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Abstract— Hybrid Quantum-Classical (HQC) Architectures
are used in near-term NISQ Quantum Computers for solving
Quantum Machine Learning problems. The quantum
advantage comes into picture due to the exponential speedup
offered over classical computing. One of the major challenges in
implementing such algorithms is the choice of quantum
embeddings and the use of a functionally correct quantum
variational circuit. In this paper, we present an application of
QSVM (Quantum Support Vector Machines) to predict if a
person will require mental health treatment in the tech world in
the future using the dataset from OSMI Mental Health Tech
Surveys. We achieve this with non-classically simulable feature
maps and prove that NISQ HQC Architectures for Quantum
Machine Learning can be used alternatively to create good
performance models in near-term real-world applications.
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Classical Architecture, QSVM, Quantum Feature Map, Quantum
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I. INTRODUCTION

Quantum Computing is the use of Quantum physics and
Quantum phenomena for computation of tasks. It is a
completely different paradigm and has shown great
applications for problems that Classical Computers cannot
solve. The hype and scepticism of Quantum Computers were
positively justified when Google successfully demonstrated
Quantum Supremacy with their 54-qubit Sycamore processor
[1]. Quantum Computing has multiple real-life applications
that include Drug discovery [2], Disease Risk Predictions [2],
Routing and Optimization problems [3], Materials Discovery
[4], and Machine Learning[19].

Quantum Computing can greatly help in creating better
Machine Learning models[16] that train much faster and can
encode more information than their classical counterparts[ 18].
They provide an exponential speedup due to the availability of
an exponential state space in which the classical data can be
mapped [5]. The field of Quantum Machine Learning has seen
the use of 3 different architectures: Quantum Data with
Classical processing, that can be used for phase estimations in
matter [6], Quantum data with Quantum processing, that can
be used for inherent quantum error correction [7], and the final
architecture is the where classical data is mapped onto
quantum systems and the power of quantum mechanics helps
in solving the problem faster and with a better accuracy(in
some cases) [3]. This architecture is known as the HQC
(Hybrid Quantum-Classical) architecture. In this paper, we

will be discussing about a Quantum Classifier as a trainable
quantum circuit which is a form of HQC architecture for
quantum machine learning.

Today’s generation of Quantum Computers fall under the
NISQ (Noisy Intermediate-State Quantum) era, which makes
them prone to errors, less reliable and not very usable[17].
Measurement errors, interactions of adjacent qubits and
thermal fluctuations are the main causes by which fidelity of
quantum gates and circuits are greatly reduced. The Hybrid
Quantum-Classical Architecture for Machine Learning shows
promising results in this NISQ era [8].

The quantum component of the HQC Architecture maps data
features very effectively compared to Classical SVM
(Support Vector Machines) Architecture and in this paper, we
will be talking about a classical to quantum mapping that
cannot be classically simulated and hence provides a quantum
advantage due to quantum phenomena like entanglement.
These HQC Architectures facilitate the processing of purely
classical data while enjoying the benefits of a Quantum
feature spaces [9]. This is achieved by non-linear mapping of
the data into the quantum state ® ().
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The application we have put forth in this paper is of a
supervised quantum binary classification.

The data is not always linearly separable in the real-world
setups [10], and hence, kernel methods are of immense
importance in machine learning. For a state x;, we need to
compute the scalar product ijxj which takes the form of
®:x > (x,x%) after kernel embedding [11]. The prime
benefit of using the “Kernel Trick” is that knowledge of the
embedding type is not required if we know the scalar product.
One such type is the Gaussian Kernels where data is
embedded to higher dimensions, followed by mapping to
Gaussians and then computation of scalar product
systematically. A comparison of such a classical mapping is
also drawn out with Quantum feature mapping in the paper
which uses the RBF Kernel feature map [11].
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To achieve the feature mapping in quantum respect: First, we
will have to translate the classical data points (X) into
quantum datapoints (|®x)) This is achievable by the circuit
Uz |0) as shown in eq.2 , where @ is a kernel function
applied on the classical data points. Second, we require a
parametrized quantum circuit W (0), that processes the data
in a way which enables the use of the training of model with
these parameters. Third, we need a classical optimization
loop that tunes the orientation of hyperplane and returns +1
or -1 for the classical data points (¥) .

The paper has been divided in the following manner.
Section 2 builds up the environment for Quantum Computing
by talking about quantum circuits and entanglement. Section
3 talks about the Classical Architecture that has been used for
contrasting the results of the quantum architecture in this
paper. Section 4 talks about the Experimental Methodology
in depth, covering the datasets used, Quantum Machine
Learning model training, embeddings, feature maps and runs
on an actual IBM Quantum Computer. Section 5 compares
the results of the Classical Model, Quantum Model, and the
execution on an actual Quantum hardware. The paper
concludes with remarks and possible future work in Section
6.

II. PARAMETERIZED QUANTUM CIRCUIT

A quantum circuit is a computational routine consisting of
Coherent Quantum operations on quantum data, such as
qubits, and concurrent real-time classical computations.
Qubits are analogous to classical bits that can be in a
superposition of states at the same time, which gives an added
advantage of using the exponential state space in the Hilbert
Space.
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Fig. 1. Quantum Bell State circuit with Hadamard gate [pink],
CNOT gate [dark blue], measurement operators[grey] and
measurement outcomes of both qubits.

Quantum gates are unitary operations that alter the state of
qubits. Quantum systems have a very unique property, known
as entanglement, that allow pair or group of particles to
interact, or share spatial proximity in a way such that
the quantum state of each particle of the pair or group cannot
be described independently of the state of the others. A Bell
State is shown in figure 1 that entangles 2 qubits q0 and ql
using the Hadamard[H] and CNOT Gates. Eq.1 portrays the
Quantum Bell State that has an absolute entanglement
measure:
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III. CLASSICAL MACHINE LEARNING ARCHITECTURE - SVM

In general, the objective of SVM (Support Vector
Machine) algorithm is to find a hyperplane in any ‘n’
dimensional space that perfectly classifies the data. [10]
Support vectors are the points which are closer to the
separating plane and directly influence the width and
orientation of the separating plane. The perpendicular
distance of these points and the plane is called ‘Margin’
which is shown using the range of red lines in Fig 2. The aim

is to calculate optimal parameters which minimizes ||w|].
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Fig 2. 2D Plot of sample blobs separated by a hyperplane where
the support vectors define the margin orientation.

IV. EXPERIMENTAL METHODOLOGY

This section discusses the dataset used and the
experimental steps of creating the Quantum Embeddings, the
Quantum Variational Circuit, the Classical Loss Function,
and the Optimizer for the HQC Architecture for Machine
Learning. The overall architecture is shown in Fig 3.
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Fig 3. The HQC (Hybrid Quantum Classical) Architecture for
Quantum machine learning with Quantum State Preparation,
Quantum variational circuit, classical loss function and the
optimizer
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Fig 4a. ZFeatureMap Architecture(left), 4b. ZZFeatureMap(right)

Classification Algorithm in Quantum Variational Circuit

Step 1 Input Labelled training datapoints, (X € R™) x (y € [+1,—1])
Step 2 Embedding into quantum feature space
Step 3 Entanglement using Variational Circuit, and measurement for classical optimization
Step 4 Classical Loss function computation for optimal Hyperplane
Step 5 Parameter Update — — w; and b(in this case, theta)
Step 6 Updating of VQC parameters
Repeating Steps 2-6 until convergence
4 Dataset The quantum mapping function is shown in Eq2. below:

We have used the Kaggle dataset for Mental Illness in the
Tech World [12] in our Quantum Classification problem.
This is a real-world dataset that can be analyzed with
Classical Machine Learning techniques hence making it
easier to benchmark the Quantum Machine Learning
algorithm with the HQC architecture.

Mental Health lliness Prediction Dataset (Dimensionality Reduced With PCA)
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Fig 5. Mental Health in Tech World dataset class labels for 40
datapoints. The dataset is dimensionally reduced with computation
of Principal Components.

B. Quantum Embeddings

The first step of training quantum circuits is to encode the
classical data into the quantum computer. We achieve this
using the quantum feature map that embeds data into a
higher-dimension Hilbert space. Many feature maps have
been proposed; the two notable ones that give highest gate
fidelities are the ZFeatureMap and the ZZFeatureMap, shown
in figures 4a. and 4b. respectively.

ZZFeatureMap outperforms the ZFeatureMap in terms of
the Entangling Capability and Expressivity as mentioned in
this paper [13]. The ZZFeatureMap is a Second-order Pauli-
Z evolution circuit, where ¢ is a classical non-linear
function, which defaults to ¢(x)=xif and @(x,y)= (m—

) (= y).
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Fig 6a. is used for evaluating and estimating the value of the
quantum kernel to enable using the data in the classical loop.

C. Quantum Kernels and Feature Maps

For the quantum kernel, we take the inner product as per
Eg. 2 above, but now using quantum feature mapping Ugz).-
By using the quantum feature maps which are relatively
difficult to be simulated on classical computers, we are using
advantages of quantum mechanics to solve the classical
problems.

D. Classical Loss Function and Optimization Loop

For the Optimization loop after the quantum feature
mapping is complete, the QSVM algorithm from qiskit Aqua
has been used. This algorithm works well for classification
tasks that need quantum feature mapping and for which
kernel computation is not efficient with a classical approach.
QSVM uses an ideal quantum simulator which directly
estimates kernel in the feature mapping. Furthermore, in the
training phase, it uses the kernel estimations to obtain support
vectors. Now in the testing phase, new data is efficiently
classified according to the hyperplane of the support vectors.
The steps followed in this optimization loop can be seen
equivalent to the most popular ones of classical SVM which
are as follows [15]:

1. Parameter C of our SVM algorithm is set, which is
responsible for the trade-off between training error
minimization and margin width maximization.

2. Select appropriate kernel function and its parameters
as per the given problem. For instance, in our case,
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Fig 6a. Circuit to estimate the Quantum kernel(left); 6b. Kernel Matrix during training of QSVM on gasm simulator

Accuracy on the training set. 0.75

Accuracy on the test set. 0.8

Fig 7: Accuracy of the model for the training set(left) and the test set(right) respectively

radial basis function kernel requires selection of
gaussian width o.

3. The SVM formulation employed is solved using
linear programming or polynomial programming
algorithms.

4. Obtaining the threshold parameter b using the
support vectors.

5. Classification of the new data points as per the
following signum function

f(x) = sign (Z i @ik (2, %) = b)

E. Execution on Real Quantum hardware

Quantum Circuits can be executed on a real quantum
hardware via IBM’s IQX, an online platform to manage the
tasks given to the IBM’s Quantum Computers. In our
experiments, we have used 2 hardware architectures: IBM
Yorktown device architecture and the IBM Ourense device
architectures. [14]

>

Fig 8. IBM Quantum Device Architectures: Ourense device with T
architecture(left), Yorktown device with bowtie architecture(right)

V. RESULTS AND DISCUSSION

In this section, the findings and analysis with possible
conclusions from training and inference of the classical and
quantum models are discussed, on both classical hardware
and on IBM Quantum hardware.

A. Classical SVM Model

Following the methodology mentioned in Section 3, the
training accuracy of the model rises from 0.65 to 0.75 and the
test accuracy rises from 0.75 to 0.8.

B. Quantum SVM Model

Following the methodology mentioned in Section 4 B-D, the
training accuracy of the model rises from 0.65 to 0.69 and the
test accuracy rises from 0.65 to 0.70 when the dataset size is
very small. The Qiskit qasm_simulator backend [14] was
used for this purpose.

C. IBMQ Quantum Computer

Following the methodology mentioned in Section 4E,
running the QSVM model circuit on the actual IBM Quantum
Hardware gives a train accuracy of 0.63 and test accuracy of
0.69 for the Ourense device. The accuracies observed for the
Yorktown device are 0.61 for training and 0.69 for test when
the dataset size is very less.

D. Discussions

Table 1: Comparison of training and test parameters



Aceur Device/Architecture Type
ac Classical SVM 1BM 1BM
Y assiea OSVM qasm Simul Ourense Yorktown
Train | 0.75 0.69 0.63 0.61
Test 0.8 0.70 0.69 0.69

Table 1 compares the training and test accuracies of the
model when run with classical architecture and quantum
architecture with both classical simulations and actual
quantum IBM hardware. The kernel matrix during training is
shown in Fig 6b. justifies the effective performance of matrix
operations in higher dimensional vector space, i.e., the
Hilbert space.

We were able to successfully compare the model’s
performance on 2 quantum hardware architectures, as shown
in table 1 and Fig 8., the bowtie-architecture from Yorktown
device and the T-architecture from the Ourense device. The
T-architecture outperforms the bowtie-architecture for our
application.

VI. CONCLUSION

In this research, an extremely efficient quantum binary
classifier using QSVM (Quantum Support Vector Machine)
with non-classically Simulable quantum feature map has
been implemented on the following devices: gasm simulator,
IBM Quantum Ourense device and IBM Quantum Yorktown
device. The accuracy of quantum model comes out to be
almost comparable to the classical SVM counterpart which
proves that NISQ quantum computers can be used for solving
near-term real-world applications. The quantum system gave
out a training accuracy of 69% and a test accuracy of 70%
which is a great achievement in terms of quantum metrics.
The method proposed in the paper is highly generalizable and
can be appliable to any binary classification task with real-
world data. The model can further be extended to multi-class
classification and clustering tasks by altering the variational
quantum circuit architecture. Selecting the right quantum
feature map and quantum variational circuit is an open area
of research in the quantum community. Gradient based HQC
machine learning architectures are yet to be analyzed at full
capacity due to the inability of properly understanding how
information is scrambled due to entanglement in quantum
circuits. A future direction would be to analyze the loss
landscape of the quantum machine learning model to better
understand correlations between data and model training,
enabling us to create better HQC architectures.

The research thus makes HQC Architecture based Quantum
Machine Learning more accessible and demonstrates the use
of this algorithm to solve a near-term real-world problem.
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