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Attempts at constraining theories of late time accelerated expansion often assume broad priors for the param-
eters in their phenomenological description. Focusing on shift-symmetric scalar-tensor theories with standard
gravitational wave speed, we show how a more careful analysis of their dynamical evolution leads to much
narrower priors. In doing so, we propose a simple and accurate parametrisation of these theories, capturing the
redshift dependence of the equation of state, w(z), and the kinetic braiding parameter, αB(z), with only two
parameters each, and derive their statistical distribution (a.k.a. theoretical priors) that fit the cosmology of the
underlying model. We have considered two versions of the shift-symmetric model, one where the energy density
of dark energy is given solely by the scalar field, and another where it also has a contribution from the cosmolog-
ical constant. By including current data, we show how theoretical priors can be used to improve constraints by
up to an order of magnitude. Moreover, we show that shift-symmetric theories without a cosmological constant
are observationally viable. We work up to quartic order in first derivatives of the scalar in the action and our
results suggest this truncation is a good approximation to more general shift-symmetric theories. This work
establishes an actionable link between phenomenological parameterisations and Lagrangian-based theories, the
two main approaches to test cosmological gravity and cosmic acceleration.

I. INTRODUCTION

There is some hope that the evidence of accelerated ex-
pansion [1–6] is an indication that new physics is at play
on cosmological scales. Thus, by characterising the evolu-
tion of the Universe in detail [7–11], it should be possible to
measure and constrain physical parameters that capture this
novel behaviour. Typically, the new physics associated with
these parameters involves new fields, a notable example of
which is the scalar field, φ . Indeed, shortly after the acceler-
ated expansion was discovered, quintessence – a scalar field
whose dynamics is dominated by its potential energy – was
proposed [12–15] (see also [16, 17] for reviews). The impact
of the scalar field can be neatly encapsulated in terms of one
free function, its equation of state, w(a), given by

w(a)≡
Pφ

ρφ

, (1)

where a is the scale factor and Pφ (ρφ ) are the pressure (energy
density) of the scalar field.

Quintessence is part of a much larger class of theories –
scalar-tensor gravity (see [18–21] for a review on scalar-tensor
theories of gravity) – which involves a host of possible cou-
plings of the scalar field, both with itself and the metric. The
Horndeski family of models [22–24], which leads to second
order equations of motion, can be further generalised to what
seems like an infinite tower of possible theories [25, 26]. In
principle, it should be possible to constrain such theories with

observations, pinning down the fundamental parameters that
enter the action. However, given the generality of the con-
struction, the prospects are daunting.

It turns out that it is possible to completely characterise a
broad class of scalar-tensor on cosmological scales in terms
of a handful of time dependent functions, αX (a) (as well as
w(a)) [27, 28] where, in the case of Horndeski gravity, X ∈
{M,K,B,T} each associated to a particular physical feature
of the underlying action [27]. A particular Horndeski model
can be associated with a choice of w and αX . In this way,
the exercise of constraining scalar-tensor gravity, reduces to
finding constraints on these free functions. There have been a
number of attempts at constraining these functions but current
uncertainties are at around the 10 to 50% level [29–40] (see
also related forecasts [41, 42]).

The typical approach for models that use phenomenological
functions such as w(a) and the αX (a) is to assume a paramet-
ric form for their evolution and constrain its parameters. The
favoured parametrisation for w is expansion in terms of the
scale factor with coefficients w0 and wa [43, 44]. There ex-
ist a number of well-motivated parametrisations of αX (a) that
assume these functions scale in some way with the fractional
density parameter of dark energy (DE), ΩDE, or the scale fac-
tor, a (see e.g [27, 29, 33, 42, 45–49]). However, what is
often overlooked by making such a choice is that there are
underlying physical models which may limit the ranges (and
behaviours) of these functions. One way of putting this is that
the underlying physical model will impose quite strict phys-
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ical priors on these functions and these should be taken into
account when undertaking parameter constraints with cosmo-
logical data. This situation is entirely analogous to what hap-
pens when constraining inflationary models. While it is the
norm to find constraint on the spectral index, n, and the ten-
sor to scalar ratio, r, each class of inflationary models sin-
gles out very specific (often one dimensional) locii in the (n,r)
plane [50–54].

We have tackled this problem of physical priors in the case
of thawing quintessence where, remarkably, we could con-
struct an analytic prior for w(a) [55]. By parametrising it as

w = w0 +wa(1−a) , (2)

we found that if {w0,wa} were chosen to fit the observables,
those could be reproduced with the accuracy required by next-
generation surveys up to recombination. Furthermore, the
prior, P , was factorisable, P[w0,wa] =P[wa|w0]P[w0] and
the shape of P was such that it was not collinear with current
constraints on {w0,wa} and thus, if incorporated could reduce
the uncertainties in w by up to an order of magnitude.

Emboldened by what we have found in the case of thaw-
ing quintessence, we now wish to generalise this approach to
more general scalar-tensor theories. From the outset, it is a
somewhat challenging task to construct a multidimensional
probability distribution function for w and αX . We have there-
fore established a more modest goal and focused on a sub-
class of theories that are shift-symmetric, i.e. theories which
are invariant under a scalar field transformation of the form

φ → φ +C , (3)

where C is a constant. Such theories are, in a sense we will
make more precise below, well-defined and natural. In this
case, the theory is completely determined by w(a), αB(a) and
αK(a); however, it is well known that αK(a) is unconstrained
by observations [29], so we are seeking a prior distribution
function for w(a) and αB(a). As we will see, exploring this
restricted set of scalar tensor models already sheds light on the
hurdles we need to tackle in the general case. Note that, moti-
vated by recent observations [56–58] and associated theoreti-
cal bounds [59–62], in the above we have implicitly required
that the speed of gravitational waves is luminal.

Outline: In Section II we outline the theoretical aspects of
and motivation for the shift-symmetric Horndeski model that
we focus on here. In Section III we justify the choice of phys-
ical priors we impose on the theory. In Section IV we de-
scribe the approximation scheme we use here and explain how
we evaluated the required accuracy. Further, in Section V we
present the constructed prior functions on w and αB. In Sec-
tion VI we combine these priors with a set of cosmological
data. Finally in Section VII we discuss our findings.

II. SHIFT-SYMMETRIC SCALAR-TENSOR GRAVITY

Consider as a starting point, the Horndeski action [22–24]:

S[gµν ,φ ] =
∫

d4x
√
−g

[
5

∑
i=2

1
8πGN

Li[gµν ,φ ] +Lm[gµν ,ψM]

]
,

(4)

where Lm captures the matter Lagrangian, with all matter
fields ψM minimally coupled to gµν (in other words, we are in
the Jordan frame), and where

L2 = G2(φ , X) , (5)
L3 =−G3(φ , X)�φ , (6)

L4 = G4(φ , X)R+G4X (φ , X)
[
(�φ)2−φ;µν φ

;µν

]
, (7)

L5 = G5(φ , X)Gµν φ
;µν − 1

6
G5X (φ , X)

[
(�φ)3

+2φ;µ
ν
φ;ν

α
φ;α

µ −3φ;µν φ
;µν�φ

]
. (8)

Here X ≡− 1
2 ∇µ φ∇µ φ , covariant derivatives on φ are denoted

by indices, so e.g. φ;µ
ν ≡ ∇µ ∇ν φ , and similarly we use a

shorthand for partial derivatives wrt. X , e.g. G4X = ∂G4/∂X .
The Horndeski action describes the most general Lorentz in-
variant, local action in four dimensions, featuring a scalar
field on top of the metric and having at most second-order
equations of motion on any background. Even if the final
aim, beyond the scope of this paper, is to investigate the im-
pact of physical priors for this action in full generality, in
this paper we focus on a simpler scenario: shift-symmetric
Horndeski theories. This subset of theories is also known
as ‘weakly broken Galileons’ [63], since the shift symme-
try ensures that radiative corrections are parametrically sup-
pressed around (quasi) de Sitter backgrounds, reminiscent of
non-renormalisation theorems for Galileons [64, 65].1 By fo-
cusing on this subset of solutions we are therefore already im-
plicitly ensuring that a theoretical prior requiring the radiative
stability of the theory is satisfied.2

As we are ultimately interested in investigating concrete
cosmological observables for shift-symmetric Horndeski the-
ories (and the effect theoretical priors have on them), we need
to choose a concrete parametrisation of the (in principle in-
finite) freedom inherent in the Gi functions. As a concrete
illustration we therefore focus on the following subset of the-
ories

G2 = c01X +
c02

Λ4
2

X2, G3 =−
1

Λ3
3
(d01X +

d02

Λ4
2

X2) ,

G4 =
1
2 M2

P, G5 = 0 . (9)

belonging to the Kinetic Gravity Braiding (KGB) [67] class.
Here the reduced Planck mass is M2

P = 1/8πG and conven-
tionally Λ4

2 = M2
PH2

0 , Λ3
3 = MPH2

0 , ensuring all the above in-
teractions can give O(1) contributions to the cosmological
background evolution today. The choice for G4 and G5 is dic-
tated by constraints on the speed of gravitational waves [56–
58, 68, 69] – see [59–62] and references therein for why this
implies the above restrictions on the Gi, at least as long as the

1 Although see [34, 66] for examples of shift-symmetry breaking theories
that maintain this property.

2 By this we mean radiative stability of the Horndeski scalar interactions
considered here. We have nothing new to say about the old cosmological
constant problem.
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cosmological Horndeski theory is valid up to energy scales of
Λ3 [70]. For G2,3 we keep the first two orders in X , where
the c01 and d01 terms capture the Galileon symmetric contri-
butions, while the c02 and d02 capture the lowest order (in X)
shift-symmetric corrections to this.3 This will afford us with
a fairly minimal, yet suitably rich testbed in which to investi-
gate the effect of theoretical priors on shift-symmetric Horn-
deski theories. Note that, for simplicity, we have excluded the
(equally shift-symmetric) tadpole term c10φ in our test case,
Eq.(9).

We will be considering a homogeneous and isotropic
cosmological (FRW) background solution, ds2 = −dt2 +
a2(t)(dx)2, populated by matter, radiation and the dark energy
scalar φ . The Friedmann equations then are

H2 =
1

3M2
P

ρtot , Ḣ =− 1
2M2

P
(ρtot + ptot) , (10)

where H ≡ ȧ/a as usual, ρtot = ρm + ρr + ρφ and ptot =
pr + pφ (subscripts refer to matter, radiation and dark energy,
respectively). For Eq. (9), ρDE and pDE then satisfy

ρφ =
1
2

(
c01 +

3
2

c02

Λ4
2

φ̇
2
)

φ̇
2− 3

Λ3
3

(
d01 +

d02

Λ4
2

φ̇
2
)

Hφ̇
3,

pφ =
1
2

(
c01 +

1
2

c02

Λ4
2

φ̇
2
)

φ̇
2 +

1
Λ3

3

(
d01 +

d02

Λ4
2

φ̇
2
)

φ̇
2
φ̈ .

(11)

Note that in the case where we include a cosmological con-
stant Λ, described in more detail below, the dark energy den-
sity, ρDE, and pressure, PDE, will have a contribution from Λ in
addition to φ . However, in both cases we take w(a) = Pφ/ρφ .

The background scalar equation of motion can be written in
terms of a conserved current [27] as

J̇+3HJ = 0 , (12)

where

J =

(
c01 +

c02

Λ4
2

φ̇
2
)

φ̇ − 3
Λ3

3

(
d01 +

d02

Λ4
2

φ̇
2
)

Hφ̇
2 . (13)

There are a few key points to note about the background
evolution. First of all, we have that Eq. (12) implies that there
is a tracker solution as J ∝ a−3→ 0 as a grows. This greatly
simplifies the dynamics and, as we will reiterate further down,
the priors we need to assume on the various ingredients of this
model. Second, we will consider two versions of this theory.
In the first version the scalar field is entirely responsible for

3 If higher order terms in X/Λ4
2 are suppressed (while terms such as

(�φ)n/Λ3n
3 are not), then this will fully capture the leading order terms as

well as next-to-leading-order corrections for a generic G2,3. If higher-order
terms are not suppressed and e.g. all powers of X/Λ4

2 equally contribute to
G2,3, this is not the case. A truncation like Eq. (9) is therefore not generi-
cally valid, but instead it should be viewed as a specific illustrative example
of a shift-symmetric Horndeski theory.

30 20 10 0
c01

100 0 100
c02

100 0
d02

= 0 0

FIG. 1. Distributions of the parameters of the action for the Λ = 0
(green) and Λ 6= 0 (blue) variants of the shift-symmetric model,
where we have fixed d01 = −1. Λ = 0 is the first version of shift-
symmetric theories we consider, where there is no explicit cosmolog-
ical constant, Λ, and the density of DE is given solely by the scalar
field φ ; in the case of Λ 6= 0, ΩDE has contributions both from φ and
Λ.

the late time acceleration and thus there is no explicit cosmo-
logical constant, Λ (or a constant term V0 in the scalar field po-
tential); we will dub this the Λ = 0 self-accelerating version.
4 The Λ = 0 version is, in some sense, the more interesting
as it can be invoked as an alternative to cosmological con-
stant driven acceleration. But we also have experience from
other theories that self-accelerating solutions are more tightly
constrained and potentially easier to rule out (for example in
the case of GDP gravity [71–74]). This means that the dark
energy density is solely given in terms of the energy density
associated to the scalar field: ΩDE = Ωφ .

A key aspect of self-accelerating solutions is that they re-
quire “negative kinetic energy” G2 < 0, at least in the class of
theories under consideration [67]. For shift-symmetric Horn-
deski theories up to cubic term (Kinetic Gravity Braiding), the
energy density can be written as [67]

ρφ = φ̇J−G2→−G2 , (14)

where the latest limit corresponds to the tracker solution. Be-
cause G2 is even in φ̇ , ρφ > 0 requires that at least one of
c01,c02 to be negative (the tracker condition J = 0 on Eq. (13)
might impose further constraints on the relative signs). We
will find that generically c01 < 0, i.e. the “wrong” sign of
the standard kinetic term, Fig. 1. This means that Minkowski
space with φ̇ = 0 is not a stable solution of these models nor
can we apply the usual battery of consistency conditions that
have been developed in the standard vacuum (see discussion
in the next section). 5

Another interesting feature of the self-accelerating solu-
tions is illustrated in Fig. 2. There we can see that both φ̇ 2

0 /Λ4
2

and φ̈0/Λ3
3 are smaller than unity. This is encouraging in that

4 We mean self-acceleration in the sense that the scalar field provides accel-
erating expansion, i.e. wφ < −1/3. Note that some authors use the term
self-acceleration to mean that only the Jordan-frame scale factor is accel-
erating (while its Einstein-frame counterpart is not) [65]. This can not be
the case in the theory at hand, as both frames are equivalent.

5 The theories under consideration have some other generic properties: for
instance the equation of state is phantom wφ <−1 in the tracker, approach-
ing de Sitter wφ →−1 from below as ρm→ 0 [67].
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0.1 0.2 0.3 0.4 0.5 0.6 0.7

02 / 4
2

0.2 0.4 0.6 0.8 1.0

0 / 3
3

= 0 0

FIG. 2. Distributions of the parameters of φ̇ 2
0 /Λ2

2 and φ̈0/Λ3
3. The

fact that they are lower than 1 means that higher order terms in our
expansion of the Lagrangian, Eq. (9), should be suppressed unless
large values of the coefficients {ci j,di j} were chosen. Therefore,
this could be seen as a posteriori justification of our ansatz, Eq. (9).

it provides a posteriori justification for our ansatz, Eq. (9):
the higher order terms omitted in Eq. (9) scale with higher
powers of φ̇ 2

0 /Λ4
2 and φ̈0/Λ3

3. So if these higher powers are in-
deed suppressed, then omitting higher order terms in the first
place is consistent. This is also related to the above discussion
of the sign of c01. If higher order terms with coefficients c0i
and i > 1 are increasingly suppressed, then obtaining a posi-
tive scalar energy density, Eq. (14), with positive c01 becomes
very challenging. Note, however, that the suppression illus-
trated in Fig. 2 is rather mild and can easily be compensated
for by coefficients ci j and di j that are somewhat larger than
unity. Fig. 1 shows that this is in fact the case for the lower
order interactions in our ansatz, Eq. (9), so we emphasise that
our findings here are certainly not conclusive evidence that
the higher order interactions omitted cannot yield O(1) con-
tributions to the scalar energy density or the background and
perturbative evolutions in general.

The second variant that we will consider does include Λ;
we will dub it the Λ 6= 0 version. In this case the signs of
c01, c02 are less restricted by requiring the scalar field to dom-
inate the expansion, Eq. (14). If we were to restrict ourselves
to c01 > 0 (which we don’t here) we would be looking at
what is conventionally dubbed the normal branch. In the cu-
bic Galileon limit (c02, d02 = 0) Ωφ > 0 requires c01 < 0, in
agreement with Eq. (14). Normal-branch Galileons (c01 > 0)
are driven towards a trivial tracker with φ̇ → 0, ρφ → 0 un-
less shift-symmetry is broken [75]. We will not fix a sign of
c02 to be able to capture more general behaviour in the Λ 6= 0
case. Note that the cosmological constant is allowed and does
not break shift symmetry. Here the dark energy density is the
sum of the energy density associated to the scalar field and the
cosmological constant: ΩDE = Ωφ +ΩΛ.

As we will focus on large scale observables, we are particu-
larly interested in linearised perturbations around the cosmo-
logical background solution described above. The freedom in
the dynamics of such perturbations for a general Horndeski
theory, as specified in Eqs. (4)–(8), is controlled by just four
functions αX of time with X ∈ {K,B,M,T}. For the general
form of these αX see [27]. In the shift-symmetric subset of

theories we are considering here, with G4X = 0 = G5X , we
find that the effective Planck mass seen by linear perturbations
is simply MP (and hence has no time-dependence), while the
speed of gravitational waves cGW = 1 by construction. We are
therefore left with only two non-trivial αX controlling linear
perturbations, namely

H2M2
PαK = 2X

[
G2X +2XG2XX +6φ̇H (G3X +XG3XX )

]
,

H2M2
PαB = 2X φ̇HG3X , (15)

where all functions are evaluated at the background level.
Upon substituting Eq. (9) into Eq. (15), it is then straightfor-
ward to express these two αX in terms of the ci j,di j in Eq. (9)
and the background degrees of freedom, a and φ .

III. ESTABLISHING PHYSICAL PRIORS

It has been well established that cosmological observables
are insensitive to αK [29], a direct manifestation of the fact
that αK drops out in the quasi-static limit (which applies to
the vast majority of observable scales at late times) at lead-
ing order [42]. The challenge, then, is to construct physical
priors for w and αB. There are a number of steps in work-
ing towards this goal, the first one of which is to map out the
space of possible histories for the scalar field φ and the metric
gαβ . In fact, as we saw in the previous section, w and αB are
completely determined in terms of φ(t) and a(t) so we will
only have to focus on the evolution of the background in these
theories.

We then have a number of parameters which need to be
chosen. The standard cosmological parameters will be in-
cluded in the analysis, whether we work with the scalar
field action directly or we work with the parametrised form,
in terms of w and αB; therefore, we will not be specially
concerned with the choice of their priors; indeed we will
consider a standard range such as Ωcdm ∈ [0.15,0.35] and
H0 ∈ [60,80]kms−1 Mpc−1, which ensures our findings will
be compatible with current constraints of these parameters,
while not too broad to explore values that are already ruled
(e.g. H0 = 0). We then have the parameters in the action which
we have distilled down to {c01,c02,d01,d02} and {Λ2.Λ3}.
Two dimensionless

{
ci j,di j

}
can be absorbed into the Λi. In

our concrete implementation, however, we find it more prac-
tical to follow a different (yet physically equivalent) prescrip-
tion and fix Λ4

2 ≡ M2
PH2

0 and Λ3
3 ≡ MPH2

0 , varying only the
coefficients {c01, c02, d02}. In order to decouple the effects of
H0 on the coefficients and avoid possible inconsistencies due
to the way we choose to sample our parameters, we set this
normalisation H0 to a fiducial value. We use the fact that we
can set d01 = −1 due to the normalization of the field [76]. 6

The physics of the model does not change depending on which

6 Fixing the sign of d0i bears no loss of generality: because L3 contains only
odd powers of φ , changing the sign of d0i is equivalent to flipping the sign
in the initial φ̇ . In contrast, normalizing the field to fix a coefficient in L2
restricts the theory, cf. Eq, 11 in Ref. [75].
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20 10 0
c01

100 0
c02

100 0
d02

Tune c01 Tune c02 Slice

FIG. 3. Distributions of the parameters given different way of sam-
pling. In the case of tuning one parameter, one samples the other
two and chooses the value of the former that result in the desired H0.
In contrast, in the case of slicing, one varies the all three parameters
simultaneously and keeps only the sets that give ∑Ωi = 1. As can be
seen above, the tuning method is subject to projection effects.

of the c0i (up to its sign) and d0i parameters one chooses to fix,
and hence our priors would be unaffected by this choice.

And finally, we must also consider the initial conditions of
the scalar field, φi and φ̇i. As we have seen in the previous
section, shift symmetric theories come endowed with track-
ing behaviour. This means that irrespective of the initial con-
dition, the field will (quite rapidly) evolve towards a universal
solution which is uniquely determined in terms of the cou-
pling constants of the theory. And, because the theory is shift-
symmetric, the result is completely independent of φi. This
means that the prior will also be completely independent of φi
and φ̇i.

With regards to {c01,c02,d02}, it makes sense to consider
uniform, uncorrelated priors over a fixed range; as with all
uniform priors, one needs to define hard limits to their ranges.
One may expect that naturalness criteria suggest one should
only vary these dimensionless constants within a range of
O(1) (around 0). However, note that the shift-symmetric
nature of the theories at hand means that radiative correc-
tions to the c0i and d0i are parametrically suppressed [63],
more specifically these corrections scale as

{
δci j,δdi j

}
∼

(Λ3/Λ2)
4 ∼ 10−40 [61, 63]. So considerably wider prior

ranges can be explored without running into naturalness is-
sues. We have explored different choices for the ranges of
these parameters and have found that, once we allow them to
vary within a range of O(2), the final results are unchanged.
We also check that the constraints with data are consistent
with these bounds, and indeed we find distributions that are
well within the range of O(2). This confirms that this is a
wide enough range so that our results are not biased by the
bounds we have chosen, while at the same time we exclude
regions of space that are ruled out by data. We use such an
extended range in all our subsequent results.

There is a further complication, however, which is that we
are interested in cosmologies which are reasonably close to
the one we observe, i.e. one in which Ωr +Ωm +ΩDE = 1
(note that our definition of ΩDE differs between the cases with
and without Λ); one can loosen this statement and say that we
don’t want ΩDE ' 0 or ΩDE ' 1. This immediately imposes
additional restrictions on {c01,c02,d02}. In other words, one
can see such a restriction due to ΩDE as a deformed slab cut-
ting through {c01,c02,d02}, picking out a lower dimensional

space. Projecting such a cut onto each of the {c01,c02,d02}
will naturally lead to non-uniform 1-D priors.

One might think that an alternative approach is to solve for
one of the {c01,c02,d02} for a fixed range of ΩDE and indeed it
is possible to do so using a well established shooting method.
Unfortunately the resulting combined priors depend heavily
on which of the constants one chooses to solve for. One can
understand this if one takes two examples. In one case, one
assumes a uniform prior for {c02,d02} and solves for c01. The
resulting distribution c01 will not, generally be uniform. Al-
ternatively one might consider a uniform prior for {c01,d02}
and solves for c02. Now the prior on c01 will be uniform while
the prior on c02 won’t be uniform. We illustrate this in Fig. 3.
This is not surprising as this approach effectively introduces
a non-linear correction to the measure which is highly depen-
dent on the constant one is solving for. Thus we have opted to
use original approach – to sample all the parameters and then
project down the constraint slice (or slab) 7.

A comment is in order about imposing priors related to the
validity of the underlying theory itself. Firstly, these come in
the form of stability priors. We have already alluded to radia-
tive stability above and we will complement this by requiring
the absence of ghost and gradient instabilities for our cosmo-
logical solution, using the implementation of [77]. Note that
these instabilities directly manifest themselves in the effec-
tive (low-energy and classical) theory we are considering, i.e.
Eqs. (4)–(9).8 Secondly, there are priors not directly linked to
any easily recognisable sickness in the low-energy theory, but
instead to ensuring that this low-energy theory can be embed-
ded in a sensible UV completion. These bounds turn out to
be powerful, even if the UV completion is not known. In this
context we will focus on so-called positivity bounds, requir-
ing that the underlying fundamental theory (and hence the UV
completion as well) is consistent with a “standard” Wilsonian
field theory description – one in which Lorentz invariance,
unitarity (well-defined probabilities), analyticity (causality)
and polynomial boundedness (locality) are respected. These
basic principles turn out to be sufficient in order to derive a va-
riety of additional constraints on the low energy parameters of
the theory, in our case encoded in the ci j and di j – see [78–96]
for constraints directly applicable to our present scalar-tensor
context. The simplest such bounds can be derived via consid-
ering tree-level 2→ 2 scattering on a flat (Minkowski) back-
ground. For general Horndeski theories the resulting bounds
are presented in [89]. Specialised to Eq. (9), these reduce to

Ḡ2,XX ≥ 0 ⇒ c02 ≥ 0 ,

Ḡ2
3,X ≥ 0 ⇒ d2

01 ≥ 0 , (16)

where a bar denotes that the function is evaluated on a flat
background (〈φ〉= 0) and constraints are subsequently ported

7 Note that, by default, hi class adjusts one of the parameters to ful-
fil the Friedman equation. In order to prevent this, you must set
Omega smg debug and unset Omega smg.

8 A direct consequence of this is that instability-infested regions of parameter
space generically give very poor fits to the data. In other words, had we not
imposed these priors, the data would still generically have excluded these
regions of parameter space.
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FIG. 4. The time evolution of w (left) and αB (right) for two rep-
resentative models and their approximate fits using the parametrisa-
tions we choose. Note that we have highlighted the αB = 2 line here
and in the following plots, as evolutions that cross this line (as shown
here αB typically increases monotonically in time) display some sin-
gular behaviour – see appendix A for a more detailed discussion.

to cosmological backgrounds. While the second bound is triv-
ially satisfied, the first imposes a non-trivial constraint. How-
ever, and crucial to the results of this paper, these bounds will
turn out to not be applicable here. This is because we will find
that, for our ansatz, Eq. (9), cosmological constraints push c01
to be overwhelmingly negative. While this condition is con-
sistent with obtaining healthy solutions on cosmological back-
grounds, around a flat (Minkowski) space-time it renders φ

into a ghost. But the existence of a well-defined and ghost-free
Minkowski solution is an essential ingredient for the deriva-
tion of the above positivity bounds. So, at least for our specific
ansatz, Eq. (9), we will not be able to identify regions of pa-
rameter space here, where observational constraints are satis-
fied and where we can consistently apply the above positivity
bounds – for a more detailed discussion see [97].

IV. APPROXIMATING THE TIME DEPENDENCE OF w
AND αB

We now proceed to determine the best way to parametrise
the time dependence of w and αB. We recall that, in the case
of thawing quintessence, we found that w = w0 +wa(1− a)
was an excellent approximation to the equation of state; this
was not the case for tracking quintessence. On the left panel of
Fig. 4 we plot the two typical shapes of the evolution of w for
the shift-symmetric model that we consider; although, on the
face of it, the true curve and the fit do not seem to agree par-
ticularly well, we find that w = w0 +wa(1−a) approximates
the evolution of equation of state well enough in a sense that
will be clear soon.

We note that in a simplified version of our model, i.e. the
cubic galileon,9 its exact time dependence is αB ∝ H−4. The
tracker solution, J = 0 in Eq. (13), provides a solution for
the scalar field evolution φ̇ ∝ H−1, which can be substituted

9 The cubic galileon model is equivalent to a special case of the shift-
symmetric we consider here with c02 = d02 = 0.
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B
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wa

= 0 0

FIG. 5. Probability distributions of the {w0,wa, α̂B,m} parameters
obtained minimising Eq. (21) as explained in Sections IV and V.
The presence of a cosmological constant term in the theory modifies
the probability distributions of the parameters. Their correlations can
be seen in Fig. 9. Λ = 0 is the case where ΩDE = Ωφ and Λ 6= 0 is
where ΩDE = Ωφ +ΩΛ. Fig. 1 shows the different distributions of
the {c01,c02,d02} parameters given these two cases. For details on
the vertical line at α̂B = 2 we refer the reader to the Appendix A.

into Eq. (15) to get the expected result. It is also possible
to prove that this time-dependence approximately holds for a
more general case too, i.e. c02 6= 0 and d02 = 0. Therefore we
expect that a function of (H0/H)4 should fit the evolution of
αB in the shift-symmetric case. We find the following function
to fit the true models extremely well,

αB = α̂B

(
H0

H

)4/m

, (17)

where α̂B and m are constant parameters. On the right of
Fig. 4 we plot two typical representative αB and the lines that
fit to those given the function that we chose.

In the spirit of [55], we now want to find the set of pa-
rameters {w0,wa, α̂B,m} that reproduce the Hubble rate (H),
the angular diameter distance (DA) and the growth factor
( f = d lnδm/d lna),

H2 =
1

3M2
P
∑

i
ρi , (18)

DA =
∫ z

0

dz′

H(z)
, (19)

f ′+ f 2 +

(
2+

Ḣ
H2

)
f − 3

2
Ωm

(
1+

α2
B

2csN2

)
= 0 , (20)
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FIG. 6. Diagram summarising the method presented in Section IV that we use for determining the correct evolution functions of the model,
w(a) and αB(a) and the set of coefficients {w0,wa, α̂B,m} that best fit the observables computed from the Lagrangian.

where

csN
2 =

[
(αB−2)

(
Ḣ−H2

αB/2
)
+Hα̇B−ρm− pm

]
/H2 ,

computed from the Lagrangian with parameters
(c01,c02,d01,d02) with the accuracy required by next-
generation surveys; i.e. 1% at z < 10 [7, 8, 10, 98]. and 0.3%
at recombination for DA [5], for 99% of the models. In order
to find {w0,wa, α̂B,m} we minimise

χ
2 = ∑

z

(O(w0,wa, α̂B,m)z−O(c01,c02,d01,d02)z)
2

σ2
Oz

, (21)

where O(w0,wa, α̂B,m)z and O(c01,c02,d01,d02)z are the ob-
servables at redshift z computed with the parametrisations of
w and αB and the exact from the full evolution of the field
equations for a shift-symmetric model given by the set of pa-
rameters {c01,c02,d01,d02}, respectively. The variable σOz
weights each point so that we can require different precision
depending on the variable and redshift. For instance, we set
σOz = 10−3 for all observables at z < 10 and σDA(zrec) = 10−4

at recombination for the angular diameter distance. The soft-
ware used to make these fits is a modified version of RU-
FIAN [55] and can be found at https://gitlab.com/
dinatraykova/horndeski-priors.

Let us emphasise that, with this approach, we do not choose
the set {w0,wa, α̂B,m} that best fit the equation of state and αB
curves obtained from the Lagrangian, which are not observ-
able quantities. Instead, we minimise the error in the back-
ground evolution H and DA, and f for the linear perturbations.
In this sense, allowing {w0,wa, α̂B,m} to differ from their best
fit values with respect to the exact w and αB, we find the set
of parameters that minimise the error on the observables. It is
important to note that, in comparison with quintessence, the
equation of f , Eq. (20), has the source term modified as

3
2

Ωm −→
3
2

Ωm

(
1+

α2
B

2csN2

)
, (22)

which introduces an extra dependency on αB in the source
term and means that a more precise fit to αB would be required
to get a good fit to the observables than is the case for w.

In Fig. 5 we show the distributions for {w0,wa, α̂B,m} set
of parameters for the shift-symmetric model with and without
Λ recovered by minimising the error on the observables, as de-
tailed here; correlations between these variables will become
apparent as we construct a complete model for the priors in
the next section.

In Fig. 6, we present a summary diagram of the method ex-
plained in this Section that allows us to derive the approximate
time dependent functions that describe the shift-symmetric

https://gitlab.com/dinatraykova/horndeski-priors
https://gitlab.com/dinatraykova/horndeski-priors
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(O(c01,c02,d01,d02)) and the parametrisation (O(w0,wa, α̂B,m)) at
z < 10 for each fit. Right panel: distribution of the relative error be-
tween the DA(zrec) computed from the theory and the parametrisation
for each fit.

model, w(a) and αB(a), and find the best fit coefficients
{w0,wa, α̂B,m} that better reproduce the observable quanti-
ties obtained from the evolution of the Lagrangian {c0i,d0i}.

V. RESULTS

We now have a robust process for determining
{w0,wa, α̂B,m} for each choice of the physical priors:
minimising Eq. (21) allows us to find the set of parameters
that reproduce the observables H, DA and f with the accuracy
needed by next-generation surveys. The next step is to obtain
the probability distribution that will be used as theoretical
priors for the shift-symmetric Horndenski models. For
that, we sample 30,000 random models with parameters
{c01,c02,d01,d02} and store their corresponding observables
at specific redshifts (100 points at z < 10 and at zrec, in the
case of DA). After minimising Eq. (21) for each of this
set of 30,000 observables, we end up with having 30,000
{w0,wa, α̂B,m} that can be used to build our theoretical pri-
ors. We obtain the observables quantities for each realisation
using hi class [77, 99], an extension to the Boltzmann
code CLASS [100] that solves the cosmological equations for
a broad range of sub-sets of the Horndeski class of theories.

Let us note that the choice of 30,000 samples and 100 points
at z < 10 is just a matter of computational efficiency and has
no physical insights. We checked that after 30,000 samples the
probability distributions had already converged and increasing
its size to 100,000 does not alter the results. In addition, for
each set of {w0,wa, α̂B,m} obtained minimising Eq. (21) with
100 points for each observable below z= 10 and DA at zrec, we
saw that the new observables satisfy the requirement of having
an error below 1% at z < 10 and below 0.3% for DA(zrec) for
the 99% of the cases. This can be seen in Fig. 7.

The probability distributions for the parametrised shift-
symmetric Hordenski models can be seen in Fig. 5, which
shows mild correlations between different parameters. We
note that these correlations don’t have the usual elliptical
shape that one expects for a multivariate Gaussian. Clearly

1.6

1.4

1.2

1.0

X 3
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X1

2

1

0

X 4

1 2 3

X2

Exact fit ( 0) Approx.

FIG. 8. Approximate fit to the probability distribution of the
{X1,X2,X3,X4} for the Λ = 0 model. In black, the contours from
the original set of parameters transformed by Eq. (23). In green,
those obtained from a multivariate Gaussian distribution. As one can
see, their differences are small and have little effect on the original
parameters {w0,wa, α̂B,m} (Fig. 9), the observables (Fig. 10) and,
therefore, in an MCMC.

there is a non-linear correction that must be taken into account
in the next steps.

If we are to construct theoretical priors that can be used
in a Markov chain Monte Carlo (MCMC), we need to find a
sufficiently good approximation of the probability distribution
that allows us to recover the same distribution of the parame-
ters and the observables when sampling from it. We do this in
two steps. We first transform to a new set of parameters

X1 = α̂B ,

X2 = m α̂
1/6
B ,

X3 = w0 m1/4 ,

X4 = wa m2 , (23)

which effectively Gaussianise the distributions (Fig. 8).
We find that a multivariate normal distribution fits the dis-

tribution of {X1,X2,X3,X4} and that, once transformed back
to {w0,wa, α̂B,m} recovers the correlations between the vari-
ables to a very good approximation; this can be seen in Fig. 9.
Of course, a crucial test is to see the impact on the observables
and whether one is able to recover the correct distribution for
those. We do so in Fig. 10 where we compare the observables
obtained by integrating the field equations of motion to the
ones obtained by sampling from the distribution. Note that
we only show the distances at z = 1 and at recombination, as
they have the largest differences, yet these are still small and
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FIG. 9. Probability density distributions of the {w0,wa, α̂B,m} parameters for the Λ = 0 (lower left) and Λ 6= 0 (upper right) shift-symmetric
theories studied. We compare the exact distributions obtained fitting the observables with those obtained sampling from the new Gaussianised
space {X1, X2, X3 X4} and transforming back using Eq. (23). The differences are small and do not affect the observables significantly (Fig. 10).
Here we have highlighted the αB = 2 line to separate the region where the evolutions can display some singular behaviour (see Appendix A).

should have little impact on the posterior distributions of the
parameters when combined with data.

Using the Gaussianised distribution we can construct an an-
alytic model and calculate the probability density in the trans-

formed parameter basis,

p(X |µ,Σ) = 1
(2π)2|Σ|1/2 exp

(
−1

2
(X−µ)T

Σ
−1 (X−µ)

)
,

(24)
where µ is the vector of mean values and Σ is the covariance
matrix of our prior parameter distribution in the transformed
basis {X1,X2,X3,X4}. For the model without Λ we find
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and giving confidence on the theoretical priors we have built, Eqs. (24)–(26)).

µ(Λ = 0) = (1.5346,1.4461,−1.1592,−0.8841) ,

Σ(Λ = 0) =

 0.1475 −0.0916 0.0160 −0.0469
−0.0916 0.0776 −0.0087 0.0326
0.0160 −0.0087 0.0041 −0.0079
−0.0469 0.0326 −0.0079 0.0516

 .

(25)

For the case with Λ we have

µ(Λ 6= 0) = (0.9545,1.4255,−1.1803,−0.7962) ,

Σ(Λ 6= 0) =

 0.2311 −0.0511 0.0136 −0.0415
−0.0511 0.0875 −0.0075 0.0218
0.0136 −0.0075 0.0035 −0.0017
−0.0415 0.0218 −0.0017 0.0589

 .

(26)
We use this to infer the a priori likelihood of a given sample

used in the combined analysis with data in Section VI.
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We might want to compare our current results with those
of our previous work [55]. There, we found that the phe-
nomenology of different highly dimensional theories is well
described by the usual w0-wa parametrisation. In that case,
we went from having many parameters in the Lagrangian to
just two, accurately accounting for their cosmologies. In this
paper, however, we start from a Lagrangian with three param-
eters (after fixing d01 =−1) and end up with four parameters
to describe its phenomenology. However, this phenomenolog-
ical parametrisation is still advantageous: it does not require
solving the field equations, allows to clearly split the back-
ground and linear perturbations effects and shows that both w
and αB are simpler than one would a priori think. We expect
this to also be the case in other more general theories.

VI. COMPARISON WITH CURRENT DATA

Here we present the constraints on αB and w from current
cosmological data and compare and combine these with our
theoretical priors. To do this we use a combination of cos-
mic microwave background (CMB), Baryon Acoustic Oscila-
tions (BAO), Redshift Space Distorsions (RSD) and Super-
novae Type IA (SN Ia) data.

From Planck 2018 [5, 101, 102], we use the auto- and
cross-correlations of the temperature (T ) and polarisation (E)
fluctuations of the Cosmic Microwave Background, together
with measurements of the lensing potential; i.e. the TT, TE,
EE+lowE+lensing likelihoods, which denotes the combina-
tion of the high-l TT, TE, and EE spectra (l ≥ 30), the low-l
(2≤ l < 30)) TT and EE likelihoods and the lensing likelihood
(with temperature and polarisation lensing reconstruction) in
the multipole range l = 8−400.

Additionally we use the BAO and RSD measurements from
BOSS DR12 [6], as well as BAO from the 6dFGS survey
[103]. The BAO measurements are of the Hubble rate, H and
the angular diameter distance DA, while RSD measures the
growth rate of the universe through f (z)σ8(z). We use the full
covariance between the f (z)σ8(z) measurements at different
redshifts and the BAO measurements of H(z) and DA(z) from
BOSS. However, we do not consider the correlation between
the BOSS and 6dF measurements as those cover different ar-
eas of the sky and thus any such correlation would be negligi-
ble.

Finally, we also include the Pantheon SNe Ia sample [104],
which combines the Pan-STARRS1 Medium Deep Survey
with ones from the SDSS, SNLS, and various low-redshift
and HST samples, 1048 SNe Ia in total in the redshift range
0.01 < z < 2.3. We also note that, throughout, we assume that
the cross-correlation between the different datasets is negligi-
ble.

We built our prior likelihood in the Gaussianised basis
{X1,X2,X3,X4} and, in order to be consistent, we use the same
basis for the sampling in all cases, from which we then convert
the resulting distributions back to {w0,wa, α̂B,m}. We sample
through the parameter set {X1,X2,X3,X4} together with the
standard cosmological parameters in a Markov Chain Monte
Carlo (MCMC) with MontePython [105, 106] using the

Metropolis-Hastings algorithm [107, 108]. We do not con-
sider any prior bounds on the standard cosmological param-
eters in the MCMC run (apart from τ > 0.004), but just start
from a known good fit point from Planck. For the Xi we set
the following ranges,

X1 ∈ (0,10) , X3 ∈ (−10,0) , (27)
X2 ∈ (0,15) , X4 ∈ (−15,30) . (28)

In the case of ΩΛ 6= 0 we also set ΩΛ ∈ (0,1). Using
the Gelman-Rubin convergence criterion [109] we require
R− 1 < 0.02. The contour plots were produced using Get-
Dist [110].

In order to obtain the combined constraints from data
and the theoretical priors, we implemented Eqs. (24)–(26)
in MontePython as a new likelihood module10. In the
analysis with data only we assume uniform priors on the
{X1,X2,X3,X4} parameters.

We present the results in Fig. 11, where in the bottom half
of the triangle we show the contours for the Λ = 0 case of
the shift-symmetric model and on the top half we have the
case with additional Λ. On this plot we show the parameters
data constraints (grey solid line, filled contours) overlaid with
the distributions of the priors. (in green for Λ = 0 and blue
for Λ 6= 0). In addition, we show the combined constraints
(dashed line) from both the data and the priors. In this figure,
note that we only show the Λ = 0 1D distributions since the
Λ 6= 0 data-only constraints are much broader than any of the
others, making it difficult to read.

If we focus only on the bottom left corner of Fig. 11
(Λ = 0), we note that although the data and the priors appear
to be equally as constraining for α̂B, w0 and wa, the contours
are misaligned and only overlap away from their respective
centres (i.e. regions of high probability). Nevertheless they
are statistically consistent and combining the two results in
tighter bounds on these parameters. Further, data alone does
not provide a very strong bound on m, which makes including
the prior likelihood crucial in constraining the time evolution
of αB. Looking at the combined constraints (dashed line) one
may expect that the contours should lie in between the data
and priors alone. However, due to the high dimensionality of
the problem and the correlations between different parame-
ters, the 2D and 1D projections of the distributions from the
combined analysis can end up off the centre of the distribu-
tions of the data and the priors runs alone. In the case of w0
this effect can be seen quite clearly, where the combined his-
togram appears to be to the right of both the data and priors
alone. This is not surprising looking at the 2D contours of w0
and the other three parameters, where we see that the data and
priors contours overlap only at their edges, which could result
in such a shift in the 1D projections of one or more parameter.

In the top right corner of Fig. 11 we show the contours for
the case where we include a contribution of Λ to the DE den-
sity (Λ 6= 0). In this case we find that while data alone (grey

10 Available at: https://github.com/dinatraykova/shift_
priors

https://github.com/dinatraykova/shift_priors
https://github.com/dinatraykova/shift_priors
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FIG. 11. Comparison between data and the prior distributions for the two shift-symmetric variants we have considered, Λ = 0 (lower left
corner) and Λ 6= 0 (upper right). The grey filled contours show the distributions of the parameters when constrained with ‘data’ alone, the
green or blue filled contours show our ‘priors’ for the Λ= 0 and Λ 6= 0 cases respectively, and the purple dashed contours are from the combined
analysis. Note that the ‘prior’ likelihood is built in the Gaussianised {Xi} basis, as discussed in Sections V and VI and takes into account the
underlying physical properties of the model (not to be confused with the flat uncorrelated priors we put on the parameters in the ‘data’ runs).
We have only plotted the 1D pdf’s for the case Λ = 0 for clarity and again we have marked the line where αB = 2 (see Appendix A). This plot
demonstrates how combining data with theoretical priors can result in much tighter constraints on some of the parameters of the model.

solid contours) constrains the α̂B and m parameters well, the
distributions of w0 and wa are very wide, compared to the pri-
ors (blue solid contours) and the combined constraints are al-
most fully driven by our priors. We note that these distribu-
tions cover almost the full range that we have set for these

parameters in the data run. The distributions of ΩΛ are shown
in Fig. 12 from the sampling with data (grey line) and the
ones recovered when deriving the priors (green line). This
plot shows that the data prefers the majority of the DE density
contribution to come from Λ, as it is consistent with ΩΛ∼ 0.7.
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FIG. 12. Probability distributions of ΩΛ from the analysis with data
alone (grey solid line), our priors (green solid line). Let us note that
ΩΛ ∼ 0.7 in the data run implies that data seems to prefer a universe
mainly filled with a cosmological constant and only a small contri-
bution of the scalar field to DE.

α̂B m w0 wa
(Λ = 0)
Data 0.3±0.3 3.8±1.6 −1.0±0.06 0.1±0.2
Prior 1.5±0.4 1.4±0.4 −1.08±0.06 −0.6±0.4
Combined 0.6±0.3 2.4±0.4 −0.97±0.03 −0.11±0.06
(Λ 6= 0)
Data 0.5±0.4 2.6±1.4 −− −−
Prior 1.0±0.5 1.5±0.4 −1.08±0.07 −0.5±0.4
Combined 0.8±0.4 1.7±0.4 −1.05±0.06 −0.3±0.2

TABLE I. Best fit and confidence limits of w0 and wa for the data set
CMB+BAO+RSD+SN, the theoretical priors and the combined anal-
ysis for the shift-symmetric models both with and without Λ, (Λ = 0
and Λ 6= 0). Note that we have not written the means and errors for
w0 and wa from the data run in the Λ 6= 0 case, as data is not con-
straining on these; the errors are determined by the ranges we have
set and the mean values are consistent with ΛCDM. This is related
to the fact that, in this work, w is defined as the scalar field equa-
tion of state and that data seems to prefer a negligible contribution of
the scalar field to the DE density with the majority coming from Λ

(Fig. 12).

This leaves only a very small portion of ΩDE to come from the
scalar field φ . Our definition of w(a), Eq. (11) includes only
the contribution of the scalar field, so we can expect that in
a case where ΩΛ dominates the DE density, it wouldn’t be
possible to get a strong constraint on the equation of state pa-
rameters of the field, w0 and wa.

To emphasise the benefit of including theoretical priors into
the likelihood analysis in constraining these models, in Ta-
ble I we present the parameter ranges for the {w0,wa, α̂B,m}
set from the likelihood analysis with uniform priors and with
theoretical priors. In the Λ = 0 case we find that for m there

is a significant improvement in the error after including our
theoretical priors, compared to the constraints with data us-
ing uniform uncorrelated priors (from ±1.6 to ±0.4). For the
other three parameters ranges from the data run with uncor-
related priors and our derived correlated ones are comparable
but combining them still results in slight improvement of the
errors. In the case of Λ 6= 0, we see that there is a similar im-
provement on the constraint of m as we find in the Λ = 0 case
(from ±1.4 to ±0.4). However, as we saw from the contours
in Fig. 11, w0 and wa cannot be constrained with data using
the uniform priors on the parameter set due data preferring ΩΛ

to be the dominant contribution to the DE density. The addi-
tion of the theoretical priors in this case is, therefore, crucial
as the only way to fully constrain the parameter space.

VII. DISCUSSION

In this paper we have taken a further step towards construct-
ing a set of physical priors for Horndeski theories of gravity.
Building on the experience of constructing such a prior for
thawing quintessence, we have focussed on a physically well
motivated subset of Horndeski gravity: shift symmetric theo-
ries with standard speed of gravitational waves. While these
theories are less general than the full Horndeski space of the-
ories, they are more general than the much studied Galileon
scalar-tensor theories.

Working with shift-symmetric theories has allowed us to
explore a situation in which one needs more than just the equa-
tion of state, w, to fully characterise its behaviour on cosmo-
logical scales. For such theories one needs to also include an
accurate model for the ”braiding” parameter, αB. We have
done so, constructing a prior distribution function, P for four
constant parameters defined in Eqs. (2) and (17). Remark-
ably, and very much like in the case of thawing quintessence,
we have come up with a simple analytical form for P which
can be easily deployed in future cosmological parameter anal-
ysis.

We have learnt a number of lessons from focusing on shift
symmetric theories which give us a sense of the challenge of
tackling more general Horndeski theories. For a start, the
theories we have looked at here are endowed with a track-
ing behaviour which eliminates the need to pin down a prior
for initial conditions. This will not be true in general for full
Horndeski theories.

We have had to face the problem of sampling over
a multi-dimensional space of parameters (in this case
{c01,c02,d01,d02}) which is subjected to some form of con-
straint. The way one implements the constraint can greatly
affect the prior distribution function. For example, explicitly
solving the constraint can bias the resulting prior, depending
on which of the parameters one is solving for. We have argued
that one should sample over all parameters and exclude points
which lie outside the constraint sub-region. This is, neverthe-
less, a computationally costly approach to the problem which
will become far more severe, the more general the theory one
is looking at.

With an appropriate algorithm for sampling over
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{c01,c02,d01,d02}, we have proposed a functional form
for the phenomenological parameters, w and αB. We have
found that the usual form for w is still remarkably effective
while, building on our knowledge of Galileons, we have
come up with a suitably simple form for αB, if we choose
the parameters by minimising the error on the observables (a
crucial aspect of this approach). The latter insight is useful
and points to the fact that, in general, the αX parameters may
have a simple functional form in the more general theory.
This means that a reanalysis of current cosmological data
may lead to far tighter constraints than have until now been
found.

An important step has been to find non-linear transforma-
tions that, to some extent, “Gaussianises” the distributions
of our parameters. Such a transformation has been remark-
ably effective allowing us to determine, rather more easily
than one would naively expect, an analytic expression for the
prior. Again, one would expect this approach to be useful
when looking at more general theories.

An interesting aspect of the theories we have focussed on
– shift symmmetric theories – is that they are, in some sense,
viable and complete. In other words, Including terms ∝ X2 in
G2,G3 give viable generalisations of the cubic Galileon (Fig.
11), even with Λ = 0. In this model φ̇ 2/Λ4

2 . 0.2 (Fig. 2),
suggesting that higher order corrections are subdominant and
can be neglected.

An important aspect, which from our understanding has
been somewhat unexplored, is that c01 < 0 is more generic
than just for the Covariant Galileon. This is important, since
this regime disconnects these theories from the Minkowski so-
lution and constraints derived for that solution. Note that there
may be other solutions where, for example, higher orders in
Xn contribute. In that situation, the constraints on c01 may be
markedly different.

Note that, while we have considered and taken into ac-
count a number of theoretical priors and observational con-
straints throughout this paper, these are of course not com-
plete and one may wish to add additional priors/constraints to
this analysis in the future. One such example to highlight are
constraints from dark energy-gravitational wave interactions,
specifically related to dark energy (gradient) instabilities that
can be induced by gravitational wave sources such as massive
binaries [111]. Requiring the absence of these instabilities in
general can be used to significantly tighten cosmological pa-
rameter constraints [38]. In the specific shift-symmetric con-
text of the theories considered here, avoiding such instabilities
amounts to requiring |αB| . 10−2. This effectively renders
the cubic Horndeski interactions we have considered into an
afterthought for cosmology. We will leave a more detailed in-
vestigation of this and other additional priors in the context of
shift symmetric theories for future research.

Finally, our brief comparison with current data shows that
this theory is a viable, self-accelerating model of the Universe:
the physical priors are consistent with the cosmological con-
straints. This is somewhat promising given the dearth of the-
oretically viable models of self-acceleration which are cur-
rently compatible with cosmological data. A thorough analy-
sis of shift symmetric cosmologies, along the lines of what has

been undertaken in [112] will allow us to assess if such shift
symmetric gravity is a credible contender for the late time ac-
celeration of the Universe.
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Software: We made extensive use of numpy [113, 114],
scipy [115] and matplotlib [116] python packages. In
addition, the shift-symmetric models were implemented in
hi class [77, 99, 100], the fits to the observables were done
with a modified version of RUFIAN11 [55], the MCMC were
run with MontePython [105, 106] and the contour plots
were produced using GetDist [110].

Appendix A: Discontinuities for models crossing αB = 2

In the main text we briefly alluded to potential issues asso-
ciated with crossing αB = 2. As shown in Fig. 4, αB gener-
ically starts strongly suppressed at high redshifts and then
grows towards redshift zero, typically reaching O(1) values.
For a small, yet significant, subset of the models discussed
in this paper (see e.g. the distributions shown in Fig. 5) αB
eventually grows to be larger than 2. This is important, be-
cause crossing the αB = 2 point is associated with a number
of discontinuities. This was first noted in [27] and discussed
in [117, 118]. As a result, evolutions crossing this point have
being conservatively excluded in some of the subsequent anal-
yses – see e.g. [33, 35, 38]. On the other hand, this could be
only a gauge discontinuity, as advocated in [118], that can
be safely removed. So in this appendix we quickly summarise
the issues associated with crossing this point and how we treat
models that do so in this paper.
Discontinuity in the number of propagating degrees of free-
dom: Horndeski scalar-tensor models of dark energy gener-
ically propagate two scalar degrees of freedom: one directly
associated to dark energy and one to matter. Following the ap-
proach outlined in [27, 117, 119] and for concreteness mod-
elling matter as a minimally coupled canonical scalar field ψM
with Lagrangian L = − 1

2 ∂µ ψM∂ µ ψM−V (ψM), working on
a cosmological background and in unitary gauge we find these
two independent degrees of freedom can be associated with
δψM and Φ (i.e. the scalar metric perturbation of the ii com-
ponent of the metric). While crossing αB = 2 in the evolution,

11 Original: https://gitlab.com/carlosggarcia/
horndeski-priors. This project: https://gitlab.com/
dinatraykova/horndeski-priors

https://gitlab.com/carlosggarcia/horndeski-priors
https://gitlab.com/carlosggarcia/horndeski-priors
https://gitlab.com/dinatraykova/horndeski-priors
https://gitlab.com/dinatraykova/horndeski-priors
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the following constraint relating these two degrees of freedom
emerges

ψ
′
MδψM = 2M2

PΦ
′ , (A1)

where we have assumed that there is no cosmological running
of the Planck mass, as is the case for the models considered
in this paper. This relation shows that one propagating degree
of freedom is eliminated at this point, so only one dynamical
degree of freedom remains here. This is alarming, since the
number of propagating degrees of freedom therefore changes
as we evolve through αB = 2: it is two on either side, but only
one remains on the divide itself. This may be an artefact of
using perturbation theory, but in any case indicates a potential
ill-definedness in the evolution across αB = 2. Giving a defini-
tive answer may require a non-perturbative analysis, which
allows to follow the dynamics of the real degree of freedom
(and not an approximated version of it), and may allow us to
exclude the dangerous situation of being in a strongly coupled
regime.

Discontinuity in the evolution equations: For general αB, one
can straightforwardly derive the (coupled) evolution equations
for δψM and Φ. Using these and taking the limit as αB→ 2,
one recovers the constraint, Eq. (A1), from the equation of
motion for δψM and can then use this constraint to solve for
δψM , arriving at a single second order evolution equation for
Φ. This reads

Φ
′′+

(
2H +

2a2VψM

ψ ′M

)
Φ
′+ k2

Φ = 0 , (A2)

where we have again assumed that there is no cosmological
running of the Planck mass and will also assume that the speed
of gravitational waves is precisely the speed of light in what
follows – both assumptions are met for the models considered
in this paper and violating them would complicate the expres-
sions shown here, although not the qualitative conclusions of
this appendix. Now suppose we instead first set αB = 2 in
the full quadratic action and then derive the residual evolution
equation for the remaining degree of freedom. Again we re-
cover the constraint, Eq. (A1), this time from a Lagrange mul-
tiplier in the quadratic action. However, the evolution equa-
tion for Φ now instead reads

Φ
′′+

(
2H +

2a2VψM

ψ ′M

)
Φ
′+ k2

Φ

−Φ

2

(
(6+ α̂K)H

2 +
ϕ ′2

M2
P

)
= 0 . (A3)

This is identical to Eq. (A2), except for the addition of the
last term. While the last term is suppressed with respect to the
second last in the sub-horizon limit, this nevertheless again
hints at evolutions crossing the αB = 2 point being ill-defined,
since there does not seem to be a uniquely defined evolution
across this point. However, carrying out the analogous
calculation in Newtonian gauge gives the same equations up
to terms proportional to α ′B, which also vanish in this limit.

This suggests that the above-mentioned discontinuity in the
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FIG. 13. We show the relative deviation of the CMB temperature-
temperature (top panel) and the matter (bottom panel) power spectra
w.r.t. a fiducial model for different values of αB (a = 1) (the corre-
sponding color for each value is shown on the color bar). We chose
to pick models with both αB < 2 and αB > 2, to see if some kind
of discontinuity could be detected. We notice that the spectra seems
continuous and smooth at this point.

evolution equations might be a gauge artefact [118].

Summarising, both these issues are alarming and should be
investigated in more detail. However, a definitive answer can
be given only after further investigation, and this is beyond
the scope of this paper. Despite the above issues, it is im-
portant to notice – as shown in Fig. 13 – that the CMB and
matter spectra do not show any discontinuity when crossing
αB = 2. This shows that it is possible to solve this system in
such a way that they do not show any observable discontinu-
ity at αB = 2. This corresponds to the second case considered
above, Eq. (A3). In addition, given that the majority of the
models considered and consistent with current observational
constraints never crosses αB = 2, a hard bound at this point
should not affect our results qualitatively. While these obser-
vations do not resolve the above issues as such, they are nev-
ertheless encouraging and suggest that they may be resolved
without invalidating other parts of the analysis. For this rea-
son we here put these issues to one side and do evolve across
αB = 2 in this way.
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and M. Zumalacárregui, Mon. Not. Roy. Astron. Soc. 480,
3725 (2018), arXiv:1801.04251 [astro-ph.CO].

[32] R. Reischke, A. Spurio Mancini, B. M. Schäfer, and P. M.
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