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Abstract— Hybrid Quantum-Classical (HQC) Architectures 
are used in near-term NISQ Quantum Computers for solving 
Quantum Machine Learning problems. The quantum 
advantage comes into picture due to the exponential speedup 
offered over classical computing. One of the major challenges in 
implementing such algorithms is the choice of quantum 
embeddings and the use of a functionally correct quantum 
variational circuit. In this paper, we present an application of 
QSVM (Quantum Support Vector Machines) to predict if a 
person will require mental health treatment in the tech world in 
the future using the dataset from OSMI Mental Health Tech 
Surveys. We achieve this with non-classically simulable feature 
maps and prove that NISQ HQC Architectures for Quantum 
Machine Learning can be used alternatively to create good 
performance models in near-term real-world applications.  
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I. INTRODUCTION  

Quantum Computing is the use of Quantum physics and 
Quantum phenomena for computation of tasks. It is a 
completely different paradigm and has shown great 
applications for problems that Classical Computers cannot 
solve. The hype and scepticism of Quantum Computers were 
positively justified when Google successfully demonstrated 
Quantum Supremacy with their 54-qubit Sycamore processor 
[1]. Quantum Computing has multiple real-life applications 
that include Drug discovery [2], Disease Risk Predictions [2], 
Routing and Optimization problems [3], Materials Discovery 
[4], and Machine Learning[19]. 

Quantum Computing can greatly help in creating better 
Machine Learning models[16] that train much faster and can 
encode more information than their classical counterparts[18]. 
They provide an exponential speedup due to the availability of 
an exponential state space in which the classical data can be 
mapped [5]. The field of Quantum Machine Learning has seen 
the use of 3 different architectures: Quantum Data with 
Classical processing, that can be used for phase estimations in 
matter [6], Quantum data with Quantum processing, that can 
be used for inherent quantum error correction [7], and the final 
architecture is the where classical data is mapped onto 
quantum systems and the power of quantum mechanics helps 
in solving the problem faster and with a better accuracy(in 
some cases) [3]. This architecture is known as the HQC 
(Hybrid Quantum-Classical) architecture. In this paper, we  

 
will be discussing about a Quantum Classifier as a trainable 
quantum circuit which is a form of HQC architecture for 
quantum machine learning. 

Today’s generation of Quantum Computers fall under the 
NISQ (Noisy Intermediate-State Quantum) era, which makes 
them prone to errors, less reliable and not very usable[17]. 
Measurement errors, interactions of adjacent qubits and 
thermal fluctuations are the main causes by which fidelity of 
quantum gates and circuits are greatly reduced. The Hybrid 
Quantum-Classical Architecture for Machine Learning shows 
promising results in this NISQ era [8]. 

The quantum component of the HQC Architecture maps data 
features very effectively compared to Classical SVM 
(Support Vector Machines) Architecture and in this paper, we 
will be talking about a classical to quantum mapping that 
cannot be classically simulated and hence provides a quantum 
advantage due to quantum phenomena like entanglement. 
These HQC Architectures facilitate the processing of purely 
classical data while enjoying the benefits of a Quantum 
feature spaces [9]. This is achieved by non-linear mapping of 
the data into the quantum state Φ(𝑥⃗). 
 

Φ: 𝑥⃗ → |Φ(𝑥⃗)⟩⟨Φ(𝑥⃗)| 
 
The application we have put forth in this paper is of a 
supervised quantum binary classification. 
 
The data is not always linearly separable in the real-world 
setups [10], and hence, kernel methods are of immense 
importance in machine learning. For a  state 𝑥௝, we need to 
compute the scalar product 𝑥௝

்𝑥௝  which takes the form of 
Φ: 𝑥 → (𝑥, 𝑥ଶ)  after kernel embedding [11]. The prime 
benefit of using the “Kernel Trick” is that knowledge of the 
embedding type is not required if we know the scalar product. 
One such type is the Gaussian Kernels where data is 
embedded to higher dimensions, followed by mapping to 
Gaussians and then computation of scalar product 
systematically. A comparison of such a classical mapping is 
also drawn out with Quantum feature mapping in the paper 
which uses the RBF Kernel feature map [11]. 
 
For σ = 1  𝑎𝑛𝑑  σଶ = 1 ;    

K(Xଵ, Xଶ) = e
ି|| ଡ଼భ ି ଡ଼మ ||మ

ଶ  
 



To achieve the feature mapping in quantum respect: First, we 
will have to translate the classical data points (𝑥⃗)  into 
quantum datapoints (|Φ𝑥⟩) This is achievable by the circuit 
𝒰஍(𝓍)  |0⟩ as shown in eq.2 , where Φ is a kernel function 
applied on the classical data points. Second, we require a 
parametrized quantum circuit 𝑊(Θ), that processes the data 
in a way which enables the use of the training of model with 
these parameters. Third, we need a classical optimization 
loop that tunes the orientation of hyperplane and returns +1 
or -1 for the classical data points (𝑥⃗) . 
 
    The paper has been divided in the following manner. 
Section 2 builds up the environment for Quantum Computing 
by talking about quantum circuits and entanglement. Section 
3 talks about the Classical Architecture that has been used for 
contrasting the results of the quantum architecture in this 
paper. Section 4 talks about the Experimental Methodology 
in depth, covering the datasets used, Quantum Machine 
Learning model training, embeddings, feature maps and runs 
on an actual IBM Quantum Computer. Section 5 compares 
the results of the Classical Model, Quantum Model, and the 
execution on an actual Quantum hardware. The paper 
concludes with remarks and possible future work in Section 
6. 
 

II. PARAMETERIZED QUANTUM CIRCUIT 

A quantum circuit is a computational routine consisting of 
Coherent Quantum operations on quantum data, such as 
qubits, and concurrent real-time classical computations. 
Qubits are analogous to classical bits that can be in a 
superposition of states at the same time, which gives an added 
advantage of using the exponential state space in the Hilbert 
Space. 
 

 

Fig. 1. Quantum Bell State circuit with Hadamard gate [pink], 
CNOT gate [dark blue], measurement operators[grey] and 

measurement outcomes of both qubits. 
 

    Quantum gates are unitary operations that alter the state of 
qubits. Quantum systems have a very unique property, known 
as entanglement, that allow pair or group of particles to 
interact, or share spatial proximity in a way such that 
the quantum state of each particle of the pair or group cannot 
be described independently of the state of the others. A Bell 
State is shown in figure 1 that entangles 2 qubits q0 and q1 
using the Hadamard[H] and CNOT Gates. Eq.1 portrays the 
Quantum Bell State that has an absolute entanglement 
measure: 
 
 

 
Eq 1.  

 
 

III. CLASSICAL MACHINE LEARNING ARCHITECTURE - SVM 

 
    In general, the objective of SVM (Support Vector 
Machine) algorithm is to find a hyperplane in any ‘n’ 
dimensional space that perfectly classifies the data. [10] 
Support vectors are the points which are closer to the 
separating plane and directly influence the width and 
orientation of the separating plane. The perpendicular 
distance of these points and the plane is called ‘Margin’ 
which is shown using the range of red lines in Fig 2. The aim 
is to calculate optimal parameters which minimizes ‖𝑤‖. 

              𝑚𝑖𝑛 ||𝑤||ଶ    or    l = min 
||௪||మ

ଶ
  

 
     such that 𝑦௜(𝑤. 𝑥௜ + 𝑏) − 1 ≥ 0 for i= 1…𝑙 
 

 
Fig 2. 2D Plot of sample blobs separated by a hyperplane where 

the support vectors define the margin orientation. 
 

IV. EXPERIMENTAL METHODOLOGY 

This section discusses the dataset used and the 
experimental steps of creating the Quantum Embeddings, the 
Quantum Variational Circuit, the Classical Loss Function, 
and the Optimizer for the HQC Architecture for Machine 
Learning. The overall architecture is shown in Fig 3. 

 

 
Fig 3. The HQC (Hybrid Quantum Classical) Architecture for 

Quantum machine learning with Quantum State Preparation, 
Quantum variational circuit, classical loss function and the 

optimizer 
 



        
 

Fig 4a. ZFeatureMap Architecture(left), 4b. ZZFeatureMap(right) 
 
  

 

A. Dataset 

We have used the Kaggle dataset for Mental Illness in the 
Tech World [12] in our Quantum Classification problem. 
This is a real-world dataset that can be analyzed with 
Classical Machine Learning techniques hence making it 
easier to benchmark the Quantum Machine Learning 
algorithm with the HQC architecture. 
 

 
Fig 5. Mental Health in Tech World dataset class labels for 40 

datapoints. The dataset is dimensionally reduced with computation 
of Principal Components. 

B. Quantum Embeddings 

The first step of training quantum circuits is to encode the 
classical data into the quantum computer. We achieve this 
using the quantum feature map that embeds data into a 
higher-dimension Hilbert space. Many feature maps have 
been proposed; the two notable ones that give highest gate 
fidelities are the ZFeatureMap and the ZZFeatureMap, shown 
in figures 4a. and 4b. respectively.  
 
    ZZFeatureMap outperforms the ZFeatureMap in terms of 
the Entangling Capability and Expressivity as mentioned in 
this paper [13]. The ZZFeatureMap is a Second-order Pauli-
Z evolution circuit, where 𝜑  is a classical non-linear 
function, which defaults to φ(x) = x if and φ(x,y) = (π −
𝑥)(π − 𝑦). 
 

 
The quantum mapping function is shown in Eq2. below: 
  
Eq 2.                                                                                     
  𝐾(𝑥, 𝑧) = |⟨Φ(𝑥⃗)|Φ(𝑧)⟩|ଶ  = ൻ0௡ห𝒰஍(𝓍)

𝓉 𝒰஍(𝓏)ห0௡ൿ 
 
Fig 6a. is used for evaluating and estimating the value of the 
quantum kernel to enable using the data in the classical loop. 
 

C. Quantum Kernels and Feature Maps 

For the quantum kernel, we take the inner product as per 
Eq. 2 above, but now using quantum feature mapping 𝒰஍(𝓍). 
By using the quantum feature maps which are relatively 
difficult to be simulated on classical computers, we are using 
advantages of quantum mechanics to solve the classical 
problems. 
 

D. Classical Loss Function and Optimization Loop 

 
For the Optimization loop after the quantum feature 

mapping is complete, the QSVM algorithm from qiskit Aqua 
has been used. This algorithm works well for classification 
tasks that need quantum feature mapping and for which 
kernel computation is not efficient with a classical approach. 
QSVM uses an ideal quantum simulator which directly 
estimates kernel in the feature mapping. Furthermore, in the 
training phase, it uses the kernel estimations to obtain support 
vectors. Now in the testing phase, new data is efficiently 
classified according to the hyperplane of the support vectors. 
The steps followed in this optimization loop can be seen 
equivalent to the most popular ones of classical SVM which 
are as follows [15]: 

 
1. Parameter C of our SVM algorithm is set, which is 

responsible for the trade-off between training error 
minimization and margin width maximization.  

2. Select appropriate kernel function and its parameters 
as per the given problem. For instance, in our case,  

Classification Algorithm in Quantum Variational Circuit 

Step 1 : Input Labelled training datapoints,  (𝑥⃗ ∈ 𝑅௡) × (𝑦 ∈ [+1, −1]) 

Step 2 : Embedding into quantum feature space  

Step 3 : Entanglement using Variational Circuit, and measurement for classical optimization 

Step 4 : Classical Loss function computation for optimal Hyperplane  

Step 5  : Parameter Update − −  𝒘𝒊 𝒂𝒏𝒅 𝒃(in this case, theta) 

Step 6  : Updating of VQC parameters 

 : Repeating Steps 2-6 until convergence 



 

Fig 6a. Circuit to estimate the Quantum kernel(left); 6b. Kernel Matrix during training of QSVM on qasm simulator
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig 7: Accuracy of the model for the training set(left) and the test set(right) respectively 

 
 

radial basis function kernel requires selection of 
gaussian width σ. 

3. The SVM formulation employed is solved using 
linear programming or polynomial programming 
algorithms.  

4. Obtaining the threshold parameter 𝑏  using the 
support vectors.  

5. Classification of the new data points as per the 
following signum function 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 ൭෍ 𝑦௜

௜

α௜𝐾(𝑥, 𝑥௜) − 𝑏൱ 

 

E. Execution on Real Quantum hardware 

Quantum Circuits can be executed on a real quantum 
hardware via IBM’s IQX, an online platform to manage the 
tasks given to the IBM’s Quantum Computers. In our  
experiments, we have used 2 hardware architectures: IBM 
Yorktown device architecture and the IBM Ourense device 
architectures. [14] 

 
Fig 8. IBM Quantum Device Architectures: Ourense device with T 
architecture(left), Yorktown device with bowtie architecture(right) 

 

V. RESULTS AND DISCUSSION 

    In this section, the findings and analysis with possible 
conclusions from training and inference of the classical and 
quantum models are discussed, on both classical hardware 
and on IBM Quantum hardware. 

A. Classical SVM Model 

Following the methodology mentioned in Section 3, the 
training accuracy of the model rises from 0.65 to 0.75 and the 
test accuracy rises from 0.75 to 0.8.  
 

B. Quantum SVM Model 

Following the methodology mentioned in Section 4 B-D, the 
training accuracy of the model rises from 0.65 to 0.69 and the 
test accuracy rises from 0.65 to 0.70 when the dataset size is 
very small. The Qiskit qasm_simulator backend [14] was 
used for this purpose. 
 

C. IBMQ Quantum Computer 

Following the methodology mentioned in Section 4E, 
running the QSVM model circuit on the actual IBM Quantum 
Hardware gives a train accuracy of 0.63 and test accuracy of 
0.69 for the Ourense device. The accuracies observed for the 
Yorktown device are 0.61 for training and 0.69 for test when 
the dataset size is very less. 
 

D. Discussions 

 
Table 1: Comparison of training and test parameters 



 
Table 1 compares the training and test accuracies of the 
model when run with classical architecture and quantum 
architecture with both classical simulations and actual 
quantum IBM hardware. The kernel matrix during training is 
shown in Fig 6b. justifies the effective performance of matrix 
operations in higher dimensional vector space, i.e., the 
Hilbert space. 

We were able to successfully compare the model’s 
performance on 2 quantum hardware architectures, as shown 
in table 1 and Fig 8., the bowtie-architecture from Yorktown 
device and the T-architecture from the Ourense device. The 
T-architecture outperforms the bowtie-architecture for our 
application.  

 

VI. CONCLUSION 

    In this research, an extremely efficient quantum binary 
classifier using QSVM (Quantum Support Vector Machine) 
with non-classically Simulable quantum feature map has 
been implemented on the following devices: qasm simulator, 
IBM Quantum Ourense device and IBM Quantum Yorktown 
device. The accuracy of quantum model comes out to be 
almost comparable to the classical SVM counterpart which 
proves that NISQ quantum computers can be used for solving 
near-term real-world applications. The quantum system gave 
out a training accuracy of 69% and a test accuracy of 70% 
which is a great achievement in terms of quantum metrics. 
The method proposed in the paper is highly generalizable and 
can be appliable to any binary classification task with real-
world data. The model can further be extended to multi-class 
classification and clustering tasks by altering the variational 
quantum circuit architecture. Selecting the right quantum 
feature map and quantum variational circuit is an open area 
of research in the quantum community. Gradient based HQC 
machine learning architectures are yet to be analyzed at full 
capacity due to the inability of properly understanding how 
information is scrambled due to entanglement in quantum 
circuits. A future direction would be to analyze the loss 
landscape of the quantum machine learning model to better 
understand correlations between data and model training, 
enabling us to create better HQC architectures.  
 
The research thus makes HQC Architecture based Quantum 
Machine Learning more accessible and demonstrates the use 
of this algorithm to solve a near-term real-world problem.  
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Accur
acy 

Device/Architecture Type 

Classical SVM 
 
QSVM qasm Simulator 

IBM 
Ourense 

IBM 
Yorktown 

Train 0.75 0.69 0.63 0.61 

Test 0.8 0.70 0.69 0.69 


