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SHIFTED YANGIANS AND POLYNOMIAL R-MATRICES
DAVID HERNANDEZ AND HUAFENG ZHANG

ABSTRACT. We study the category ©*" of representations over a shifted Yangian.
This category has a tensor product structure and contains distinguished modules, the
positive prefundamental modules and the negative prefundamental modules. Moti-
vated by the representation theory of the Borel subalgebra of a quantum affine algebra
and by the relevance of quantum integrable systems in this context, we prove that
tensor products of prefundamental modules with irreducible modules are either cyclic
or co-cyclic. This implies the existence and uniqueness of morphisms, the R-matrices,
for such tensor products. We prove the R-matrices are polynomial in the spectral pa-
rameter, and we establish functional relations for the R-matrices. As applications, we
prove the Jordan—Holder property in the category ©O®". We also obtain a proof, uni-
form for any finite type, that any irreducible module factorizes through a truncated
shifted Yangian.
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1. INTRODUCTION

BEEEEREERElm=

Shifted Yangians, and their truncations, appeared for type A in the context of the

representation theory of finite W-algebras in the work of Brundan-Kleshchev [9], then
in the study of quantized affine Grassmannian slices by Kamnitzer-Webster-Weekes-
Yacobi [50] for general types and in the study of quantized Coulomb branches of 3d
N =4 SUSY quiver gauge theories by Braverman-Finkelberg-Nakajima [7] for simply-
laced types and by Nakajima-Weekes [62] for non simply-laced types.

Fix a finite-dimensional complex simple Lie algebra g. The shifted Yangians Y, (g)

1

can be seen as variations of the ordinary Yangian Y (g) in its Drinfeld presentation, but
depending on a coweight p in the coweight lattice, denoted by PV, of the underlying
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simple Lie algebra g. In the particular case ;1 = 0, we recover the Yangian Yy(g) = Y (g).
The representations of Yangians, and their trigonometric analogs the quantum affine
algebras U,(g), have been under intense study since several decades. The truncated
shifted Yangians, certain remarkable quotient of shifted Yangians, depend on additional
parameters, including a dominant coweight A\. These parameters A and p can be in-

terpreted as parameters for generalized slices of the affine Grassmannian Wﬁ (usual
slices when p is dominant). These varieties are also Coulomb branches, symplectic
dual to Nakajima quiver varieties, and the truncated shifted Yangians can be seen as
quantizations of these symplectic varieties.

For simply-laced types, representations of shifted Yangians and related Coulomb
branches have been intensively studied in this context, see [0} [48 49] and references
therein. For non simply-laced types, representations of quantizations of Coulomb
branches have been studied by Nakajima and Weekes [62] by using the method origi-
nally developed in [61] for simply-laced types (the reader may refer to the discussion
in the Introduction of [40]).

One crucial property of shifted Yangians is the existence [20] of a family of algebra
homomorphisms indexed by a pair of coweights p and v,

A,u,u : Y,u-I-V(g) — Yu(g) ® Yu(g)

This is analog to the Drinfeld-Jimbo coproduct for ordinary Yangians. These coprod-
ucts A, , induce a tensor product structure on a category

Osh — @ Ou

nepvy

which is a sum of categories O,, of representations over the shifted Yangians Y, (g) for
various coweights .

By [9, 48, 49], an irreducible module in category O°" is determined by its highest
weight, which is a tuple of ratios of monic polynomials in u, one ratio for each Dynkin
node of g. There is a natural C-action on the shifted Yangians by algebra automor-
phisms. Each module V' induces on the same underlying vector space a family of module
structures V(a), for a € C referred to as spectral parameter, such that V(0) = V. If
V is irreducible, then V'(a) remains irreducible and its highest weight is obtained from
that of V' by the substitution u — u — a.

In a seemingly different direction, the category O of representations of the Borel sub-
algebra U, (b) of a quantum affine algebra U, (§) was introduced and studied by Jimbo
and the first author in [41]. One crucial point for the approach therein is an asymp-
totical procedure to construct certain remarkable simple representations, the prefunda-
mental representations, as limits of finite-dimensional representations of Uy(g). It was
observed by the second author in [70] that category O*" for shifted Yangians provides a
Yangian counterpart of the prefundamental representations and their asymptotical pro-
cedure. The prefundamental representations play a similar role in category O*" as the
fundamental representations do in the subcategory of finite-dimensional representations
of the ordinary Yangian [14], hence the terminology.
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The trigonometric analogs of shifted Yangians, namely the shifted quantum affine
algebras, are other examples of shifted quantum groups. These algebras Uj'(g) were
introduced by Finkelberg-Tsymbaliuk [21] as variations of the quantum affine algebras
U,(g), for a quantization parameter ¢ € C* which is not a root of unity. The shifted
quantum affine algebras also admit remarkable truncations which are closely related to
K-theoretical Coulomb branches. The approach to the representation theory of Uj'(g)
developed by the first author in [40] is based on the relations with representations
in the category O of the Borel algebra Uq(B) and on associated quantum integrable
systems. For instance, the study of R-matrices and transfer-matrices of U,(g) allow to
give a proof, uniform for any finite type, that simple finite-dimensional representations
of shifted quantum affine algebras U/'(g) descend to a truncation.

In this spirit, it is natural to raise the question of the construction of R-matrices for
representations of shifted quantum groups. It is the problem we address in this paper
and from which we obtain several applications.

More precisely, we study morphisms in category O*" of the form
Ryw: VoW -WeV

for a pair (V, W) of irreducible representations of shifted Yangians.

To state our main results in a neat way, call an irreducible module positive (re-
spectively, negative) if its highest weight is a tuple of (respectively, inverses of) monic
polynomials. When the total degree of these polynomials is one, these are the prefun-
damental modules [70] mentionned above. Positive modules are one-dimensional, while
negative modules are infinite-dimensional except in the trivial case.

Construction of R-matrices. Let P be a positive module and N be a negative
module. Let V be an arbitrary irreducible module in category O%". As our first main
result, we prove the following cyclicity and cocyclicity properties (Theorem [L.§]):

(i) The modules P ® V and V ® N are generated by tensor products of highest
weight vectors. The modules V ® P and N ® V are cogenerated by tensor
products of highest weight vectors.

Here a module is cogenerated by a vector if this vector is contained in all nonzero
submodules. As a consequence, we obtain unique module morphisms sending a tensor
product of highest weight vectors to the opposite tensor product,

Rpy(a): P(a)®V — V@ P(a) and Ryn(a):V(a)® N — N @ V(a).

Another consequence of cyclicity property is that the R-matrices Rpy (a) and Ry, n(a),
viewed as vector-valued functions of a, are polynomial.

Our cyclicity property differs from the case of finite-dimensional irreducible repre-
sentations of ordinary quantum affine algebras and Yangians where cyclicity holds true
for generic spectral parameters. Indeed, in the non-shifted case the failure of cyclic-
ity is controlled by the poles of normalized R-matrices viewed as rational functions
[T, 25, 5T, 37, B8, [30] of the spectral parameter, which are rarely polynomial.

1The Drinfeld-Jimbo coproduct is only conjecturally known for shifted quantum affine algebras, that
is why we work with shifted Yangians in this paper.
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Properties of R-matrices. The R-matrices being module morphisms, we are able
to compute them for positive modules, much in the spirit of Jimbo [44]. It turns out
that they are connected to the Gerasimov—Kharchev—Lebedev—Oblezin truncation series
[32], GKLO series for short, which are certain generating series of the shifted Yangians
appearing in the definition of truncated shifted Yangians [9] [50] [7]. Note that in the
trigonometric case, the truncation series defining truncated shifted quantum affine al-
gebras were related to limits of transfer-matrices associated to positive prefundamental
representations (the Q-operators) in [40].

Since a positive module P is one-dimensional, we view pr(a) as a linear operator
on V. We establish the following property in the “positive case” :

(ii) For P a positive prefundamental module, the vector-valued polynomial func-
tion a — Rpy(a) from C to End(V) satisfies an additive difference equation
determined by the action of a GKLO series; Equation (5.30)).

In the case of finite-dimensional representations of the ordinary Yangian, there is a
general construction of R-matrices by solving additive difference equations [28 29, [30].
The point (ii) can be seen as a reverse statement : first the R-matrices are shown to
exist and then we find difference equations for them.

In the “negative case”, the following is the key technical result of this paper.

(iii) Let V be a fundamental module equipped with a weight basis, and view Ry (a)
as a matrix whose entries are vector-valued polynomial functions from C to
End(N). Then the diagonal entry associated to the lowest weight basis vector
of V is the action of a GKLO series; Equation (8.50).

Here a fundamental module [14] is a finite-dimensional irreducible module over the
ordinary Yangian whose associated Drinfeld polynomials are of total degree one (as
reminded above, it should not be confused with a prefundamental representation).

Application I: truncation of irreducible modules. We obtain a proof, uniform
for any finite type, that any irreducible module in O*" factorizes through a truncated
shifted Yangian. For g of simply-laced type, this can be derived from [48] [49], and then
extended to non simply-laced types by [62 [61] where the classification for non simply-
laced truncated shifted Yangians is reduced to the known classification in simply-laced
types via geometric arguments. In the case of shifted quantum affine algebras, the
result was established for finite-dimensional irreducible modules [40, Theorem 12.9] by
a method involving transfer-matrices of quantum integrable systems.

We prove furthermore that if g is not of type Fg, then any highest ¢-weight module
in category O*" descends to a truncation, by realizing such a module as a quotient of
a tensor product of positive module with a negative module (Theorem A.15]).

Application IT: Jordan—H®o6lder property. As another application, we prove that in
category 0" the tensor product of two (and hence finitely many) irreducible modules
admits a finite Jordan—Holder filtration. In other words, the subcategory Offz’n of
representations in O with a finite Jordan-Hélder filtration is closed under tensor
product. This seems surprising, at least to us, as the analog category O for the Borel
subalgebra [41] does not satisfy this property.
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We expect the R-matrices introduced in this paper for shifted quantum groups will
be further studied in the future, keeping in mind their importance for ordinary quantum
groups. Also, an approach to R-matrices using algebraic versions of Maulik-Okounkov
stable maps for the category O of Borel subalgebras was proposed in [39]. As this
category O is closely related to the category O for shifted quantum affine algebras,
we expect such algebraic stable maps also to exist for shifted quantum groups. We also
expect more applications of these R-matrices for the representation theory of shifted
quantum groups, in particular to get advances on the Conjecture in [40] which states
a parameterization of irreducible representations of non-simply laced truncated shifted
quantum affine algebras in terms of Langlands dual g-characters.

The paper is organized as follows.

In Section 2, we recall the basic properties of shifted Yangians and of the truncated
shifted Yangians. We also give a first estimation of the coproduct (Lemma 2.5)).

In Section Bl we recall basic properties of representations of shifted Yangians, includ-
ing the existence of Verma modules, the parameterization of irreducible modules in the
category O°", finite-dimensional irreducible modules, g-characters.

In Section Ml we prove cyclicity and co-cyclicity properties for tensor products of
prefundamental representations in category O%" (Theorem [4.8), which motivate our
definitions of Weyl modules and standard modules (Definition 10]). We describe these
modules when g is not of type Eg (Theorem [A.TH]).

In Section [B] we construct the R-matrices for suitable highest ¢-weight modules and
establish their first properties in Theorem [(.2] Propositions (6.3l and We also get
several results on the eigenvalues of certain of these R-matrices (Proposition [5.8]).

In Section 6l we focus on the case g = sly for which we prove the existence and unique-
ness of factorization for all irreducible modules in category O*" into tensor products of
prefundamental modules and Kirillov-Reshetikhin modules (Theorem [6.4]).

In Section [7] we compute the lowest diagonal entry of certain remarkable R-matrices,
its eigenvalue associated to highest weight vectors (Theorem [4]) and a functional
relation to express it in terms of one-dimensional R-matrices (Theorem [7H). The
second part uses a refined estimation of the coproduct that we establish (Lemma [7T]).

In Section 8 we prove uniformly that any standard module (and so any irreducible
module) factorizes through a truncated shifted Yangian (Theorem B.4]).

In Section @, we establish the Jordan-Hélder property of the category O*" (Theorem
[0.4]). We also get a uniform proof that a truncated shifted Yangian has only a finite
number of irreducible representations (Theorem [0.2]).

Acknowledgments : The authors are grateful to Hiraku Nakajima and to Alex
Weekes for useful correspondences. The first author is supported by the ERC under the
European Union’s Framework Programme H2020 with ERC Grant Agreement number
647353 Qaffine. The second author is supported by the Labex CEMPI (ANR-11-LABX-
0007-01).

2. SHIFTED YANGIANS

In this section we recall the basic properties of shifted Yangians from [7] 20} [52].
We review their definition, their standard gradings and their triangular decomposition.



6 DAVID HERNANDEZ AND HUAFENG ZHANG

We recall the shift homomorphism and the coproduct for which we give an estimation
(Lemma [2.5]). We also discuss the particular case of the ordinary Yangian as well as
certain remarkable quotients, the truncated shifted Yangians.

2.1. Definition and structure. Fix g to be a complex finite-dimensional simple Lie
algebra. Set N := Z>(. Let h be a Cartan subalgebra of g, and I := {1,2,--- ,r} be
the set of Dynkin nodes. The dual space h* admits a basis of simple roots (a;);er and
a non-degenerate symmetric bilinear form (,) : h* x h* — C. For i,j € I set

oo 2o ) (ai, o))
Y (o) 2
We assume that the d; € Z~( are coprime. For i € I, the fundamental weight w; € h*,

the fundamental coweight @, € b, and the simple coroot o) € b are determined by the
following equations for j € I:

€ 7, dij = d; := d;;.

L) =0y, (o) aj) =y,

where (,) : h x h* — C denotes the evaluation map. We shall need the coweight
lattice, the root lattice, and some of their subsets defined as follows:

coweight lattice PV := @Zw;/ C b, Q\fr = @NO&;/;

(wi,aj) = diéij, (w

i€l iel
root lattice Q := @Zai ch*, Qp:= EBNO@, Q_:=-Q,.
iel iel

A coweight means an element of the coweight lattice PV. Tt is dominant (respectively
antidominant) if all the coefficients of w,” belong to N (respectively —N). On the other
hand, a weight means an element of the dual space h*.

For a coweight € PV, the shifted Yangian Y),(g) is the algebra with generators

zt &p for (i,n,p) € I xNxXZ

in?

called Drinfeld generators, subject to the following relations:

(2.1) [€ip:&ial = 0, (270,25 ) = 0ijimtns

(2.2) (& p+1s x;%n] — [&ips x;'%m-l] = tdy; (gi,pfnji,n + $ji,n£i,p),
(2.3) [mfmﬂ, :E;tn] — [x;tm, x;-%nﬂ] = £d;; (x;tmx;tn + x;tnznlim),
(2.4) adi%:“ (af) =0 if i #j,

(2.5) $i—(pay—1 =1, &p=0 forp< —(u, ) — 1.

Here ad,(y) := xy — yx. Define the generating series for ¢ € I:

(2.6) wi(w) =Y af T Gu) =) GpuT T € Vi(e)(u )
neN PEL

These are Laurent series in u™!, with leading terms xffou_l and wlHoi) |

2The weight lattice does not play any role in this paper. We let @ denote fundamental weights, and
reserve w for highest ¢-weight vectors.
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Ei(n-i-l),Fi(n-i-l) and Hi(n-i-l)

Remark 2.1. Our generators a::rn, z; , and &, correspond to

in [7,20]. The zero-shifted Yangian YO( ) is the ordinary Yangian [17] with deformation
parameter 7 = 1, which will also be denoted by Y(g).

The algebra Y),(g) is Q-graded, called weight grading, by declaring the weights of
the generators x+ x;,, and & p to be a;, —a; and 0. For § € Q, let Y,,(g)s denote the

,n’1,n

subspace of elements of weight 3. Setting p = —(u, ;) — 1 in Eq.([2Z2]) and noticing
& p = 1, one obtains the following Cartan relation

(2'7) [gz (o) ;tn] - i(ahaj)x;‘%n'
So the weight grading is characterized alternatively: x € Y, (g) is of weight j if and
only if [&; _(.a,), 7] = (ai, B)x for all i € 1.

As in the case of ordinary Yangian (see for example [28] §2.8]), for a € C there is an
algebra automorphism 7, : Y,,(g) — Y, (g) defined by

(2.8) Ta : Yu(g) — Yu(9), xji(u) — xjt(u —a), &(u)—&(u—a).

Note that 7, o 7, = 744 for a,b € C and 79 = Id. Indeed 7, can be obtained from the
evaluation at z = a of the following algebra homomorphism:

(2.9) 7.1 Yu(9) — Yu(g9) ® Clz], X, »—>Z<> p—n @ 2"

neN

where X € {zF,&} and p € Z. It is understood that 23, = 0 for k < 0.
For ¢,n antidominant coweights, the following map extends uniquely to an algebra
morphism ¢y, ¢ Y, (g) — Yu+<+n(9)= called the shift homomorphism:

(2.10) + — ij—n_« i)’ n T, —(n,qi)? Sip fz’,p—<C+7770éi)'

The shifted Yanglan Y, (g) admits a triangular decomposition. Let us define three
subalgebras by generating subsets. The first Yu< (g) is generated by the z; o the second
Yf (g) generated by the z; "> and the third Y~ (g9) generated by the &; ,. These subal-
gebras inherit from Y),(g) the weight grading, the first two are graded by Q=+, and the
third {0}. Set

Y, (g) ==Y, (9)Y, (g) and Y, (9) == ¥, (9)Y, (0);

these are subalgebras. The following result is a consequence of the PBW basis theorem
[20, Corollary 3.15].

Theorem 2.2. [20] All shift homomorphisms are injective. The multiplication map
Y=(9) @Y, (9) ® Y, (9) — Yu(g) is an isomorphism of vector spaces. Y:F(g) is the
algebra generated by :L'Z:tn and & for (i,n,p) € I x N x Z subject to Eq.[2.5), the first
half of Eq.2.1), and the + part of Eqs.(2.2)-(24]).

It follows that the assignments 23 (u) — 2 (u) and &(u) ~ u)&(u) extend
uniquely to four algebra isomorphisms

(2.11) Yy (e) =Y, (9), Yit(a) =Y, (a), Y5 (a) =Y (g)
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The first two isomorphisms being independent of i, we omit y from Y, (g) and Y,~(g)
when no confusion arises.

The next property of shifted Yangians is the coproduct of Drinfeld—Jimbo, which plays
a key role in our study of representations. We rephrase [20, Theorem 4.8, Theorem 4.12,
Proposition 4.14]. While [20] considered simply-laced types, the proofs apply in general
as commented in [20, Remark 3.2].

Theorem 2.3. [20] There exists a unique family of algebra homomorphisms

Ay : Yuro(g) — Yu(a) @ Y. (g)
for all coweights p,v such that Ao is the coproduct of the ordinary Yangian and
properties (1)—(ii) hold true.
(i) For p and v antidominant, i € I, n < —(p, a5) and m < —(v, a):
(212) AﬂyV(x;,_n) = x:,_n ® 1’ Aﬂy”(x;m) =1® x;m

(i1) If ¢ and n are antidominant, then the following diagram commutes:

VAN,
(2.13) Yu+u(g) . Yu(g) ®Y,(g)
lbwu,m lLu,C,()@LV,O»W
A +¢, v+
Yu-i—u—i—(—i—n(g) . I Yiic (9) ® Yu+77(g)

Furthermore, if v is antidominant, then the following diagram commutes:

Aptu,p

(2.14) Ytv+p(9) Y/HrV(Q) ® Y,(g)

lAM»VJrP lAu,V@’Id
Id®AL,»

Y.(9) ® Y1,(0) Y.(9) @ Y, (g) ® Yy(g)

2.2. The ordinary Yangian. The ordinary Yangian Y (g) endowed with the coprod-
uct Ag o =: A is a Hopf algebra, which contains the universal enveloping algebra U(g)
as a Hopf subalgebra by identifying the xfo with root vectors in the Lie algebra g asso-

ciated to the roots £« so that oziv = l.&,o € h. Let R denote the set of positive roots of

g. One can extend a:ico =: xi to root vectors a:ﬂf € g4~ for v € R suitably normalized
with respect to an invariant bilinear form of g. Then the coproduct is determined by
[17] (see [33] §4.2] for a proof)

(2.15) A(Gin) =6 ®1+18&1+ &0 @ &0 — > (a7, ®af.

YER
For (y,n) € R x N, the root vector x7, € g— proportional to an iterated commutator
of the T; 0, We choose exactly one of the ;o in the commutator and replace it with T; e
It depends on the choice of ¢ and the position of ;o in the commutator. We fix such a

choice for all (y,n) € R x N, and let 27, denote the resulting element in Y"<(g), called
a PBW wariable as in [20], §3.12].
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Remark 2.4. For p a coweight let us identify the subalgebra Y, ~(g) with Y'<(g) via
(2II) so that the PBW variables make sense for Y~(g). By [20, §3.12], with respect
to a total order on the set of PBW variables which is in natural bijection with R x N,
the ordered monomials in the PBW variables form a basis of Y ~(g).

We shall need the current algebra g[t]; the Lie algebra g ® C[t] with bracket
[z@t™ y@t"] = [r,y] @ "™ forz,y €g and m,n € N.

It is bigraded by NxQ: the weight grading comes from the adjoint action of h C g C g[t];
the N-grading is defined by declaring x ® t™, for x € g and m € N, to be of degree m.
Its universal enveloping algebra U(g[t]) is bi-graded by N x Q.

The algebra Y (g) is N-filtrated, by declaring Y (g)<", for n € N, to be the linear
subspace spanned by the monomials in the generators xfm, &i,m for which the sum of
the indexes m is at most n. The N-filtration on Y (g) is compatible with the weight
grading, so that the associated grading gryY (g) is an algebra bigraded by N x Q. Here
by definition Y (g)<~! = {0} and

gy Y (9) == P Y (a)="/Y(g)=" "
neN

We have an isomorphism of (N, Q)-bigraded algebras
(2.16) U(glt) — erwY(g), o, @t™ > 2,
Here x;tm denote the images of x;tm under the projection

Y(g)=" — Y(9)="/Y (9)="" C gy (g).

This isomorphism appeared in [54]. For a complete proof, see [22] Theorem B.2].

2.3. First coproduct estimation. A compact formula for the coproduct of the Drin-
feld generators is unknown beyond sly in [20} §6.3]. Still some partial information on
the weight space projection of coproduct is sufficient.

Let us define the height function h : Q1 — N to be the additive function such that
h(c;) =1 for i € I. In the following, when we write h(f3) or speak of height of a weight
B, it is understood that g € Q.

We shall need the notion of principal part. For V a vector space, let V[[u,u™}]]
denote the space of formal power series with coefficients in V', and V'[[u~!]] its subspace
of power series in u~!. The principal part of a formal power series f(u) in V[[u,u™1]],
denoted by (f(u))4, is a power series in V[[u~!]] defined by

PEZ + peN

This was denoted by f(u) in [48, Lemma 5.13]. As an example,

u—a u—a

< g9(u) > _ g(a) for g(u) € Clu] and a € C.
+
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As another example, the shift homomorphism of (ZI0) acts on z:(u) as:

wf () e (O (W) g,y (u) (0 (u)) 4

K3 7

Multiplication endows V'[[u,u~!]] with a module structure over the polynomial algebra
C[u]. It is compatible with taking principal part:

(2.17) (g(hf)+)+ = (ghf)+ for g,h € Clu] and f € V/[u,u™"]].

Lemma 2.5. For all coweights ji and v, the coproduct A, satisfies:

Apwlaf (w) = af () © 1+ {&(w) © 2 (u))4. mod. Z Y, (0)-5 ® Yyt (@)pra
Ayl (w) = 18 a7 (u) + {27 (u) © &(u))s mod. Z 0) 5ar Y (0):

Apw(&i(u)) = &i(u) @ & (u) mod. Z Y, 9)-5 @Y, (9)s,

h(B8)>0
Au,l/(fi,—(p—l—u,al ) Sz (i) ® I+1® 52 (v,a)

In the first three relations, the notation “mod.V” for V C Y, (g) ® Y, (g) should be
understood as “modulo V ((u=1))”.

Proof. The case u = v = 0 follows from [52, Lemma 1]; while the statement of [52] is
weaker, its proof works in our situation; see also [14, Prop.2.8] and [31], Prop.2.10]. For
arbitrary coweights we use the zigzag arguments as in the proof of [20, Theorem 4.12].
We shall treat only the first assertion, as the other three are parallel. Our goal is to
prove the following relations, denoted by P(n,u,v), for n € N:

Apo(af)=al, @1+ Gnoiem @2, mod. > VY, (g)—p @ Y, (8) gt

m>0 h(B8)>0

For ¢,n antidominant coweights, applying ¢, ¢,0 ® t,,0,, to Au,y(xm), from the commu-
tative diagram (ZI3]) and injectivity of shift homomorphisms we deduce

P(?’L,,LL,V) <=>P(n—(§,ai>,,u—|—§,y+77).

Let us choose ¢ and 7 such that p+ ¢ and v + 7 are antidominant.
If n > —(u, ), then the above equivalence applied to (n + (u,«;),0,0) and the
antidominant coweights p + (,v + 1 gives

P(n+ (1, 2;),0,0) <= P(n — (¢, ), p+ G v +1).
So P(n,u,v) <= P(n+ (i, a;),0,0), and the latter is true by [52].
If n < —(p, ), then n — ({, ;) < —(u + ¢, ;) and by Equation (2.12]),
AH+C7V+77(‘T2—VL—(C az>) = x:rz—((,aﬁ ® 1.

In the commutative diagram (2.13]) put x ., at the top-left corner. Then the element at

J’_

the bottom-right corner is T (o) © 1. From the injectivity of the vertical maps we
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obtain that the element at the top-right corner is :E:—n ®1, namely, AW,(:EZT':H) = x;rn ®1.
For m > 0, we have & ,—m—1 = 0 in Y}, (g) because

n—m-—1<—(u,a;) —m—1<—(p,a;) — 1.

So the summation ), in P(n,p,v) vanishes. This proves P(n,pu,v), with the second
summation ) 3 being zero. O

The zigzag arguments will reappear in this paper at the level of representations.

2.4. Truncated shifted Yangians. These are quotients of shifted Yangians appearing
first in type A [9] as finite W-algebras, in dominant case [50] as quantizations of slices in
affine Grassmannians, and in the most general case [7] as quantized Coulomb branches.
Their definition involves the notion of /-weight.

To motivate Eq.([2.I8]) below, let 1 be a coweight and V' be a Y, (g)-module. Then
the actions of the & , on V mutually commute. Suppose that 0 # v € V' is a common
eigenvector with e; , being the eigenvalue of &; ,. We have

&i(u)v = ej(u)v, e;(u):= Z eipu P7h

PEZL

From Eq.(Z35) we see that e;(u) is a Laurent series in 4~! whose leading term is fixed
to be u~ () So the coweight j1 can be recovered from the I-tuple of Laurent series
(ei(u))ier- The actions of the &; _, o,y on v are encoded in the weight 8 € h* defined
below in the same way as Eq.(2.7):

1
&i—(pap)V = (i, B)v where 3 := Z € (pas) 5 Ti-

icl di

In notations of Subsection B.I] the vector v is of f-weight (e;(u))ier and weight 3.

Consider the multiplicative group C((u=1))* of the field C((u™1)) of Laurent series
in w=!'. The set of f-weights, denoted by L, is the subset of the I-fold product group
[Tc; C((w™))* consisting of I-tuples of Laurent series in u~' whose leading terms are
of the form ¥ for k € Z; it is clearly a subgroup. For e € £ and i € I, let e;(u) be the
i-th component of e, and let e; , € C, for p € Z, be the coefficient of u Pl in e;(u).
By definition there exists a unique k; € Z such that

ei(u) = Zei,pu_p_l with e;,, =0 for p < —k; — 1 and e; _;,_1 = 1.
pEZ
Define the weight and the coweight of e by

(2.18) w(e) = %wi eh, w'(e):= Zk,wl\/ e PY.

icl " i€l
This defines two morphisms of abelian groups @ : £L — h* and @" : L — PV.
Definition 2.6. A pair (u,r) of coweight p and ¢-weight r truncatable if

(2.19) @’ (r) —p e QY.
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In this situation, let m; € N, for ¢ € I, be the coeflicient of @) in " (r) — . We have
the Gerasimov—Kharchev-Lebedev-Oblezin (GKLO for short) series A;(u), a Y, (g)-
valued Laurent series in u™! of leading term ™ for i € I, uniquely determined by the
following equations [32], Lemma 2.1 with th = 1] (see also [50], §4A] and [7, (B.14)]):

>
i — A Z - t
] c;i<0 t=1
(2.20) =0 (u H A dj) Il 4wAa;jw-1)
L j cﬂ—— Jicji=—2
1 3
H Ai( u+ (u_i)Aj(u_i)’
Jicji=—3
The second equation comes from the fact that cj; = —1 implies d;; = —%dj, while

cj; < —1 implies dj = 1 and d;; = %cji.
Lemma 2.7. [32] Let (u,r) be truncatable. In the shifted Yangian Y,(g) we have
Ai(u)xj_’nAi(u)_l =z, + didi; Z xi_ﬂﬂ_ku_k_l.
k>0

Proof. Write A;(u) = >, aipu P71 The following relation is a consequence of [32
(2.12),(2.14)]; see [49, Definition 4.1] in simply-laced types:

[aivp+1’$j_,n] [aip, x ]n-i—l] = 0idiz;, ;n%ip-

Since a; , = 0 for p << 0, the above relation can be rewritten as

[al,p’ ] n] d; 51) Z xz n+ka7,,p k—1-
k>0

Multiplying the above equality by u=P~! and summing over p € Z, we get

Ai(w)xy,, — x5, Ai(u) = didy; Zx;nJrku_k_lAi(u).
k>0
Right multiplying by A;(u)~! gives the desired identity of the lemma. d

Definition 2.8. [50, [7] For (u,r) € PY x £ a truncatable pair, the truncated shifted
Yangian Y}/ (g) is the algebra defined as the quotient of the shifted Yangian Y),(g) by
the two-sided ideal generated by the coefficients of (A4;(u))y for i € I.

Remark 2.9. Assume each r;(u) is a monic polynomial of u. Our algebra Y,j(g) and
series A;(u) correspond to ?j‘(r) and u™ A;(u) in [47), §3.4] with A\ = @"(r). The orig-
inal truncated shifted Yangian, denoted by Yu)\ (r), is defined to be the image of Y, (g)
under the so-called GKLO representation by difference operators; see [50, Theorem 4.5]
and [7, Theorem B.15]. Conjecturally [50] the quotient map is an isomorphism, and a
proof in type A is available in [46], Theorem 1.6] and [47, Theorem A.5]. The reason
why we drop the polynomiality of r will be given in Section [8l
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3. REPRESENTATIONS OF SHIFTED YANGIANS

We recall basic properties of representations of shifted Yangians: Verma modules,
classification of irreducible modules in the category ©@%", g-characters, finite-dimensional
irreducible modules, and prefundamental modules.

Most of the definitions and results in this section are well-known, and were also
known for representation theory of three classes of algebras: the ordinary Yangian
[17, 14], [52), 28]; the upper Borel subalgebra of the quantum affine algebra U,(g) for
q € C* generic [41], 24, 39], which we refer to as Borel algebra; the shifted quantum
affine algebras recently developed in [21, 40]. Their proofs work for shifted Yangians
as well because the algebraic structures are common for these quantum groups.

3.1. Verma modules. We begin with some general remarks on the notions of weights
and (-weights for modules over shifted Yangians. Fix p a coweight. Let V' be a module
over Y,(g). For B € h* and f € L, define

Vﬁ = {'U cV ‘ Vie I, gi,—(u,aiﬂ) - (Oéi,,@)v},
Ve:={veV |V (ip) €l xZ, 3m e N such that (&, —e;,)"v = 0}.

If V3 is nonzero, then it is called a weight space of weight 3, and a nonzero vector
v € Vj is called a weight vector of weight wt(v) := 5. If V¢ is nonzero, then it is an
C-weight space of (-weight f and similar conventions for (-weight vector and wty(v).
Let wt(V) C b* be the set of weights of V', and wty(V) C L the set of f-weights. By
Eqgs.(25) and 27), for f € wty(V), 8 € wt(V) and a € Q, we have

H= wv(f)7 Yu(g)avﬁ g Va—l—ﬁ'

Remark 3.1. While the automorphism 7, from (Z8]) preserves the weight grading on
Y,.(g), this is not the case for modules. Define the weight fi € b* associated to p and,
by abuse of language, the group automorphism 7, : L — £ by

1
= Z(u,ai>—wi, To(f) := (£;(u — a))ier for £ € L.
icl di
For V a Y, (g)-module, the pullback module 7V is denoted by V(a), with a referred
to as the spectral parameter. We have

Vs =V(a)g_an for Bewt(V), Vi=V(a),r forfewt/(V).

Call V a weight module if it is a direct sum of weight spaces. In such a module, any
l-weight space V¢ is contained in the weight space Vg (g). We shall say that V' is weight
graded by a subset X C h* if V is a weight module and wt(V') C X.

Call V top graded if there exists A € h* such that V is weigh graded by A + Q_
and V) is one-dimensional. Clearly A is unique and V) equals an /-weight space V, for
a unique e € L. We refer to A\, V),e and V, as the top weight, top weight space, top
£-weight and top £-weight space.

Let e € £ be of coweight . The Verma module M (e) is the Y, (g)-module defined
by parabolic induction [48] §3.3]

M(e) :=Y,(g) Byt (g) C.



14 DAVID HERNANDEZ AND HUAFENG ZHANG

Here C = Cl is viewed as a Y, (g) by setting 27 (u)l = 0 and &(u)l = e;(u)l. The
vector we := 1 ® 1 € M(e) is of weight w(e) and ¢-weight e. From the triangular
decomposition of Theorem 2.2 and the weight grading on Y/~(g) we obtain that M (e)
is top graded with e being the top ¢-weight. Moreover, the linear map Yf (g) — M(e)
sending = € Y~(g) to zwe is bijective.

By standard argument, the Verma module has a unique maximal submodule, the
quotient by which is irreducible and denoted by L(e). By abuse of language, still let
we € L(e) denote the image of we € M(e) under the quotient.

Let V be a Y),(g)-module and let v be a nonzero vector of V. Call v a wector of
highest ¢-weight e if there exists a module morphism M(e) — V sending we to v.
Namely, & (u)v = e;(u)v and z} (u)v = 0 for i € I.

Definition 3.2. Call V' a module of highest £-weight e if there exists a nonzero surjective
module morphism M(e) — V.

Equivalently, V is generated by a vector v of highest /-weight e. It follows that V is
top graded with e being the top f-weight. In particular, v is unique up to homothety,
and there is a unique surjective module morphism V' — L(e) sending v to we.

Recall the coproduct for p, v coweights

A,u,u : Y,u-l-l/(g) — Y,u(g) ® Yu(g)

from Theorem 2.3l If W and V' are modules over Y, (g) and Y, (g) respectively, then
their tensor product W ® V' is naturally a module over Y}, (g). Since the coproduct
respects the weight grading, we have

Woa®V3C (WRV)ayp fora,peb’.
So, a tensor product of weight modules is still weight graded.

Example 3.3. Let e,f € £. Consider the tensor product module M (e) ® M(f). From
the coproduct of &;(u) and z; (u) in Lemma 2.5 we see that we @ws is of highest (-weight
ef. This implies that L(ef) is a subquotient of L(e) ® L(f).

Lowest (-weight vectors/modules can be defined by replacing ;" (u) with z; (u).

Example 3.4. Let V be a Y, (g)-module containing a lowest ¢-weight vector v_ and let
W be a Y, (g)-module containing a highest /-weight vector w. Then for j € I, v € V and
w € W, we have the following relations in the module V' ® W based on the coproduct
estimation of Lemma

£i(u)(v- @ w) = &j(u)v— @ &(u)w, x]_(u)(v_ RW)=v_® z; (u)w,

z; (u)(v@w) =ver; (Ww+ (2 (u)v @ §(u)w)4.

In particular, if w is an £-weight vector, then so is v_ ® w.

3.2. Finite-dimensional irreducible modules. In this subsection we recall the clas-
sification of finite-dimensional irreducible modules over shifted Yangians from [48, The-
orem 3.5]. The result was proved in simply-laced types by reduction to sl and applying
[9, §7.2], so it works in general types. See [40, Theorem 6.4] for a similar classification
for shifted quantum affine algebras.
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Example 3.5. [70, Remark 24| Let (i,a) € I x C. The positive prefundamental module
L;fa is the one-dimensional Ywiv (g)-module of highest (-weight (our sign convention is
opposite to [70, (10)] and agrees with [41], Definition 3.7])

(3.21) Uig:=01,---,1,u—aqa,1,---,1) prefundamental weight.

—— —
i—1 r—i

Our terminology follows [24, Definition 3.4]. In the framework of representations of
the Borel algebra [41], the positive prefundamental module is an infinite-dimensional
irreducible module whose ¢-weights are rather simple, and it has important applications
in quantum integrable systems (construction of Baxter’s Q-operators [2] as transfer
matrices of this modules, polynomiality of Q-operators). In another framework of

representations of shifted quantum affine algebras, which is closer to our situation, the
positive prefundamental modules are one-dimensional [40, Example 4.12].

For (i,a) € I x C define the fundamental loop weight by
v,

ia—2

—5d; .
—2 e[ fundamental loop weight.

(3.22) Yig =
e \Ijz,a—l—%dl

In the notations of [14], §2.13], L(Y;,) is the finite-dimensional irreducible module over
Y (g) with Drinfeld polynomials P;"(u) = u — a — 3d; and P]"'(u) =1 for j # ¢. This
justifies its name fundamental module.

Theorem 3.6. [9, 48] For e € L, the irreducible module L(e) is finite-dimensional if

and only if e is a monomial of the V; , and Y; , for i € I and a € C. Furthermore, all
finite-dimensional irreducible modules over shifted Yangians arise in this way.

Example 3.7. Fix (i,a) € I xC. Let N;, be the irreducible module of highest ¢-weight
Yi,a—%di H Vja—di;-
Jici; <0

It is realized on the vector space C? with basis (e,ez) such that the only nonzero
actions of the generating series on the basis are

u—a+d;; . u—a—d;j .
—_— 1fC">O — lfC">O
{iluep =er ¢ 7@ L T Gilu)eg =epq v LT
u—a+d,-j 1fcij<0, ’U,—CL—dij 1fcij<0,
1 d;
+ _ i
I, \ujeg = e xr. (u)epr = €9.
i ( ) 2 u—a 1, i ( ) 1 “—a 2

Over the Borel algebra there is an infinite-dimensional irreducible module of simi-
lar highest ¢-weight [43, §6.1.3], denoted by N;;l in [I8, (6.2)], which gives rise to
cluster mutations [42], 43] and three-term Baxter’s TQ relations for transfer matrices
18] Prop.6.8]. Over shifted quantum affine algebras, the irreducible module is two-
dimensional [40, Example 6.6].
The ratio of the /-weights of N, , is a generalized simple root:

Uned.
(3.23) Ajg =[] -20%
JeI

eER generalized simple root.
Jra+d;;
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Notice that the A; , for (i,a) € I x C generate a free abelian subgroup of R. Originally
generalized simple roots were defined in [26, (3.11),(4.8)] as certain evaluations of the
universal R-matrix of Uy(g), and they were linked to ¢-weights therein. Similar formulas
hold [40, §5.5, Theorem 6.1] for shifted quantum affine algebras.

Proposition 3.8. [57, Prop.3.8|[70, Prop.6] Let V be a Y (g)-module which is a direct
sum of finite-dimensional weight spaces. For f£.f' € wt,(V) and (i,n) € I x N, if the
projection of z; , Vg to Vg is nonzero, then there exists a € C such that f' = A;lllf.

A finite-dimensional irreducible Y (g)-module is necessarily weight graded, as an
integrable g-module, and it is both of highest ¢-weight and of lowest f-weight.

Theorem 3.9. [63,164,34] Let U and V' be finite-dimensional irreducible Y (g)-modules
generated by highest £-weight vectors wi and wo respectively. Let a,b € C.

(i) There exist a tensor product of fundamental modules T and an injective mor-
phism from V to T whose image contains a tensor product of highest £-weight
vectors as well as a tensor product of lowest £-weight vectors.

(ii) There exists a finite subset X of C such that the module U (a)®V (b) is irreducible
ifa—b¢ X.

(iii) The assignment w1 @ we — we @ wy extends uniquely to a linear map
Ryv(u):U®V — VU C(u)

such that the evaluation at uw = a — b of the vector-valued rational function is a
module morphism from U(a) @ V(b) to V(b) ® U(a), if a — b is not a pole.

We refer to [34, Theorem 3.10] for a proof of the theorem and for a discussion
of relevant results for the quantum affine algebra. Part (i) is a weaker version of
the main results of [63] 64]: such a tensor product can be chosen to have a unique
irreducible submodule (of co-highest ¢-weight in the sense of Definition [£4]). The
vector-valued rational function Rpy(u) in Part (iii) is called normalized R-matriz. Tt
is rarely polynomial, contrary to our R-matrices constructed later in Section [l

As in [31] §2.13], set & := 1 max(d; : i € I)h" where h" is the dual Coxeter number
of g. One has the involution i + 7 of the set I of Dynkin nodes of g induced by
wo(oy) = —a; where wy is the longest element of the Weyl group of g. Define

(3.24) Vii= L(Y1, ) foriel
Lemma 3.10. [14], Prop.3.2] For i € I, the lowest (-weight of V; is Yi_lld_.
72 T

3.3. Category O®" and rationality. In this subsection we study of a category of
representations of shifted Yangians, which appeared in [49] §5] in simply-laced types.

For p a coweight, define O, to be the full subcategory of the category of Y, (g)-
modules. An object of O, is a Y, (g)-module V' such that:

(O1) it is a direct sum of finite-dimensional weight spaces;
(O2) there exist A1, A2, -+, A, € h* such that
wi(V) € [JO + Q).

i=1
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Category Oy is the category O of Y (g)-modules studied in [70] and it includes all the
finite-dimensional Y (g)-modules. When p is dominant and nonzero, there are finite-
dimensional modules not in category O,; see [9, §5.1] for g = sl,41.

Category O, is abelian. Let us describe its irreducible objects. The following ratio-
nality is well-known for quantum affine algebras [36] and Yangians [2§].

Lemma 3.11. Let V be a Y,(g)-module which is a direct sum of finite-dimensional
weight spaces. The generating series xli(u) and &;(u) restricted to each weight space of
V' are rational in the sense that they are expansions at oo of rational functions of u
with values in finite-dimensional vector spaces.

Proof. The rationality of the Laurent series & (u) and x3"(u) is proved in the same way
as [36, Prop.3.8], [28, Prop.3.6(i)]: first one shows explicitly the rationality of the x3" (u),
which implies that of (§;(u))4; then &(u) is (§;(u))+ plus a polynomial of w. O

Define R to be the subgroup of £ generated by the ¥; ,. An element e € £ belongs
to R if and only if all the components e;(u) are ratios of monic polynomials of u. Let
R, be the set of e € R of coweight p.

Theorem 3.12. For p a coweight, the L(e) for e € R, form the set of mutually
non-isomorphic irreducible modules in category O,,.

Proof. Standard arguments based on the triangular decomposition and rationality of
Lemma [3.11] show that any irreducible module in category O, is of the form L(e) for
e € R,. It suffices to prove that L(e) is in category O, for e € R,. Using repeatedly
Eq.([23)) as in [15, §5, PROOF OF (b)], we are reduced to show that for fixed i € I the

vectors z; ,we with n € N span a finite-dimensional subspace of L(e). Write
P(u)
Q(u)

It suffices to prove the recurrence relation (Q(u)z; (u)we)+ = 0. Indeed,

ei(u) =

with P(u) and Q(u) monic polynomials.

ol (u) =27 (W, + 0 Y Gimu " =2y (W, + 6 (WG (W) 4,
n>0

Q) (Wwe) 1 = (Qu)r] 27 (Wwe)y = 0i; (Qu) (u™&i(u)we) 1) +

= 0ij (U Q(u)& (u)we )+ = i <qu(u)gEZ; We> = 0.
n

The power series (Q(u)z; (u)we)+ is annihilated by all the x;rm If it is nonzero, then by
applying the triangular decomposition to its coefficients we obtain a nonzero submodule
of L(e) weight graded by w(e) — a; + Q_, contradicting the irreducibility of L(e). O

We define the completed Grothendieck group Ko(O,) as in [43] §3.2]: its elements
are formal sums ZeERM ne[L(e)] of the symbols [L(e)], for e € R, and ne € Z such

that the direct sum of Y},(g)-modules EBegguL(e)EB‘"eI is in category O,; addition is the
usual one of formal sums. Let V' be in category O,. As in the case of Kac-Moody
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algebras [45, §9.3], for e € R, the multiplicity mp ) € N of the irreducible module
L(e) in V makes sense, and we get a well-defined isomorphism class of V,

V1= mye,v(L(e)] € Ko(O,).
ecR,
The coproduct A, ,, of Theorem induces a functor
Oux0, — 04y, WV)=mWaV.
Define the direct sum of abelian categories and its Grothendieck group
0= P 0,, Ko(0"):= P Ko(Op).
nepv nepvy
Then the above functor extends to a tensor product functor
®: 0" x O — O,

It is unclear to us whether category (0", ®) is monoidal because the coproducts fail to
be co-associative for general coweights [20, Remark 4.15]. Still the exactness of tensor
product induces a group homomorphism

Ko(O*) x Ko(O™") — Ko(O*1),  (W],[V]) = W @ V].

If V is in category O,, then each weight space Vj is a direct sum of /-weight spaces
and each (-weight belongs to R, by Lemma B.IIl Following Knight [52], we define the
g-character of V' to be (we adopt the terminology of [26])

Xa(V) = > dim(Vp)f € &.
fEth(V)

The target & is the set of formal sums ) ¢ nef of £ € R with integer coefficients ng
subject to the following conditions [41], §3.4]

(E1) for each 8 € h* the set {f € R | ng # 0, w(f) = S} is finite;

(E2) there exist A1, A2, -+, Ay € b* such that

m
w(f) € [ JO +Q-) if ng #0.

j=1
It is a ring: addition is the usual one of formal sums; multiplication is induced by that
of R. One views & as a completion of the group ring Z[R].

Since xq respects exact sequences, the assignment [V] — x4(V') extends uniquely to
a group homomorphism
Xq : Ko(Oh) — &

called the g-character map. The next result is proved in the same way as [52], Theorem
2] and [26l, Proposition 1], based on the coproduct estimation of Lemma

Theorem 3.13. [52] 26] The g-character map is an injective group homomorphism.
Furthermore, for W and V in category O%", we have

Xq(W ®V)= Xq(W)Xq(V)-
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As an important consequence, the Grothendieck group Ko(O®") endowed with the
multiplication is a commutative ring: the associativity follows from that of the target
ring &, so does the commutativity as in [41, Remark 3.13]. In the case of shifted
quantum affine algebras, the ring structure of the Grothendieck group is given by the
fusion product of highest ¢-weight modules [40, Theorem 5.4].

For V a top graded module in category O%", we define its normalized q-character by

Xq(V) = xq(V) x e leg

where e is the top ¢-weight of V. In Example B.7 we have xq(N; ) =1 —|—AZ-_’;. A tensor
product of top graded modules is still top graded, and the normalized g-characters are
multiplicative with respect to tensor product as in Theorem B.131

We shall also need the notion of character which is defined in a standard way. Let
& denote the set of formal sums » ) . n xe* of the symbols e* with integer coefficients
ny under the condition: there exist Aj,Ag,-+-, A € b™ such that ny # 0 implies
A€ U;“Zl()\j + Q_). This is again a ring: addition is the usual one of formal sums;
multiplication is induced by ee# = e** for A\, u € h*. In particular, the weight map
w : L — b* induces a ring morphism

w:55—>5, anfHanew(f).
fer fer

The character of a module V in category O%" is defined as

X(V) = w(Xq(V)) = Z dim(VA)e)‘ cé.
Aewt(V)

In Example 3.5 we have X(LZG) = e~0d; @i by Eq.@2I5).

For (i,a,k) € I x C x N, the Kirillov-Reshetikhin (KR for short) module W,gll)l is the
finite-dimensional irreducible Y (g)-module of highest ¢-weight

Vi a—kd;
’ T
o = Yia-tdYia-3d; Yia 214,

. i i ha—3y
\Ilz,a 2

Following [24] Definition 3.4], define the negative prefundamental module L;, to be
L(¥7 1) in category O_gy for (i,a) € I x C. As in the case of the Borel algebra [41],

i,a
it can be realized as a limit of KR modules [70].

Proposition 3.14. [70] Fiz (i,a) € I x C. As the integer k € N tends to infinity, the

normalized q-character of the KR module W,gl) converges to the normalized q-character

,a
— .. -1
of L, as a power series in N[[A}]]jerpec.

Proof. We have constructed in [70, Prop.23] a module L in category O_gy with g-
character W, ; limy oo %(WIEZZL) In particular W ; is a highest (-weight of L and L,
is an irreducible subquotient of L. It suffices to show that ¥; ,x4(L) is bounded above

by Xq(L;,), so that L; = L. Since the former is the limit of %(WIEZZL), we are led to
i)

,a

prove that %(W,g ) is bounded above by xq(L;,) for k& € N. This follows by viewing
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W,gll)l as an irreducible subquotient of L;ra_ kd; ®LZ-_’ ., and taking normalized g-characters.

(Since L;ra_ kd, i one-dimensional, its normalized g-character is 1.) O

The character of a negative prefundamental module has a fermionic form [41, Theo-
rem 6.4]. We shall need its product form, conjectured in [57] and partly proved recently
n [53]. While [53] is about KR-modules over U,(g), its main result holds true in the
Yangian case by the functor of [28] relating finite-dimensional modules over U,(g) and
Y (g). Recall that R is the set of positive roots of g. For 7 a positive root and for i € I,
by definition (cw;’,~) is the coefficient of «; in 7.

Theorem 3.15. [53] Assume g is not of type Eg. For (i,a) € I x C we have

(@)
-\ ad;lwi 1 !
X(Li,[l) =€ H (1 _ e_—y> .

YER

3.4. Examples in the sls-case. For the simple Lie algebra slo, we omit the Dynkin
node 1 everywhere: z = :Eitn and &, = &1, as generators; N, = Ny, and LT = Lfa
as modules: ¥, =u—a and 4, = Z:Z*_’i as f-weights. We identify the coweight lattice
with Z, so that 1 is the fundamental coweight and 2 is the simple coroot. Similarly, the

set of weights is C, so that 1 is the fundamental weight and 2 the simple root.

Example 3.16. [13, Proposition 2.6] Let a,b € C. On the vector space with basis
(vi)ien there is a Y'(sl)-module structure, denoted by £

1 _ _(b—a—i)(i+1)
u—b+i—1vl_1’ v (wvi = u—>b+i

£(u)v; = (u—b—1)(u—a)

(u—b+1—1)(u—>b+1)
Its normalized g-character is
Xa( L) =1+ AP+ A7 A+ AT A A

The vector vy generates an irreducible submodule, denoted by L, of highest /-weight
=2, We have £ = Ly if and only if b —a ¢ N. When b —a €N,

Xa(L§) =1+ A7 + AJAL + AL A 4+ ATTAT - A
Let us define A} :={k e N |k <b—a}if b—a € N, and A} := N otherwise. Then
k € A¢ if and only if A,, is a factor of an f-weight in Xq(L$).

3§‘+(U)’L)Z’ = Vi41,

V;.

~Y

Comparing with Example B.7 we get a module isomorphism N, = Lz_l sending e
to vg and ez to v1. The following result identifies the Weyl module of Chari—Pressley
[16] with the standard module of Nakajima [58], 67] in the sls-case.

Theorem 3.17. [63, Theorem 4.7] Any finite-dimensional highest (-weight Y (sl2)-
module is a quotient of a highest (-weight module of the form Ny, & Ny, @ --- @ Ny, .

We recall the following result of Tarasov [65, [66] on Y (slz)-modules with detailed
proof in [55 Prop.3.6]. It was stated for the larger Yangian Y (gly) which contains
Y (sly) as a Hopf subalgebra. Irreducible highest ¢-weight modules over Y (gls) remain
irreducible when restricted to Y (sl2).
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Theorem 3.18. [65] 66 55] The Y (sla)-module Ly' @ Ly? @ --- @ Ly™ is irreducible if
and only if b; — aj ¢ Ay N AZ; forany 1 <1i,j <n.
The tensor product factorization in category Qg of Y (slz)-modules is not unique:

(u—9)(u—3)

L%@L%’%L( D)

> >3 LY.
Similar example appeared for Uq(SAlg) in [57, Remark 4.3]. The non-uniqueness issue
will be resolved in the larger category ©@%": see Theorem
Example 3.19. [70l Prop.23] In Example B.16] fix b, divide the right-hand sides of
x~ (u)v; and &(u)v; by b — a, and take the limit as a goes to infinity. In this way, we
obtain the negative prefundamental module L, over Y_;(sl):

1 _ 1+1
e e e L

E(u)v; =

———— Vi1
u—b4q T

u—b—1
(u—b+i—1)(u—b+1)

V;.

4. TENSOR PRODUCTS OF PREFUNDAMENTAL MODULES

In this section we study two distinguished families of irreducible modules in category
Os" the one-dimensional positive prefundamental modules and the infinite-dimensional
negative prefundamental modules. We prove cyclicity and co-cyclicity properties for
tensor products of these modules (Theorem [4.§]), which motivate our definitions of
Weyl modules and standard modules (Definition [£I0). In the end we identify these
two modules when g is not of type Eg (Theorem [A.13]).

4.1. One-dimensional modules. Let D be the submonoid of R generated by the
U, for (i,a) € I x C. This is indeed the classifying set for one-dimensional modules
in category O*" in the following sense.

Lemma 4.1. Let e € L. Then dim L(e) = 1 if and only if e € D.

Proof. One-dimensional Y),(g)-modules are necessarily irreducible in category O,, and
they factorize through the quotient of Y,(g) by the ideal generated by the [z,y] for
x,y € Y,(g). Since such an ideal contains &;, for (i,n) € I x N, in the quotient each
&i(u) is a monic polynomial. O

Category O does not admit non-trivial invertible object: if D and E are modules
such that D ® E' = L(1), then both D and E are isomorphic to L(1). In the case of
the Borel algebra [41] or shifted quantum affine algebras [40], there are infinitely-many
invertible objects, the one-dimensional weight modules.

By definition (compare with [24, Theorem 4.1])

Xq(s) =s forseD.
The generalized Baxter’s relations for representations of the Borel algebra [24, Theorem
4.8] and its proof hold true in category O". Recall from Lemma B.I1] that the g-

character of a finite-dimensional module in category O" lies in Z[R], which is the ring
of Laurent polynomials in the ¥; ,.
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Corollary 4.2. Let V be a finite-dimensional module in category O". Replace in
Xq(V) each variable V; , by [L;-':a] and xq(V) by [V]. Then multiplying by denominators,
we get a relation in the Grothendieck ring of O".

Let us apply the corollary to the module N; o of Example BT

W a—d, Vi atd;
XO[(JVZ',G):L H \I/j,a—dij—i_% H \I/j,a-l—dij?

\Ili’a Jici;<0 ha J:cij<0
LN =TT Efaa )+ T [ ara,):
jicij#0 Jiciz#0

For s € D of coweight p, let ps : Y, (g) — C denote the representation of the one-
dimensional module L(s). Let v be another coweight. Define the algebra morphisms
¢§ and 5, both from Y,1,(g) to Y,(g), as follows (we omit the dependence of these
morphisms on v which will always be clear from the context):

5= (ps @ )AL,  15:=(1® ps)Ay .

Then for V' a Y, (g)-module, the tensor product modules L(s) ® V and V' ® L(s) are
pullbacks of V' by (§ and (5 respectively. Based on Lemma we have the following
precise formulas for the algebra morphisms:

g w () = (sl (W)s, oz (w) =g (u), &lu) = osi(w)éi(w),
Gooowf(w) e al(u), (W) s (W), &) - si(w)éi(w).
Remark 4.3. Let (v,r) € PV x L be truncatable and let s € D be of coweight pu.
Then a Y, (g)-module V factorizes through the truncated shifted Yangian Y} (g) if and
only if L(s) ® V factorizes through Y#  (g). Indeed, the uniqueness of factorization in
Eq.([220) shows that ¢§(A;(u)) = A;(u) for i € I, where the first GKLO series is taken
in the shifted Yangian Y, (g) with respect to the truncatable pair (v + p,rs) and the
second in Y, (g) with respect to (v,r).

(4.25)

4.2. Cyclicity and cocyclicity. The main result of this subsection is the cyclicity
and cocyclicity properties of tensor product modules. By cyclicity we mean the module
is generated by a highest £-weight vector. Let us explain cocyclicity.

Definition 4.4. Call a Y, (g)-module V' of co-highest {-weight if it is top graded and
its top weight space is contained in all nonzero submodules of V.

It follows that the submodule of V' generated by the top weight space is isomorphic
to L(e), where e € L is the top ¢-weight of V. We will also say that V' is co-generated
by a vector of highest /-weight e.

Remark 4.5. Suppose that V is module of highest /-weight e and W of co-highest /-
weight e. Then there exists a nonzero module morphism V' — W which factorizes
through L(e). Such a map is unique up to homothety. It is surjective if and only if W
is irreducible, injective if and only if V' is irreducible.

Lemma 4.6. Let V' be a top graded Y, (g)-module. Then V is of co-highest {-weight if
and only if its top weight space equals the subspace of vectors in V' annihilated by the
a:j'n for all (i,n) € I x N.
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Proof. Let A € b* be the top weight of V. Let S C V be the subspace of vectors
annihilated by all the ZE:—n Then V), C S because A + «; is not a weight of V by
assumption and a::n‘/}\ C V4o, Moreover S is weight graded.

Assume V is of co-highest f-weight. Let 5 € A + Q_ be any weight of S. The
nonzero submodule S’ =Y),(g)Ss contains Vy. In particular, A € wt(S’). Applying the
triangular decomposition to Sg gives wt(S’) C B+ Q- and A € 3+ Q_. So f = A\
This proves wt(S) = {\} and S = V).

Assume S = V). Let T be a nonzero submodule of V. Since T is weight graded by
A+ Q_, there exists § € wt(T'), such that 5+ «; ¢ wt(T') for all ¢ € I. This implies
a::nTg = {0} for all (i,n) € I x N and therefore {0} # T C S = V). Since V) is
one-dimensional, V) =T C T ([l

Recall from (2.9) the algebra homomorphism for p a coweight
7, 1 Y, (g) — Yu(g) ® Clz].

Let V be a Y, (g)-module and W be a Y, (g)-module. The vector space W @ V ® C|z]
is a module over the tensor product algebra Y4, (g) ® C[z]: the tensor factor C[z] acts
by polynomial multiplication; the tensor factor Y, (g) acts by

(1®@7)Auy : Yiuru(g) — Yu(g) ® Yo(g) — Yu(9) ® Yi(g) ® Clz].
Similarly, the Y,1,(g) ® C[z]-module V' ® C[z] ® W is defined using (7, ® 1)A, ..

Remark 4.7. For € Y,4,(g) and w ® v € W ® V, the action of  on w ® v in the
Y,+v(g)-module W ® V'(a) is the evaluation at z = a of the vector-valued polynomial
z(w ® v) computed in the Y, 4, (g) ® C[z]-module W ® V' ® C[z]. Similar statement
holds for the Y,,1,(g) ® C[z]-module V ® C[z] ® W.

Theorem 4.8. Lets € D be of coweight u and e € L be of coweight v.
(i) If V is a Y,(g)-module of co-highest (-weight, then so are the Y, 1, (g)-module
V ® L(s) and the Y,_,(g)-module L(s™') @ V.
(ii) The assignment ws ® we — wse extends uniquely to a module isomorphism
L(s) ® M(e) = M(se).
(iii) The Y,—,(g) ® C[z]-module M(e) ® C[z] ® L(s™1) is generated by we ® wg-1.
Therefore, if a Y, (g)-module V is of highest {-weight, then so are the Y, ,(g)-module
L(s)®V and the Y,_,(g)-module V & L(s™!).

Proof. We shall prove the statements for L(s) and L(s™!) separately.

First half of part (i). Let A be the top weight of V. The tensor product V®L(s) is top
graded with V) ® ws being the top weight space. From the formula ¢§(z; (u)) = 2 (u)
of Eq.([@.23) we get z(vws) = rv@ws forv € Vandz € Y= (g) 2 Y7 ,(9) =Y, (9). By
Lemma [£.6] the module V is of co-highest (-weight if and only if the module V & L(s)

is of co-highest ¢-weight.

Part (ii). By Example B3l ws ® we € L(s) ® M(e) is a vector of highest ¢-weight
se. This induces a module morphism F' : M(se) — L(s) ® M(e) sending wse to0
ws ® we. From the formula ¢§(x; (u)) = z; (u) of Eq.([@.25]) we get F'(zwse) = ws @ Twe



24 DAVID HERNANDEZ AND HUAFENG ZHANG

for z € Y<(g) =2 Y,3,(9) = Y,~(g). Identifying the underlying space of Verma modules
with Y<(g), we see that F' is an isomorphism.

From now on fix W := L(s7!) and w := wg—1. For i € I setting P(u) = 1 and
Q(u) = si(u) € Clu| in the proof of Theorem B12], we get

(4.26) (si(u)z; (W)w)y =0 foriel.
Applying z;f (u )z, = —xf (u) + (u";(u))+ to the highest (-weight vector w gives
(4.27) (si(u)x] (u)x;, 2w+ =0 for (i,n) € I xN.

Indeed, the term x; , z; +(u) annihilates w and

(i (w) ("€ (w)w)+ )+ = (u"si(u)s;(u) " w)+ = (u") 4w = 0.

Part (iii). The Verma module M (e) is N-graded M(e) = @,enM (e), by declaring
M (e),, to be the subspace spanned by the weight vectors Ty Ligoms " L) m, We Where
(ig, my) € I xNfor 1 < k < n. Similarly the N-grading on the highest /-weight module
W is defined. Let S be the Y,_,(g) ® C[z]-submodule of M(e) ® C[z] @ W generated
by we ® w. It suffices to show that M(e) @ W C S.

Step 1. Prove M(e), ® w C S by induction on n € N.

The initial case n = 0 is trivial because M (e)y = Cwe and we @ w € S by definition.
Let n > 0 and v € M(e),. By linearity one may assume v = z;, v for certain
v' € M(e),—1 and (i,m) € I x N. By the induction hypothesis we have VRwesS.

In the module M(e) ® C[z] ® W we have by Example 3.4] and Eqs.([2.8)—(2.9):

7 (W)W @w) =2; (u—2)v ®@s;(u)tw+v @z (u)w.
Here one views x; (u — z) as the Laurent series Y, 7:(zix)u=""! whose coefficients
belong to Y, (g) ® C[z] and act as linear operators M (e) — M (e) @ C[z]. The principal
part at the right-hand side is unnecessary because s;(u) 'z; (u— z) is a power series of
u~ 1. Multiply the above equation by the polynomial s;(u) and then take the principal

part. We obtain from Eq.(d.20]) that

(4.28) (si(w)r; (W) (v @w) =27 (u—2)v" ®@w € S[[u]).

For p € N, let g, be the coefficient of u=P~1 at the right-hand side. We have
P

gp = Z <Z>x;’p_kv'®zk®w €S.

k=0
It follows from the Newton formula 7_,7, = Id that

VR W =T, v ®w—z<7z>(—z)m_kgk65.

Therefore M(e), ® w C S for all n € N and M(e) ®w C S.

Step 2. Prove M(e) ® W, C S by induction on n € N.
The initial case n =0 follows from Step 1 because Wy = Cw. Let n > 0 and w € W,,.
By linearity assume w = x; ,w' for certain weight vector w’ € W,,_; and (i,m) € I xN.



SHIFTED YANGIANS AND POLYNOMIAL R-MATRICES 25

By the induction hypothesis we have v ®@w’ € S. In the module M (e) ® C[z] @ W, take

an arbitrary vector v € M(e) and apply z;,,, € ¥,< (g) to v®w'. From the coproduct
formula A, _,(z;,,) of Lemma 2.5 we get

Sz ,(veu) = (1@ 1)A, _u(r;,)(vew)
= v ®x;,,w mod. Z M(e) ® Clz] @ w”.

w"’ eWwt(w”)—wt(w')EQ4

Since wt(w) = wt(w') — «;, any w” in the summation belongs to W, for certain
0 < n/ < n. The induction hypothesis applied to w” together with the fact that S is
stable by C[z] gives M (e) @ C[z]@w” C S. Sov@w € S for all v € M(e) and w € W,,.
Therefore, M(e) @ W, C S for all n € Nand M(e) @ W C S.

Second half of part (i). As in the first half of part (i), it suffices to show that if
g € W®V is annihilated by the z;7 (u), then g € w ® V. Assume 0 # g is a weight
vector of weight 8. Choose a weight basis By of V' and write g = ZUEBV gv @v. Then
each g, € W is a weight vector and g, # 0 only if wt(g,)+wt(v) = 5. Moreover, g, = 0
for all but finitely many v. Choose v € wt(V') such that:

(A) there exists v; € By of weight « such that g,, # 0;

(B) if g, # 0 and wt(v) # v then wt(v) ¢ v+ Q_.

Let i € I. By Lemma 28, =} (u)(g, ® v) is 2] (u)g, ® v plus a linear combination of

vectors in W @ v/ where v/ € By satisfies wt(v') € wt(v) + a; + Q4. We get from
assumption (B) that the component of Wg_44, ® V5 in 2 (u)g = 0 is

Z z (u)gy, ® v =0.
vEBy wt(v)=y
Since the second tensor factors are linearly independent, for each v in the summation,
we have xj(u)gv = 0 for 7 € I. Since W is co-generated by the highest /-weight
vector w, there exists ¢, € C with g, = cw. By assumption (A), ¢,, # 0 and so

B—v=wt(gy) = wt(w).
Next we consider the component Wy (,) ® Vy4q, of in z; (u)g. This comes from two
parts by the coproduct estimation of Lemma and assumption (B):

0= Z &i(u)epw @z (u)v + Z zf (u)gy @'
vEBy wit(v)=y v e€By wt(v)=v+a;
In the first summation, & (u)w = s;(u)"'w. Multiply the above equality by s;(u) and
take the principal part. We obtain
D=wen) Y avt Y (s e o
vEBy wt(v)="y v €By wt(v' )=+

For each v’ in the second summation, wt(g,) = 8 — v — a; = wt(w) — ;. So gy is
a linear combination of the z; w for n € N and (si(u)z (u)gw)+ = 0 by Eq.([E27).
The vector ¢’ := > veBy mwi(v)=y Cv¥ € V4 is annihilated by all the z (u). Since V is
of co-highest ¢-weight and since ¢,, # 0, we obtain 0 # ¢’ € V) and so v = A. In
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particular, V' is weight graded by v+ Q_. Assumption (B) forces g, = 0 if wt(v) # 7.
Sog=w®qg €w®V,. O

Part (i) of Theorem (.8 was known for V' @ L where V is a finite-dimensional ir-
reducible Uy(g)-module and L is a positive prefundamental module over the Borel
algebra [I8, Lemma 5.7]. Part (iii) can be seen as an integral version of cyclicity results
in the fusion constructions, over the field C(z), of representations of current algebras
[19, Prop.1.1] and quantum affinizations [36l Theorem 6.2]. Indeed, in the non-shifted
case the field C(z) is necessary because cyclicity holds true only for generic spectral
parameters; see [I], 25] 67, 51, 10] for U,(g) and [63] 64], [31] for Y (g).

Corollary 4.9. Let r,s € D. The assignment wp—1 ® wg—1 — Wye—14-1 extends uniquely
to a module isomorphism

LYo Ls™) 2L ts™.

Proof. Tt suffices to prove the irreducibility of the tensor product L(r~!) ® L(s7!).
By Theorem A8, the tensor product is at the same time of highest /-weight and of
co-highest f-weight. So it must be irreducible. O

For the Borel algebra and shifted quantum affine algebras, a tensor product of neg-
ative prefundamental modules is shown to be irreducible by realizing it as a limit of
an inductive system of irreducible tensor products of KR modules over U,(g); see [24]
Theorem 4.11], [43, Theorem 7.6] and [40, Theorem 5.5]. A similar limit procedure was
carried out in [5] with KR-modules replaced by finite-dimensional standard modules
[58] §13.2], resulting in modules outside of the category O for the Borel algebra [41].

4.3. Weyl modules and standard modules. We introduce two families of highest
(-weight modules in category @ based on the properties of tensor product modules
in the previous subsection. Their definitions resemble those in the category of finite-
dimensional modules over the quantum affine algebra U,(g) [L6 [58, [67].

Definition 4.10. For r,s € D, define the standard module W (r,s) to be the tensor
product of irreducible modules L(r) ® L(s™!). Define the Weyl module W (r,s) to be
the quotient of the Verma module M (s~'r) by the relations

(si(u)z; (u))4wg-1, =0 forieI.

Forr =W 0.V, a0 Virray and s =W, 3 W, 4 - W, 5. we have the following
factorization of the standard module (one need not care about non-associativity because
each tensor product in the parentheses is irreducible)

Wir,s) = (Lf , @ L, @ oLf Y& (L]

i1,a1 12,02 SV, Ji,b1

® L]'_27b2 Q- ® LJ'_NJ?N)'

This resembles the case of finite-dimensional standard modules over U,(§) in [67, Corol-
lary 7.17] and [59}, Corollary 6.13]. It implies the following equation in Ko(O*"):

(4.29) W(r,s) ® W(m,n)|] = W(rm,sn)] forr,s,m,n € D.

Our definition of Weyl module is similar to the one in the categories of finite-
dimensional modules over U,(g) [16, §4] and over the quantum affine superalgebra

Uq(sAl (m,n)) [69] §4.1]. The difference from [16] is that apart from the highest ¢-weight
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s~!r we have to introduce a new parameter s. This is because in category O and re-

lated category for the quantum affine superalgebra among the highest /-weight modules
of a fixed highest /-weight there is no universal one.

Remark 4.11. For dominantly shifted Yangians of type A, there is another definition
of a standard module in [9, (7.1)] as an ordered tensor product of irreducible modules.
These modules are parametrized by their highest /-weight. We do not know whether
they are particular cases of our standard modules.

Proposition 4.12. Let m,r,s € D.
(i) There exists a unique surjective module morphism W (r,s) — W(r,s) sending
Wg—1p 10 Wy @ Wg—1.
(ii) The map wm ® Wg—1p — Wg—1my extends uniquely to a module isomorphism
L(m)® W(r,s) — W (mr,s).

(iii) Weyl modules are in category O%". A highest -weight module in category O"
is necessarily a quotient of a Weyl module.

Proof. Part (i). By Theorem E8 the module W(r,s) is of highest f-weight s 'r.
Combining Eq.([&26) in L(s™!) with Eq.(#25]), we get for j € I:

(8j(w)ay (u))4 (wr © wg-1) = wr @ (sj(u)ay (u))ws-1 = 0.
All the defining relations of the Weyl module W (r,s) are realized in W(r,s).
Part (ii). Let 4 = > ;. ; kjw; be the coweight of s7ir. Set Z;(u) == (s;(w)x; (u))+.
Let V(r,s) be the subspace of the Verma module M (s~'r) spanned by the coefficients
of Z; (u)wg-1, for i € I, and let K(r,s) be the submodule generated by this subspace.
Then W(r,s) = M(s7'r)/K(r,s). For (j,m) € I x N, as in the proof of Theorem
we have a;;:mV(r, s) = {0}. Next we prove by induction on p > —Fk; — 1 that
§jpV(r,s) C V(r,s). The initial case is trivial because &; 1,1 = 1. Applying the
following relation to the highest ¢-weight vector wg-1,, which is a common eigenvector
of the §; 4 for q € Z,

EiptTy (u) = Z7 (W)€ pr1 + §p(udy (u)+
= (uy (w)+&jp — dig& pTi (v) = dig; (w)Ep,
we derive the case of p + 1 from the case of p. From the triangular decomposition of
Theorem 2.2l we get K (r,s) = Y<(g)V(r,s).

Theorem A8 (i) affords a module isomorphism F : M (s~ 'mr) — L(m)® M (s~ !r)
which sends zwg—1yy 10 Wm @ Twg-1, for € Y<(g). In particular F' maps the subspace
V(mr,s) of the Verma module M (s~ mr) onto wp, ® V(r,s). Furthermore,

F(K (mr,5)) = F(Y<(g)V (mr,5)) = wm & Y<()V(1,5) = wm @ K(r,5).
This induces the desired module isomorphism W (mr,s) = L(m) ® W (r,s).
Part (iii). Let W be a Weyl module generated by a highest ¢-weight vector w, so that
wt(W) C wt(w) + Q—. By definition Wy ()_q, is finite-dimensional for 7 € I. One can

copy [15), §5, PROOF OF (b)] to show that all weight spaces of W are finite-dimensional.
Therefore W is in category O%".
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Let V be a module in category O%" generated by a highest ¢-weight vector v of
f-weight n. Fix ¢ € I. The T for m € N span a finite-dimensional weight space.
We get a monic polynomial Q;(u) = Y 7_, cku® with 3}, cxv; v = 0. Applying xjm
for m € N to this equality we get that @Q;(u)n;(u) is a monic polynomial of u. Apply
repeatedly & _x,+1 — %522,— k, to the equality. From

1, _ _

[&,—(Mai)-i-l - 56i7—<u,ai)7xi,m] = _2dixi,m+17
we get Y o kT v = 0 for all m € N, namely, (Qi(u)z; (u))1v = 0. Let us set
s := (Qi(u))ier and r :=ns. Then r,s € D and V is a quotient of W(r,s). O

In the rest of this subsection we show that Weyl modules are standard modules when
g is not of type Eg. Recall from Subsection 2.2] the root vectors :Eff € g+~ and the PBW
variables z,, € Y (g)=" for (y,n) € R x N. Identify the associated grading gryY (g)
with U(g[t]) via the isomorphism of ([2Z.I6]). Then for i € I and n € N,

B V(05 =y, + Y (9)5" =, @t and dia) = &,

In general, 27, + Y (g)=""" is proportional to 27 @ t" € glt] for v € R.

Let s € D. Consider the Weyl module W (s,s) over Y(g). Its zero weight space
W (s,s)o is spanned by a highest ¢-weight vector w. The N-filtration of Y (g) descends
to the module W (s,s) by setting

W(s,s)=™ := Y (g)="w for m € N.

The associated grading gryW (s, s) is then naturally an N-graded U(g[t])-module. This
is referred to as the classical limit of W (s,s), denoted by W (s,s).

Lemma 4.13. Let s € D. As a module over h C g[t], the classical limit W (s,s) is

semi-simple whose character is equal to x(W(s,s)). Moreover, the g[t|-module W (s, s)
is generated by w and satisfies the relations
(2l @t"w=0= (o ®t"w = (2, ® = ey for (i,n) € I x N.

Proof. The first part comes from the compatibility of N-filtration and weight grading
on Y(g). For the second part, fix i € I and set N := (w”(s),q;). By definition
si(u) = Zg:o crpuf € Clu] with ey = 1. In the Weyl module W (s, s) we have

N-1

T, NW = — Z ek w € Wis, s)SV-L

k=0
In the associated grading, the left-hand side becomes (z7, ® tM)w and is of degree N,
while the right-hand side is of degree N — 1. So both sides vanish and (z,, @ t")w = 0
in the classical limit. The first two relations are proved in the same way. O

Let ag be the Lie subalgebra of g[t] generated by the elements x;‘z ®@t", ) ®t" and

Ty, @ (@ ()i for (i,n) e I x N. Define the U (g[t])-module

Ps :=U(g[t]) ®u(a) C

where ag acts on C as zero. Lemma [A.13] shows that W (s,s) is a quotient of Ps.
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Lemma 4.14. The action of h C g[t] on Ps is semi-simple with character

NGO
=11 (1—e—v> |

YER

Proof. We claim that the subalgebra ag of g[t] is spanned by
(B) : heth, of ot", i oth

where (i,7,m,n) € I x R x N> and m > (@"(s),7). Assume the claim. Take V to
be the subspace of g[t] with basis 27 ® tk where (v,k) € R x N and k < (w"(s),7).
Then g[t] = as @ V is a direct sum of semsimple h-modules. By the PBW theorem
for U(glt]), the h-module Ps is isomorphic to the symmetric algebra Sym(V') whose
fh-module structure is induced from that of V. Each basis vector z7, ® th of V is of
weight —v and gives rise to a factor ;— =5 in the character x(Sym(V')) = x(Fs). Taking
their products gives the desired product character formula.

First we show that each vector in (B) belongs to ag. This is clear for the first two
families of vectors because xj ® t™ is proportional to a commutator of the x;‘z ® t* for
(i,k) € I x N. For the third family, one may assume m = (w"(s),7), as the other cases
can be deduced from adjoint actions of the oz}/ ® t. Write v = Zie ;1 m;a;. Then T
is proportional to a commutator of the x, where each z, appears exactly m; times.

Replacing in the commutator formula of =7 each z,, with z, ® @ (8):24) e obtain
x @t™ in the Lie subalgebra as.

It remains to show that the subspace of g[t] spanned by (B) is a Lie subalgebra. The
only non-trivial case is to check that the following vector belongs to this subspace for
(8,7,mn,m) € R? x N2 with m > (" (s),7):

[zy @ 1" 27 @t7] = [af 2] ] @ ™"

If v — 90 ¢ R, then [a:j{,m;] is spanned by the azﬁ and ) for (i,8) € I x R, so we get

the first two families of vectors in (B). If v — § € R, then [z}, zy] € Ca s and
m+n>m> (w’(s),y) > (@'(s),y — 6).

So the commutator does belong to the third family of vectors in (B). O

Theorem 4.15. Assume that g is not of type Eg. Then for r;s € D, the surjective

morphism W (r,s) — W(r,s) of Proposition[{.19 (i) is an isomorphism. Furthermore,

the ordered monomials in the x7,, for (y,n) € R x N and n < (w"(s),a;) applied to
we-1, form a basis of the Weyl module W(r,s).

Proof. By Proposition (i), x(W(s,s)) is bounded above by x(W(s,s)). Lemma
14 implies that x(W(s,s)) = x(W(s,s)) is bounded above by x(Ps). In view of
Corollary and Theorem [B.15], if we write s = U;, o, Wiy 40 -+ U then

IN,aN >

N 1 (wivkm
H X zk,aka zk,ak)) = H H (1 — e_ﬁ{> = X(Ps).
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So all the characters are equal and the quotient map Ps — W (s, s) is bijective. From
the tensor product factorizations of Proposition [£12] (ii) we get

Xa(W(r,8)) = Xq(W(s,8)) = Xa(W(s,5)) = Xa(L(s™")) = Xa(W(r,5)).
This implies W (r,s) = W(r,s).

For the second part, the case r = s follows from the PBW basis of the classical limit
W (s,s) = Ps obtained in the proof of Lemma .14l The rest follows from the fact that
the isomorphism L(m) ® W(n,s) = W(mn,s) of Proposition (ii) for m,n € D
identifies the actions of Y'<(g) on the Weyl modules W (n,s) and W (mn,s). O

Remark 4.16. Our proof of Theorem in category O*" is simpler than the finite-
dimensional case [12, Theorem 7.5]. The reason is that we take the quotient of U(glt])
by a left ideal generated by elements of the Lie algebra g[t]. In the finite-dimensional
case, depending on a dominant integral weight >, ; k;w;, the left ideal of U(g[t]) to
define the classical limit is generated by [16] §2]:

o @t of " —bpoks, (25, ® D™+ for (i,n) € I x N.

The third family of generators is not in g[t]. This makes it highly nontrivial to find a
basis for the quotient, even in type A [11].

5. PROPERTIES OF R-MATRICES

In this section we study R-matrices, which are module morphisms
VoW — WV

where V and W are suitably chosen highest /-weight modules. We establish first prop-
erties of the R-matrices: existence, uniqueness, factorization and polynomiality (Theo-
rem [5.2] Propositions 5.3l and [5.6]). We also compute the eigenvalues of certain of these
R-matrices in Proposition 5.8

Definition 5.1. A module in category O%" is called negative if it is irreducible and its
highest /-weight is of the form s™! with s € D.

Theorem 5.2. Let V be a Y, (g)-module generated by a highest {-weight vector vy and
W be a Y,(g)-module generated by a highest (-weight vector w. Then the assignment
V) ®w = w® vy extends uniquely to a Yy, (g)-module morphism

Ryw : VoW —WeV

under one of the following conditions:

(i) The module is irreducible, and W is negative.
(ii) The module V is one-dimensional, and W is either a Verma module, or a
highest £-weight irreducible module, or a Weyl module.

Proof. Part (i). By Theorem A8 V ® W is of highest ¢-weight, and W ® V is of
co-highest {-weight. Their highest {-weights coincide by Example B3l The existence
and uniqueness of Ry follows from Remark

Part (ii). The same arguments as above work when dim V' =1 and W is irreducible.



SHIFTED YANGIANS AND POLYNOMIAL R-MATRICES 31

Suppose V = L(s) and W = M (e) withs € D and e € L. Then V ® W is isomorphic
to the Verma module M (se) by Theorem [A§ (ii). Since w ® vg € W ® V is of highest
£-weight se, the existence and uniqueness of Rv,w follows.

Suppose V = L(m) and W = W (r,s) with m,r,s € D. Then V ® W is isomorphic
to the Weyl module W (mr,s) by Proposition (ii). The uniqueness and existence
of Rv,W follows if the highest /-weight vector w ® vg € W ® V satisfies the defining
relations of the Weyl module W (mr,s). We have (s;(u)z; (u)w); = 0 in the Weyl
module W(r,s) = W and z; (u)(w ®vg) = (m;(u)z; (u)w)4+ @vg in the tensor product
module W ® L(m) = W ® V by Eq.([@253]). So

(si(u)z; (u)(w @ vo))+ = (si(u)(m;(u)z; (W)w)4)+ ® vo
= (my(u)(s;(v)z; (Ww)+)+ @ v = 0.

The second equality used twice Eq.(2.17). O

Rv,W is independent of the choice of the highest /-weight vectors vy and w because
both of them span a one-dimensional weight space. It is normalized as in Theorem [3.9]

As a first application, we consider the negative case of Theorem (5.2l For a € C there
exists a unique Y4, (g)-module morphism

Rv,w(a) V) @W —WeV(a), v®wr— w .

Proposition 5.3. Let V' be a highest ¢-weight irreducible Y, (g)-module and let W be
a negative module. Then there exists a unique linear map

Ryw(u): VoW — W eV eClu

whose evaluation at u = a is Ry (a) for any a € C.

(i) Assume v is antidominant. For r,s € D, we have
Ry pe-15-1) = (1© Ry ps-1)) (Ry -1y © 1)

where we have identified L(r~') @ L(s™1) with L(r~1s™!) as in Corollary[-9.
(ii) Let U and V be finite-dimensional irreducible Y (g)-modules. Then we have the
following quantum Yang—Baxter equation

(5.30) R2U?fv(u - U)R%]%W(U)R%/?W(U) = R%/?W(U)R%]?W(U)RZIJ%V(U —v).

It is an equality of linear maps frova® VoW to WV eU®eC(u,v), where
RB =1®R, R = R® 1, and Ryyv(u —v) is the normalized R-matriz of
Theorem [7.9.

Proof. Suppose that the negative module W is defined over the shifted Yangian Y),(g)
and fix highest ¢-weight vectors w in W and vg in V. We need to show that for any
vectors v € V and w € W, the function a — Ry (a)(v®w) is polynomial, in the sense
that it is the evaluation at z = a of polynomial of z taking values in W&® V. By Remark
A7 the Y, 4, (g)-module V(a) ® W is the evaluation at z = a of the Y1, (g) ® Clz]-

module V ® C[z] ® W. By Theorem [4.§] (iii), there exists a polynomial Zivzo Xs2® with



32 DAVID HERNANDEZ AND HUAFENG ZHANG

coefficients X € Y,,1,(g) such that in the module V(a) @ W:
N
VR W= ZaSXs(vo Rw) € V(ia) @ W.
s=0

Applying Ruw(a) to the relation yields

N

Ryw(a)(v®@w) = Z a*Xs(w®v) € W& V(a)

s=0
Conclude from the polynomial actions of the Xg on W ® V (a).
Part (i). Both sides are module morphisms because the three modules V, L(r~!) and
L(s~!) are modules over antidominantly shifted Yangians and we have trivial associa-
tivity by Theorem 2.3l Both sides send vg ® wp-1 ® wg-1 t0 wp—1 ® wg-1 @ vg. They
have to be equal by uniqueness of R-matrix in Theorem
Part (ii). Let wi,ws and w3 denote highest ¢-weight vectors of U,V and W. By
the rationality of Ry v (u) and polynomiality of Ry w(u) and Ry (u), it suffices to
prove Eq.(5.30) evaluated at © = a and v = b for a,b € C satisfying the conditions
of Theorem (ii)—(iii). Both sides are module morphisms from U(a) ® V(b)) @ W
to W ® V(b) ® U(a) since the tensor factors are modules over antidominantly shifted
Yangians. The source module is generated by w; ® wo ® ws by Theorem [4.8 and the
irreducibility of U(a) ® V(b). Both sides send the generator to w3 ® wy ® wy, so they
must coincide. O

For v and w weight vectors in the modules V' and W respectively, the vector v ® w
in the module V(a) ® W is of weight wt(v) + wt(w) — av by Remark 3.1} recall that
V is defined over Y,,(g). So Ryw(a)(v ® w) belongs to the weight space of the module
W&V (a) of the same weight, which by Remark [3.I]coincides with the finite-dimensional
weight space (W &V )wi(v)4wt(w) of the module W& V. Tt follows that Ry (u) restricts
to polynomials taking values in finite-dimensional vector spaces:

Ryw(u) € Hom((V @ W).,,(W®V),)® Clu] for v € wt(V @ W).
Choose a weight basis By of V. Then Ruw(u) can be viewed as a matrix
Rv,w(u) = (ty »(u))y ve, Where tZV,,U(u) € Hom(W, W ® Clu))
in such a way that
(5.31) Ryw(u)(v®@w) = Z tw (Ww @ for we W.
v'eBy
Restricted to weight spaces ¢,/ ,(u) are polynomials

tzv},fv(u) € Hom(Ws, Wi wt(v)—wi(v)) @ Clu]  for 8 € wt(W).

Definition 5.4. Let V be a finite-dimensional irreducible module in category O*" and
let W be a negative module. The lowest diagonal entry tyw (u) of Ry (u) is defined to
be tV v (u) where v_ € By is the unique lowest {-weight vector. Define the polynomial
Av.w (u) € Clu] to be the eigenvalue of tyy (u) associated to w.
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Because v_ spans a one-dimensional weight space, ty.w(u) and Ay, (u) are indepen-
dent of the choice of By .

Example 5.5. Fix i € I. Take V = N, and vy = e; in notations of Example 3.7
Write s;(u) = 7', cgu® with ¢, = 1. Apply Ry,w(a) to Eq.(@28) with v/ = e; and
z = a and then use Example B4 to compute z; (u)(w ® e;). We obtain

S Ry (a) (2 ®w) = Ry (@) (@5 (wer ® w) = (s:(u)ey (1) (w ® 1))

= (si(u)z; (Ww @ &i(u)er)+ + (si(u)w @ z; (u)er)+
—s-umx-_u w®e s; (u di we
= (st F0)) woat (st ) voe

u—a
m—1 m

Ry w(a)(e2 @ w) = si(a)w ® ez + Z Z ckak_"_lx;nw ® eq.
n=0 k=n-+1

u—a

Since ey is a lowest f-weight vector, Ay (u) = s;(u).

Next consider Theorem (ii). Let s € D denote the highest f-weight of V' = Cuy.
We have a unique linear operator RY on W such that RY (w) = w and

Ryw(vo ® w) = RY (w) @ vy for w € W.
Proposition 5.6. Let W be either a Verma module, or its irreducible quotient, or a
Weyl module, of highest £-weight e.
(i) We have RY o RY = R forr;s € D. In particular, the RY fors € D form

a commuting family of linear endomorphisms on W.
(ii) For i € I, there exists a unique linear map

RV (u): W — W @ Clu]
whose evaluation at u = a, fora € C, is R\VIZ,Q- Furthermore, for 5 € w(e)+Q-—,
restricted to the weight space Wy, the operator RY (—u) is an End(Wp)-valued
monic polynomial of degree (w, ,w(e) — B).
Proof. Suppose W = M (e) is a Verma module and write w = we.

Part (i). Comparing the actions of the shifted Yangian on the two tensor products,
we see that the linear map R : W — W for s € D is uniquely characterized by the
equations RY (w) = w and RY 01§ = 1§ o R, namely:

(5.32) Ry (W) =w, Rz (u) = (si(u)z; (u)+ R,

(5.33) Ry &i(u) = GRS, R (si(w)yf (u)4 = = (u) RS

7

Eq.(532) already determines R, because W is obtained from w by applying repeatedly
the z; .. We need to check Eq.(5.32) for RY o RY with s replaced by rs. The first half
is evident. For the second half,

RY o RY a7 (u) = Ry (si(w)ay (u))+ R

=(si(w)(ri(u)z7 (w)4)+ By o Ry = (si(wri(w)a; (u)+ By o RY.
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The second half of part (i) follows from the commutativity of D.
Part (ii). For (j,n) € I x N we have by Eq. (IBI{ZI)
Rgfi,—a$j_,n - (52J$z n+1 + (1 $ )R\Il

Write w(e) — 8 = > ey hja; so that hj = (@), w(e) — ). By the triangular decom-
position Wj is spanned by the vectors of the form Ting LW where each j € T

appears exactly h; times. Applying RW_ _, to such a vector gives

RY (e

Jint JK,TLK ) X w.

]’L
sl‘rzn +1—|—CL # LZ'] Mg

||::]x

The right-hand side is the evaluation at v = a of an Wjg-valued polynomial whose
dominant term is uhlazﬁ m T W We have therefore proved for each v € Wj the
existence of h; vectors vg,vi, -+ ,vp,—1 € Wa such that

Ry,

i,—a

(v) = aliv + ahi_lvhi_l + .- 4avy +vg foraeC.

By standard argument of Vandermonde determinant, each v +— v, defines a linear
operator Qs on W3 for 0 < s < h;. The End(Wg)-valued monic polynomial

uMId + uh lQh 14 Fu@ + Qo
defines the restriction of R}V (—u) to Wjp.

Suppose W is either the irreducible quotient of M(e), or a Weyl module. Let 7 :
M(e) — W denote the quotient map. The following diagram

Ris),m(e)

L(s) ® M(e) M(e) ® L(s)
ll@ﬂ lw@l
RL(S),W
L(s) @ W W ® L(s)
is a commutative because the top-left module is generated by ws ® we which is sent to
we ® ws by both paths. So (i)—(ii) for the Verma module descend to W. O

In the rest of this section, we compute the eigenvalues of RY (u) for W a Weyl
module or its irreducible quotient. From Eq.(5.33) we get R (u);, = &R (u). So
RY (u) restricts to an End(Wg)-valued polynomial for each (-weight f of W.

Remark 5.7. Recall from [2I1) that Y, (g) = Y, (g). As in [27, §2.6], there are shift
operators o; for i € I, which are algebra endomorphisms defined by

oi 1Y, (g) — Y, (), &ip = S n 7L, n+di5°
It follows from Lemma 27 and Eq.([5.32]) that:
_ u— o; + diéij _
(5.34) Ai(u)iﬂjn = T@%’,nfli(u)a
(5.35) R} (w)zj,, = (—u+0:)’z;, R (u).

This motivates the additive difference equation (5.36]) below.
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Proposition 5.8. Let (u,r) € PV x L be a truncatable pair and A;(u) for i € I be
the GKLO series in Y,(g). Let W be either a Weyl module or an irreducible module,
generated by a vector w of highest (-weight € € R,. Let g;(u) € C((u™1))* be the
eigenvalue of A;(u) associated to w and normalize A;(u) := g;(u) ™ A;(u).

(i) We have an additive difference equation

(5.36) RY (u+d;) = RY (u)4;(u) € Hom(W, W ® Clu)).
(ii) Each C-weight £ of W has a unique decomposition

hj
t=e[[][ 47,

jel s=1

where h; = (wjv,w(f_le» andajs € C for1 < s < hj. Furthermore, both of the

operators RV (u) and A;(u) acting on Wy have a unique eigenvalue, respectively

hi hi

H(ai,s —u) and  g;i(u) H w

s=1 s=1 ’
As a consequence, the normalized g-character of an arbitrary highest £-weight module
in category O" is a power series in N[[Ai_’;]]ig,ae(c with leading term 1.

Proof. Part (i). The left-hand side of Eq.(5.30]) sends W to W & Clu| by Proposition
.6l and the right-hand side sends each finite-dimensional weight space W3 of W to
W5 @ C((u™')). Since W is obtained from w by repeatedly applying the z;, for jelr
and n € N, and since both sides send w to w, it suffices to show that both sides have
the same commutation relations with the z .

By Lemma 2T and Eq.(532), if j # i, then R (u), A;(u) and both sides of Eq.(5.36)
commute with z . If j =4, then

RZW(u + d,)azl_n = (aci_’nJrl —uT;, — d,a:;n)RZW(u +d;),

R (w)Ai(uw)z;, = R (w)(z;, +di Y _ a7, u A (w)ay,,
k>0
= (@i — Ui, + di Y (2, — uty, ) u T RY () A (u)
k>0
= (:E;TLH —ur;, — dlzz:l_n)RfV (u)A;(u).

This proves Eq.([5.30]).
Part (ii). The finite-dimensional subspace Wy admits mutually commuting actions of
the series R}’V(u),ﬁj (u), A;(u) for j € I. One can choose a basis B of W¢ with respect
to which the matrices of these series are upper triangular. Fix a basis vector b € B. For
X (u) any of these series, let [X(u)], denote the b-th diagonal of the matrix of X (u).
Then [€;(u)]y, = f;(u) by definition of the ¢-weight space.

The action of R}/V(u) on Wrg is the restriction of R;/Vw(f)(—u), which is a monic
polynomial of degree h;. So [R}/V(u)]b € Clu] is a polynomial of degree h;. Let a;, for
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1 < s < h; denote its roots, which may depend on the choice of the basis vector b.
Then [4;(u )]b can be computed from the difference equation (5.30):

hy _ RWY(u+d; g U— Qs ;
[RY ()]s = [ [(ajs —w),  [Aj(w)]s = [](wf—Jrj)]b =11 _]7%3
B () =

s=1 s=1

By definition A;(u) is the normalization of A;(u) by its eigenvalue associated to w
Applying (2.20) to w and then to b € B we get

fi(u) s (u—dy; —
e;(u) [_-(u)]b[ H H i~ 1)l

] c;;<0 t=1

- hi (u—ajs)(u— als—di) H Hﬁl — dj —aj ¢ +d;
_S:1(u—ai,s+di)u—az,s) Jregi<0 51=1 121 U — ,]—td — ajy
hi
T e s —di I1 H — Gij — G5y
s:1u_a”+d jra0 i LU dw+cﬂd —ajy

B H H u—ajs — dij (because cjid; = 2d;;).

oty S 1u—ajs+d2]

From Eq.[3.23) we get f = eHje I Hi”zl Aj_’;j’s. Since the generalized simple roots
generate a free abelian subgroup of R, the a; for ¢ € I and 1 < s < h; are uniquely
determined by f~'e and they are independent of the basis vector b € B. This shows
that both RV (u) and A;(u) have a single eigenvalue of the desired form. O

Remark 5.9. In the case of the Borel algebra, there is a universal solution to Eq.(5.35)
in the affine Cartan subalgebra, denoted by T;(z) in [24, Prop.5.5], which is defined as
a leading term of a transfer matrix associated to the positive prefundamental module,
equivalently, it is the specialization of the abelian part R"(z) of the universal R-matrix
of Uy(g) at a highest /-weight vector of the module; see [24], §7.2]. The polynomiality
of T;(z) follows from the stronger one for the full transfer matrix; see [24] Prop.5.8,
Theorem 5.9]. See also [40l Theorem 9.12] for the rationality of GKLO series for shifted
quantum affine algebras.

Remark 5.10. The ordinary Yangian Y (g) processes the abelian part R°(u) of the
universal R-matrix. While it is divergent as a formal infinite product, its specialization
on a tensor product of finite-dimensional Y (g)-modules makes sense by viewing it as
a solution to a difference equation [29] §5.8]. Proposition [0.8] is close to this approach
and indicates that it might be possible to specialize R°(u) to tenor products of modules
in category O*". As in the preceding remark, we expect our RZW (u) to be a leading
term of a transfer matrix associated to an “infinite-dimensional positive prefundamental
module”. Such modules in type A should be related to the oscillator modules [3| 4]
arising from Yang—Baxter equations.
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Corollary 5.11. Let
S = \Ijil,(h \Ili27a2 o \IliNvaN €D

and W be an irreducible module in category O%". The module L(s) ® W is irreducible
if and only if: for all1 < s < N and f € wty(W) we must have Ai_s}asf ¢ wto(W).

Proof. From the proof of Theorem we get a module morphism RL(S)M/ from the
highest ¢-weight module L(s) ® W to the co-highest ¢-weight module W & L(s). It is
injective if and only if L(s) ® W is irreducible. We have

RY = RY(a1)RY (az) - RY (an),

which is a product of mutually commuting operators on W. RY is injective if and
only if 0 is not an eigenvalue of any of the operators RZ/ (as). The rest follows from
Proposition (5.8 (ii). O

The “if” part of the corollary was known [I8, Lemma 5.9] for L ® V' where L is a
positive prefundamental module over the Borel algebra and V is a finite-dimensional
irreducible U,(g)-module.

Example 5.12. Let W = N; , as in Example 3.7 and write LL = C1. Then e and ey

are eigenvectors of RZW (u) of eigenvalues 1 and a — u respectively. Consider the module
morphism R;+ ;, from L:a QW to W L;fa: its image is spanned by the vector e; ® 1

of £-weight szcl_ﬁéo W; a—d,;; its kernel is spanned by 1®eg of {-weight Hjlcij§é0 Uj atdy,-
We obtain a short exact sequence of modules in category O%":
+ + +
0— ® Li7a+dij — L, ®Niq — ® Lj’a_dij — 0.
Jicij#0 Jicij7#0
Similar short exact sequence appeared in the category O of the Borel algebra [39]
Theorem 5.16], whose proof also made use of R-matrices.

6. TENSOR PRODUCT FACTORIZATION IN THE slo-CASE

In this section g is fixed to be slo. We prove existence and uniqueness of factorization
for all irreducible modules in category O*" into tensor products of prefundamental
modules and KR modules (Theorem [6.4]). This result will be crucial in the proof of
Jordan—Holder property in Section [

In our situation, R is the subgroup of the multiplicative group of the field C(u)
generated by the u — a for a € C.

Definition 6.1. Let e € R. A standard factorization of e is

m n k

e = [Jtw =)« [ 2= ][ =

r=1 s=1 t=1

where for 1 <r<m, 1<s,I<nand 1<t <k:
0# 25 —ys €N, Zs_yl¢Ag:mAyl

z1?

Zs—xr AV, we—x, €N, wp—ys & AV

Zs
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For example, (u — 3)(u — 9) X 7=5 X %ﬁ is a standard factorization, while this is
false for (u—5)(u —9) x Z_:g X %ﬁ

Proposition 6.2. Consider the following factorization and tensor product:

m

n k
— 1
(F): e:H(u—xr)ng_Z: XHu—wt’

r=1 t=1
T=(LH® - QLf )OULL® QLI @ (Ly, ®---® Ly,).

Suppose 0 # zs —ys € N for all 1 < s < n. Then (F) is a standard factorization of e
if and only if T is an irreducible module isomorphic to L(e).

Proof. Note that the irreducibility of 7" would force it to be isomorphic to L(e), by
comparing highest ¢-weights. Write T' = T1 ® T where T7 denotes the tensor product
of the first m factors, and T, the remaining part. First, notice that 77, being one-
dimensional, is isomorphic to L((u — x1) -+ (u — Zyp))-

For 1 <t < k let us choose w; € C in such a way that w, —w; ¢ Z and w} — z5 ¢ Z
forall1<l<kand1l<s<n. Sets:=(u—w)) - (u—wy).

Claim 1. The module T is irreducible if and only if 75 ® L(s) is irreducible.
The < part is trivial since tensor product is exact. For the = part, assume the
irreducibility of T5. By Corollary B.11] it suffices to prove that none of the A;,l for
t

1 <t < k appears as a factor of any ¢-weight in the normalized g-character of T5:
n k
Xa(To) = T Xa(2) [ [ Xa(Zw)-
s=1 =1

Xq(LY) only admits the Az_sl_c for ¢ € AY; as factors. xq(L,,) only admits the A;ll_c
for ¢ € N as factors. The assumption w; — w; ¢ Z and zs — w; ¢ Z guarantees the

condition of Corollary B.IT] hence the irreducibility of T5 ® L(s).
Claim 2. The module Ty ® L(s) is irreducible if and only if the tensor product

Ty=(LA® QLI ® (Lt @ - @ Lyk)
is irreducible. This is because the two modules have the same g-character.

Applying Theorem B.I8 to 7%, in view of our choice of the additional parameters wy,
we get that T is irreducible if and only if

2 —ys ¢ AL NAY, wp—ys gAY for 1 <s,0<n, 1<t<E.

z)

Note that the irreducibility of T" is equivalent to the irreducibility of the module T3 and
the tensor product L((u —z1) -+ (u — 2,,)) ® T. The latter is again in the situation of
Corollary 5111 It is irreducible if and only if for 1 <r <m,1<s<nand 1<t <k:

e A7l does not appear in Yq(LY), which means z, — z, ¢ AY;

e A;' does not appear in Xq(Ly,), which means w; — 2, ¢ N.
Therefore, T' is irreducible if and only if all the conditions from Definition on the
Zr,Ys, 25, Wy are satisfied, meaning that (F') is a standard factorization. O
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If £ < m in the standard factorization then the irreducibility of the tensor product
follows from [9, Theorem 7.7], by first identifying L ® L., with L for 1 <t <k (so
that there is no negative prefundamental module), and then replacing Lj and L; with
the modules L(}) and L(p) respectively in loc.cit.

If e is a product of the =21 for ¢ € C, then a standard factorization is equivalent
to writing a finite set of complex numbers with multiplicities as a union of pairwise
non-interacting strings [13, Prop.3.5].

Lemma 6.3. Let e € R. Standard factorizations of e as in Definition [6.1 exist,
and they are unique in the sense that the two polynomials (u — x1) -+ (u — =) and
(u—wy)--- (u—wg), and the pairs (ys,zs) for 1 < s < n up to S,-permutations are
completely determined by e.

Proof. We begin with some easy observations.
Observation 1. A standard factorization gives rise to the reduced form of the rational
function e: its numerator and denominator as monic polynomials are

(w=1) - (= am) = 1) (= ga)y (= 21) e (0= 20) (10— 1) (0= ).
This is because the two polynomials are coprime by Definition

Observation 2. If for all zero a and pole b of e we have b — a ¢ N, then the reduced
form of e is the unique standard factorization.

Observation 3. In Definition [6.1], deleting a factor of the form u — x,,
gets another standard factorization.

U—Ys 1
U—2s or U—wi

, one

We prove the existence and uniqueness of standard factorization by induction on the
number, denoted by d(e), of zeroes and poles of e counted with multiplicities. Namely,
d(e) is the degree of the numerator plus that of the denominator. The initial case
d(e) = 0 is trivial since e = 1.

Suppose d(e) > 0. If e satisfies the hypothesis of Observation 2, then we conclude.
Assume that there exist a zero yg and a pole zg of e such that zyp — yg € N. Since there
are finitely many such pairs, we assume further:

(H1) If y is a zero of e and z a pole, then z — y € N implies z — y > z9 — yo.

Set f := 2==0e. Since -—£ appears in the reduced form of e, it cancels with the factor
Yo u—2z0

u—ye and we get d(f) = d(e) —2. By induction hypothesis, the existence and uniqueness

of standard factorization holds for f. Fix such a factorization:

m n u—y k 1

F1): f= — xy) X % x :

(F1) H(u zr) Hu—zs Hu—wt
r=1 s=1 t=1

Step 1: existence. We show that the following is a standard factorization:

m n u—y k 1

F2): e= — ) x ® x .

e o= llemer b= -

In view of Definition [6.1] it suffices to show that none of the following complex numbers
belongs to A% for 1 <r<m, 1<s<nand1<t<k:

20 — T, 20 — Ys, Zs — Yo, Wt — Yo.
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Let us prove it for the first number, the other three being parallel. Applying Observation
1 to the standard factorization of e, and noting that d(e) = d(f) + 2, we see that the
above factorization of e is reduced. In particular, x, is a zero of e. If zg—xz, € A%, then
by definition of A% C N we have 29 — x, < 29 — yo, in contradiction with hypothesis
(H1) which forces zg — x, > 29 — yo.

Step 2: uniqueness. Let the following be a standard factorization:
k,/

(F3): e—Hu—x XHZ:ZS Hu—lwt'

r=1 t=1

We claim that (yo,20) = (y;,2;) for certain 0 < I < n’. When this is the case, by
Observation 3 we have another standard factorization of e:

m’ n’ w y, k' 1
. J— / —
(F4) : f=JJw-2)x ] rszHU_w,
r=1 0<s<n/ s#l t=1
Applying the induction hypothesis to (F'1) and (F4), we get that
m’ m k 14
[Tw—a)=T[w==), JJw—w)=]](u—-w)
r=1 r=1 t=1 t=1

and the pairs (y},2.) for 0 < s < n/,s # I’ are in one-to-one correspondence with the
(ys, zs) for 1 < s < n. In other words, the standard factorizations (F'2) and (F'3) are
the same after permutation.

To prove the claim, notice by Observation 1 that

Yo € {x,h 7x;n’7y67y£7”' 7y;1’}7 20 € {267217”' 72n’7w17”' 7w;c’}’
Applying (H1) to the zero ¢/, and pole z, we get:
(H2) For 0 < s <n' we have zg — yo < 2, — y..
In the standard factorization (F 3) we have w, — z, ¢ N. So zp —yo € N forces
(yo,20) # (zh.,wy) for 1 <r <m'and 1 <t < K. There remain three cases.
Case 1: we have (yo,20) = (2., 2}) for certain 1 <r <m/ and 0 < s < n’. Again in

the standard factorization (F'3) we have z, — x] ¢ Ay; Together with the assumption

2 — ) —zo—yo>0andthedeﬁn1t10n0fAys Wehavez —x=20—yo >z, —y.. In

view of (H2), equality holds. Now 2y = 2/, forces Yo = Yh

Case 2: we have (yo,z20) = (Y}, w}) for certain 0 < s < n’ and 1 <t < k’. Similar
arguments as in Case 1 show (yo, 20) = (v., 2%).

Case 3: we have (y0,20) = (v}, 2]) for certain 0 < s,I < n’. From the condition

20— Yo = 2] — Yy ¢ Az,g N Azl, imposed by (F'3) we get either 29 — yo > 2, — y. or
s 1

20 — Yo > 2 — ;- In both situations, equality holds by (H2). Applying yo = y, to the

first situation and zy = 2 to the second situation, we get either (yo,z0) = (v, z;) or

(40, 20) = (¥}, 2)- O

We point out that the existence arguments follow closely [55, Prop.3.6]. It is the
uniqueness that is the key point of Lemma
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Proposition together with Lemma [6.3] implies the following.

Theorem 6.4. All simple module L(e) in category O" factorizes uniquely as a tensor
product of prefundamental modules L (a € C) and of Kirillov—Reshetikhin modules L¢
(a,beC,0<a—-beN).

Example 6.5. Let us revisit the example after Theorem [B.18],
Ol Li o Li @ Ly © L;.

In the subcategory Qg of ©%", the irreducible module L} for b — a ¢ N is prime in the
sense that if Ly =V ® W in category Op then either V' or W is the one-dimensional
trivial module. The first isomorphism forms two non-equivalent factorizations into
primes of the same irreducible module. The issue of non-uniqueness is resolved in
category O%" by further factorizing L¢ = LT ® L; .

7. COMPUTATION OF LOWEST DIAGONAL ENTRY

In this section we compute the lowest diagonal entry (see Definition [5.4)) of the R-
matrix Rv,w(u), where V' is a finite-dimensional irreducible module over the ordinary
Yangian, and W is a negative module (Theorems[7.4] and [T.5]). A technical point in the
proof is a refined estimation of the coproduct that we establish (Lemma [7.1]).

7.1. Second coproduct estimation. As a preparatory step, we refine the coproduct
estimation of Lemma [2.5] for the Drinfeld—Cartan series &;(u). In the ordinary Yangian
Y (g) hold the relations:

(7.37) [ (w), 23] = [2]0, 25 (w)] = (€(w)+ = &(uw) — 1,
(7.38) [§i(u), 2] = —2di;&(w)z; (v — dij) = —2dija; (u + dij)&i(u).

The first relation follows from (2]). The second is obtained by taking specializations
v =u+d;; and v = u — d;; of the relation [28], §2.4]:

(u—v+dij)&i(u)x; (v) = (u—v = dij)z; (V)&(u) = —[§i(u), 2]
Lemma 7.1. For all coweights ji and v, the coproduct A, satisfies:
App(&i(u) = &(w) ® §(u) = > 2diya; (u+ dij)&i(w) ® &(u)z] (u+ dij)
Jel
mod. 3 Y (5) 5 @ YiF (g)s.
h(B)=2

Proof. One adapts the zigzag arguments of [20, Theorem 4.12] to reduce to the case
u = v =0, as in the proof of Lemma For a € Q, let 7, denote the projection of
Y (g) onto the weight space Y (g),. It suffices to prove for i,j € I:

(739) (77—043- & 7Taj) o A(&(u)) = —2d”l’; (U + d,j)&(u) ® &(u)l’;— (u + d”)

The strategy is to produce a system of linear equations which will have a unique solu-
tion, given by both sides of this equation. Let

A(u) == Z ApuP!

p>—1
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denote the power series at the left-hand side. We view the coefficients A, as elements
in Y(g9)-o; @Y(8)a,;- From Eq.(ZI5) we get A_; = Ag = 0.

Next, applying A to the second formula of [§;(u), x| from Eq.(Z38)), taking into
account A(z;,) =1® ;5 +2;,® 1 and Lemma

Az () = 1@ (u) + 27 (u) @ &(w) mod. Y Y(g)-—p-a; @Y (9)s,
h(B)>0

after projection onto the weight space of bi-weight (—«;,0) we obtain:

[Si(u) ® &i(u), 250 @ 1] + [A(u), 1 @ 7 ]

= —2di;(1 @ (u+dij))A(u) — 2dgja (u+ di)&i(u) @ §(u + dij)&i(w).
Making use of Eqs.([Z317)-(C38]) we simplify the equality as follows:
(7.40) [A(u), 1 ® 2 o] + (2di; ® 25 (u + dij)) Au)

= —2d;;x; (u+ di)&i(u) @ (§(u+ dig)) & (u).

Eq.(740) forms a linear system whose unknown variables are the A, for p > —1. It
expresses [Ap,1 ® T ] in terms of the A,, for m < p. Therefore, the system has a
unique solution provided that the following linear map is injective:

Y(9)-a; ®Y(@)a; — Y(0)-a, ®Y(g)o, ara, 1@z
This map is the restriction of —Id ® ad - . It suffices to establish the injectivity of
ad,, %70 restricted to Y (g)a,;. Note that T30, T éj 0, d z] *, span a sub-Lie-algebra of Y (g)

isomorphic to slp. The adjoint action of sle on Y (g) is integrable by the Serre relation
24). If w e ker(adx_o) N Y(g)a; is nonzero, then w is a vector of lowest weight
s

dij(ozj, a;) = 2, contradicting the integrable representation theory of sla.

It remains to show that the right-hand side is a solution to Eq.(Z40). This follows
from Eqs.(T37)—(738) and commutativity of the &;(u). O

When g = sly, Lemma [Z.1] agrees with the term & = 1 of the coproduct formula of
A(h(u)) in [56] Definition 2.24] and [20} (6.9)].

7.2. Top eigenvalue of lowest diagonal entry. We compute the polynomial Ay, (u)
from Definition [5.4] for V' an arbitrary finite-dimensional irreducible Y (g)-module. The
idea, inspired by the work of Chari [I0] on cyclicity of finite-dimensional modules over
a quantum affine algebra, is to reduce to the slo-case.

Lemma 7.2. Let V be a finite-dimensional Y (sly)-module generated by a highest (-
weight vector vy of weight . Then v_ := (:Ea)lvo is a lowest £-weight vector. Write

th(vo) = th(v_) X AalAaz oo Aal,
then for P(u) € Clu] we have:
(P(u)a~ (), w0 = Plar)P(as) - Plar) x 7~ (w)'vy € V[[uV]).
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Proof. In the integrable sls-module V', the vector v is of highest weight [. This implies
that v_ = (zg )'vo is nonzero. By Theorem B.I7, there exists a highest ~weight module
T := Ny, @ Np, ® - -+ ® Np, which admits V' as a quotient. One may take vy to be the
image of e?l. Then v_ must be proportional to the image of eggl , which is a lowest
C-weight vector of T'. So v_ is a lowest ¢-weight vector of V.

Since Yq(Ny) = 1+ A, we have
th(vo) _ th(e?l)
wte(v-)  wg(eSh)
So we may assume ap = b, for 1 < k < [. For weight reason, there exists a unique
nonzero power series f(u) € u~'C[[u~"']] such that in the module T we have

o (u)'ef = f(u)es".

Without loss of generality assume P is a monic polynomial. Consider the irreducible

module W := L(P~') over Y_ gog(p)(sl2). Define the composite map

(Nm ®Na2®"'®Naz)®W—>W®(Nal ®Naz®"'®Nal)’

AalAaz"'Aa =

1

= AblAbz .- 'Abl-

l
e Rk—1 b RU—k
R .= H(l ®RN%,W®1 ).
k=1

Since all modules are defined over antidominantly shifted Yangians, associativity holds
true, and R is a module morphism from T"®@ W to W ® T. Since T is a highest /-
weight module, one can apply Eq.[28), with i =1, s;(u) = P(u),v = e?l and z =0,
repeatedly to get the following equation in the module T7® W (here w € W is a highest
(-weight vector):

z” (ke @w = (P(u)x‘(u))i(e?l ®w) for ke N.
Applying R to the above equation with k = [ we obtain in the module W & T
R(a~(w)'ef! © w) = (P(wa~ ()}, (w o ).

At both sides we take the components of w ® T', or equivalently the components of
W ® egz)l for weight reason.

By Lemma 28] for y € Y<(slz) and v € T we have that y(w ® v) equals w ® yv
plus a linear combination of vectors in w ® T' with wt(w) — wt(w) € 2Z~o. The desired
component at the right-hand side is w ® (P(u)z~ (u))} e .

The left-hand side is f (u)R(e?l Qw). Its W eggl component can be derived from
the factorization formula of R and from the corresponding W ® ey component of the
R-matrix RN%,W = RNmW(CLk), which by Example is precisely P(ap)w ® e2. So the
desired component at the left-hand side is f(u)P(a1)P(az) -+ P(a))w ® e?l.

As a consequence, in the module T" we have

(P(u)a™ (u)y e = f(u)P(a1)P(az) - - Par)e§”
= P(ay)P(ag) - -- P(ag)z™ (u)™e.

Passing to the quotient 7" — V we obtain the equation of the lemma. O
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The next result is well-known in the non-shifted case. We omit its proof as it is a
direct consequence of the definition of shifted Yangians.
Lemma 7.3. Let p = Zje[ kjwjv be a coweight of g. Then for i € I there exists a
unique algebra homomorphism f,,; : Y, (sla) — Y, (g) such that

et (u) = 7N (udi), @7 (u) = diwy (udy),  E(u) = d; Mg (udy).
Our main result of this subsection generalizes the computation in Example

Theorem 7.4. Lets € D and V be a finite-dimensional irreducible Y (g)-module. Write
the ratio of the highest (-weight to the lowest £-weight of V' as a monomial of the A;y,
and replace each Ajp, with the polynomial sj(u + b), then we obtain Ay rs-1)(u). In
particular, the polynomial Ay, s-1)(u) € Clu] is monic.

Proof. Set W := L(s™!) with w a highest /-weight vector. Fix vy € V to be a highest
(-weight vector. We compute the polynomial Ay (u) in several steps.

Step 1: Weyl group symmetry. The Weyl group of g is a Coxeter group generated by
the simple reflections s; for ¢ € I. It acts on the space h* of weights by

5i(A) = A — (), Ny for X € b*.
Fix a reduced expression of the longest element wg in the Weyl group
Wy = SiNS’iN,1 © Sy Sy

where 7, € [ for 1 <m < N.

Let A\g = wt(vp). Then as a g-module V contains a submodule of highest weight
Ao. So Ag € Zz‘e 7 Nw;. Moreover, view V' as an integrable g-module, we see that
wt(V') C b* is stable under the Weyl group action and dim V), = dim V) if the weights
A and X are in the same orbit. As in [I0, §3], let us define the weights A\, € wt(V)
and integers I,,, for 1 < m < N inductively by:

Am = Sim ()\m—l)y by = <04V

im?

Am_1).

From the reduced expression of wy we get

SirSip " Siguy (Am—1 + ®iy,) — Ao = iy Sig *+ Siyy (0,,) € Qi \ {0}
Since Ag is the top weight of V, we must have \p,—1 + «;,, ¢ wt(V). With respect
to the sls-triple (x; ,L,o,dijﬁimo,d{i&m,o), each nonzero vector of V) is of highest
weight [,,,. In particular, [,,, € N. Let us define a sequence of vectors (v,,)1<m<n, called
extremal vectors, inductively by -

m—1

(= A\
Vpy 1= (mimo) 1 -
Then each vy, is nonzero, spans the one-dimensional weight space V), and is also an

f-weight vector. Furthermore, from the Weyl group symmetry we see that V is weight
graded by Ay + Q4. So vy must be a lowest ¢-weight vector.

Step 2: fL-weights of extremal vectors. We prove that for each 1 < m < N, the ratio
Wt (Um) " wte(vy—1) is a monomial of the A; 4 for b € C.

We choose a sequence of (-weight vectors (v )o<k<i,, satisfying (z; 70)lm_kvl/€ #0
and wt(v),) = A\p—1 — ko, inductively as follows.
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(A) The initial vector v{ is vy,_1.
(B) Suppose for 0 < k < I, we have found an ¢-weight vector v;_, of weight
Am—1 — (kK — Dy, and (x;mo)lm_k“v;f_l # 0. Write x; v, as a sum
v + vy + -+ + v} of nonzero f-weight vectors. The v;' and z; (vr—1 are all
of weight \,,_1 — ka;,,. From (x;mo)lm_k(v'{ +vh 4 ---v)) # 0 we can find
1 <r <t such that (x;mo)lm_kv;’ # 0. Set v} := v,
The projection of z; 70VWtZ(U;€71) to the(%) being nonzero, by Proposition B.8 there
exists by, i € C such that wty(v,) = th(v;_l)Ai_ml’bmyk. It follows that

-1 -1 -1
i’!?Lybm,l im,bm,z irmbm,lm'
Notice that Wt(v{m) = Mn—1 — lm@i,, = Si.. (Am—1) = Ap. Since V)
the vectors vl’m and v,, are proportional. This gives

we(v), ) = wtg(vp)A

is spanned by v,,,

m

(7.41) Whe(Um) = Whe(vm—1) A7 Ly AG Ly AL

Step 3: restriction to sly. Fix 1 <m < N. Set Ly, := fo,, (Y (sl2))vm—1 C V;itis a
Y (sly)-module via the pullback by fo,.. Since v,,_; spans a one-dimensional weight
space of V, it is a common eigenvector of &, (u). From V), _ 1o, = {0} we get
z; (u)vym—1 = 0. By definition of fy;,, and by Eq.(Z4I)), the Y (slz)-module Ly, is of

Tm,

highest ¢-weight, and the ratio of its highest /-weight to its lowest /-weight is

A -A

bn,1d; ! Abm,zd;"{ N d

m

Let P(u) € Clu] and apply Lemma [T.2]to the Y (sl3)-module L,,. Based on the formula
fo.im (@™ (w)) = d;,,x; (ud;, ) we get the following relation in the Y (g)-module V:

Im
<P(u)xl_m (Udim)>l-r-n/vm_1 = H P(bm,kdz_ml) X IIZ'Z_m (Udim)lmvm_l'
k=1
Fix a € C. In the above equation, first replace each u by (u — a)d;nl. Then replace
z; (u—a) by z; (u) to pass from the Y (g)-module V' to the Y (g)-module V'(a). Finally
set P((u —a)d; "

im

) :=s;,, (u). We obtain the following relation in the module V' (a):

l m

(7.42) (si,, (u)azl_m (u)>l+mvm_1 = H Si, (@ + b k) X T (u)lmvm_l.
k=1

Step 4: from highest to lowest (-weight vectors. Fix a € C. For 0 < m < N, let
gm(a)w @ vy, denote the component of w ® V(a) in Ry.w(a)(vy, ® w). Then go(a) = 1
and gn(a) = Av.w(a) because vy is a lowest (-weight vector.

Let 1 < m < N. Recall that V is a highest ¢-weight module. As in the proof of
Lemma [T.2] by repeatedly applying Eq.([@28]), with i = i,,, v/ = v,—1 and 2z = a we
obtain the following relation in the module V(a) ® W:

z;, (W) o @ w = (i, (W, (W) (41 @ w).
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Applying Ry (a) to the above equality gives

(7.43) Ryw(a)(a;, (u)™ v @ w) = (83, (u)z;, (w) Ry (@) (vm-1 @ w).
Let us compute the components of w ® V(a) at both sides.

For weight reason 0 # x; (u)™vy_1 € u='Vy [[u™]]. From V), = Cuy, we get a
nonzero power series f,,(u) € umC[[u~!]] such that

T (u)lmvm_l = fim(w)vm,.
The w ® V(a) component at the left-hand side of Eq.(T.43]) is by definition

Lh.s. = gm(a) fn (W) w @ vp,.
For the right-hand side, notice by definition that

Ryw(a)(vm—1 ® w) = gm-1(a)w ® vy,—1 mod. Z Wit(w)—p @ V(a).
h(8)>0
Apply (si,, (u)z; (w)) to the equality and then project to w ® V'(a). By Lemma 2.5,
if y € Y<(g) and w € W is a weight vector, then y(w ® v) equals w ® yv plus a linear
combination of vectors in w’ ® T' with wt(w’) — wt(w) € Q_\ {0}. So the modulo term

does not contribute to the projection, and the term g,,—1(a)w & v,,—1 gives rise to the
desired component at the right-hand side of Eq.([.43)):

rhs. = gpoa(a)w @ (si, (), ()70
Im

= gm—l(a)w ® H Sim (CL + bm’k) X ‘T’L_m (u)lmvm_l
k=1

Im
= gm—1(a) H Sip (@ + by k) X frn (W)W & Uy
k=1

Here the second lines comes directly from Eq.(7.42]). Identifying Lh.s. with r.h.s. and
noticing that f,,,(u) # 0, we obtain the following recursion relation

l m

gm(a) = gm-1(a) H Si (@4 by ) for 1 <m < N.
k=1

Recall that go(a) = 1. We obtain the following equation for all a € C.

N n
Avw (@) =gy (a) = [T T sim(@+ bmp)-
m=1k=1
Since the first and the third terms are evaluation at u = a of polynomials, we get
an equality of polynomials. Together with the observation from Eq.([7.41]) that the
ratio of highest ¢-weight wty(vg) to lowest f-weight wty(vy) is H%:l 2”;1 Ay b s W€

conclude the proof of the theorem. O

In the proof of Theorem [7.4], Step 1 appeared in [10] for quantum affine algebras and
in [63] 64] for Yangians. The claim at Step 2 could be derived from the braid group
action on R defined therein. In the quantum affine case Step 2 also follows from more
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general results of [25] Lemma 3.4] and [35] §2.3] on restrictions of a finite-dimensional
module to diagram subalgebras.

7.3. Functional relations of R-matrices. We express the lowest diagonal entry
tv,w(u) in terms of one-dimensional R-matrices. The idea is to reduce to the case
of a fundamental module by a fusion construction of R-matrices, which appeared for
example in [37, Corollary 5.5].

Theorem 7.5. Let W be a negative module, and V be a finite-dimensional irreducible
Y (g)-module whose lowest (-weight is

-1 -1 oyl

i1,0145di, " i2,00+5ds, imsGmt 5 iy,

Then we have the following equality in Hom(W, W ® Clu]):

(7.44) tyw(u) [ RY (w+as) = Avw(w) [ RY (u+ as + ;).

s=1 s=1

Moreover, ty.w(u) is an End(W)-valued monic polynomial of degree deg Ay.w (u).

Proof. Let w denote a highest (-weight vector of the module W defined over Y, (g).
Since W is an irreducible module in category O,, by Proposition b.§] (ii) there exists a
countable subset I' C C such that the normalized g-character of W is power series in
the A, with (j,b) € I x I'. Notably, a € C\T and f € wty(W) imply A; ,f & wts(W).
Restricted to each weight space W3 of W, by Propositions 5.3 and 5.6, R} (—u) is a
monic polynomial of u and ty(u) is a polynomial. Eq.([Z.44]) implies that the degree
of tyw(u)lw, is deg Av,w (u), which is independent of the weight 3. This proves the
second part of the theorem assuming Eq.(744]). By polynomiality, it suffices to prove
Eq.([C44) evaluated at uw = a for a € C such that a +as ¢ T for all 1 < s <m.

Step 1: reduction to the fundamental case. For 1 < s < m, let vy and v® denote a
highest ¢-weight vector and a lowest f-weight vector of the fundamental module V;,
of Eq.(324). By Theorem (i), one may assume, after a permutation of the pairs
(is,as), that V is the irreducible submodule of the following tensor product

T .= ‘/jl(al) ® ‘/;;Q(CLQ) PRy ‘/;;m(am)

generated by vg :=v] @ V2 ® - -+ @ vy, and v_ := vl @12 @ --- ® v™. In particular, vy
and v_ are highest /-weight vector and lowest ¢-weight vector of V.

From the fact that 7, is a Hopf algebra automorphism of Y (g) and from the equation
TyTe = Thae, for b, c € C, we get an identification of modules

T(a) = Vi (a1 +a)@Viy(az +a)® - @V, (am + a).

Consider the following composite map
m
R(a) =[[O* ' @Ry, wa+a) @19 ) : T@W — T W.
s=1
Since all modules are defined over antidominantly shifted Yangians, associativity holds
true. R(a) is a module morphism from T'(a) @ W to W ® T'(a). It restricts to a module
morphism from V(a) @ W to W ® V(a) because the former is generated by the highest
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{-weight vector vo®w by Theorem L8] (iii) and R(a) sends vo®w to w®wvg by definition
of the Ry; w(a + as). From uniqueness of R-matrix in Theorem 5.2} we obtain

R(a)|v(ayew = Rv,w(a).
For w € W, by definition ty,w (a)w ® v_ is the projection to W @ v! ®v2 @ --- @ v™
of the vector R(a)(vl ® v2 ® -+ ® v™ ® w), which by the factorization of R(a) is

tv. wla+a)ty, wa+a) -ty wa+an)wevl @2 @ 0™

11 2 m

We obtain therefore a factorization:

tvw(a) =ty wla+a)ty, w(a+a2) --tv, wla+ ap) € End(W).

1 29 im
We are reduced to compute the lowest diagonal entry ty, w (u) for a fixed i € I. Assume
from now on that m =1, (i1,a1) = (4,0) and a € C\ T
By Lemma [3.10] the finite-dimensional Y (g)-module V' contains a g-submodule of
lowest weight —wo; and V_,, = Cv_. By Weyl group symmetry v, := ZEZ—OU_ spans the
weight space V,,,_o,. Complete vy to a weight basis By of V. If v € By \ {v_, v},
then 0 # wt(v) — a; + w; € Q4. We have the following relations in the module V' (a)
similar to Example 3.7t

dij —a—didjju—a+d;
rf(wo- = ——vy,  &luvy = = juoar Loy,
(7.45) u—a u—a u—a— d;j
| z; (u)vy = didiy v &i(uv_ = v-az diéijfu
J T u—a 0 YT T T u—a o

Consider the matrix entries of Eq.(5.31]) with respect to the basis By . Set
R, = RV;W(a), C, = tK,L (a), Dgy:= tiv,‘i7v7(a) =tyw(a),
C, = R\IVZ’GCG, D, := R\IVZ’GCG, E,:=C,+ xz-_’of?a, Ao = Avw(a).
Our goal is to show that Da = )\aR\IVZ wra, 3 linear operators on W.

Step 2: projection formulas. The Y (g)-modules V' and V(a) have the same weight
grading. With respect to the weight basis By of V(a), let

pWeV(e) —Wandyp : W V(a) — W
denote linear maps which send Zver 9o ®v to g,_ and to g, respectively. We apply
these maps to the following relations in W ® V' (a) for j € I and w € W

Roz; (u)(v- @ w) = 25 (u)Re(v- @ w), Re&j(u)(v- @ w) = &;(u)Re(v- @ w).
By Example [3.4] the left-hand sides of the above equations are R,(v— ® z; (u)w) and
Rq(&j(u)v— ® &j(u)w) respectively. Based on the coproduct estimations of Ay o(z; (u))
from Lemma 23] and of A, ¢(&;(u)) from Lemma [I1], we have

P(Roz; (u)(v- @ w)) = ¢(Ra(v- ® z; (w)w)) = Doz (w)w,

¢z} (u)Ra(v- ®w)) = dlaj (u)( Y b, (a)w ©v))

vEBYy

= ¢(z; (u) Do (w) ® j(u)v-) + ¢(Co(w) @ z; (u)v-)
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= O D) + S o),
H(Rat () (v ® ) = 6(Ral€;(u)v- & () = 2= 4% by
$(&(u) Ra(v- @ w) ; oy (a)w @ v))

= 0((u) Da(w) @ &(u)v-) = LU= N 60 D (w),
V(R )0 @ ) = (Ral€ () © & () = T2 N0 0
Y& ) Ra(v- D w) = D&)X 11, (a)w @ v)) = (& (0)Calw) © & (u)os)

vEBY
— 2d2]1/1($2_ (’LL + dzj)f] (u)Da(w) ® fj (U)l‘:_(u + dij)’U_)

_u—a—did;u—a+d
_ — u_a_dwé-](u)Ca(w)
—a—d;d;;  2d; -
_u—a didy di x; (u+ dij)&i(u) Dy (w).

uU—a u—a— d;j

Step 3: commutation relations. It follows from the projection formulas that

u—a—diéij _ déw

(7.46) Doz (u) = S (u)D, + C’a,
(7.47) Doéi(u) = &(u) Do,
_ dy; 2d;; B
(7.48) Cotjlu) = %ﬁd;@(u)a& — ﬁidf (u+dij)&;(u)D

Notice that z; (u + d;;)&(u) = &(w)z; (u — d,]) as a rewriting of the second half
Eq.([738)). Left multiplying Eq.(748)) by &;(u)~!, we obtain

_ U—a-+ dz ] 2dl i _
&i(u) ™ Cagj(u) = 2Cq — ——a; (u—dij) Dy

u—a—dij u—a—dij

Left multiplying the above equation by R\IV,Vi ,» which commutes with &i(u), we get

1A u—a+dij ~ Qdij _ ~

» W) = 2T E 2y — g — dyg)ay (u— dij)) 4 Da
&50) 7 Cutylu) = LE900, — 2 (4 — - dyar - di)s
u—a—i—dij ~ ~ - -

(Ca + xi_,ODa) — 2dZ]Z’Z_(U - dij)Da - xi’ODa.

u—a—dij

Combining with Eq.(747) and the relation fj(u)_1$;0£j(u) = z; o + 2d;z; (u — dij),
which rewrites the first half of Eq.(7.38]), we obtain

a+d;j ~
7E.
u—a— d;j “

(7.49) &i(u) g (u) =
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Recall that ¢ € C\T. Let w € W be a vector of £-weight f. If the vector E,(w) is
nonzero, then it is of /-weight A; Lf by Eqs.(749) and (3.23)), contradicting our choice

of I'. So E,(w) = 0 for all f~weight vectors w € W and E, = 0.
Left us multiply Eq.(7.40]) by Rg/i .- Making use of the defining properties Eq.(5.32),

we recover all the defining properties of )\aR\IVZ o

Dy(w) = Aw,  Daz (u) = z7 (u)Dy  for j # i,

Doz (u) = ((u—a — di)a; (u)4 Do + ucf aE“ = ((u—a—d;)x; (u))4+Dq.

This proves the desired identity D, = )\aR\IVZ i fora e C\T. O

: » tgve (a) tZVe (CL)
Example 7.6. Let g = sly. Consider Ry (a) = | 7 e where V = Ny
tege (@) loye,n(a)

and W = L;. Example gives Ay (u) = w. Furthermore, v; is an eigenvector of
RY (u) of eigenvalue —u(—u — 1)(—u — 2)---(—u — i + 1) by Proposition (.8 (ii) and
Example 319 From Eq.(.44]) and its proof we obtain that

_Be+1) o (at1)(a+2)-(ati)

tW T — i . i = ) iy
eaea ()0 @ U Caat D (arioy W@t
t?l/,ez (a)v; = —R}}V(a)_l:EaRYV(a)tng (a)v; = (i + 1)y

This gives Rv,w(a)(eg ®u;) = (a+1i)v;®ea+ (i+ 1)vi41 ®ey. Apply a;ar to the equality
and notice that Ag _1(zf) =z @ 1+ 1®ad and A_jo(z]) = 2§ ® 1:
zi(e2®v;) = xfea @ v; + €2 ® av; = €1 ® v; + ez @ Vi1,

338-(112' ®eg) = xg_'Ui ® ez = Vi1 @ ez, xar(viﬂ ®ep) = xarviﬂ ®er =v; ®er.
We obtain from the commutativity of Ry (a) with z§ that

t?l/,el (a)v; ®e1 + tg‘;el (a)v; ® eg + Ruw(a)(eg ® vi—1)
= (a + i)vi_l ® eg + (Z + 1)%’ X eq.

w

& e (@)v; = v; and ¢} | (a)v; = vi—1. As a summary,

€2,€1

] B 1 at a+(’ui) = (’L + 1)Ui+17
Ryw(u) = (a_ u+a+a_> where {a_(vi) S

This gives ¢

This is a monodromy matrix of Baxter’s Q-operator for Y (gl2); see [3, (3.38)]. The
Yang—Baxter equation [3| (3.1)] is a particular case of Eq.(5.30]).

Following Remark .10, we think of ¢ty (u) and RV (u) as the leading terms of
the transfer matrices associated to the module V' and an infinite-dimensional positive
prefundamental module respectively. Then we expect Eq.(.:44]) to be a leading term
of generalized Baxter’s relations for transfer matrices [24] Theorem 5.11].
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8. TRUNCATIONS OF STANDARD MODULES

In this section, we prove that any standard module (and so any irreducible module)
in category O%" factorizes through a truncated shifted Yangian (Theorem [§4). Our
proof is uniform for all finite types (see Introduction for a discussion of known results).

Based on Theorem [7.4] we make the following definition.

Definition 8.1. For s € D, define the I-tuple of monic polynomials (g5 (u))ies € Clu]!
and the ¢-weight § = (5;(u))ier € R as follows

—Cji

G3() = Aoy (W), i) =g(— I 11 =

U
Jicji<0 t=1

95 (u — Z]—td)

Example 8.2. We describe the map s — § of Definition BT for g of type By. Let ay
be the long root and as the short root so that di = 2, dy = 1 and dio = —1. T_he
dual Coxeter number is 3 and so £ = 3. The Dynkin diagram automorphism ¢ > ¢ is
identity. We have V; = L(Y1,_2) and V, = L(Yz’_ %) The ratios of highest to lowest
l-weights for V7 and V5 are given by:
A1 oA 1A20A2 1, A1,_1A2042 3.
We obtain from Theorem [[.4] and Definition Bl that for s € D:
g5 (u) = s1(u— D)si(u)sa(u — )sa(u), g3(u) =s1(u— 1)sz(u — 2)s2(u),
S S
-2
S1(u) = g5 (w)gf (u )
s1(u)g3(u)g3(u — 1)

Therefore, in type By we have § = 73(s) € D.

B <) = BWgB—1)
=si(u—3), S )_SQ(u)gf(u—l) =sz(u—3).

Example 8.3. Assume g is of type Ga. Let oy be the long root and «as the short
root, so that dy = 3, do = 1, and di2 = —%. The dual Coxeter number is 4 and so
t = 6. The Dynkin diagram automorphism is identity. We have V4 = L(Y] _ %) and

Vo = L(Y27_% ). The ratios of highest to lowest ¢-weights for V; and V5 are given by:

A1,0A17_1A17_2A17_3A27%A 1A2 _QA %Al—%’ Al _%AL_%A2,0A27_2A2,_3A27_5.

)

As in the previous example, we have for s € D:

g5 (u) = sy (u)sy(u—1)s1(u— 2)s;(u— 3)
1 3 5) 7

x so(u + 5)52(u - 5)52(11 - 5)252(11 — 5)52(u — 5),
g5(u) = s1(u— g)sl(u — ;)SQ(U)SQ(U —2)s2(u — 3)s2(u — 5),
O 0 () e
)= e+ D D O
g1
0 et T

Therefore, in type G2 we have § = 74(s) € D.
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It is unclear to us whether § € D in general types. This is why in Definition 2.8 we
drop the assumption r € D.

Theorem 8.4. Forr,s € D, the standard module W(r,s) factorizes through the trun-
cated shifted Yangian va (s-1r) (9). In particular, any irreducible module in category
O%h factorizes through a truncated shifted Yangian.

Proof. We have W(r,s) = L(r) ® L(s™!) with L(r) being one-dimensional. For an
irreducible module L(e) in category O%", one can write e = n~'m with m,n € D.

Then Theorem [£.8 shows that L(e) is a quotient of the standard module YW(m, n). By
Remark [L.3] it suffices to show that L(s™!) factorizes through Y®_, (s)(9)-

Note that (—@V(s),s) € PY x R is truncatable:
@"(8) +@"(s) = Y _ deg(g}(u))ay.
iel
In notations of Proposition (5.8 and Definition B, we have g;(u) = ¢f(u). Take V =V,
in Theorem [7.5] and compare with Eq.(5.36). We get the following relation

(850) Ai(u)]L(sq) = chL(Sq)(u) foriel.
The polynomiality of the lowest diagonal entries in Theorem implies in the module
L(s™!) the defining relation (A;(u))+ = 0 of the truncated shifted Yangian. O

Remark 8.5. A similar identification of GKLO series with matrix entries as in Eq.(8.50)
was given in [48, Corollary 5.9]. As commented in [48, Remark 5.10], these should be
specializations of RTT realizations of shifted Yangians [68]. Some particular cases of
such a realization appeared in [8, 23]. Notice from Eq.(5.30) that our R-matrix Ry (u)
satisfies an RTT relation when V' is a finite-dimensional irreducible module over the
ordinary Yangian and W is a negative module.

Remark 8.6. (i) Let g be simply-laced. For the original truncated shifted Yangian of
Remark [2.9] there is a classification of irreducible highest /-weight modules in terms of
monomial crystals [48] [49]. Translated in the language of g-characters by [60, Theorem
3.3], it has the following consequence. Let s — § be the monoid automorphism of D
which sends each generator ¥;, to (- Then for r,s € D, the standard module

W(r,s) factorizes through the quotient maps
Yov(s-10)(8) — Y2 (19 (0) — Y2, 2 (1),

wV(s~Ir

In particular, it is a module over Yégv (s—1r) (9)-

(ii) For g of non simply-laced types, the classification of irreducible highest ¢-weight
modules over the original truncated shifted Yangians of Remark can be reduced to
the known classification in simply-laced types [48, 49] via geometric arguments [62, [61].
Theorem B4l in non simply-laced types follows from this analysis.

(iii) For shifted quantum affine algebras, the second part of Theorem [8.4] was known
for finite-dimensional irreducible modules [40, Theorem 12.9] (see also the discussion
in the Introduction of [40]). More generally, a conjectural description of highest ¢-
weights of irreducible modules over truncated shifted quantum affine algebras in terms
of Langlands dual g-characters was formulated in [40, Conjecture 12.3].
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9. JORDAN-HOLDER PROPERTY

In this section, as an application of our study of R-matrices in Sections BHT we
establish a property in category O*": finite-length modules are stable under tensor
product (Theorem [0.4]). This is referred to as Jordan—Hélder property.

We also obtain a uniform proof of the following known result (see Remark 0.3]) :
a truncated Yangian has only a finite number of irreducible representations in the
category O*" (Theorem [3.2).

For f(u) € C(u) a rational function, by the denominator of f(u) we mean the monic
polynomial ¢(u) of u of smallest degree such that ¢(u)f(u) € Clu]. The numerator of
f(u) is the denominator of f(u)~!.

Lemma 9.1. Let e € R and (i,a,m) € I x C x Z~g. Then (u — a)™ divides the
denominator of e;(u) if and only if A;Z{”e is an C-weight of L(e).

Proof. Write p = w"(e) = >, kjw). Set L := fui(Yi(sl2))we C L(e); it is a

Yki(slg)—module via the pullback by f,m. We claim that:
(i) The Yz, (slz)-module L is isomorphic to L(d; *e;(ud;)).
(ii) As subspaces of L(e), the ¢-weight space of the Yy, (sla)-module L of ¢-weight
d;kiei(udi)AgllA;; -+ Azl is equal to the f-weight of the Y, (g)-module L(e)
of -weight eA; !} AL Al

i,a1d; *Miaed; T Mand;”
(i) can be proved as in [I4] Lemma 4.3] by restriction to diagram subalgebras.

For (i), write w(e) = >_;c;m;jw;. Then we is of weight m; in the Y}, (sl2)-module
L. From L(e) = Y, (g)we and the Q_-grading on Y,~(g) we get an identification of
weight spaces

Lmi—2N = L(e)w(e)_Nai for N € N.
Since a weight space is a direct sum of /-weight spaces, it suffices to prove that the
right-hand side of the equality of (ii) is contained in the left-hand side. This is obvious
from f,,4(§(w)) = d; "¢ (ud;).

It follows that A; "e is an (-weight of L(e) if and only if d;kiei(udi)A;dl;l is an

(-weight of the Y, (slz2)-module L(d;kiei(udi)). We are reduced to the case g = sls.
Then this follows from the tensor product factorization of Proposition because by
Definition [6.I]the standard factorization of a rational function fixes its denominator and
each factor u — a in the denominator contributes to a factor A1 of an f-weight. O

For (u,r) € PY x R a truncatable pair define RJ, to be the set of e € R, such that
the Y},(g)-module L(e) factorizes through the truncated shifted Yangian Y (g).

Theorem 9.2. The set R), is finite for any truncatable pair (u,r) € PV x R.

Remark 9.3. When r € D, there is a geometric proof of the finiteness, as explained in
[48, Corollary 3.13], by viewing the truncated shifted Yangian Y] (g) as a quantization

of a scheme supported on a generalized affine Grassmannian slice W//) with A := @"(r)
(see [4T, Proposition 4.10]), and then applying the general result [6, Proposition 5.1].

If r ¢ D, choose s € D such that rs € D. Remark [f.3] shows that R}, C S_IRZin(s)'
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The finiteness of Rj, follows from the known case. Our proof is algebraic and close to
the situation of truncated shifted quantum affine algebras [40, Theorem 11.15].

Proof. For e € R and i € I, let p$(u) and ¢f (u) denote the numerator and denominator
of e;(u). Recall from Eq.([2I9) the coefficient m; € N of o/ in @"(r) — p.

Step 1. We shall give a necessary condition for e € R As in Proposition B.8] let
9i(u) € Clu] be the eigenvalue of A;(u) € Y (g)[u] associated to the eigenvector we of
L(e). Then g;(u) is a monic polynomial of degree m;. We claim that g;(u)e;(u) is a
polynomial, which by Eq.(2.20]) is equivalent to divisibility of polynomials:

—cji
(9.51) gi(w)gi (u+d;) | pi(u+ d;) gi(u+d; — dij — tdy).
J
Jicji<0 t=1

We need to prove ¢f(u) | gi(u). Namely, for any (a,m) € C x Zs¢ such that (u —a)™ |
g5 (u), we must have (u—a)™ | g;(u). By Lemma[.I} eA; ;" is an (-weight of L(e). From
Proposition [5.8] (ii) we see that the eigenvalue of A;(u) on L(e)_ ,—m is gi(u)(%tdi)m,
which must be a polynomial. Since (v —a + d;)™ and (u — a)™ are coprime, we have
(u—a)™| gi(u), as desired.
Step 2. Introduce the following finite subsets of C for s € Z~:
Dy := {di—dij—tdj |i,jel, teZ, cji < 0, 1§t§_cji},
X%:={acC|pfla+d;) =0 for certain i € I},
Xi={a—c1—ca——cs€Clac X ¢ €Dyforl<k<s}

Clearly, Dy depends on g, and X7 on the triple (r,s,g). Set m := > ..;m; and
X = U;”:_OlXﬁ. Then X is a finite set depending on the triple (r, u, g).
Each e € R}, is uniquely determined by the monic polynomials gi(u) for i € I from
Step 1. Let us attach a quiver I'e to e as follows:
e the set of vertices is Ve := {(i,a) € I x C | g;(a) = 0};
e draw an arrow (i,a) — (J,b) if ¢j; < 0 and there exists 1 <t < —¢;; such that
b=a+d; —d;j —td; and p}(a + d;) # 0. In particular, b — a € Dj.
We prove that Ve C I x X. Since g;(u) is of fixed degree m;, this will imply that there
are finitely many choices of g;(u), from which comes the finiteness of Ry
Let VY be the set of sink vertices (namely, vertices with no outgoing arrows) of Te.
If (i,a) is sink, by Relation (9.5I) we must have pj(a + d;) = 0, since the product [];
is nonzero. This means V2 C I x X?.
For s € Z~g, define VZ to be the set of vertices (i,a) of I'e which can be joint to a
sink vertex with s arrows. Namely, (i,a) € V¢ if there exist s vertices

(il, al)v (i27 a2)7 I (isv (ls)
such that (is,as) is sink and there are arrows

(z',a) — (il,al) — (’iQ,CLQ) — e (is_l,as_l) — (z's,as).
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From our definition of arrows it follows that a1 — ar € Dy, as € XIQ and
a=as—(as—as—1)— - — (ag —a1) — (a1 — ap) € X;.

This gives Vg C I x X.
By Claim 1 below, the quiver I' is acyclic and every vertex is connected to a sink
vertex by at most m — 1 arrows. We obtain the desired relation

m—1 m—1
Ve = L_Jov;c L_JO(IxX,f):[xX.

Claim 1. In the quiver T'e¢ there does not exist any sequence of vertices (ig,ay) for
0 < k < m with arrows (i, a;) = (ij41,a;41) for 0 <1 < m.

Assume the contrary and fix such a sequence
S : (io,ao) — (z’l,al) — (ig,ag) — s —> (im,am).

Since m + 1 > Zje ;mj, there must exist j € I which appears in the sequence
igt192 - - - i at least m; + 1 times. Each appearance of j, say i = j, gives a root
ap, of gj(u). If i, = ¢y and k < [ then necessarily [ — k > 1 and from Claim 2 below
we get aj, # a;. So the polynomial [[y<j <, —;(u — ax) divides g;(u); the former is of
degree at least m; + 1, while the latter of degree m;, contradiction.

Claim 2. In the sequence S, if 0 < k< k+ 1<l <mthen q; —a; € %Z>0.

If g is not of type Gg, then ¢j; > —2 for all 4,5 € I. By Eq.(2Z20]), we have Dy C %N;
moreover, if 0 € Dy, then it must arise from 0 = d; — %dj so that d; = 1 and d; = 2.

This means that for an arrow (i,a) — (j,b) of the quiver I'e: either b —a € %Z>0; or
b=a and (d;,d;) = (1,2). Apply this to the sequence S:

1
aip —ap, Gz —ap, - ,0m — Qp-1 € §N-
So a; —ay, € %N. If a; = ag, then ap = ax11 = axio. From ap = apy1 we obtain
diy,, = 2, while from ag1 = apio we obtain d;,. ., = 1, contradiction.
If g is of type G2 with d; = 3 and dy = 1, we check Claim 2 directly. By Eq.(2:20)),

the arrows in the quiver I'¢ are of the form

(1,a)—>(2,a—|—g), (1,a)—>(2,a+g), (1,a)—>(2,a+;), 2,0) = (La— ).

2
The sequence igiy - - - bm—19m 1S alternating of the form 1212--- or 2121---. For an
arrow (1,a) — (2,b), we have b — a > 3, while for an arrow (2,a) — (1,b) we have
b—a= —%. It follows that a; — ap = Ei;i(at_i_l — a¢) as an half integer is at least S,
where S is an alternating sum of [ — k > 1 terms of the following form:
3 1 3 1 1 3 1 3
2 372 27 TataTatan

Clearly a; —ap > S > 0. O
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Define (’),]:m to be the full subcategory of O, consisting of modules with a finite

Jordan-Hélder filtration. In other words, a module V' in category O, is in Oﬁm if and
only if V' admits a finite number of irreducible subquotients, if and only if [V] is a finite
sum of irreducible isomorphism classes [L(e)] for e € R,,. Let O;ﬁn be the direct sum

of the categories Oﬁm over all coweights p.
Theorem 9.4. Category Off;n 1s closed under tensor product.

Proof. We need to show that the tensor product T' of two arbitrary irreducible modules
belongs to category O;?n, namely, 7" admits a finite number of irreducible subquotients.

From Theorem .8 we see that T can be realized as a quotient of a tensor product T" of
two standard modules. By Eq.(#29) the module 7" has the same isomorphism class as a
third standard module W. By Theorem [8.4], the standard module W factorizes through
a truncated shifted Yangian Y;(g). Since R$ is finite, W admits a finite number of
irreducible subquotients, so do the tensor products 77 and T O

The Grothendieck group of category KO(O;?n)’ which is the abelian subgroup of
Ko(O%") freely generated by the [L(e)] for e € R, is a therefore a subring.

Remark 9.5. (i) Assume g is not of type Es. Combining Proposition 412 (iii), Theorem
and Theorem R4, we obtain that any highest ¢-weight module in category O"
factorizes through a truncated shifted Yangian and belongs to category (’);?n

(ii) The Jordan—Holder property is known to be true [36, Theorem 5.27] for certain
category of integrable modules over a quantum affinization. It fails in the original
category O of g-modules (counterexample: the tensor product of two irreducible Verma
modules over sly has infinitely many irreducible subquotients) and in the category O
of modules over the Borel algebra [41] as observed in [43, Remark 5.12].

(iii) For g = sl,41 there is another proof of Theorem by extending Y (sl,+1) to
the Yangian Y (gl,11) and using the big center of Y (gl,+1); see [9, Lemmas 6.13, 7.16].
This is close to the proof of classical fact in the original category O of g-modules that
each Verma module admits a finite Jordan—Holder filtration.
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