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Relaxation and correlation times are two parameters used frequently in approximate descriptions
of the time development of hadronizing system from some initial state towards distributions observed
experimentally. Chosen to reproduce the experimental results they represent, in a sense, the history
of the hadronization process. The analysis of their changes with energy is the subject of our work.
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I. INTRODUCTION

In many descriptions of multiparticle production pro-
cesses we are interested in their temporal development
from a certain initial state to the final state recorded in
the experiment. In such descriptions, we usually deal
with certain multi-stage processes, each with its own
characteristic time scale. The concept of their hierarchy
is one of the fundamental properties in statistical physics
[1]. These phenomena can be understood correctly only if
the dynamics of one-particle and two-particle properties
characterized by, respectively, relaxation time τrel and
correlation time τcor, are known. In most situations first,
in the initial stage, i.e., for t < τcor the correlations relax,
it is followed in τcor < t < τrel by the kinetic stage when
the one-particle relax, and finally, for t > τrel system en-
ters into stationary (hydrodynamic) stage. In this way
the relaxation and correlation times (chosen to reproduce
the experimental results for, respectively, transverse dis-
tributions of produced secondaries and multiplicity dis-
tributions) occur as two parameters which represent the
dynamical history of the hadronization process. As such
they must depend on energy and the form and details of
this dependence is the subject of this work.

The evolution of the particle distribution can be stud-
ied through the Boltzmann transport equation (BTE),

df(r, p, t)

dt
=
∂f

∂t
+ ~u · ∇rf + ~F · ∇pf = C[f ], (1)

where f(r, p, t) is the distribution of particles which de-

pends on position r, momentum p and time t, ~F is the
external force, ~u is the velocity and C[f ] is the collision
term. Assuming in what follows homogeneity of the sys-

tem (∇rf = 0) and absence of external forces (~F = 0)
Eq. (1) reduces to

df(r, p, t)

dt
=
∂f

∂t
= C[f ]. (2)
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In the relaxation time approximation (RTA) [2–5] the
collision term is assumed to be equal to

C[f ] =
feq − f
τrel

, (3)

where feq is the local equilibrium distribution and τrel
is the relaxation time, understood as the time taken by
the non-equilibrium system to reach equilibrium. In this
approximation BTE simplifies to

∂f

∂t
=
feq − f
τrel

. (4)

Solving this equation for the initial conditions such that
at t = 0 one has initial distribution, f = fin, and
at freeze-out time, t = tf one has final distribution,
f = ffin (to be identified with the actually measured
distribution) one gets that

ffin = feq + (fin − feq) exp

(
− tf
τrel

)
. (5)

The Boltzmann transport equation in the RTA approx-
imation is a very popular approach recently used to an-
alyze the various observables from nucleus-nucleus colli-
sions measured in experiments at RHIC and LHC , cf.,
for example, [6–11]1.

II. DEDUCING ENERGY DEPENDENCE OF
tf/τrel FROM DATA ON pT DISTRIBUTIONS

We shall analyse in this work transverse momentum
distributions, f (pT ), from proton-proton and proton-
antiproton collisions in a wide range of energies. To
start let us note that we need ffin which can be iden-
tified with the experimentally distribution. Therefore we
need as good as possible formula fitting pT at all ener-
gies available. We argue that such a formula is the Tsallis
power-law distribution [12–14]

f (pT ) =
2− q
T

[
1 + (q − 1)

pT
T

] 1
1−q

(6)

1 BTE in RTA approximation has been used to study the time
evolution of temperature fluctuations in a non-equilibrated sys-
tem [8], elliptic flow [10] and also for study nuclear modification
[6, 7, 11] factor at RHIC and LHC energies.
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characterized by the energy dependent Tsallis q param-
eter and the temperature parameter T . Here q ≥ 1,
for q → 1 Tsallis distribution becomes usual Boltzmann-
Gibbs distribution,

fBG (pT ) =
1

T
exp

(
−pT
T

)
. (7)

As shown in [13] this formula nicely describes wide range
of the measured transverse momenta (0.1 < pT < 100
GeV) in which cross section spans a range of ∼ 14 orders
of magnitude. Parameter q represents the degree of the
non-extensivity or, in other words, the degree of devia-
tion of the system from the thermalized or equilibrated
system, which is usually described by the well known
Boltzmann-Gibbs statistical mechanics. In our case, it
is a limiting form of the considered system for tf → ∞.
Therefore our feq in Eq. (5) is assumed to have form of
Eq. (7).

The above-mentioned features of the Tsallis distribu-
tion (see also [14]) mean that also fin can be selected
in this form, but with q characteristic for hard scatter-
ing. Its value can be estimated by assuming the basic
quark model as responsible for the initial state. In this
case the high pT differential cross section can be inferred
from the counting rules [15–17] stating that for such pro-
cesses the invariant cross section for the exclusive process
at high pT behaves as the power law, with power index
γ = 2× [(number of active participants)− 2]. Assuming
that the dominant processes of this type are 2 → 2 pro-
cesses (like qq → qq) one gets that dσ/dpT ∝ p−γT with
γ = 4, what translates to qin − 1 = 1/γ.

t f
/τ

re
l

√
s [GeV]

0.14 + 7.06 · s−0.166

FIG. 1. Energy dependence of tf/τrel obtained from the ex-
perimental data using Eq. (10). Based on data from: [13]
(triangle), [18] (circles) and [20] (diamonds).

To find the dependence of the tf/τrel ratio on energy
we calculate the relation between temperatures deduced
from different components of Eq. (5) using the fact that
for Tsallis distribution

〈pT 〉 =
T

3− 2q
. (8)

Using this in Eq. (5) one obtains that

〈pT 〉(3−2q) = 〈pT 〉+[〈pT 〉 (3− 2qin)− 〈pT 〉]·exp

(
− tf
τrel

)
(9)

and assuming that 〈pT 〉 = const during the time evolu-
tion one gets that

tf
τrel

= ln

(
qin − 1

q − 1

)
. (10)

Using for q = q(s) values obtained from the experimental
data on transverse momentum distributions for different
energies [13, 18, 20] we obtain the ratio tf/τrel as shown
in Fig. 1. Closing this Section, let us note that assuming
that all distributions used here are Tsallis distributions,
we are actually going beyond the RTA scheme (see Ap-
pendix for details).

III. DEDUCING ENERGY DEPENDENCE OF
tf/τcor FROM DATA ON MULTIPLICITY

We will now move on to correlation time τcor which
determines multiplicity distribution P (N) [4]. Its scaled
variance is given by the correlation function ν2 (t1, t2) =
ν2 (t = |t1 − t2|) by the relation [19]

Var (N)

〈N〉 = 1 + 〈N〉〈ν2〉, (11)

where

〈ν2〉 =

∫ ∫
ν2 (t1, t2) dt1dt2 =

2

t2f

∫ tf

0

(tf − t) ν2(t)dt.

(12)
For the correlation function of the the form

ν2(t) = exp

(
− 2t

τcor

)
(13)

one gets

〈ν2〉 =

(
τcor
tf

)2 [
exp

(
− tf
τcor

)
− 1 + 2

tf
τcor

]
(14)

and the scaled variance is equal to 2

Var (N)

〈N〉 = 1+
〈N〉

2

(
τcor
tf

)2 [
exp

(
− tf
τcor

)
− 1 + 2

tf
τcor

]
.

(15)
Using Var (N) and 〈N〉 values evaluated from the

charged-particle multiplicity distributions for non-single-
diffractive proton-proton (antiproton) collisions [21, 22]
we obtain the ratio tf/τcor shown in Fig. 2. Combining
the results of both approaches, we present in Fig. 3 the
ratio τrel/τcor in the energy range from 10 GeV to 7 TeV
analyzed here.

2 Notice that for multiplicity distribution expressed via Negative

Binomial form is characterized by the parameter 1
k

=
Var(N)
〈N〉 −

1
〈N〉 = 〈ν2〉.
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t f
/τ

co
r

√
s [GeV]

0.0778 + 67.12 · s−0.25

FIG. 2. Energy dependence of tf/τcor obtained from experi-
mental data using Eq. (15).

τ r
el
/τ

co
r

√
s [GeV]

FIG. 3. Energy dependence of τrel/τcor obtained from exper-
imental data.

IV. INTERPRETATION OF THE RESULTS

Let us now try to organize these results and draw some
conclusions from them. The quasi-power distribution can
be interpreted as a trace of temperature fluctuations [23]
and the non-extensive Tsallis statistics, usually called su-
perstatistics [24, 25]. If we approximate the production
process with an irreducible Markov chain, then the de-
pendence of fluctuations on time will be very sensitive to
the reciprocal of the relaxation time, ω = 1/τrel, that is,
the stochastic collision frequency for the particle [26]. It
is therefore reasonable to choose τ so that the fluctuation
decay time along the particle’s trajectory is the same as
the decay time of a small section (small volume) of real
matter surrounded by a much larger volume of its rem-
nants. Now suppose that this small sample has a tem-
perature variation such that its temperature is T + ∆T .
The sample will therefore gain or lose energy at a rate
proportional to the temperature difference δT and the
thermal conductivity κ.

By dimensional analysis, it is easy to show that the
rate of heat gain (in energy per time unit) is ∼ κ∆T .

Because each stochastic collision changes the system en-
ergy by amount ∼ κ∆T and the total stochastic colli-
sion frequency is Nω, hence the rate of energy gain is
∝ Nωκ∆TcP , where cP is the specific heat for constant
pressure. By identifying the above increase in heat with
the increase in energy, we obtain that the stochastic col-
lision frequency for the particle (reciprocal of the relax-
ation time) is equal to 3

1

τrel
= ω =

κ

cP

V

N
. (16)

If the stochastic collisions are to simulate the effects of
the surroundings of a set of N particles, the frequency
of the collisions should be as given in this formula. Note
that ω is of the order 1/N and the total collision coeffi-
cient for the sample is of the order 1. For a sufficiently
large multiplicity N , the frequency of stochastic collisions
will be much less than the frequency of inter-particle col-
lisions. Therefore, most of the time most particles will
move according to the conservative equations of motion
for a closed system. The stochastic interruptions will be
rare, but they will cause the system energy to relax to a
value appropriate for temperature T at a rate appropri-
ate to the N particle system, and will cause the energy
to fluctuate around its equilibrium value with the mag-
nitude appropriate for the canonical ensemble.

From Eq. (16) it can be expected that the multiplicity
N is related linearly to the relaxation time τrel, N ∼ τrel.
Assuming additionally that the freezout time tf is inde-
pendent of energy, i.e. that the energy dependence shown
in Fig. 1 comes only from the dependence of the relax-
ation time, τrel = τrel(s) (which in turn comes from the
energy dependence of the transverse momentum distri-
butions), one can expect that for θ(s) =

tf
τrel

shown in
Fig. 1 one gets

〈N(s)〉 = a+ b/θ(s). (17)

As can be seen in Fig. 4 comparison with data shows
that this is indeed the case confirming the arguments
presented above. Note, however, that our result does not
exclude the nonlinear dependence of τrel on 〈N〉. We
show that 1/θ ∼ 〈N〉 ∼ (

√
s)b. For τrel ∼ 〈N〉a we have

energy dependent tf , tf ∼ (
√
s)b(a−1). For a > 1 tf

increases with energy, while for a < 1 it decreases with
energy.

Interpretation of the results obtained from the anal-
ysis of multiplicity fluctuations is not so simple. The
reason is that the fluctuations here come not only from
the fluctuations of temperature T but also from the fluc-
tuations of the available energy U (i.e. the fluctuations of
inelasticity K). To ilustrate this we consider conditional

3 This can be compared to the result we get from the Fourier
equation for heat transfer. ∂T

∂t
= κ

ρcP
∆T , where ρ is the density

of the particles [27].
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〈N
ch
〉

√
s [GeV]

−4.46 + 35.2/(0.14 + 7.06 · s−0.166)

FIG. 4. Energy dependence of mean multiplicity as given by
Eq. (17). Data points are from [21].

Poisson distribution P (N |n) with fluctuating mean value
n̄ according some distribution w (n̄). The resulting mul-
tiplicity distribution P (N) is given by 4

P (N) =

∫
P (N |n̄)w (n̄) n̄ =

∫
n̄N

N !
e−n̄w (n̄) dn̄. (18)

The fluctuations caused by w (n̄) define the moments of
the distribution:

〈N〉 = 〈n̄〉, (19)

Var (N) = 〈N〉+ Var (n̄) , (20)

and correspond to the correlation function by the relation

〈ν2〉 =
Var (n̄)

〈n̄〉2 , (21)

The mean value of the distribution w (n̄) is

〈n̄〉 =
U

T
=
K
√
s

T
, (22)

where both T and K can fluctuate, in fact we have that
[28]:

Var (n̄)

〈n̄〉2 =
Var (K)

〈K〉2 +
Var (1/T )

〈1/T 〉2 . (23)

Because Var (1/T ) /〈1/T 〉2 = q−1 (where q is the nonex-
tensivity parameter [28]) we have that

Var (K)

〈K〉2 = 〈ν2〉 − (q − 1). (24)

Taking q(s) used in Fig. 1 and 〈ν2(s)〉 such as in

4 Note that the exponential form of the distribution w (n̄) results
in a geometrical (Bose-Einstein) distribution of P (N), while for
w (n̄) given by the gamma distribution we have the Negative
Binomial Distribution of P (N).

V
a
r
(K

)
/〈
K
〉2

√
s [GeV]

FIG. 5. Relative fluctuations of the inelasticity coefficient
emerging from the Eq. (24) (solid curve) and Eq. (26) with
parameter p = 0.7 (dotted curve).

Fig. 2 we get the dependence on the energy of the rel-
ative fluctuations K shown in Fig. 5. Because, approx-
imately, q − 1 ∼= 1

3 〈ν2〉 [28], therefore Var (K) /〈K〉2 '
2
3 〈ν2〉. For the uniform distribution of K, we have

Var (K) /〈K〉2 = 1/3 whereas for the symmetric triangle
distribution Var (K) /〈K〉2 = 1/6. Inelasticity distribu-
tion at low energies

√
s = 16.5 GeV show more or less

triangle form [29, 30] 5.
However, the above results are for independent fluctu-

ations of K and T , and they can be correlated. In such a
case the result can be quite different depending on the co-
efficient of correlations. Also, due to conservation rules,
the initial distribution does not have to be Poisson dis-
tribution as in Eq. (18) but Binomial Distribution (BD).
Then instead Eq. (20) we would have

Var (N) = 〈N〉 − 〈N〉p+ Var (n̄) (25)

where p is the emission probability which enters into the
BD. In such a case we have

Var (K)

〈K〉2 = 〈ν2〉 − (q − 1) +
p

〈N〉 (26)

which is shown in Fig. 5.

V. SUMMARY AND CONCLUSIONS

To summarize, let us first note that from Figs. 1, 2
and 3 one can deduce the relative positions of tf , τrel

5 The Feynmann x-spectrum of leading protons is close to a flat
uniform distribution almost for all range, from x = 0 to x =
1. The distribution of K = 1 − (x1 + x2))/2 depends on the
degree of correlation of the fractional energy contents x1 and
x2 of the leading particles. If x1 and x2 are totally correlated,
then K is uniformly distributed, whereas if Cov (x1, x2) = 0 the
distribution of K is triangular.
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and τcor relative to each other depending on the energy:
for
√
s < 570 GeV tf > τrel > τcor whereas for 570 GeV

<
√
s < 5.3 TeV we have that τrel > tf > τcor and

for
√
s > 5.3 TeV τrel > τcor > tf . Relaxation time

and correlation time are roughly related by the relation

τcor · t1/2f = 0.3 (τrel)
3/2

.

The relaxation time τrel discussed in this paper does
not describe the evolution of the distribution function
f as it is written in Eq. (4). In our case, it charac-
terizes the time evolution of the non-extensivity param-
eter q as shown in Eq. (A.3). It therefore describes
the temporal evolution of the temperature fluctuation,
Var (1/T ) = 1

4 〈1/T 〉2 exp (−t/τrel). Nevertheless, pre-
sented by Eq. (9) method chosen in the Section II to
determine the ratio trel/τ , leads to the result given by
Eq. (10), which is identical to what we get from Eq.
(A.4) resulting from Eq. (A.3).

The dependence of τrel on energy mainly comes from
the energy dependence of multiplicity (cf. Eq.(17) and
Fig. 4). Note that the collision time τcoll, defined as
1/τcoll = 〈uσ〉N/V , where u is the thermal (relative)
energy (relative) and σ is the total cross-section for colli-
sions between particles after averaging over the momen-
tum, decreases with a multiplicity. Both of these times,
τrel and τcoll, are related to each other by the relation
τcollτrel = cP /(〈uσ〉κ), which very weakly depends on
energy. This suggests that collisions between particles
play the role of a stochastic force causing temperature
changes. And the temperature (T ) fluctuations in com-
bination with the inelasticity (K) fluctuations lead to
multiplicity fluctuations. Thus, both of these fluctua-
tions (T and K) determine the correlation function 〈ν2〉
which is described by τcor.
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Appendix: RTA and beyond

Notice that Eq. (5) defining RTA can be rewritten as
a two-component final distribution

ffin = fin exp

(
− tf
τrel

)
+ feq

[
1− exp

(
− tf
τrel

)]
.

(A.1)
Using fin and feq in the form of Tsallis distribution (with,
respectively, qin and qeq) we get ffin for different values
of tf/τrel as presented in Fig. 6.

However, if we would require that all distributions f(t)
in Eq. (5) have the form of Tsallis distributions depend-
ing on time entirely via the time dependence of the corre-
sponding nonextensivity parameters, f(t) = f [q(t)], then

f f
in
(p
T
)

pT [GeV/c]

tf/τrel = 0
tf/τrel = 5
tf/τrel = 10
tf/τrel = ∞

FIG. 6. Schematic transverse momenta distributions ffin
resulting from the relaxation time approximation scenario
for qin = 1.25, qeq = 1.0, T = 0.14 GeV, and for t/τ =
0, 5, 10, ∞ (curves from top to down).

f f
in
(p
T
)

pT [GeV/c]

tf/τrel = 0
tf/τrel = 1
tf/τrel = 2
tf/τrel = 3
tf/τrel = ∞

FIG. 7. Schematic transverse momenta distributions for ffin
calculated from Eq. (A.2) for t/τ = 0, 1, 2, 3, ∞ (curves
from top to down). The values for T , qin, qeq are the same as
for Fig. 6.

the time evolution would be given by

∂f(t)

∂t
= F [q(t)] (A.2)

(with quite involved form of F 6). Assuming further that
the dependence of q on time is given by

∂q

∂t
=
qeq − q
τrel

, (A.3)

6 The form of the function F from Eq. (A.2) can be deduced by
taking f(t) given by Tsallis distribution with q = q(t) and calcu-
lating df/dt. As a result, we get that F [pT , q(t)] = f [pT , q(t)] ·{

ln
[
1 + (q(t)− 1) pT

T

]
+ T
T+[q(t)−1]pT

− [q(t)−1]2+1
2−q(t)

}
·

1
[q(t)−1]2

dq(t)
dt

. Note that approximately (because lnx+1/x ≈ 1)

we get that ∂f
∂t

= −f
(2−q)

dq(t)
dt

= f
τrel

q−1
2−q .
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and remembering that we always assume that qeq = 1,
we have that

q − 1 = (qin − 1) exp

(
− tf
τrel

)
(A.4)

which corresponds to Eq. (10). Fig. 7 shows the re-
sultant schematic distributions ffin for different tf/τrel;
they all have form of Tsallis distribution with q =
q (t = tf ) as given by Eq. (A.4). As one can see the
result now is different from that from the RTA approxi-
mation shown in Fig. 6.

[1] M. Bonitz, D. Kremp, Phys.Lett. A 212, 83 (1996).
[2] P.L.Bhatnagar, E.P. Gross, M.Krook, Phys. Rev. 94, 511

(1954).
[3] J.L. Anderson, H.R. Witting, Physica 14, 466 (1974).
[4] R. Balescu, Equilibrium and Non-Equilibrium Statistical

Mechanics, John Wiley and Sons, New York, 1975.
[5] W. Florkowski, R. Ryblewski, Phys. Rev. C 93, 064903

(2016).
[6] S. Tripathy, A. Khuntia, S.K. Tiwari, R. Sahoo, Eur.

Phys. J. A 53, 99 (2017).
[7] S. Tripathy, T. Bhattacharyya, P. Garg, P. Kumar, R.

Sahoo, J. Cleymans, Eur. Phys. J. A 52, 289 (2016).
[8] T. Bhattacharyya, P. Garg, R. Sahoo, P. Samantray, Eur.

Phys. J. A 52, 283 (2016).
[9] H-F. Zhao, B-C. Li, H-W. Dong, Adv. High En. Phys.

(2020) ID3724761.
[10] M. Younus, S. Tripathy, S.K. Towar, R.Sahoo, Adv.

High. En. Phys. (2020) ID 4728649.
[11] L. Qiao, G. Che, J. Gu, H. Zheng, W. Zhang, J. Phys. G

47, 075101 (2020).
[12] G. Wilk, Z. W lodarczyk, Eur. Phys. J. A 48, 161 (2012).
[13] C-Y. Wong, G. Wilk, L.J.L. Cirto, C. Tsallis, Phys. Rev.

D 91, 114027 (2015).
[14] G. Wilk, Z. W lodarczyk, Int. J. Mod. Phys. A 33,

1930008 (2018).
[15] S.J. Brodsky, G. Farrar, Phys. Rev. Lett. 31, 1153 (1973).
[16] S.J. Brodsky, G. Farrar, Phys. Rev. D 11, 1309 (1975).
[17] V. Matveev, R. Muradyan, A. Tavhelidze, Nuovo Cim.

Lett. 7, 719 (1973).
[18] T. Wibig, J. Phys. G 37, 115009 (2010).
[19] J.W. Goodman, Statistical optics, John Wiley and Sons

Inc., 1985.
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