Q; C Q) of torsion sheaves of length j and d respectively, and the map r sends
(Q; C Q) to (Qj,Q/Q;). We claim that

(Sj XSdfj ,SgN ; &1)

Spr, >~ Rp.Rr*(St; XQ,). (5.8)

Indeed, consider the following diagram with Cartesian parallelogram

COhd
Coh; 4 Coh x Cohg_ —j
/ \ y
Cohy Coh; x Cohg—;

Coh

Here m; = m;°%, etc. The composition pom; 4 = mq = WdCOh. By the proper base change theorem, we get

Spry = Rp.R7;,4.Q = Rp.Rr*R(mj x m4—;)«Q, = Rp.Rr*(Spr; X Spr,_;).

This isomorphism is S; x Sq_j-equivariant by checking easily over the open substack Cohy. Taking (S; X
Sa-j,sgn; X1)-isotypical parts of both sides we get (5.5)).
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By Lemma [5.4] it remains to compute Pg, (T') for each v. Therefore we may assume Q" = Q. By (£3)
and the Grothendieck-Lefschetz trace formula we have

Py (T) = > (—1) Tr(Frob, (Spra) gy
J
= Y (~1) Tr(Frob, Rp. Rr* (St; KQ,) g ) T”
J
- > (=1)%) Tr(Frob, (Stqeg(v);) =) T

RCQ),
dimg,, (R)=j

(SjxSa—j,sgn; |Z|1))TJ

By PropositionB7, (Staeg(v);)® is zero unless R 2 k7, in which case the Frobenius trace is (—1)7(ds(*)=1g] Ju=1/2,
Let Q,[w] be the kernel of the action of a uniformizer @ at v. Note V := Q' [w] has dimension ¢ = tv(Qb)
over k,. Then we only need to sum over k,-subspaces R of V. The above sum becomes

t

S (1) DT Y G (5, V) (k).

§=0
Recall that the “g-binomial theorem” says that ¢ /2 # Gr (4, V) (k) is the coefficient of 27 in (14 z)(1 +
¢x) ... (14 ¢t 1x). Making the change of variables z = —T9°8(")  we get
¢

S (— 1) gD/ TARI Y Gr(j, V) (k) = (1 — T (1 — g, 7950 (1 — gt Idesto)

7=0
as desired. |

Now we are ready to prove (5.2)).

Proposition 5.7. For Q € Hermoq(X'/X)(k) with support Z, we have

t(Q)—-1
= [[ mot,(@i1ee)y = I JI - (ww)gn) T).
ve|X| velZ| j=0

Proof. By (B.4) it suffices to treat the case Q is supported over a single place v. Let Q@ € Cohy(X)(k)
be the corresponding point. If v is split, we have Po(T') = Pg:(T') by (E.3), and the formula follows from
Proposition

If v is inert, let t = ,(Q) = ¢,(Q"). From the form of Pg.(T) computed in Proposition 5.6 which is valid
for any extension of k, the trace of the pure weight pieces of B, (T') are separated by different powers of ¢,
i.e., g, ' Tr(Frob, Grg‘{deg(v) PBo»(T)) is the coefficient of ¢/, in H;é( — @Ts)). By (5.6),

t—1
Po(T) =Y (=1)" Tr(Frob, Gry yey(w) Bor (1)) = [ [ (1 = (=) T45)
i 3=0
which is what we want because 1(w,) = —1 in this case. |

Part 2. The geometric side
6. MODULI OF UNITARY SHTUKAS

In this section we introduce some of the fundamental geometric objects in our story, in particular the
moduli stacks of unitary (also called Hermitian) shtukas, which play an analogous role to that of unitary
Shimura varieties in the work of Kudla-Rapoport.
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6.1. Hermitian bundles. We adopt the notation of §I.3] and in particular for the remainder of the paper
enforce the assumption that X is proper, and v: X’ — X is a finite étale double cover (possibly trivial).

Definition 6.1. A rank n Hermitian (also called unitary) bundle on X x S with respect to v : X' — X is
a vector bundle F of rank n on X’ x S, equipped with an isomorphism h: F = ¢*F" such that c*hY = h.
We refer to h as the Hermitian structure on F.

We denote by Buny(,,) the moduli stack of rank n unitary bundles on X, which sends a test scheme S to
the groupoid of rank n unitary bundles on X x S. The notation is justified by the following remark.

Remark 6.2. There is an equivalence of categories between the groupoid of Hermitian bundles on X x S,
and the groupoid of G-torsors for the group scheme G = U(n) over X defined as

{9 € Resx//x GL,: o('g™") = g}

Indeed, we choose a square root w;(/2 of wx (which exists over k& = F, by [Wei95 p.291, Theorem 13]).

~

Then F; := u*w;(/? is equipped with the canonical Hermitian structure hy : F; = o*F; = o*F), and
(Fny hy) := (F1,h1)®" is a rank n Hermitian bundle on X whose automorphism group scheme is U(n). To a
Hermitian bundle (F,h) on X x S, Isomy, g((Fpn X Og, hy, K1d), (F, h)) (the scheme of unitary isometries)
is a right torsor for U(n) over X x S. Conversely, for a right U(n)-torsor G over X x S, the contracted

U(n)
product G x F,, is a Hermitian bundle on X x S.
6.2. Hecke stacks. We now define some particular Hecke correspondences for Bungy,).

Definition 6.3. Let r > 0 be an integer. The Hecke stack Hkp(,) has as S-points the groupoid of the
following data:
(1) z; € X'(S) for i =1,...,r, with graphs denoted by I';; C X’ x S.
(2) A sequence of vector bundles Fy, ..., F of rank n on X’ x S, each equipped with Hermitian structure
hii ]:i l> 0'*]:1\/

(3) Isomorphisms f;: Fi_1[x/xs-r,, -1 = fi|X/X5,pz{,pg(I(), for 1 < i < r, compatible with the

o(z})
Hermitian structures, with the following property: there exists a rank n vector bundle ‘7-"1.[1 /2 and a
diagram of maps of vector bundles

iy
Fia1 Fi

such that coker(f;~) is flat of length 1 over I'y/, and coker(f;”) is flat of length 1 over I's(,/y. In
particular, f{~ and f; are invertible upon restriction to X’ x S — Iyt = T'y(ar), and the composition

!

-
b fi
Ficilxrxs—r,, -1, ., Fi-1polxrxs-r,, -1, ., = Filx/xs-r,, -1

d(zé n‘(mi)

agrees with f;.
Remark 6.4. Condition (3) above is equivalent to asking for the existence of a diagram

Fi-1 Fi

’A h”

f
]:i—1/2

such that coker(h;~) is flat of length 1 over I'y(,/), and coker(h;”) is flat of length 1 over I';,. In particular,

hf and h;” are invertible upon restriction to X’ x S — Iyt = Ty(ar), and the composition

hi™ 4 (R~
Ficilx/xs-r,, -1 — Fi_1plxrxs-1, -1, — Filx/xs-r,, -1

o(z}) o(z})

agrees with f;.
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Definition 6.5 (Terminology for modifications of vector bundles). Given two vector bundles F and F’ on
X’ x S, we will refer to an isomorphism between F and F’ on the complement of a relative Cartier divisor
D C X' x S as a “modification” between F and F’, and denote such a modification by F --+ F'. Given
x,y € X'(S), we say that the modification is “lower” of length 1 at x and “upper” of length 1 at y if it is as
in Definition (3), i.e. if there exists a diagram

./—"b
N
F F!
such that coker(f*) is flat of length 1 over I'y, and coker(f) is flat of length 1 over Iy, and F --» F’
agrees with the composition

AR f
Flxixs-r,-r, — F’|x/x5-1,-1, — F|x'x5-T,-T,-

The condition admits a reformulation as in Remark

6.3. Unitary shtukas. For a vector bundle F on X’ x S, we denote by "F := (Idx X Frobg)*F. If F has a
Hermitian structure h: F =+ ¢*FV, then 7 F is equipped with the Hermitian structure "h; we may suppress
this notation when we speak of the “Hermitian bundle” 7 F.

Definition 6.6. Let » > 0 be an integer. We define ShtTU(n) by the Cartesian diagram

l |

BUHU(n) (M)BUHU(M X BUHU(n)
A point of Shty;(,,) will be called a “U(n)-shtuka”.
Concretely, the S-points of ShtTU(n) are given by the groupoid of the following data:

(1) z; € X'(S) for i = 1,...,r, with graphs denoted I';; C X x S. These are called the legs of the
shtuka.

(2) A sequence of vector bundles Fy,...,F, of rank n on X’ x S, each equipped with a Hermitian
structure h;: F; — o*Fy'.

(3) Isomorphisms f;: Fi—1|x/xs-r,, - . = filX’xS—Fm(—Fd(z/_) compatible with the Hermitian struc-

d(z‘é
ture, which as modifications of the underlying vector bundles on X’ x S are lower of length 1 at 2
and upper of length 1 at o(a%).

(4) An isomorphism ¢: F, = 7 F, compatible with the Hermitian structure.
Lemma 6.7. The stack Sht?](n) 1s empty if and only if v is odd.

Proof. We first treat the case n = 1. Let Nmy,,x : Picxs — Picx be the norm map. Then Buny ) =
Nm;(}/x (wx), hence it is a torsor under Prym(X'/X) = ker(Nmx.,x). Moreover, Shty;( fits into a Carte-
sian square

Sty ;) —— Bung) F
l lLang 1
Div"(X') —— Prym(X’/X) FleTF

with the bottom horizontal map sending D — O(D — oD). If X’ is geometrically connected, then the
stack Prym(X’/X) has two connected components, and by a result of Wirtinger, explained in [Mum71, §2],
the bottom horizontal map lands in the identity component if and only if r is even. If X’ is geometrically
disconnected (i.e. it is either X [T X or Xj/), then we have mo(Prym(X’/X);) = Z, the Lang map lands in
the identity component, and the bottom horizontal map hits the identity component if and only if r is even.
This shows that, in all cases, ShtTU(l) is empty if and only if r is odd.

For general n, taking determinant of a unitary shtuka gives a map Sht?](n) — ShtTU(l). From this we see
that if 7 is odd, then Shtg(n) is empty for any n since Sht;](l) is empty.



HIGHER SIEGEL-WEIL: NON-SINGULAR TERMS 31

On the other hand if r is even, then ShtTU(l) is non-empty. If n > 1, from an S point of Sht’g,(l), we can
produce an S-point of Sht?](n) by formation of direct sum with (the base change to X x S of) a unitary
bundle of rank n — 1 on X (e.g. we can take (Fp_1, hn—1) from Remark [62). O

6.4. Geometric properties.
Lemma 6.8. The stack Buny () is smooth and equidimensional.

Proof. The standard tangent complex argument, cf. [Heil0, Prop. 1]. O

Lemma 6.9. (1) The projection map (pry,pr,) : Hky(,y = (X')" x Buny () recording {x;} and (F., h) is
smooth of relative dimension r(n —1).

(2) Shtyy(,,y s a Deligne-Mumford stack locally of finite type. The map Shty;,, — (X')" is smooth,
separated, equidimensional of relative dimension r(n —1).

Proof. The statements about Sht[’}(n) being locally finite type and separated are well-known properties of
moduli of G-shtukas for general G [Var04, Proposition 2.16 and Theorem 2.20]H

Part (2) follows from (1) by [Lafl8, Lemma 2.13].

So it suffices to check (1). As a self-correspondence of Buny(,), Hkyy(,,) is the r-fold composition of Hkllj(n).
This allows us to reduce to the case r = 1. In this case, the map (pry, pry) : Hkllj(n) — X' x Bung ) exhibits
Hkllj(n) as a P"~1-bundle whose fiber over (2, F1, h1) classifies hyperplanes in F1,0(2)- Indeed, a hyperplane
in Fi 5(2) determines a lower modification at o(z'), and the upper modification at z’ is then determined
from the lower modification by the Hermitian structure. This shows that (pry,pr;) is smooth, separated
and equidimensional of relative dimension (n — 1) in the case r = 1, and the general case follows.

O

7. SPECIAL CYCLES: BASIC PROPERTIES

In this section we define special cycles over the moduli stacks of unitary shtukas, and construct corre-
sponding cycle classes. The latter task is rather subtle, as the cycles are in most cases of a highly “derived”
nature, with their “virtual dimension” differing significantly from their actual dimension.

7.1. Special cycles.

Definition 7.1. Let £ be a rank m vector bundle on X'.
We define the stack Z; whose S-points are the groupoid of the following data:
e A U(n)-shtuka with ({z},..., 2.}, {Fo,.... Fr}, {f1,-- -, fr}, ) € Shty(,, (S).
e Maps of coherent sheaves t;: £ X Og — F; on X’ x S such that the isomorphism ¢: F,. = 7 F
intertwines ¢, with "¢y, and the maps ¢;_1,¢; are intertwined by the modification f;: F;_1 --+ F; for

eachi=1,...,r, i.e. the diagram below commutes.
ENXROg ENXROg == ENROs —— "(EXOg)
[
Fo S LN Fi SENECTRN SR L N Fr ————— "F

In the sequel, when writing such diagrams we will usually just omit the “®KQOg” factor from the notation.
We will call the ZZ (or their connected components) special cycles of corank m (with r legs).

There is an evident map Z; — ShtTU(n) projecting to the data in the first bullet point. When rank & =

1, the ZF are function field analogues (with multiple legs) of the Kudla-Rapoport divisors introduced in
[KR11l [KR14].

3See also [YZ17], paragraph after Theorem 5.4] for a sketch of the separatedness in a similar situation, which readily adapts
here.
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7.2. Indexing via Hermitian maps.

Definition 7.2. Let A% (k) be the k-vector space of Hermitian mapd] a: € = 6*EY such that o(a)V = a.
Let Ag (k) C A¥' (k) be the subset where the map a: & — 0*EV is injective (as a map of coherent sheaves).

Let ({z}}, {F:}, {fi}, ¢, {t:}) € Z£(S). By the compatibilities between the t; in the definition of ZZ, the
compositions

EROs 1 F, s o 7y 1 57 eV R O (7.1)

agree for each i, and () for ¢ = r also agrees with the Frobenius twist of (1) for ¢ = 0. Hence ()

for every i gives the same point of A2!(S), which moreover must come from A2!(k). This defines a map
ZL — A¥(k). For a € A¥'(k), we denote by Z%(a) the fiber of ZZ over a. We have

zi= I 2zt
ac.Aall (k)

Definition 7.3. For a € Ag(k), let D, be the effective divisor on X such that v=1(D,) is the divisor of the
Hermitian map det(a) : det(€) — o* det(&)V.
7.3. Finiteness properties. We next establish that the projection map ZZ(a) — Sht’g,(n) is finite, which
will eventually allow us to construct cycle classes on ShtTU(n) associated to ZZ(a).
Proposition 7.4. Let £ be any vector bundle of rank m on X' and let a € Ag“(k). Then the projection
map Zg(a) — Shty,,) is finite.

Proof. We will show that the map is proper and quasi-finite. First we establish the properness. It suffices
to show this locally on the target, so we pick a Harder-Narasimhan polygon P for Bungy,) and consider

U( ) Define Shtr <P to be the open substack of Sht’g,(n) obtained as the pullback of
) = Bung () via the tautologlcal projection pry : Shtg(n) — Bung(,,) recording Fo, and Zg’gp(a) —

the truncation Bun=

BunU(n
Z%(a) the analogous pullback.
We can then pick a sufficiently anti-ample vector bundle £’ of rank m on X’ and an injection ¢: & — &

so that the stack Hom(€’, —)=% parametrizing {(F € BunU( t € Hom(&', F))} forms a vector bundle over

n)’
Bunégg), with respect to the obvious projection map. Let a’ := (¢*1¥)oaor: & — €Y. Then we have a
closed embedding Z5=" (a) < 2=F (/) cut out by the condition that the map ¢: & — F factors through

t, which fits into a commutatwe diagram

zZ0=P(a) —— Z5=P(d)

~ |

r, <P
Shtps

Hence it suffices to show that Zg’,gp(a’ ) — ShtT"SnP is proper. For the closed substack where the map

o : & — Fy vanishes, the properness is clear. Therefore it suffices to show the open substack zZnshe

defined by the condition that ¢ty # 0 fiberwise over the test scheme is also proper over Sht;]’(—]; We can
factorize this map as the composition of two maps in the diagram below:

zi=P(a') —— P(Hom(E np Shtpl
1 (n)
\ lprz
Shty;)

where j is determined by the map Z5="°(a’') — P(Hom(&’, —)<F) sending
(]:0 - - P = TJ:Q, (ti);ﬂzo) — (fo,to: & — ]:0)

4We will later in §82] introduce a space A*! over Bungr, for which A(K) is the k-rational points of the fiber over
& € Bungyr, (k), justifying the notation.
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The map pry is a projective bundle by design, so in order to establish that pr,oj is proper it suffices to

show that j is finite. Indeed, smce data of all the ¢; is determined by tg, the analogous map Z.,~ sPo

Hom(&', )< x <r Shty; ") P is a closed embedding. The requirement to = Tty in the definition of 2
U(n)
therefore implies that the map j is a k*-torsor onto its image, which is a closed substack of P(Hom(&’, —)=<F).
This completes the proof of properness.
It remains to show that ZZ(a) — Shtg(n) is quasi-finite. Since the map is already established to be proper,

it suffices by [Sta20, Tag 01TC] to check that the fibers over field-valued points are finite. Let
(@i h<i<r (Fo, ho) == (Fi,ha) ==+ o (Fry By) =5 (TFo, "ho)) € Shtgr(, (k)

be such a point valued in a field . Its fiber in ZZ(a)(x) consists of {t;: € — F; }o<i<, fitting into commutative
diagrams

Ex Ex E. ———— &,
b [ [ Lo
Fo ----- yFL —— e >y Fro1 —— T Fo

such that 0*tY o h; ot; = a € A (k) for each i = 0,...,7. We want to show that there are finitely many
possibilities for such t; € H*(X., Y @ F).
The situation can be abstracted to the following semi-linear algebra problem.

Lemma 7.5. Suppose that k is any field over k, and we have finite-dimensional k-vector spaces Vi,Vo C V
with an injective Frob-semi-linear map 7: Vi — Vg.

Then the set {x € Vi: 7(x) = x € V'} is finite.

We assume Lemma [7.5] for the moment and use it to conclude the proof of Proposition[7.4l We apply it to
the situation above with Vi := Homy: (£, Fo), Va := Homx; ("&, " Fo), which are both viewed as subspaces
of

T
V := Homx; 5»1,-7‘—0(2(90;- + o(x})))
j=1
by the obvious inclusion. The map Vi — V5 is the twist by 7. Then Lemma [7.5] shows that there are finitely
many possibilities for ¢y since 7(tg) = tg. The other ¢; are determined by ¢, (if they exist) because the t; as
well as the modifications F; --+ F;11 are all isomorphisms over an open subset of X7. ]

Proof of Lemma[7.5] By replacing x with an algebraic closure, it suffices to consider the case when & is
algebraically closed. Let us call a subspace V] C Vi “r-fixed” if 7(V{) = V{ C V. Since a sum of 7-fixed
subspaces is evidently 7-fixed, there is a well-defined largest 7-fixed subspace V> C V. It is a sub k-vector
space of Vi, hence necessarily finite-dimensional. Since 7 : V7 — V4 is injective, the restriction of 7 to V{° is
a Frob-semi-linear bijection. The set {x € Vi: 7(z) = & € V'} is evidently contained in (V;°)7, which is an
k-form of V* (because & is algebraically closed) and therefore finite-dimensional over k. O

7.4. Variation with £. Let &', € be two vector bundles (with possibly distinct ranks) on X’ and s: &' — &
be a map of coherent sheaves. leen a: & — 0%V in A2(k), let ' = (6%sV)oaos: & — a*(E')Y be the
corresponding element in Aan( ). Therefore, composing with s defines a map

251 ZE(a) = ZE/(a') (7.2)
sending
E—— ... -3 = - y & =——=7¢&
| - l |
Fo -~ > mmme- » Fr —— "Fo Fo ----- > oues —mmes » Fr —— " Fo

The following lemma follows directly from definitions.
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Lemma 7.6. If £ =& ® &, and a; € Ag“(k) fori=1,2, then there is a canonical isomorphism

Zg, (a1) Xsni, ) Zg, (az) = 1T Zg(a)

al *
a=
* ag

where the union runs over all Hermitian maps a : € — o*EY whose restriction to & is a; (fori=1,2). The
map from the right side to the left is given by (2,,, 2.,), where v; : & < & is the inclusion.

Lemma 7.7. Under the notations of the beginning of this subsection,
(1) If s : &' — & is generically surjective, then zs : ZZ(a) — ZE,(a") is a closed embedding.
(2) Suppose that s is generically an isomorphism (in particular € and £ have the same rank). Let
Ds C X' be the divisor of det(s). Then the restriction of zs over (X\v(Ds))"

Ze(a)lx\w(py)yr € Ze(a)|(x\w(po))

T

is open and closed. Here we write Z¢(a)|(x\u(p,)) for the preimage of (X\v(Ds))" under the leg

map Zg(a) — Shty(,) — X" aS'e

Proof. (1) Let g = £’/ ker(s) = &, equipped with the induced Hermitian map @ : g oo (EI)V. Then s*
factors as Zf(a) == Z2 (@) C 2% (d), the latter being evidently a closed embedding. Therefore it suffices
to show zz is a closed embedding. We thus reduce to the case s is generically an isomorphism.

Let D be an effective divisor on X’ such that £(—D) — & 3 £. Let F"I be the universal Hermitian
bundle over X’ x Buny(,), and FAMY its restriction to D x Bung(,. Let Vp = pry, Hom(pri £(—D)|p, FEY),
where pry,pry are the projections of D X Buny,) to the two factors. Then Vp is a vector bundle of
rank equal to nrank(£)deg(D) over Bung(,). Let V;p be the pullback of Vp over Zg, (a’) via the map
pr; : Zg(a’) — Buny(,). Then V; p has a section v; whose value at ({)},{F;},{t; : &' — F;}) € Z¢ (d')
is the restriction of t; to £(—D)|p — Fi|p. Then t; extends to £ if and only if v; vanishes at the point
({=%}, {F;},{t;}). This identifies Z¢(a) as the common zero locus of the sections (v;)o<i<r—1 of the vector
bundles V; p over Zz,(a'), hence closed in Zg, (a').

(2) By (1), it remains to show the openness of s* when restricted to (X \v(Ds))". Let U’ = X'\ supp(Ds+
oDy). Let Shtyy(,,) p, be the moduli stack of Hermitian shtukas ({z;}, {F;}) of rank n with legs in U"", and
trivializations of F;|p, (as a vector bundle over Dy of rank n) compatible with the shtuka structures. Then
A ¢ Shty iy p, — Shty(, [or is a GL,(Op,)-torsor. Let ZZ(a)p, and Zg (a')p, be the base changes of
ZE(a) and Zg,(a') along A. Since Z%, (a')p, — 2, (a’)|u- is finite étale surjective, it suffices to show that
the inclusion ZZ(a)p, — Z¢ (a’)p, is open. Using the trivializations of F;|p,, we get an evaluation map

evp, : Z&.(a')p, — Homp, (5/|D570%?)

where the target is a discrete set. Then ZZ(a)p, is the preimage of the image of

b, OF") os, Homp_(&'|p,, OF")

under evp,_. Indeed, a map £ — F; extends to & — F; if and only if £'|p, — F;|p. vanishes on ker(&’|p, —
&|p,) (this can be checked locally using elementary divisors). Since the target of evp, is discrete, Z%(a)p, C
ZE,(a')p, is open and closed. O

HOIIlDS (8

7.5. Corank 1 special cycles. A special role is played by the case m = 1, i.e. where £ is a line bundle on
X', because it is only in this case that we can appropriately control the dimension of the cycles ZZ. We will
write £ := £ to emphasize that it is a line bundle.

Note that in this case a € A,(k) if and only if a # 0.

Definition 7.8. We define Z7(0)* C Z7(0) to be the substack classifying ({z}},{L LN Fi}) with the
additional conditions that all ¢; are injective when restricted to XL for any geometric point 5 of the test
scheme S. For a € A% (k) we introduce the uniform notation

{Zg(a) if @ # 0;

Z(a)* =
c(@) 27(0)*  ifa=0.
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Proposition 7.9. We have dim Z}(a)* < r(n —1).

This is established later, in Proposition @] (for a # 0) and Proposition 0.5 (for ¢ = 0), as a consequence
of a more refined study of the geometry of Z7(a)*.

Remark 7.10. One can show that when a # 0, in fact Z7(a)* is LCI of pure dimension r(n — 1). This will
appear in a future paper; it relies on some ideas from [FYZ21]. This fact will not be used in the present
paper, but it may be psychologically helpful.

Definition 7.11. For a € A%!(k), we define [£}(a)*] € Ch,(,—1)(Z%(a)*) to be the cycle class of the union
of the irreducible components of Z7(a)* with dimension r(n — 1), throwing away the irreducible components
of dimension < r(n —1). (According to Remark [[.I0] there are no such components to be thrown away at
least when a # 0, but we neither prove nor use this in the present paper.)

7.6. Corank n special cycles. In this paper we are mainly concerned with the case where the rank of &£
is m = n. The following proposition contains basic geometric information about Z¢(a).

Lemma 7.12. Let £ be o vector bundle on X' of rank n, and a € Ag(k). Then the map Zg(a) — X"
recording the legs has image in (suppv—1(Dg))".

Proof. Let ({z}},{F:},{t:}) be a geometric point of ZZ(a). For each 1 < ¢ < r, the Hermitian map a
factorizes as £ — .7-"1.[1/2 — Fi_1 < 0*EY, we see that 2 (the support of .7-'1-_1/]:1‘.’71/2) is in the support of
EV/a(€), ie., z; € suppr—H(Dy). 0

Proposition 7.13. Let £ be a vector bundle on X' of rank n, and a € Ag(k). Then Zg(a) is a proper
scheme over k that depends only on the torsion sheaf Q = coker(a) = o*EY /€ together with the Hermitian
structure @ on Q induced from a (see §{-1| for the notion of Hermitian structure on a torsion sheaf).

The proof involves a few ideas not yet introduced, and will be given later in §84.T1

The next goal is to equip the proper scheme ZZ(a) with a 0-cycle class in its Chow group. The “virtual
dimension” of ZZ(a) is at most zero, for if £ is a direct sum of line bundles £1 & --- ® L, then ZZ(a) is
contained in the intersection of Zj, (a;;) for 1 < i < r, each having codimension at least r in ShtTU(n) by
Proposition (which can be shown to be an equality, c¢f. Remark [[.10). However the actual dimension of
ZE(a) can be strictly positive. Our task is to find the correct virtual fundamental class of ZZ(a).

7.7. Intersection theory on stacks. Recall the discussion of intersection theory on Deligne-Mumford
stacks from [YZ17, Appendix A]. Let Y be a smooth, separated, locally finite type Deligne-Mumford stack
over k of pure dimension d. Let Y7, --- Y, be Deligne-Mumford stacks with maps f; : ¥; — Y. Then there
is an intersection product

(=) v (=) v v (=) Chy (Y1) x Chyy (Y2) x - -+ x Chy, (Yn) — Chy 4 qi, —an—1)(Y1 Xy -+ Xy Yp).

For (; € Ch.(Y;), the intersection product (3 -y --- -y (. is defined as the Gysin pullback of the external
product (1 X - -+ X (,, € Chy (Y1 x---xY,) along the diagonal map A : Y — Y™, which is a regular embedding
of codimension d(n — 1).

7.8. Intersection problem: the case of a direct sum of line bundles. We now formulate the cycle
classes which enter into our intersection problem. We first consider the case £ a direct sum of m line bundles
on X',
EXZLD...DLy.

Let a € Ag(k). We write a as an m x m-matrix with entries a;; € Hom(L;,0*LY).

Let

ZZL___ Lo (au’ AN ,amm)* = Zzl (all)* XSht{](n) A XSht{](n) sz (amm)*.

In Definition [Z.TT] we defined a fundamental class [Z}(a)*] € Ch,(,—1)(Z}(a)*). Applying the intersection
product construction in §7.7 for Y = Shtg(n) (the hypotheses apply by Lemma (2)), we obtain a class

(22, (@11)"] sy, ) - osme, ) (22, (@mm)™] € Chruom) (2, . g, (@115 Gmm)). (7.3)
Let A% (a11, - , Gmm)(k) be the finite set of Hermitian maps a : & — 0*€Y (not assumed to be injective)
such that its restriction to £; is a;; for i = 1,--- ,m. By Lemma[7.6] there is a map
Zr,(ann) Xsuy, oo Xsniy ) 22, (Gmm) = A (arn, - s amm) (k)
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such that the fiber over a € Ag (k) identifies with Z¢(a). Since a is injective, the image of Z{(a) — Z7 (ai;)
lies in Z7. (a;;)*. In particular,

Ze(a) C 2, g, (@11, 5 Q)™
is open and closed. Restricting (Z3)) to ZZ(a) gives a cycle class

Loy, (@) = ([321(011)*] shty ) ooshg ) (2L, (amm)*]) |22(a) € Chr(n—m)(Z¢(a)).

Remark 7.14. Our notation suggests that (.. . (a) (as a cycle class on Z¢(a)) depends, at least a priori,
on the decomposition of £ into a direct sum of line bundles £y, -- ,L,,. However, we will show later in
Theorem [0l that, at least when m = n, it only depends on &, and is equal to the cycle class [ZZ(a)] that
we will define for general rank n bundle £.

7.9. Intersection problem: m = n and £ arbitrary. To define a 0-cycle [Z(a)] for general rank n vector
bundle £ on X', we need to make some auxiliary choice first; eventually we will show that the definition is
independent of the choice.

Definition 7.15. Let £ be a rank n vector bundle over X’ and a € Ag(k). A good framing of (£,a) is an
n-tuple (s; : £; = &)1<i<n of Ox/-linear maps from line bundles £; € Pic(X') satisfying:
(1) The map s = Ps; : &' 1= @} L; — & is injective.
(2) Let Dy be the divisor of the nonzero map det(s) : @, L; — detE. Then v(D;) (image in X) is
disjoint from D, (see Definition [(3]).

Lemma 7.16. For any rank n bundle £ on X' and a € Ag(k), there exists a good framing for (€,a) in the
sense of Definition [7.15

Proof. For notational convenience we give the argument for X’ connected; the case X’ = X[ X can be
proved with obvious changes.

We strengthen condition (2) on s : @, L; — & slightly by asking v(D;) to avoid a prescribed divisor Dy
on X, instead of D,. We prove the existence of s satisfying this stronger condition by induction on n.

The base case n = 1 is trivial: take £; = £.

For the inductive step, start by picking any saturated line bundle £1 < £. Then &,,—1 := £/L; is a vector
bundle of rank n — 1. By induction hypothesis we may pick 5 : &L, — &,_; satisfying the conditions of
Definition and such that v(Ds) avoids the given divisor Dy. Let Da, -, D, be effective divisors on X’
such that

(1) v(D2),--- ,v(Dy) are disjoint from v(Dy), and

(2) deg L, — D; +2¢' —2 < deg Ly fori=2,--- ,n.
Let £; = L,(—D;). By the inequality above we see that Extl(ﬁi, L1)=0,sothemaps;: L; = E,—1=E/L1
lifts toamap s; : L;, = E, 1 =2,--+ ,n.

Now we have an injection s : @} ;L; — &£ whose divisor D, satisfies Dy = Dg+ Dy + --- + D,,. Since
v(Ds),- - ,v(Dy),v(Ds) are disjoint from Dy by construction, the same is true for v(Ds). O

Corollary 7.17. If s : &' = @ | L; — & is a good framing, then the map (L2) realizes Zg¢(a) as an open
and closed subscheme of Zg/(a').

Proof. Closedness is proved in Lemma [[77(1). Only the openness requires an argument. By the definition
of a good framing, v(D;) is disjoint from D,, and therefore disjoint from all legs of all points of ZZ(a) by
Lemma[( 12l Let U’ = X'\ supp(Ds + 0Ds), then ZZ(a) = ZZ(a)|y-. By Lemma [[.7)(2), the inclusion

Zg(a) = Zg(a)|ur = Ze (d)|ur
is open, hence the inclusion ZZ(a) — ZZ,(a’) is open. O
Definition-Proposition 7.18. Let & be a vector bundle of rank n over X' and a € Ag(k). Let s : &1 | L; —
& be a good framing of (£,a). Let

[2e(a)] = (L, . £, (@) 25(a) € Cho(Z¢(a)).
Here we are using Corollary [7.17 to make sense of the restriction, as it implies that ZZ(a) is a union of

connected components of ZZ,(a’). Then the cycle class [ZZ(a)] thus defined is independent of the good framing
s: &= L; €.
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The independence of good framing will be proved in Theorem [I0.1] after some preparation in §8 The idea
is to construct another O-cycle class on Z¢(a) without making auxiliary choices (which is done by introducing
Hitchin shtukas), and show that the two constructions agree.

By Proposition [7.13] ZZ(a) is proper over k, therefore the degree of the 0-cycle of [ZZ(a)] € Cho(ZZ(a))
is a well-defined number in Q. The main problem we are concerned with in this Part is to determine
deg[Zz(a)] € Q.

8. HITCHIN-TYPE MODULI SPACES

In this section we introduce certain “Hitchin-type moduli stacks” which will help to analyze the special
cycles. In particular, we will be able to use these to give an alternative construction of the cycle classes
associated to special divisors, that is manifestly independent of auxiliary choices.

8.1. Hitchin stacks. Until §84] we fix an arbitrary positive integer m.

Definition 8.1. The Hitchin stack M?*!(m,n) (sometimes denoted M?! when m,n are understood) has
S-points the groupoid consisting of the following data.

e £ a rank m vector bundle on X’ x S.

e F a rank n vector bundle on X’ x S, equipped with a Hermitian map h: F = o*FV.

e A map of underlying coherent sheaves t: £ — F over X' x S.
We define M(m,n) € M (sometimes denoted M when m,n are understood) to be the open substack
where the map ¢ base changes to an injective map on X~ for each geometric point 3 — S.

Let us emphasize that both £ and (F,h) are varying in this definition. We will usually suppress the
dependence on m,n from the notation.

8.2. Hitchin base.

Definition 8.2. We define the following two versions of the Hitchin base.
(1) A*(m) (sometimes denoted A*!' when m is understood) to be the stack whose S-points is the
groupoid of the following data:
e £ arank m vector bundle on X’ x S;
e a: & — 0*EY is a map of coherent sheaves on X’ x S such that o(a¥) = a.
(2) We define A C A*! to be the open substack where a: & — 0*&V is injective after base change to X~
for every geometric point 3 — S.

Definition 8.3. For integers 1 < m < n, we define the Hitchin fibration for M*! = M®!(m_ n) to be the
map f: M — A sending (&, (F,h),t) to the composition
t h « v o't * oV

a:& = F 0" F' —= 0"V,
Remark 8.4. In general the Hitchin fibration does not send M(m,n) to A(m) even when m < n. However,
in the special case m = n, the Hitchin map does send M (n,n) to A(n) because when ¢t : £ — F is generically
injective, it is generically an isomorphism for rank reasons, hence the induced Hermitian map a on £ is
generically non-degenerate.

8.3. Hitchin shtukas. We now discuss a notion of shtukas for Hitchin stacks. Throughout, M = M(m,n).
Definition 8.5 (Hecke stacks for Hitchin spaces). For r > 0, we define Hk', jan to be the stack whose S-points
are given by the groupoid of the following data:

(1) ({zihi<i<r {(Fis hi) Yo<i<r) € Hkp ) (5).
(2) A vector bundle £ of rank m on X’ x S.
(3) Maps t;: &€ — F; fitting into the commutative diagram

£ £ . &
Jto 2 I
Fo -~ > Fi - Yoo > Fr

We define the open substack Hk'y, C Hk!(n by the condition that ¢y, base changes to an injective map
along every geometric point 3 — S (equivalently, every t; has this property). Let pr; : Hk,, — M (resp.
prill: Hk'an — M) be the map recording (€, F;, by, t;), for 0 <i <.
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Definition 8.6 (Shtukas for Hitchin stacks). For r > 0, we define Sht'y an as the fibered product

Shtj\/lall E— Hk;,lan
Lo
AMall (Id,Frob) Mall s Aqall

and the open substack Sht'y, C Sht . as the fibered product

Sht’y, — HK,

l l(promrr) (8.1)
M (Id,Frob) M x M
Explicitly, the stack Sht’y.n parametrizes diagrams of the form below, with notation as in Definition
£ £ E——-7¢
lto ltl ltr fto
Fo ----- > F1 ----- Yoo mmm- > Fr — TFo

and Sht'y, is the open substack where ¢ base changes to an injective map along every geometric point 3 — S
(equivalently, the same property holds for every t;).

In particular, & = 7€ is a shtuka with no legs, exhibiting £ as arising from a rank m vector bundle on
X', i.e. coming from Bungr, (k). Therefore, Sht'y . decomposes as a disjoint union of special cycles

ShtTMall - H Zg
£€Bun,, x/ (k)

This decomposition can be refined. The compositions f o pr;: Hk'yan — A2 all coincide, and they induce
a map

ShtTMall — .Aall(k).
This induces the decomposition
Shtj\/t@“ = H H Zg (a)
£€Bun,,, xs(k) ac AP (k)

where AZ“ is the fiber of A*! — Bun,, x+ over £ € Bun,, x/(k). (Clearly the k-points of Ag“ coincide with
A (k) as defined in §7.21) If a # 0 then Z%(a) C Sht’y,, while if @ = 0 then Z%(0) N Sht’y, = Z£(0)*. So

this induces a decomposition
shthe =[] T 2
£€Bun,, x/ (k) ac A2 (k)

8.4. From vector bundles to torsion sheaves. For the rest of the section, we concentrate on the case
m = n. In this case, we will relate M = M (n, n) to the moduli stack of Hermitian torsion sheaves introduced
in 811 We introduce the following abbreviated notations.

Definition 8.7. Let d € Z>.

1) Let Mg = M(n,n)q be the open-closed substack of M = M(n,n) consisting of (€ L F) where
(1) p g
d = “EEOEE = (X', €). '
(2) Let Ag = A(n)q be the open-closed substack of A = A(n) consisting of (£, a) where d = M =
_X(X/a g)

By Remark B4 the Hitchin map for M = M?!(n, n) restricts to a map
fd : ./\/ld — .Ad.
When d is understood, we abbreviate f for f;.
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Recall that Hermsog = Hermag(X’/X) is the moduli stack of length 2d torsion coherent sheaves Q on X’
equipped with a Hermitian structure hg: Q = 0*QV, where QY := Ext'(Q,wx) such that o*hg = ho.
Alternatively we may think of hg as the datum of a perfect pairing

hg: Q®o,, 0°Q = wx/ p[wx:
where wy g is the constant Zariski sheaf of rational differential form on X’. The Hermitian condition is
equivalent to hig(u,v) = 0*hg(v, u) for local sections u,v of Q.

In §4.5] we have also introduced the moduli stack Lagr,; = Lagry (X'/X) classifying (9, hg, L) where

(Q,hg) € Hermyg and £ C Q is a Lagrangian subshealf.

There is a canonical map g : Aq — Hermayy sending (£, a) to the torsion sheaf Q@ = 0*EV /€ together with
the Hermitian structure hg defined as follows. Applying o* RHom(—,wx/) to the short exact sequence

050" - Q=0 (8.2)
yields a short exact sequence
0= &7 5% eV 5 o Ext (O, wxr) — 0. (8.3)

Since o*a¥ = a, we may identify (82)) and ([83) and get an isomorphism hg : Q = 0*QV.
We have a map gum @ Mg — Lagry, sending (€ 4 F) € My to the torsion Hermitian sheaf (Q =
a*&V /€, hg) constructed above together with the Lagrangian £ = F/&.

Lemma 8.8. The maps defined above fit into a Cartesian diagram
Mg -2 Lagry,
lf 12 (8.4)
As —2— Hermay

Proof. Given a: £ — ¢*£Y that is injective, the datum of a subsheaf £ C 0*£Y /€ is the same as a coherent
sheaf F such that &€ C F C o*EY. It is easy to see that £ is Lagrangian if and only if F is self-dual under
the Hermitian map a. 0

Corollary 8.9. The Hitchin fibration fq: Mg — Aq is proper.
Proof. Apply Lemma [B.8 and the fact that vsg is proper. O
Lemma 8.10. The map v2q: Lagry; — Hermsyg is small.
Proof. The map 7™ from §4.2) factors as
moierm . ﬁé\r_r/ngd EEIN Lagry, —% Hermag .
Herm

Since Aog is surjective and mo 5™ is small by Proposition [0 we get the desired statement. O

8.4.1. Proof of Proposition [7.13 Let Lagr(Q) be the moduli space of Lagrangian subsheaves of Q. Let
HKJ agr(0) be its Hecke version, classifying points {2} }1<i<, of X" and chains of Lagrangian subsheaves of Q

where the dashed arrow f; are modifications at x U o(x}), similar to those in Definition There is
a natural map Zg(a) — Hkj,,, (o) sending a point ({z;},{t; : &€ — Fi}) of Z¢(a) to the collection of
(necessarily Lagrangian) subsheaves F; = coker(t;) C Q = 0*€Y /€. This map fits into a Cartesian diagram

Zg (a) Hkiagr(@)
Lagr(Q)(@)Lagr(Q) x Lagr(Q)

Now both Lagr(Q) and Hky ,,, (o) are proper schemes over k, hence the same is true for Z¢(a). The diagram
also makes it clear that ZZ(a) only depends on (Q,a).
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8.5. Smoothness.

Lemma 8.11. The map
Ba: Mg — COhd(XI) X BunU(n)

sending (€ 5 F, h) to (coker(t), (F,h)) is smooth of relative dimension dn. In particular, Mg is smooth of
pure dimension dn +n?(g —1).

Proof. Consider the stack M, classifying (7, F, h,s) where T € Cohyq(X'), (F,h) € Buny(,) and an Ox-
linear map s : F — 7. Let 3 : My — Cohg(X') x Buny(,) be the natural map. Due to the vanishing of
Ext'(F,T), 8, exhibits M/, as a vector bundle over Cohy(X’) x Bungy,) of rank dn = dim Homy/(F,T).

Now Mg is the open substack of M!, where s is surjective. Therefore 34 is also smooth of relative dimension
dn. g

Proposition 8.12. The map g: Aq — Hermay is smooth.

Proof. We have a map s55%: Lagry, — X/ sending (Q, hg, £) to the divisor of £. Recall also the map

sgjrm : Hermyy — X4 sending (Q, hg) to the descent of the divisor of Q to X.
Recall in §4.5] we introduced the open subset
(X))® = {D' € X': D' o(D') = &} © X

Let Lagry, C Lagry, and M$ € My be the preimages of (X/)¢ under the maps Sg;gr and sgsgr o gM-

We claim that both squares in the diagram

M§ —— Lagr$, —— (X},)¢

e ] |

Aq —2— Hermpg — X4

are Cartesian. The left square is Cartesian by definition. Now we show that the right square is Cartesian.
Let (Q,hg) € Hermgy, D' € (X)) lying over D = sHe'™(Q, hg). Since D' No(D') = @, there is a unique
Lagrangian subsheaf £ C Q supported on the support of D', namely £ = Q|supp p-. This gives the unique
point (Q, ho, £) € LagrS, mapping to (Q, hg) € Hermyy and D’ € (X}).

Note that the map (X})¢ — X is faithfully flat: it is clearly surjective, and the map vy : X — X, is a
finite morphism between smooth schemes, hence flat. We will show that Mg — LagrdQ is smooth. By fppf
descent it then follows that A4y — Hermy is also smooth.

Recall from §47] that ¢/, : Lagry; — Cohg(X'’) (recording only L) restricts to an isomorphism Lagrgd 5
Cohy(X")® = Cohqa(X')[(x7yo. Therefore it suffices to show that the composition ./\/lfi> o, Lagrgd AN
Cohg(X')® is smooth. This follows from the smoothness of M4 — Cohg(X') proved in Lemma BTl O

Corollary 8.13. The Hitchin fibration f: My — Ay is small. The compler Rf.Q, is a shifted perverse
sheaf that is the middle extension from any dense open substack of Aq.

Proof. By the smoothness of g in Proposition 812 and the Cartesian diagram in Lemma B8, the smallness
of f follows from that of veg : Lagry; — Hermogy, which is proved in Lemma [8.10] ]

8.6. Cycle class from Hitchin shtukas. In this subsection we take m = n, so M = M(n,n) and
A = A(n). Now consider the Hitchin shtukas for My; C M. Let N = dimM,. By Corollary BTI3
dim A; = N. The Cartesian diagram (8.1]) restricts to a Cartesian diagram

Shty, —— Hk, (8.5)

l l@ro,pm
1d,Frob
Mgy {d,Frob) )Md X My

We would like to define a 0-cycle class on Shty,  as the Gysin pullback of a cycle on Hk’, along the Frobenius
graph of M. Although the virtual dimension of Hk’y,, is the same as dim My, its actual dimension may be
larger. For this reason we have to define in a roundabout way a virtual fundamental cycle on Hky,, of the

virtual dimension by relating it to Hk}\/ld, which we show is smooth below.
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Lemma 8.14. The stack Hk}\/[d 18 smooth and equidimensional of the same dimension as M.

Proof. Let (z', Fo --+ F1) € Hk%,( Let F? = 1b/2 = Fp N F; as in Definition The generically
compatible Hermitian structures on Fy and F; equip this intersection with a Hermitian structure h” : F* —
o*(F?)V whose cokernel has length 1 at 2’ and at o(z'). We call such a bundle almost Hermitian with defect
at the ordered pair of conjugate points (z',o(x)). Conversely, given (F°,h°) almost Hermitian with defect
at (2/,0(x')), one can uniquely recover Fy (resp. JFi) as the upper modification of F? at z’ (resp. o(z'))
inside o*(F”)V.

Let BunbU(n) be the moduli stack parametrizing (' € X', F*, h°) where (F°,h’) is an almost Hermitian
bundle with defect at (2’, o(2’)). The discussion in the previous paragraph shows that there is an isomorphism
Hkb(n) = BunbU(n) over X'. Let M’ be the moduli stack of (z',& L F°.R°) where (F,h") is almost
Hermitian with defect at (a/,0(z’)), £ is a vector bundle on X’ of rank n and x(X’,€) = —d, and ¢ is
injective. Then we have an isomorphism Hk}\,l = MZ.

We have a natural map

B+ M — Cohg_1(X') x Bun%(n)

sending (2/,€ % F,h") to (coker(t), (z', F*,h*)). The same argument as Lemma BTl shows that B ex-
hibits M? as an open substack in a vector bundle of rank n(d — 1) over Cohy_1(X’) x Bun%}(n).
dim Cohg—1(X’) = 0 and dimBun?J(n) = dimHklU(n) = dim Bung(,) +n by Lemma B.9(1). Therefore
Hk}wd = MZ is of pure dimension dim Bung(,,y +dn, which is the same as dim My by Lemma .11l 0

Now

Definition 8.15. For any stack S over k we define a morphism

P S" — S
by the formula ®%(&o, -+ ,&—1) = (§0,&1,&1,62, 82, -+ , & —1,Frob(&)). When r is fixed in the context, we
simply write ®g.

We rewrite Shty,, as the fiber product

Shtly,, — (Hkj,,)" (8.6)

l l(PTOwPH)T
P

(Ma)" ——= (Ma)*
Here the vertical map (pry, pry)” sends (hi, -+ ,h,) € (Hk}\/[d)r to

(pro(h1),pri(ha), - -+, pro(hr), pro(hy)) € (Md)zr-

Definition 8.16. We define a 0-cycle classes [Sht)y, ] € Cho(Sht), ) as the image of the fundamental class
of (Hk),)" (which is smooth of the same dimension as (Mg)" by Lemma[8I4) under the refined Gysin map
along ®rq, : (Mg)" — (Mg)?" (which is defined since My is smooth and equidimensional by Lemma BT}
see [Kre99, Theorem 2.1.12(xi)])

[Sht),] = (@) [(Hl,)"] € Cho(Sht}y,).

9. SPECIAL CYCLES OF CORANK ONE

In this section we prove geometric properties of the special cycles ZZ(a) when m = rank& = 1 (where
the number field analogues are called “Kudla-Rapoport divisors”). In particular, we show that for a # 0,
Z¢(a) are local complete intersections of dimension r less than Shty;(,,). When a = 0, we show that Zg(a)*
has dimension at most dim Sht’g,(n) —r. These geometric properties are proved by studying stratifications
introduced and analyzed in §9.1] and §9.21
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9.1. Stratification of the special cycle when m = 1. In this section we fix a line bundle £ on X} and
a € Az(k), ie., a: L — o*LY is nonzero Hermitian. We now define a stratification of Z := ZJ(a); and
estimate the dimension of each stratum. By Lemma [[.12] we have dim Z = 0 when n = 1. Therefore in this
subsection we will assume n > 2.

For each (£ 25 F)o<i<, € Z(k) with legs (2)1<i<r € X'(k)", let D; (0 < i < r) be the divisor on X
such that ¢; : £L(D;) < F; is saturated. For each 1 < i <r, we have one of the four cases:

(0) D; = Dj_;

(+) Di=Di-1+o(x;);

(=) Di=D;—1 —xi;

(:l:) Dl = Di,1 — I/ + O'(I;)

%

4

) * g\
Since the composition £ 25 F; LN o* F 2y 5% LY is equal to a, we see that D; + o(D;) is a subdivisor of

the divisor of a. Therefore v(D;) < D, as divisors on X (k).

9.1.1. Indexing set for strata. Consider the set D of sequences of effective divisors (D;)o<i<, on Xé satisfying

e y(D;) < D, forall 0 <i<r.

e For each 1 <4 < r, the pair (D;_1, D;) falls into one of the cases (0), (+), (—), () above for some
xh e X'(k).

e D, =7D,.

It is clear that ® is a finite set. This will be the index set for our stratification of Z.

9.1.2. Definition of strata. Fix De = (D;)o<i<r € ©. Let Iy := {1 <i <r|D; = D;_1}. Similarly we define
Iy, I_ and I; as the set of those i such that (D;_1, D;) falls into case (+),(—) and (£) respectively. Let
Z[D,] be the substack of Zg, classifying

t
({ai} € X" {Fi} € Hk{y(n); {L(Di) = Fito<izr)
such that every ¢/ is saturated. Let
7[Ds] : Z[Da] — (X5 )
be the map recording those 2} for i € Iy. Note that for ¢ € I UI_UI, z is determined by D,.

Proposition 9.1. Let n > 2.
(1) The substacks Z[Ds] for De € © give a partition of Z.
(2) Each geometric fiber of w[De] has dimension < (n—1)|I4|+ (n — 2)|Io].
(3) We have dim Z[D,] < r(n — 1). The equality can only be achieved when Iy = {1

2.+ ,r}, de., all
D; are equal to the same divisor of X', which is then necessarily defined over k. E

Proof. (1) Each geometric point of z € Z defines a (unique) point De € © by taking the zero divisor of ¢;,
and then z € Z[D,] by definition.

(2) Let H[D,] be the substack of the fiber of (Hk)( ), over (£,a) € Aq(k) classifying data ({z7}, £ 5 F)
such that ¢; extends to a map t; : L(D;) — F;. Note that for s € Iy UI_ U Iy, 2} is determined by D,. Let
M(D;] be the substack of the fiber of M(1,n)g_over (£,a) € A(L,n)(k) classifying maps ¢ : £ — F that

extends to a saturated map t' : £(D;) — F. Then we have a Cartesian diagram of stacks over F,,
Z[D.] H[D,)] (9.1)
l l(pmm)
(Id,Frob)
M[Do] —_— M[Do] X M[DT]

Note since D, = "Dy, the Frobenius morphism sends M[Dy] to M[D,.].
Let

[D,] : H[Ds] = M[D,] x Xgo

be the projection p, and the map recording «/ for i € I°.

5In this case, Z[Ds] can be identified with the open substack ZQZ(DO)(Q’) C ZZ(DO)(Q’) (where o’ is the map £(Dg) —

0*L(Dp)V induced from a) defined by requiring all the maps t} : £L(Dg) — F; be saturated.
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Claim 9.2. The map I1[D,] is smooth and representable of relative dimension (n — 1)|I+| + (n — 2)|1y|.

Assuming the claim, we finish the proof of (2). Indeed, we may apply Lemma below to the Cartesian
diagram (@) to conclude, except that M[Dy] is generally not a scheme. To remedy, we may restrict to a
finite type open substack M[Do]<¥ € M[Dy] by bounding Harder-Narasimhan polygon of (F, k), and impose
level structures on the Hermitian bundle (F,h) at a closed point x € |X| to arrive at a scheme M [Do]=F
which is a torsor over M[Dg]=% by an algebraic group H. Truncating and imposing the same level structures
to H[D,] gives a scheme H[D,]<F (with legs away from z) such that H[D,|<P/H = H[D|<F. Let Z[D,|<F
be defined by a Cartesian diagram similar to (@), with #[D,] replaced by H[D4]<F and M[D;] replaced by
./\A/l/[ D;|<P for i = 0,r. We apply Lemma [0.3 to conclude that the fibers of Z[D,]<F — XLIO have dimension

< (n=1)|I1|+ (n—2)|Iy|. Now Z[D,)<F/H(k) 5 Z[D,]<F and for varying P and z, Z[D, ] cover Z[D,],
hence the same dimension estimate holds for Z[D,].

It remains to prove the claim.

For r > j > 0, let H>; be the moduli stack defined similarly to H[Ds] but classifying only {z}};cs, € X'°
and saturated maps {t; : £(D;) = F;}j<i<r (over a, and F; and F;;1 are still related to each other by
elementary modifications at xj,, for j <14 <r). We can factorize II[D,] as

I[Dy] : H[Da] = Hzp ~5 Hzr ~2 -+~ sy = M[D,] x X2,
The desired smoothness and relative dimension claims would follow from the following four statements:
(HO) If i € I, then II; exhibits H>;_1 as an open substack in a P"~2-bundle over H>;.
(H+) If i € I, then II; exhibits H>;_1 as an open substack in a P"~!-bundle over H>;.
(H-) If i € I_, then II; is an isomorphism.
(H=£) If i € I, then II; is an open immersion.
We next establish each of these statements.
Proof of (H0). When i € Iy, D;—1 = D;. We write the modification F;_1 --+ F; as

o(x})

Fil1 <L) ff—l/Q —5 F (9.2)

Here both arrows have cokernel of length one supported at the labelled points. Such modifications of F;
are parametrized by a hyperplane H in the fiber .7-}|g(x§). The requirement that ¢; : £(D;) — JF; should
land in .7-'5_1 /2 is equivalent to the (closed) condition that H should contain the line given by the image of
L(D;)|s(a7)- This cuts out a P72 in the space of hyperplanes H C Filo(z;)- The further requirement that
ti—1: L(D;) — ‘7-"1.[1/2 — F;_1 be saturated is an open condition.

This argument globalizes in the evident way, exhibiting that II; as an open substack in a P™~2-bundle.
This applies similarly for the analogous arguments below for the other cases.

Proof of (H+). When ¢ € I, we have D;_1 = D; — o(z}). We write the modification of F; as in (@2).
This time the choice of the F; ‘7-"1.[1/2 is the open subset of those hyperplanes H € P(F; |,,(m ) that do
not contain the image of £(D;)|s(s;). The requirement that £(D;—1) = L(D; — o(x})) — F 12 = Fi-1 be
saturated at 2 imposes a further open condition.

Proof of (H—). When i € I_, we have D;,_1 = D; + x,. We write the modification as

o(z))

i flﬁ

Fi1 —1/2 <L) Fi (93)

where both arrows have cokernel of length one supported at the labelled points. Now t; E(Di) — F; is

required to extend to £(D; + z}) — ]-" This determines the upper modification F; — }' uniquely,

—1/2°
which in turn determines the lower modification }'

~1/2
12 < Fi—1 as well. We get a map t,_, : L(D;—1) =
L(D; + x}) — F; ! _1/2- We claim that t;_, automatically lands in F;_;. Indeed, the claim is equivalent to
saying that under the pairing between F;|,» and J|, (21, the images of ¢;(2}) and ¢;(o(x})) pair to zero. The
latter statement is equivalent to saying that the induced Hermitian map a} : £(D;) — o* (E(Di))v vanishes
at ;. But we know that the divisor of a} is v*D, — D; — o (D;). Since Dl 1 = D;+a} satisfies v(D;—1) < D,

by assumption, we see that v*D, — D; — o(D;) > ) + o(z}), hence a) is guaranteed to vanish at x} and
o(x}). This shows that there is a unique lifting of any point of H>; to 7—[21,1, hence II; is an 1som0rphlsm
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Proof of (H+). When i € I, we have D; + 2, = D;_1 + o(x}). We write the modification as in (0.3]). As
in the case (H—), the requirement that ¢; : £(D;) — F; should extend to £L(D; + z}) — '7:?—1/2 determines
the modification. Then we automatically get a map ¢;—1 : £(D;—1) = L(D; + z; — o(z})) — Fi_1; the
requirement that ¢;,_; be saturated is an open condition. Therefore II; is an open immersion in this case.

(3) By (2) and we have

dim Z[D,] < (n — DI+ + (n — 2)|Lo| + |Io] = (n — 1)(JI+ U Lp|) < r(n —1).

Equality holds only if I and I are empty. However, by degree reasons we have |11 | = |I_|, so in the equality

case we must have I, = & as well. We conclude that equality can only be achieved if Iy = {1,2,---,7};
in other words, all D; must be the same. In particular, since D, = "Dy, this forces Dy to be defined over
k. O

The Lemma below, a slight variant of [Lafl8 Lemma 2.13], was used above.

Lemma 9.3 (Variant of [Lafl8, Lemma 2.13]). Let W, Z, T be schemes of finite type over k. Let Z() be the
Frobenius twist of Z (i.e., the pullback of Z under the q-Frobenius Spec k — Spec k). Leth = (hi,hr): W —
ZW x T be smooth of relative dimension d, and ho: W — Z be an arbitrary map. Define V as the fibered
product

Vv ——mWw

(ho,h1)
Z(Id,Frob)Z % Z(l)
Then each fiber of the composition map V. — W My T has dimension <d.

Proof. Restricting W over a point ¢ € T(k), we reduce to the case T' _itself is the point Spec k. We may
assume Z = Spec R where R = k[z1,...,7]/I. Let RY) =k @7 R = k[¢4,...,&]/T™M be the base change
of R under Frob,, where § =1® x; . Since hy : W — ZM is smooth of relative dimension d, by Zariski

localizing we may assume W = E[€1,..., &, Y15 Ymaal/ TV, 71, ... rm), with (3;7 )72, having rank m
g7

(ri € k[E1, .. &,Y15 -+, Ymad]). Under hg : W — Z, the coordinates z; of Z pullback to functions f, on W,

1 <i<1. Welift f; to polynomials f; € k[¢1,..., &, Y1, Ymid]-
By definition, V' has the form

E[gla'"aglaylv'-'vymvmerl ---7ym+d]
(I(l)(g)vglv"'7gl7T15"'aTM)

where g; = & — fI. In particular, V is a closed subscheme of

V = Spec

U:= Spec (E[glv"'7§lvy15'"aymaym+1'"5ym+d]/(gla'"7gl7T17"'aTm))'

The Jacobian matrix for the defining equations of U has the form

l m m-+d
9gi 9gi 9g;
853‘ =1 393‘ i1 393‘ i—mt1 | _ Id, 0 0
ar; | o i ors mtd x  invertible,, */’
0¢; 0y, 0y,
& =1 Yi =1 Yi lj=m+1
which evidently has rank [ + m. Hence U is smooth of dimension d. Since V — U, dimV < d. O

9.2. The case m = 1 and a = 0. We keep the notations from §9.I1 In this subsection we extend the
discussion in §9.1] to the case a = 0. Fix a line bundle £ € Pic(X’). Recall from Definition [L.§ that Z7(0)*

is the moduli stack classifying unitary shtukas ({«}}, {F;}) together with compatible maps {£ LN Fi}) with
t; injective (fiberwise over the test scheme S) and the image of ¢; being isotropic. In this subsection, let

2= Z;(0)%

If n =1 then Z7(0)* = @. We always assume n > 2 below.
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9.2.1. Indexing set for strata. Let Io U I, U I_ be a partition of {1,2,---,r} such that |I;| = |[I_|. We
denote this partition simply by I,. For any N € Zx(, define ©(N;I,) to be the moduli space of sequences
of effective divisors (D;)o<i<, On Xé such that

(1) deg(Do) < N.

(2) For 7 =0,+ or —, and ¢ € I, the pair (D;_1, D;) belongs to the corresponding Case (?7) listed in

the beginning of §9.11 (for some z} € X’ in the case 7 = 4 or —).

(3) D, =7Dy.

We have a map recording the points z for i € I, UT_:

(ry,m_) : D(N;I,) — (X’Fq)h X (X’Fq)h.
Lemma 9.4. The map 7y : D(N;1s) = (X5 Y+ is quasi-finite.

Proof. For a fixed geometric point (27)ier, € (Xg )+ (Fy), its fiber in D(N; 1,) consists of (Do, {@}}ier )

Do+ Y o(z})="Dy+ > aj. (9.4)

Let v € | X'| be a closed point that intersects supp Dyg. If deg(v) > N, then Dy cannot contain all geometric
points over v and hence there exists a geometric point y|v such that y € supp ™Dy but y ¢ supp Dg. By
@), y = o(x}) for some ¢ € I.. Therefore points in Dy are either over closed points of degree < N, or in
the Galois orbit of o(x}) for some ¢ € I;. This leaves finitely many possibilities for Dy, hence for {a}};cr_
as well. |

9.2.2. Definition of strata. For a partition I = (o, I+, 1_) of {1,2,---,r}, define Z[N;I,] to be the stack
classifying
({DiYosisr ({2 h1<icr, {Fitosicr) € Hkf, {£ 5 Fitocicr)
such that {D;} € ®(N;I,) with image {«};cr, under 7 (? = +, —), and ¢; extends to a saturated embedding
L(D;) — F;. We have a map
TIN; L]« ZIN; L] — (Xg ) x D(N; 1,).
q
The following is the analog of Proposition when a = 0.

Proposition 9.5. Let n > 2.
(1) For varying N € Z>q and partitions Is of {1,2,--- ,r} such that |I4| = |I_|, the substacks Z[N; I,]
give a partition of Z.
(2) The fibers of the map w[N; I,] have dimension < (n — 1)|I+]| + (n — 2)|lo].
(3) We have dim Z[N; I,] < r(n — 1). Moreover, when n > 3, the equality can only be achieved when
Iy ={1,2,--- ,r}, i.e., all D; are equal to the same divisor of X' defined over k.

Proof. (1) is similar to Proposition @.I(1), except we have to argue that Case (%) cannot appear for points
in Z = Z;(0)*. Indeed, if Case (£) happens for the modification

Fii1+ ‘Ff—l/2 — ]:1',

let H C Fi1,a be the hyperplane that is the image of ]:5—1/2'
the upper modification .7-'1‘.’71/2 — F; is performed. Let £,/ (resp. ﬂg(xé)) be the image of £L(D;—1) — Fi—1
at xj (resp. at o(z})). Since the image of £(D;_1) is isotropic (because a = 0), ({z/,{5(27)) = 0 under the
pairing between F;_; ,» and F;_1 (s/). The condition D; + z} = D;_1 + o(z}) happens only if £, ¢ H and
lo(ar) = H-. This contradicts the fact that (fmgafa(m;)) =0.

(2) is proved in the same way as Proposition [0.1}2).

(3) Applying (2) and Lemma we get

dim Z[N;I,] = (n—=1)|I+|+ (n—2)|lo| + |Io] + dimD(N; I,)
< (=D + (n=1D)lo| + [I+| = (n = 1)[Lo] + n|L4|.

Since n > 2, we have n < 2(n — 1), therefore the above is < (n—1)(|Io|+2|I+]) = r(n—1). When n > 3, we
have strict inequalities n < 2(n — 1), so equality can only be achieved when I, hence I_, are all empty. O

Then H+ C Fi—1,0(x;) 1s the line along which
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10. COMPARISON OF TWO CYCLE CLASSES

The goal in this section is to show the following theorem.

Theorem 10.1. Let & € Bun,, x/(k) and a € Ag(k). Let s : &' = @ L; — & be a good framing of (€, a)
in the sense of Definition[715 Let ' : &' — o*(E')Y be the Hermitian map induced from a. Then we have
an equality in the Chow group

Lo (@) 2z () = [Shth(n,mllzz (@) € Cho(Z2(a)). (10.1)

In particular, the cycle class [Z¢(a)] as in Definition-Proposition [7.18 is well-defined (i.e., independent of
the choice of a good framing).

Below we consider the case where X’ is geometrically connected. At the end of this section (§I0.H) we
comment on how to modify the argument in the case X’ = X [[ X or X’ = X}, where k’/k is the quadratic
extension.

10.1. First reductions. For a vector bundle £ on X’ let pmin(€) € Q be the smallest slope that appears
in the Harder-Narasimhan filtration of £. For £ of rank n and a € Ag(k), a good framing s : @7, L; — &
for (€, a) is called very good if it satisfies the additional condition

(3) Nmin(g) > max{deg L; + 29’ - 1}1Si§n-
Most of the work in this section will be devoted to proving the slightly weaker statement below.

Theorem 10.2. Suppose X' is connected. Then the identity (I0) holds if s : &' = & L; — £ is a very
good framing of (€,a).

Lemma 10.3. Theorem implies Theorem 101

Proof. Choose effective divisors D; on X’ (1 < i < n) such that v(D; + --- + D,,) is multiplicity-free and
disjoint from v=1(D,). Let £, = £;(—D;). When the D;’s have sufficiently large degree, the resulting map

/

s @l L@l L —E
is a very good framing. Let a” be the induced Hermitian map &L, — o*(®L])Y. By Theorem we have
2tz (@) 2z(a) = [Shth(n,m)) 22 (0)-
Therefore, to prove (L)) it suffices to show
vz (@) zp0) = Coy o 2r (@7)] 25(a) € Cho(Zg(a)).

Let U’ be the complement of U, supp(D; + oD;) in X’. By construction, U’ contains v~!(D,), therefore

Zg(a)|lur = Zg(a) by Lemma [[12 Let ¢; = (2 (ai) o € Chyn_1y (27, (aj;)*[ur). Similarly define ¢
using (L%, al’). Then it suffices to show the equality

(GG Gn)lzga)y = (GG G)lzz(a) € Cho(Z¢(a)), (10.2)
where the intersection products are taken over ShtTU(n) |u. Applying Lemmal[l7 to each injection £ — L;,
we see that Z (aj;)|ur — 2}, (aj;)|y- is open and closed. Therefore Z7. (aj;)* v+ < Z7, (aj;)*|v+ is open.
This shows that the fundamental class ¢; is the open restriction of ¢} to 27 (aj;)*|u. The equality (I0.2])
then follows. O

10.2. Auxiliary moduli spaces. Let d = (d;)1<i<n € Z%, and e € Zxo. Write d = > d,.
Recall that M. C M(n,n) is the open-closed substack where x(X’,€) = —e. Let My be the moduli
stack classifying ({£; }1<i<n, (F,h), {t; : £L; = F}1<i<n) where

e [; is aline bunde on X’ with x (X', £;) = —d; for 1 <1i < mn;
e (F,h) € Buny, satisfying

fimin (F) > max{—d; + 3¢ — 2}1<i<n. (10.3)

e Foreach 1 <i<mn,t,:L; — F is an injective map (fiberwise over the test scheme).
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We define Hk,,, to be the moduli stack classifying

({Lit1<i<n, {2 h1<i<r {(Fjs hy)Yo<j<r) € Hkpy, {ti; + Li — Fj})

where £; are the same as in Mg, each F; satisfies the analogue of (I0.3]) with F replaced by F;, and fiberwise
injective maps t;, : £; — F; are compatible with the isomorphisms between F;_; and F; away from x;.

Lemma 10.4. The stacks My and Hk}\/li are smooth stacks of pure dimension dn — (n? —2n)(g —1).

Proof. We first prove the statement for Mgy. Consider the map v4 : Mg — []; Pic;{‘,i”g/_l X Bung(p,)

sending ({L£:}, (F,h),{t:}) to ({£i},(F,h)). For (F,h) € Buny,) and L; € Pic;(fliJrng, the condi-
tion fimin(F) > max{—d; + 3¢’ — 2}1<i<n = max{degL; + 2¢’ — 1}1<i<n guarantees that Extl(ﬁi,}') =
Hom(F, L; ®wx/)" = 0. Noting that deg F = n(g’ — 1), the Riemann-Roch formula implies that 74 exhibits
M, as an open substack of a vector bundle of rank dimHom(®L;,F) = —n)_,degL; = dn — n*(¢’ — 1)
over the base. In particular, My is smooth and equidimensional. Since dim Pic;{‘flﬂrg/_1 =g —1 and
dim Buny(,y = n?(g — 1), we conclude that

dim My = dn — n?(g' — 1) +n(g = 1) +n?(g—1) =dn — (n* — 2n)(g — 1).

The argument for Hk}\/ld is similar. The natural map

Hih, — [] Picx?™ " x Hijy
i=1
exhibits Hk}vtd as an open substack of a vector bundle of rank dimHom(®L;, Fo N F1) = dn — n (using
that deg(Fo N F1) = n(g’ — 1) — 1) over the base. Here we need the stronger inequality pmin(Fo) >
max{—d; + 3¢’ — 2} to guarantee pimin(Fo N F1) > max{—d; + 3¢’ — 2}. In particular, Hk}wd is smooth and
equidimensional, and -

dim Hk}(, = dn —n —n*(g' = 1) + n(g’ — 1) + dim Hkyy(,,)
=dn—n—2n*(g—1)+2n(g—1)+n+n?(g—1) = dim My,
as desired. O

Let Mg . be the moduli stack of ({L;}1<i<n, &, F, h, s, t) where

L; € Picx: satisfies x(X',£;) = —d; fori =1,--- ,n;

£ € Bungy,, satisfies x(X', &) = —e¢;

(F,h) € Buny(y);

t: £ — F is an injective map;

s: @ L; — & is a very good framing for (£,a), where a = 0*tY o hot is the induced Hermitian
map on £.

Note that being a very good framing requires —d; < pmin(€) — (3¢9’ — 2) for all ¢, which imposes an open
condition on £. We view My . as a correspondence

Mag.e
My M. .
tos

Here w; records @}, £L; — F and wy records & L F

We denote the Hitchin bases for M4, M, and Mg, by Aqg, Ae and Ag . respectively. Here Ag parametrizes
({Liti<icn,a’ = (aj;)) (where aj; : L; — o*L}) such that o' : ©L; — o*(©L;)" is an injective Hermitian
map. The base A, classifies (£, a) with a an injective Hermitian map. The base Ag,e is the moduli stack of
({Li}1<i<n, &, 8,a) where (€,a) € A, s: @11 L; — € is a very good framing of (£,a) and £; € Picx: with

(10.4)
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x(X', L;) = —d;. We view A4, as a correspondence
Ad,e (105)
VN
Ag Ae

We have Hitchin maps

fa: Mg— Ag,
fe: Me— A,
fg,e : Mg,e — »Agi,e-

These maps together give a map of correspondences (I0.4) to (I0.5). Note fy is not necessarily proper
because we have imposed an open condition on the minimal slope of F.

Similarly we define the Hecke version HkTMd,e of Mg . as the moduli stack of ({«}}1<i<r, {€ = Fito<i<r) €
Hk'y,, together with a very good framing s : &©L; — & for (€, a) with x (X', £;) = —d;. Again we view Hk)
as a correspondence

r
Mg, e

Hk
HI,.

HK', .-
Lemma 10.5. The maps wy,u; and hy are étale.

Proof. We first prove that u; is étale. Let (X4_. x X.)¥ be the open subscheme of divisors (D1, D3) €
Xi—e x X, such that D; is multiplicity-free and disjoint from Ds; let (X, X X.)¥ be the preimage of
(Xg—e x Xc)¥ in X/, x X.. We have amap a : X/, _ x X, — X4 sending (D}, D2) to v(D1) + Ds. Let a¥
be the restriction of a to (X)_, x X.)¥. By factorizing o as the composition

vg_eXxId

(X, x X.)° (Xae x X.)¥ 249 X,

we see that a¥ is étale. From the definition we have a map
J= (ul,jlifevje) : Ad,e — Ai XXq4 ()((/1,8 X XB)Q?.

where j, _ : Age — X/, sends ({£;},®L; = &, a) to Div(s) (the divisor of det(s)) and j. : Age — Xe
sends it to D, (see Definition [3)). The map A4y — X4 used in the fiber product records the divisor D, of
the Hermitian map o’ on ®L;. We claim that j is an open immersion. Indeed, given ({£;},a’) € Ay and
(D}, Ds) € (X!, x X.)¥ such that v(Dy) + Da = Dg, by the disjointness of D, o(D}) and v~*(Dy), there
is one and only one coherent sheaf £ such that &L; C € C o*(®L;)Y, £/ @ L; is supported on D}, and
o*(®L;)V /€ is supported away from D]. This would give a very good framing of £ if the open condition
Hmin(E) > max{—d; + 3¢’ — 2}1<i<n is satisfied. This shows that j is an open immersion. Since a® is étale,
we conclude that Ag . is étale over Aq.

To show w; is étale, we observe that Mg, = Mg x 4, Ag,c. Since u; is étale, so is w;.

Finally, Hk”-/‘\/[d,e is the open substack of Hk'y,, XAQA;e where the legs avoid Div(s). Since u; is étale, so
is hl. [l

10.3. Auxiliary Hitchin shtukas. We define Sht’,,, and ShtTMdye as the fiber product
Shtjwi —_ Hkg/li Shtg@e _ Hk;\@,e (10.6)

l(prmprr) l(prmprr)

l (Id,Frob) l (Id,Frob)
Mé —_— d X Mé Mg,e —_— de X Mg,e
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The maps w; and h; induce maps

Shily,,. (107

>N
Shtly,, Sht'y,.

The stack Sht’y,, ~decomposes into a disjoint union of open-closed substacks indexed by ({L;},®L; =
g, CL) € Ag,e(k)
Sht)y, . = 11 Zg(a).
(@ﬁiﬁg,a)GAgye(k)

Correspondingly, the diagram (I0.7]) decomposes into the disjoint union indexed by Ag (k) of diagrams of
the form

/Zé(a)\
24, (a)? Zg(a)

Here Zg .. (a")® c 24, (a’) (where a’ is the Hermitian map on ©L£; induced from a) is cut by the open
condition fimin(F;) > max{—d; + 3¢’ — 2} for all 0 < j < r. From this description and Corollary [[.I7, we
see that:

Lemma 10.6. The map uy (resp. wuz), when restricted to each connected component of Shty, , is an
isomorphism onto a connected component of Sht)y,  (resp. Shtly, ).

10.4. Zero cycles on auxiliary Hitchin shtukas. Similar to the definition of [Shty, ] given in §8.6 we
define 0-cycles supported on Sht’y, —and Sht,  as follows.
We rewrite Sht'y, as the fiber product -
Sht/y, — (Hk;@)r
l (prg,pry)”
LIV

(Myg)" —— (Ma)*"

Here ®rq, = @', is defined in Definition B.15 By the smoothness of Hic , and M, proved in Lemma [[0.4]
and the dimension calculation there, we define

[Sht}y, ] := Py, [(HkR,)"] € Cho(Sht'yy,)-
Similarly, using the Cartesian diagram

Shtly, , —= (Hkj, )" (10.8)

l/ l (pro »)PTy )T
D Mm

(Mae)” —= (Mg,e)>

and the smoothness and dimension calculations of Hk}, . and Mg (which follow from Lemma [10.5 and
Lemma [10.4]), we define
[Shthy, ] := P, . [(Hkly, )"] € Cho(Sht'y, )-

Lemma 10.7. We have uj[Sht),] = [Sht)y, ] € Cho(Sht),, ).
Proof. This is because the maps w; and h; are both étale by Lemma [I0.5 O

Lemma 10.8. We have u3[Sht)( | = [Sht)y, .| € Cho(Shtly, ).
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Proof. The diagram (I0.8)) is obtained from (&) (for M, replaced by M.) by base changing termwise along
the map of the following two Cartesian diagrams induced by ug : Ag,e — Ae:

Age(k) — (Ag.e)" Ae(k) —— (Ae)"

I O N
q>Ad e D4

(-Ad,e)T — (Ad,e)% (Ae)T — (Ae)2r

Note that us : Age — A. is smooth since it exhibits A4 . as an open substack of a vector bundle over A,
(using the condition fimin(€) > max{—d; + 3¢’ — 2}). We conclude by applying Proposition [0.9 below. O

10.4.1. Compatibility of cycle classes under Hitchin base change. To state the next result, we need some
notations. Suppose we are given:

e stacks S, M and H that are locally of finite type over k and can be stratified into locally closed
substacks that are global quotient stacks;
e the stack M is smooth of pure dimension N with a map f: M — 5;
e amap h: H— S” xar g2r M?" (the fiber product uses the r-fold product of the diagonal A™ : S —
527‘)'
Let h : H — M?" be the projection to M?". Form the Cartesian square

Shty ——H
|,k
r_ Pum 2r

M —M

Let u : S — S be a smooth representable morphism of pure relative dimension D. Let M’ = M xg S,
H' = H xgr S with natural maps b’ : H — S'™ X ar g2r M'?". Let ' : H' — M'?" be the resulting map.
Let upr : M) — M and uy : H — H be the natural maps. Form the Cartesian square

Shty — H' (10.9)

M'T M M'2r

Since S” X g4 g2r ar ST = S(k), Shty decomposes as
Shty = J] Shtm(s).
seS(k)

Similarly Sht;; decomposes into the disjoint union of Sht’y(s’) indexed by s’ € S’(k). Then the natural map
usnt : Shty; — Shty lifts to an isomorphism

Sht'y = Shty X g S’ (k) = H Shtpr(u(s')).
s'eS’ (k)

Proposition 10.9. Let ¢ € Ch.(H), then we have
udne @ (€) = Phyruir(¢) € Chumypv (Shtly).

Proof. Consider first the diagram where all squares are Cartesian

Shty x grS" H S’
T
Sht H ST
L

Mr— 2 g
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Here the top vertical arrows are smooth and representable. By the compatibility of Gysin map with flat
pullback [Kre99, Theorem 2.1.12(ix)], we have

v*®Y,(¢) = @h,uy(¢) € Chy_ynirp(Shty x5 S™). (10.10)
Here we recall that D is the relative dimension of u. We have
Shty xsrS" = [ Shtr(s)x (S5)" (10.11)
seS(k)

where S’ = u~!(s), which is a smooth scheme over k. Factorize ugy as the composition
Sht; —— Shtz x g (S") —“— Shty .

From (I0.IT)) we see that ¢ is a regular embedding of codimension rD. Now v and ugp¢ are both smooth.
Applying [Kre99, Theorem 2.1.12(ix)] we have u, (—) = i'v* as maps Ch,(Shtz) — Ch.(Sht’y). Therefore

ug @ (Q) = i'v* @Y, (¢) € Ch,_,n(Shtg). (10.12)

On the other hand, consider the following diagram where all squares are Cartesian

Sht);, — > Shty x-S’ H

| | |

1 D2
M =2 M7 X g pr gor S0 — 225 MP2P

| s
Das

M" . M?r
Here @, is the base change of &g/ and ®5 is the base change of ®);. The outer square of the top rows give
(I03). By the transitivity of Gysin maps, we have

Pprtugr(Q) = 21 Pouy (C)
Since u27 is smooth representable, we have ®,u%; (¢) = ®4,u}(¢). Hence
@iy ufy(¢) = 1 Phup Q).

Since both ®; and i are regular embeddings of the same codimension, we have ®(—) = 4'(—) as maps
Ch, (Sht g x 5-S'") — Ch,_,p(Sht’y), by [Kre99, Theorem 2.1.12(xi)] and [Ful98, Theorem 6.2(c)]. Therefore

i (€) = i@ ul (€) € Chy_yn (Shtly). (10.13)
Combining (I0I0), (I0I12) and (I0I3) we conclude
ugn Py (Q) = 0" @) (¢) = i@ up (¢) = Phpuir(() € Chapn(Shtly).

Lemma 10.10. Let ({Li}i<i<n,d') € Ag(k) and &' := @} L;. Then we have an equality
[Shtim, ]2z, (@) = €2y, 2, (@) € Cho(Zg:(a)).
For the definition of (7 . . (a") see {7.8

Proof. We will apply the Octahedron Lemma [YZ17, Theorem A.10] to a diagram of moduli stacks in our
setting. Since the Octahedron Lemma requires certain stacks in question to be Deligne-Mumford, we need to
rigidify our moduli stacks to satisfy these requirements. This is a minor technical issue which we encourage
the reader to ignore: it is simply because the Octahedron Lemma in [YZ17] is not stated and proved in the
most general form.

Let v € |X'|. Let P, be the moduli space (a scheme!) of line bundles on X’ together with a trivialization
of their fibers over v. Let G, = ResZ“ G,,. Then P, — Picy: is a G,-torsor.

Now for each moduli stacks Mg, Aq and Hk;\-/[d that involve an n-tuple of line bundles {£;}, we write

Mg, Ag and Hk;/l , to mean their rigidified versions where £; € Picx- is replaced by L; € P,. Note that
we do not impose any compatibility condition between the rigidifcation on £; and the rest of the structures
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classified by these moduli stacks. Define ShtTMd using the dotted version of the left one of the Cartesian
diagrams in (I06).

Note that M4, Aq and HkTM , are now schemes, and they are Gj-torsors over their undotted counterparts.
The dotted version of Lemma [[0.4] remains valid if we add ndeg(v) = dim G” to the dimensions. Also,
Sht'y, = Sht),, XAQ(k)AQ(k)- Since Aq(k) — Ag(k) is surjective, to prove the Lemma, it suffices to prove
its dotted version: for any ({£;},a’) € Aqg(k), writing & := @I ,L;, then there is an open and closed
embedding Zg, (a’) < Sht'y (using the rigifications L; of L;); then we shall prove

[Sht'y ]Iz, (@) = Coy o 2, (@) € Cho(ZE(a)). (10.14)

Fori=1,---,n,let Ny, be the open substack of M (1, n) consisting of points (£ < F, h) where x (X', L) =
—d; and pmin(F) > —d; + 3¢’ — 2. Similarly define Hk/l\/di and Shtjrvdi; these are open substacks of Hk}w(l)n)
and Shty(; ,,) respectively.

Let Nd“Hk/l\'/di be the rigidified versions of Ay, and ijl\;di where £ € Picy/ is replaced by L e P, Let
wj Ndi — Buny(,) and ; : Hk/l\-[di — Hkllj(n) be the forgetful maps.

We shall apply the Octahedron Lemma [YZ17, Theorem A.10] to the following diagram:

s A n T [[&] n T
(kg )" —== T (Hkp)" <— TT7L, (Hkyg, ) (10.15)
l(Pro,prl)r ll_[(prwprl)T ll‘[(prmprl)r

2r
2r A n 2r i n r2r
BUHU(n) —— Hi:1 BunU(n) < Hi:l Ndi

T‘:DBunU(n) TH PBungs () an)/\‘/di

s

r A n r i n rp
Bung,y —— [[;=; Bung(,) <—— [, Vg,
The fiber products of the three columns are
Shtfy,) —= [T/, Shtfy,) =— [T/, Shtly (10.16)
where

Shty, = 1T 2:, 0] T z:@) ] |- (10.17)
Li€Py(k), aj; €Az, (k)
X(X/,ﬁi)zfdi
Let My be the moduli stack of ({£;}, &7, L; NF ,h) defined similarly as M, but without the condition
that ¢’ be injective, only that t; = |z, be injective. Then My < M, is open. Similarly define Hklﬂd and
Shtde. Note that My is exactly the fiber product of

BunU(n) i> H?:l BunU(n) <ni H?:l Ndl (10.18)

Similar remarks apply to Hklﬂd. Therefore the fiber products of the three rows of (IILIH]) are

(Hklﬂiy (10.19)
J{(pro,prl)r

——2r

My

My
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The common fiber product of (I0I6) and (I0.19) are

z = r / / *
Shtmg B H 2Ly L (@yy, -, an,)

(Lisal)i<i<n

where the union is over (El, al;)1<i<n where L; € P, (k) with x(X’, £;) = —d; and al; : £; — o* L} injective
Hermitian.
We check that the assumptions for applying the Octahedron Lemma are satisfied (the numbering below

refers to that in [YZ17, Theorem A.10]).

(1) All members in the diagram ([0.I5) are smooth and equidimensional. This is clear for Bungy)
and Hkpy(,,y. The same argument as in Lemma [[0.4] proves that Ny, and ijl{fd. are smooth of pure
dimension d;n + (n? — 2n + 2)(g — 1) + deg(v).

(2) We check that, in forming the fiber products of the middle and bottom rows and the left and middle
columns, the intersections are proper intersections with smooth equidimensional outcomes with the

expected dimension. Here we use Lemma and to argue for the left and middle columns. For
the rows, the same argument as in Lemma [[0.4] proves that My and Hklﬂd are smooth of the same

dimension as Mg, which is dn — (n? — 2n)(g — 1) + ndeg(v). This is the virtual dimension for M,
as the fiber product of (I0I8), since

Zdim/\/di — (n — 1) dimBung,) =
i=1 i=1
dn — (n* —2n)(g — 1) + ndeg(v).

(din + (n® = 2n+2)(g — 1) + deg(v)) —n*(n —1)(g — 1)

NgE

(3) We check the fiber products of the top row and right column of (I0.I3]) satisfy the conditions for
[YZ17, A.2.10]. The fiber product of the top row is also a proper intersection: this follows from the
same calculation as for the middle and bottom rows. The fiber product of the right column is also
a proper intersection: this uses the decomposition (I0.I7) and the calculation of the dimension of
Z7. (0)* in Proposition 0.5 and the dimension of Z} (aj;)* in Proposition @11

The only issue is that (Hklmd)r may not be a Deligne-Mumford stack, which was part of the
requirement of [YZ17, A.2.10]. ‘However, we argue that this is not really an issue. The proof of
the Octahedron Lemma allows the following flexibility: since eventually we only care about the

0-cycles restricted to Sht;\-/[d7 in the middle steps of forming the fiber products, we may restrict to
open substacks as long as the final fiber product contains ShtTMd and only need check the relevant
requirements there. Now in (I0.I9) we may restrict to the open substack (Hkhi)T C (Hklﬂi)T7
which is a scheme.

(4) The same remark as above shows that it suffices to check that the fiber squares obtained from (T0.T6])

and (I0.19), after replacing Mg by Mg, each satisfy the condition [YZ17, A.2.8]. Therefore it suffices
to check
e Sht), ~admits a finite flat presentation in the sense of [YZ17, Definition A.1]. This is true

because ShtTMd is a scheme.

e The diagonal map A : Shtir(,y < iy Sht{r(, is a regular local immersion. This is true
because Shty;(,,) is a smooth Deligne-Mumford stack.

e The map ¢, : M; — ./\./lér is a regular local immersion. This is true because Mi is a smooth
equidimensional scheme by the dotted version of Lemma 0.4l

The conclusion of the (variant of) Octahedron Lemma says that the following two elements in Cho(Shtde)

n n

! ! 1 r ! ! 1 T
‘I’WQA(Hk}J(n))r[l_[l(HkNdi) ] and ASht{f(n)(H ‘I’Ndi) [H(Hk/\‘/di) ]

i= i=1
become the same when restricted to Sht:\‘/td' Further restricting to the open-closed subscheme ZZ,(a’) we
get the desired identity (I0.14). - O
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Proof of Theorem [I0.2 Restricting the equality in Lemma D010 to ZZ(a), which is open and closed in
ZE,(a") by Corollary [L17, we get

Gy (@) zz() = [Sht)y, 2z (a)- (10.20)

For fixed (©L; — &,a) € Age(k), Zg(a) can be viewed as an open-closed substack in Sht)y, ,Sht)y,,  and
Shty,. by Lemma [10.6l By Lemma [[0.71and Lemma [[0.8 we have

[Sht)v, ) 2z(a) = [Shtiv, Jlzz(a) = [Shtiv, ]l zz(a)-
Combining this with (I020) proves the theorem. O

10.5. Proof of Theorem [10.1] for X' = X [[ X or X;/. Here k'/k is the quadratic extension.

In the case X’ = X [[ X, we have Buny(,) = Bungr,,. We shall identify a Hermitian bundle 7 on X’
with a pair of vector bundles (Fi, F2) equipped with an isomorphism Fy = F), each living on one copy of
X. A vector bundle £ on X' of rank n corresponds to two rank n vector bundles (&1, &>), each living on one
copy of X. Now Ag(k) is the set of injective maps a : & — &Y. A good framing s : @, L; — & for (€,a)
now consists of line bundles £; = (£; 1, L;2) (1 < i < n) satisfying the same conditions in Definition [[T5} it
is called wvery good if it satisfies the additional conditions

(31) Hmin(&1) > max{deg L;1 + 29 — 1}1<i<n, and

(32) umin(é'g) > max{deg Ei,Q + 29 — 1}1§i§n-

The same argument of Lemma shows that it suffices to prove the analogue of Theorem [I0.2 i.e., prove
Theorem [I0.1] for very good framings.

In both the X’ = X [[X and X’ = X} case, we need to modify the definitions of Mg and Mg, as
follows. In the definition of Mg ., we use the notion of very good framing just defined over geometric fibers
of X¢ — S (which are of the form X5[] X5). In the definition of My, we change the inequality (I0.3) to
two inequalities over the geometric fibers of X5 — S

Pmin(F1) > max{deg L; 1 + 29 — 1}1<i<n,
Hmin(F2) > max{deg L; 2 + 29 — 1}1<i<n.

The same inequalities should be imposed in the definition of Ny, that appear in the proof of Lemma [I0.10)
With these changes, the argument for proving Theorem [10.2] goes through.

11. LOCAL INTERSECTION NUMBER AND TRACE FORMULA

11.1. Local nature of the intersection problem. In this subsection we show that the 0-cycle class
[Z£(a)] depends only on the Hermitian torsion sheaf Q = coker(a).

Recall the stacks Hermaq = Hermoy(X'/X) and Lagr,; from §8l We have a self-correspondence Hky ,,, = of
Lagr,,; over Hermog: it classifies (Q, h, {£;}o<i<r) where (Q, h) € Hermayy, £; C Q are Lagrangian subsheaves
such that £;/(£; N L;—1) has length one for 1 < < r. Define the local version Shty,,, —of Shty, by the
Cartesian diagram

Sht] gy, ——> HK . (11.1)

l(pro ,PT,.)

l (Id,Frob)
Lagr,, — Lagr,,; x Lagry,

We have a decomposition into open-closed substacks

Sht{ g, = 11 zy.
(Q,h)EHermoq (k)

Lemma 11.1. The stack Hkiagrm is smooth of dimension zero.

Proof. We may identify Hkiagrw with the moduli stack of (0 C £ C £ C Q,h) where (£ C Q,h) € Lagry,

and £/L has length one. Under the local chart for Herms, described in Lemma [4.3] Hkiagrm becomes [p/P],
where P C Ogq = O(V) is the parabolic subalgebra stabilizing a pair of subspaces L’ C L with L Lagrangian
and dim L' = d — 1. This local description implies that Hkiagrm is smooth of dimension zero. |
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Rewriting Shty,,, =~ as the fiber product

Shtiagrzd - (Hkiagrzd)T (112)

l (pLagr2d

(Lagry,)” — (Lagryg)

l(pro,prl)r

2r

we define a O-cycle class
[ShtT e, ] = Phage,, [(HKiagr,, )] € Cho(ShtT,,., ).
Restricting to Z5 we get
[Zé] = [ShtiangdHZé € ChQ(ZTQ)

Recall the maps g : My — Lagry; and g : Ay — Hermgy defined in §841 We also have a map
gme : Hk)y, — Hkp,,, =~ sending ({zi},{€ L, Fi}) to (Q = coker(a), hg, {coker(t;)}) (a is the induced
Hermitian map on £). The maps gmk, gm and g exhibit the diagram (BE) as the pullback of the diagram
(III) via the base change g : Ay — Hermsogy. In particular we have a natural map

gsht : Sht)y,, — Shtiagrm .

For fixed (£,a) € Aq4(k) with image Q@ = coker(a) € Hermag(k), gsnt restricts to an isomorphism to the
open-closed subschemes

9shtl zz(a) : Z£(a) = 25 (11.3)
Proposition 11.2. We have an equality
[Sht)ye,] = 9dns [Shtiagrw] € Chg(Shtly,,). (11.4)

Proof. Apply Proposition I0.9 to the diagram (II.2)), the fundamental class { = [(Hkiagrm)r] and the base
change map u = g : Aq — Hermyy. By Proposition 812 g is smooth. We then have

(I)!/\/[dgflk[(Hkiangd)T] = gghtq)!Lagrzd[(Hkiagrzd)r] € ChO(Shtj\/(d)
Since gy is smooth, Qﬁk[(Hkiager)T] = [(Hk},)"]. The above equality then becomes (IT4). O
Combined with Theorem [I0] we get a local description of the cycle class [ZZ(a)]:

Corollary 11.3. For any (€,a) € Aq(k) with image Q = coker(a) € Hermoq(k), [ZE(a)] is the same as
[25] under the isomorphism (IL3). In particular,

deg[ 2% (a)] = deg[2]].

11.2. Sheaves on Hermy,. To describe the direct image complex Rf.Q, on Ay, by the Cartesian diagram
B4), we first need to understand R(v24)«Q, on Herma,.

Lemma 11.4. The perverse sheaf R(v2q).Q, on Hermsag is canonically isomorphic to (Spras™)S¢ (see
Herm

Proposition [{-3](2)). Here the Sq-action on Spryog™ is the restriction of the Springer Wq-action.

Proof. We have a Cartesian diagram

—_~— ?‘-:d

Hermogy —— é\o/hd(X’)

Coh
A2d lﬂ'x/,d
E/

Lagry, — Cohg(X")

where ¢/, sends (Q, hg, £) to £ and € sends (Q1 C -+ C Qq C --- C Q,h) to (Q1 C --- C Qq). By proper
base change -
R}\Qd*Qé = E:i* Sprd7X/ .

In particular, RA\aq. Q, carries an action of Sy. Moreover, the induced Sy-action on Sprys™ 2 R(vaq)y RA2dxQ,
is the restriction of the Springer Wy-action to Sy: this can be easily checked over Herm3,, and then the state-

ment holds over Hermag since Spros™ is the middle extension from its restriction to Herm$, by Proposition
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LB(2). Since (RA2d:+Qy)%* = £l (Spry /)% =2 Qy, we conclude that (Spreer™ySa 2 R(vog). (RA2d=Qy) %
R(v24)Qy, as desired.

O

It is an elementary exercise to see that Indg‘;‘i 1 decomposes into irreducible representations

d
Imdg* 1 =P ps (11.5)

where p; = Indg/gz)d (Side,i)(Xi K1), and x; : (Z/2Z)¢ x (S; x Sq—i) — {F1} is the character that is

nontrivial on the first i factors of (Z/2Z)%, trivial on the rest and trivial on S; x Sq_;. The decomposition
also shows up in [YZ17, §8.1.1].
Recall the notation Sprb¥™[p] from Definition A7

Corollary 11.5. There is a canonical decomposition

R(v24)«Q, = @Sererm i (11.6)

Proof. By Lemma [I1.4] and Frobenius reciprocity, we have

R(v24)«Q, = Homyy, (Ind 1, Sproe™) = Sererm[Ind?;d 1].
The desired decomposition then follows from (I1.5)). O
Definition 11.6. Define the graded perverse sheaf on Hermoyg(X'/X)

ICInt @ Sercrm z

The fundamental class of the self-correspondence HkLang of Lagr,, is viewed as a cohomological cor-
respondence of the constant sheaf on Lagr,, with itself. It induces an endomorphism (see notation from
[YZ17, A.4.1))

(v2a )1 [Hk gy, ]+ R(024)-Qp = R(v24)«Qy-

Proposition 11.7. The action of (Ugd)g[Hkiang] on R(v24).Qy preserves the decomposition (I1LG), and it

Herm[

acts on Spr pi] by multiplication by (d — 2i).

Proof. By Proposition EEBY(2), Spris™[p,] is the middle extension from its restriction to Herms,, it suffices
to prove the same statement on Herm3;. Now over Herm3;, the map Herm3; — X is smooth, and Hkiagrw
is the pullback of the incidence correspondence I}, over X/ (see [YZ17, proof of Proposition 8.3]). This in
turn reduces to checking the statement for the action of [I)] on the direct image sheaf of vy : X, — Xg,
which is done in the proof of [YZ17, Proposition 8.3]. O

11.3. Lefschetz trace formula. We shall give a slight generalization of the Lefschetz trace formula [YZ17,
Proposition A.12] expressing the intersection number of a cycle with the graph of Frobenius as a trace.
Instead of the graph of Frobenius, we need to intersect along ®5; : M™ — M?". Consider the following
situation:
o Let S be an algebraic stack locally of finite type over k = Fy. Assume S can be stratified by locally
closed substacks that are global quotients.
e Let M be a smooth equidimensional stack over k = F, of dimension N with a proper representable
map f: M — S.
e For 1 <i <, let (pry,pri) : C; — M x5 M be a self-correspondence of M over S. Assume pr} is
proper and representable.
Form the Cartesian diagram

Shte — [, C; (11.7)

L l(Préyprihgigr
3]

M" M M2
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Then Shte decomposes as

Shte = ] Shte(s).
seS(k)

Suppose we are given cycle classes
Ci EChN(Ci), 1< <.

The cycle class cl(¢;) € HEN (Ci, Q,(—N)) is viewed as a cohomological correspondence between the constant
sheaf on M and itself. Therefore it induces an endomorphism of Rf;Q, which we denote by ficl(;).

Proposition 11.8. For each s € S(k) we have
deg((®h[C1 % -+ % &)lsheo(s) = Tr(frel(Cr) o+ o ficl(¢r) o Frobs, (RAQy)s).

Proof. We first prove the formula when S is a scheme of finite type. In this case M, C; are also schemes of
finite type over k. Let C' = C1 X s X -+ X C. be the composition correspondence, with maps pr; : C — M
for 0 <4 < r. Consider the diagram where all squares are Cartesian

Shtc c 1., Ci

l L(prow-wprr) l(préypri)
@

MT 1 Mr+1 2 M?r

lpro l(proﬁprw)

Id,Frob
M(—f)]W x M

Here
(I)l (507 e 757‘—1) = (507 e 7§T—17HObM(§O))7
(1)2(507 e 757‘—175’!‘) = (507517517 e 757‘—175’!‘—1757‘)'

We have ®); = ®y 0 ®y. Let ¢ = ®4({1 x (o x --- x () € Chy(C).
On the one hand, by the transitivity of the Gysin maps,

P (G x -+ x G) = @4 (C) = (Id, Froby)'(€). (11.8)
Applying the Lefschetz trace formula [YZI7, Proposition A.12], we get
deg((1d, Frobar)'(¢)lsmc () = Tr(fi cl(¢) o Frob, (RfiQy)s)- (11.9)

One the other hand, by a diagram chase, we see that cl(¢) is the composition of the cohomological correspon-
dences cl(¢;) (1 <i <), hence fcl(¢) € End(Rf1Q,) is the composition of ficl(¢1)o ficl(¢z) oo ficl(¢,).
Combining this fact with (IT8) and (IT9) we get the desired formula.

Now consider the general case where S is a stack locally of finite type over k£ and we aim to prove the
formula for s € S(k). We claim that there exists a scheme S’ of finite type over k and a smooth map
u: S’ — S such that u(S’(k)) contains s. Indeed, pick any smooth map uy : S1 — S with S; a scheme of
finite type over k, such that s is contained in the image of u. Let s; € S1(F4=) be a point that maps to s.
Let (S1/8)™ be the m-fold fibered product of S; over S, based changed to k. We equip (S;/S)™ with the
Frob-descent datum given by (21, , &y ) — (Frob(a,,), Frob(z1), -+ ,Frob(z;,—1)). This gives a descent
of (51/5)™ to a scheme S’ over k equipped with a map w : S’ — S which is still smooth since u; is. Now $1
gives rise to a k-point s’ = (s1, Frob(sy),--- ,Frob™ *(s1)) € S’ (k) such that u(s’) = s.

Let M' = M x5 8, Cl = C; xg 8" and let uc, : C! — C; be the projection. Define Shty, using the analog
of the diagram (II.7) with M and C; replaced by M’ and C}. Then Shty 2 Shte X gy S’ (k). For s’ € S'(k)
such that u(s") = s, we get an isomorphism Sht(s’) = Shtc(s). Let ¢/ = ug, (. Now we apply Proposition
to the diagram (II.7) along the base change map u : S’ — S to get

U Py (G X o+ X Gr) = @y (¢ X -+ x (1) € Cho(Shtc).
Restricting to Shty(s’) = Shtc(s) and taking degrees we get

deg((@(C1 X -+ X &) lsnte(s) = deg((Rhyr (G X - X (1))t ())- (11.10)
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On the other hand, letting f’ : M’ — S’, by smooth base change we have

Tr(ficl(G) o+ o ficl(G,) o Frobg, (RAQ),) = Tr(f cl(¢}) o -0 f{ cl(¢}) o Froby, (RFQ)s).  (11.11)
Since the right sides of (ILI0) and (IT.IT]) are equal by the scheme case that is already proven, the left sides
of (ITI0) and (ITII) are also equal, proving the proposition in general. O

Recall the graded perverse sheaf K" (T) on Hermg, from Definition

Corollary 11.9. Let (Q,hg) € Hermay(k). We have
d
deg[Z25] = Tr([Hkpag,,,]" o Frob, (R(v2a)eQe)o) = Y _(d — 2i)" Tx(Frob, Sprag™[pilo)

1=0
_ L (aY
~ (logg)" \ds

Proof. The first equality is an application of Proposition [[1.§ to the case S = Hermsq, M = Lagry,,
C; = Hkiagrm and ¢; = [Hkiagrm]. The second equality follows from Proposition [T.71 The third one is a
direct calculation. g

(4™ Tr(Frob, K3 (q7**) o)) -

s=0

Combining Corollary with Corollary IT.3] we get:
Corollary 11.10. Let (€,a) € Aq(k) with image (Q, hg) € Hermaq(k). Then we have

1 d\"
deg|Z¢ =— | —
250 = o ()
11.4. Symmetry. This subsection is not used in the proof of the main theorem. The graded perverse sheaf
lei“t(T) has a palindromic symmetry that we spell out. First, the étale double covering v : X’ — X gives a
local system nx/,x on X with monodromy in 41. It induces a local system 74 on Xy with monodromy in
+1: its stalk at a divisor @1 + -+ + zq € Xq(k) is @, (nx//x)a,. Let

Herm ,__ _Herm x
od = S24 Nd»

(4™ Te(Frob, K" (47%)))

s=0

where s?jrm : Hermsy — X is the support map. This is a rank-one local system on Hermoy with monodromy
in £1.

Lemma 11.11. We have a canonical isomorphism of perverse sheaves on Hermgg:

Herm ~ ,Herm

Sprag " [pa] = mag
Proof. By Proposition5|(2), Sprgdcrm [p4] is the middle extension of its restriction to the open dense substack
Hermj; (preimage of XJ). The same is true for 7y because it is a local system and Hermsg is smooth.
Therefore it suffices to check their equality over Herms,, over which both are obtained by pushing out the
Wa-torsor (X'4)° — X§ along the character x4 : Wy — {£1}. O
Lemma 11.12. There is an isomorphism of graded perverse sheaves on Hermsy
T ) 2 5 6 K )
Proof. The equality amounts to

Sprag [pa—i] = 1™ © Sprag™ [pil.

Both sides are middle extensions from Herms, by Proposition [.5(2), over which they correspond to repre-
sentations pg—; and x4 ® p; of Wy. By definition,

Xd @ pi = xa @ Indy?, p  (xi ®1).
Inserting xq|w; xw,_;, = Xi & xa—i to the right side above gives

Indy, e, (Xalwixw,_, @ (G B 1)) 2 Indyg g (LR Xai) 2 paie
|

Lemma 11.13. If (Q, hg) € Hermaq(k) is the image of some (€,a) € Aq(k), then Tr(Frob, nilerm|g) = 1.
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Proof. If X'/X is split, then nHe”“ is trivial, and there is nothing to prove. Below we assume X'/X is
nonsplit. The local system 7y on X is pulled back from a local system npi. on Picx via the Abel-Jacobi
map AlJg: Xqg — Picgl( C Picx. The Frobenius trace function of npi. is the idele class character

npp s FX\ARJOX = Picx (k) — {£1}
trivial on the image of Nmy.,x : Picx/(k) — Picx (k). Denote by detx (Q) the image of Q under Hermaq —

X, 2, Pick. We have nierm|o = NPicldet x (@) as Frob-modules. Now (Q,hg) comes from (£, a), which
implies

detX(Q) = NmX//X(det 5)_1
By [Wei95 p.291, Theorem 13], wx is a square in Picx (k), hence nF//F(wX ) = 1. Since np: ) p(Nmy / x(det £)) =
1, we see that np/p(detx (Q)) = 1, hence Tr(Frob, ni™|g) = 1. O

Corollary 11.14. Let (€,a) € Aq(k) with image (Q, ho) € Hermaq(k). Then s — ¢ Tr(Frob, Kt (¢=2%) o)
is an even function in s. In particular, its odd order derivatives at s = 0 vanish.

By Corollary IT.I0, this implies deg[ZZ(a)] = 0 for r odd. However, we know from Lemma that
Shty;(,) = @ when r is odd, which implies Zz(a) = 2.

Part 3. The comparison
12. MATCHING OF SHEAVES
12.1. Recap. Let
Eo(m(&), s, ®) = Eg(m(£), s, ®) - x(det(é‘))_lqdeg(’g)(s_%)+%"2 deg(wx) . 2 (s) = Den(q™%,(£,a)) (12.1)

where the notation is as in Theorem [Z7] be a renormalization of the a'" Fourier coefficient of E,(m(&), s, ®).
We emphasize that, in keeping with §I.3] X is proper and v: X’ — X is a finite étale double cover
(possibly trivial).

Theorem 12.1. Keep the notations above. Let (€,a) € Aq(k). Then we have
1 d\" ~

deg[Zri(a)] = —— [ — SR (m(E),s,®)) . 12.2

eel2E @) = o (1) [ o, (¢ Batm).0)) (122)

In the previous parts, we have found sheaves on A, which correspond to the two sides of (I2.2)), in the
sense of the function-sheaf dictionary. Let us summarize the situation.

On the analytic side, we proved a formula expressing the non-singular Fourier coefficient of the Siegel—
Eisenstein series in terms of the Frobenius trace of a graded virtual perverse sheaf K5 (T) on Hermag(X'/X).

Theorem 12.2 (Combination of Theorems 27 and B.3). Let (£,a) € Aq(k). Then we have
Eqo(m(€), s, ®) = Tr(Frob, K5 (¢2%) o). (12.3)

s=0

On the geometric side, in Corollary [T.10, we found a formula expressing the degree of the special 0-cycle
in terms of 7! derivative of the Frobenius trace of another graded perverse sheaf K (T) on Hermaq(X'/X),

repeated below:
, 1 d\"
deg[Z¢(a)] = m s

12.2. Proof of main theorem. Comparing (IZ3]) and (IZ4]), we see that in order to prove Theorem [T2ZT]
it remains to match the graded sheaves K**(T) and K5(T) on Hermag(X'/X).

Y (g% Tr(Frob, K" (q7%*)q)) - (12.4)

Proposition 12.3. We have K (T) = K¥S(T) as graded perverse sheaves on Hermag(X'/X).

Proof. Both sides can be written as Spris™|

KI(T') corresponds to

p| some graded virtual representation p of Wy. The sheaf

picipe (T Z Indyy, O )T
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and the (a priori virtual) sheaf K5(T") corresponds to

d i
prce=(T) =Y > (=1 Indg? oy, (1 ¥5E0; K1)T.
i=0 j=0
The desired statement then follows from the Lemma below (whose notation has been re-indexed) by com-
paring each coeflicient. O

Lemma 12.4. We have the identity of virtual representations of Wy:
d
W L
Xa =y (1)’ ndg" ., (1Ksgn;).
j=0
Proof. We will prove this by comparing traces of an arbitrary element g € Wy. For g € Wy,

Tr(g, Indg? ., (1 x 580;)) = > sem;(g") (12.5)
weEWy4/(Sa—; xWj)
wflgwESd,j X W
Here, when w™tgw € Sq—; x W;, we write w™'gw = (¢',¢") for ¢’ € Sq—; and ¢ € W;.

Identify Wy with the group of permutations of {£1, ..., £d} that commute with the involution ¢ exchang-
ing j <> —j for all 1 < j < d. The subgroup Sy—; x W, is the stabilizer of {1,2,---,d — j}. Therefore the
coset space Wy/(Sq—; x W;) is in natural bijection with subsets J C {+£1,...,£d} such that |J| =d —j and
JN(—=J) =o. Let Jq4 be the set of J C {£1,...,+d} such that |J|=d—j, JN(—J) = @ and gJ = J. Let
g7 be the permutation of g on {£1,...,+d}\(J U (—J)). Combining this with (IZ.5]), we obtain

d
D (1) Tr(g, Tndg? . (1 x520,)) = > (=1)* VIsgm(g)).
j=0 JEJ,

For any g € Wy, the cycle decomposition of g can be grouped into a decomposition g = ¢; ... g, (unique
up to reordering) where g; is one of the two forms:

e (positive bicycle) g; is a product of two disjoint cycles ¢;0(c;) (in particular, no two elements ap-

pearing in ¢; are negatives of each other).

e (negative cycle) g; is a single cycle invariant under the involution o.
Let C’;r be the set of cycles of g that are part of a positive bicycle (i.e., C’;r contains both ¢; and o(¢;) for
each positive bicycle g;). For any x € Wy we denote by & C {£1, - ,+d} the set of elements that are not
fixed by x. For a cycle ¢ we let |c| be its length. From this description we see that J € J, if and only if J is
a union of ¢ for a subset of cycles ¢ € C;. In other words, consider the set J, of subsets I C C’; such that
I is disjoint from o(I). Then we have a bijection J, = J, sending I € J, to J := Ueesc.

For I € J,, let g} be the product of g; such that g; contains a cycle in common with I; let g/ be the

product of the remaining g;’s. The above discussion allows us to rewrite
d
S (1) Tr(g, Ind¥ e (1xsgm)) = 3 (~1)e=ed “sgn(g)).
Jj=0 Ie3,

This sum factorizes as a product over the g; with individual factors as follows:

e For a positive bicycle g; = ¢;o(c;), the local factor is the sum of three contributions, corresponding
to whether ¢; € I, o(c;) € I or neither ¢; nor o(c¢;) is in I. The first two cases each contribute 1.
The last case leads to a contribution of (—1)I%!sgn(c;) = —1. The total contribution of the factor
corresponding to a positive bicycle g; is therefore 1+ 1+ (—1) = 1.

e TFor each negative cycle g;, since it always appears in g7, its contribution is (—1)9://25gn(g;). Let g; be
the image of g; in S, which is a cycle of length |g;|/2. Then (—1)l9:/%sgm(g;) = (=1)/%l sgn(g;) = —1.
Therefore the contribution of the factor corresponding to a negative cycle g; is —1.

Summarizing, we have found

d

Y (=1 Te(g, Indg?" |, (1 x 581;)) = IR II vl (12.6)

7=0 gi positive gi negative
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On the other hand, we have
1, g; 1s positive;
Xa(g:i) = . .
—1, g; is negative.

Indeed, if g; = ¢;0(¢;) is positive, then we have xq4(c;) = xa(o(c;)) = 1 because both ¢; and o(¢;) can be
conjugated into Sy. If g; is negative, then up to conjugacy we may assume g; is the cyclic permutation
(1,2,---,m,—1,--- ,—m) for some 1 < m < d. Then g, = (1,-1)(1,2,--- ,m)(—1,-2,--- ,—m), from
which we see yq(g;) = —1.
We conclude that the right side of (IZ) is [] xa(g:) = xa(g). This completes the proof.
O

12.3. The split case X' = X [[ X. We make our result more explicit in the split case X' = X [[ X.
On the analytic side in §211 the group H,, = GL3, r and P, is the standard parabolic corresponding to
the partition (n,n), with Levi M,, ~ GL,, p x GL,, p. We then have the degenerate principal series

H, (A s+n/2 —s—n/2
Ln(s) =Ind (8 (|- 572 x |- [557"7%), sec.

Let & = (£1,&2) € Bunyy, (k) ~ Bungr, (k) x Bungr, (k), and let a : £& — &5 be an injective map of Ox-
modules. Then by §2.6 the Siegel-Eisenstein series has a well-defined a*"* Fourier coefficient E,(m(€), s, ®)
at (€1,&2). By Theorem 27 and 51 we have

Eo(m(£),s,®) = qf(dcg($1)+dcg(£2))(sfn/Q)f%nz dcgwxgn(s)q Den(quigzv/gl)’
where %, (s) = [\, ¢p(i + 2s) and, for a torsion Ox-module Q, the density polynomial is given by
Den(T,Q) =y ~ TUmehtdimeQ/L TT m (t,(Tp/Ty); T950)).
0CZ1CZ2CQ vE|X|

Here see [2.10) for my,(t,;T). The normalized Fourier coefficient (I2.1)) is

Eo(m(£),s,®) = Den(q~ %, &Y /&1).

Next we come to the geometric side. We have a natural partition
xhyr= I x-
pe{£1}r

The moduli of unitary shtukas Sht’g,(n) defined in §0is then partitioned into

T 7
Shtgy =[] Shtf .
pe{£1}r
and there is a natural isomorphism
Shtf),,y =~ Shtgy,, -
Here we recall that ShtéLn is the moduli of shtukas for GL,, cf. [YZ17], whose S-points are given by the
groupoid of the following data:
(1) z; € X(S) fori=1,...,r.
(2) Foyeoos Fn € BunGLn(S).
(3) An elementary modification f;: F;—1 --+» F; at the graph of x;, which is of upper of length 1 if
; = +1 and of lower of length 1 if u; = —1.
(4) An isomorphism ¢: F, = 7 Fy.
In particular, Sht‘éLn is empty unless Y ._, p; = 0.
For the special cycle Z¢ (cf. Definition [ZT]) associated to £ = (&1, &2) above, we have a partition
ze= [ z¢
pe{£1}r
where an object in Z¢(S) is an object as above in Shtgy, (S) together with maps

M 2
81|ZOSI—>]'—ZI—>5§/|ZOS, i=1,...,m7 (127)
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such that the diagram commutes

& KOs EROg —— ... ——= & KOs —— "(6: K Oy)
ltff) ltgl’ J lti” rtél)
Fo ----- LCHR, N GRNNIE S S SN A
ltg” lt(f) J{ lt{“) th((f)

£Y R Os EYROg —— 7. —— EY ROy — 7(£Y K Og)

Let a : & — &5 be a map of Ox-modules. Then Z£(a) is the open-closed subscheme of Z£ such that the
common composition (I27) is equal to a K Idp,.

For an injective a : & — &Y, our §Tlshows that Z£ (a) is proper over Spec k and defines a class [Z£(a)] €
Cho(Z£ (a)) for each € {£1}". Then our main Theorem asserts

Z deg[Zf (a)] = 1 <%>T (quEa(m(f)),s,@)) ;

ez (log q)"

where d = —(x(X,&1) + x(X, €2)). We remark that deg[Z£ (a)] is not independent of p € {£1}", even if we
restrict our attention to those p with >, pu; = 0.

s=0
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