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ABSTRACT. We show how a number of well-known uncertainty principles for
the Fourier transform, such as the Heisenberg uncertainty principle, the Dono-
ho—Stark uncertainty principle, and Meshulam’s nonabelian uncertainty princi-
ple, have little to do with the structure of the Fourier transform itself. Rather,
all of these results follow from very weak properties of the Fourier transform
(shared by numerous linear operators), namely that it is bounded as an oper-
ator L' — L°°, and that it is unitary. Using a single, simple proof template,
and only these (or weaker) properties, we obtain some new proofs and many
generalizations of these basic uncertainty principles, to new operators and to
new settings, in a completely unified way. Together with our general overview,
this paper can also serve as a survey of the many facets of the phenomena
known as uncertainty principles.

1. INTRODUCTION

1.1. Background. The phrase “uncertainty principle” refers to any of a wide class
of theorems, all of which capture the idea that a nonzero function and its Fourier
transform cannot both be “very localized”. This phenomenon has been under
intensive study for almost a century now, with new results published continuously
to this day. So while this introduction (and the paper itself) discusses some broad
aspects of it, this is not a comprehensive survey. For more information on the history
of the uncertainty principle, and for many other generalizations and variations, we
refer the reader to the excellent survey of Folland and Sitaram [16].

The study of uncertainty principles began with Heisenberg’s seminal 1927 pa-
per [20], with the corresponding mathematical formalism independently due to
Kennard [24] and Weyl [37]. The original motivation for studying the uncertainty
principle came from quantum mechanics and thus most classical uncertainty prin-
ciples deal with functions on R or R™. The first, so-called Heisenberg uncertainty
principle, says that the variance (appropriately defined, see SectionH]) of a function
and of its Fourier transform cannot both be small. Following Heisenberg’s paper,
many different notions of locality were studied. For example, it is a simple and
well-known fact that if f : R — C has compact support, then f can be extended to
a holomorphic function on C, which in particular implies that f only vanishes on a
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indicate that it is impossible to measure both to arbitrary precision.
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discrete countable set, and so it is not possible for both f and f to be compactly
supported. This fact was generalized by Benedicks [6] (and further extended by
Amrein and Berthier [I]), who showed that it is not possible for both f and f
to have supports of finite measure. Another sort of uncertainty principle, dealing
not with the sharp localization of a function but rather with its decay at infin-
ity, has also been widely studied. The first such result is due to Hardy [I8], who

2

x

proved (roughly) that it is not possible for both f and f to decay faster than e~
Yet another type of uncertainty principle is the logarithmic version conjectured
by Hirschman [21] and proven by Beckner [4] and independently Bialynicki-Birula
and Mycielski [7], which deals with the Shannon entropies of a function and its
Fourier transform, and which has connections to log-Sobolev and hypercontractive
inequalities [5].

In 1989, motivated by applications to signal processingE Donoho and Stark
[T4] initiated the study of a new type of uncertainty principle, which deals not
with functions defined on R but rather with functions defined on finite groups.
Many of the concepts discussed above, such as variance and decay at infinity, do
not make sense when dealing with functions on a finite group. However, other
measures of nonlocalization, such as the size of the support of a function, are well
defined in this context, and the Donoho—Stark uncertainty principle deals with this
measure. Specifically, they proved that if G is a ﬁmte abelian groupE G is its dual
group, f : G — C is a nonzero function, and f G — C is its Fourier transform,
then [supp(f)||supp(f)] > |G|. They also proved a corresponding theorem for
an appropriate notion of approzimate support (see Section B3 for more details).
The work of Donoho and Stark led to a number of other uncertainty principles
for finite groups. Three notable examples are Meshulam’s extension [26] of the
Donoho-Stark theorem to arbitrary finite groups, Tao’s strengthening [36] of the
Donoho—Stark theorem in case G is a cyclic group of prime order, and the discrete
entropic uncertainty principles of Dembo, Cover, and Thomas [12], which generalize
the aforementioned theorems of Hirschman [21], Beckner [4], and Biatynicki-Birula
and Mycielski [7].

Despite the fact that all uncertainty principles are intuitively similar, their proofs
use a wide variety of techniques and a large number of special properties of the
Fourier transform. Here is a sample of this variety. The standard proof of Heisen-
berg’s uncertainty principle uses integration by parts and the fact that the Fourier
transform on R turns differentiation into multiplication by z. Benedicks’s proof
that a function and its Fourier transform cannot both have finite-measure supports
uses the Poisson summation formula. The logarithmic uncertainty principle follows
from differentiating a deep fact of real analysis, namely the sharp Hausdorff-Young
inequality of Beckner [4]. The original proof of the Donoho—Stark uncertainty prin-
ciple uses the fact that the Fourier transform on a cyclic group G, viewed as a
|G| x |G| matrix, is a Vandermonde matrix and, correspondingly, certain subma-
trices of it can be shown to be nonsingular. Tao’s strengthening of this theorem
also uses this Vandermonde structure, together with a result of Chebotarév which
says that in case |G| is prime, all square submatrices of this Vandermonde matrix

2In this context, some similar theorems can be called “certainty principles”. Here, this indicates
that one can use the fact that one parameter is not localized to measure it well by random sampling.

3Strictly speaking, Donoho and Stark only proved this theorem for cyclic groups, but it was
quickly observed that the same result holds for all finite abelian groups.
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are nonsingular. The proof of Donoho and Stark’s approximate support inequality
relates it to different norms of submatrices of the Fourier transform matrix. Finally,
Meshulam’s proof of the nonabelian uncertainty principle uses linear-algebraic con-
siderations in the group algebra C[G].

1.2. The simple theme and its variations. In this paper, we present a unified
framework for proving many (but not all) of these uncertainty principles, together
with various generalizations of them. The key observation throughout is that al-
though the proofs mentioned above use a wide variety of analytic and algebraic
properties that are particular to the Fourier transform, these results can also be
proved using almost none of these properties. Instead, all of our results will follow
from two very basic facts about the Fourier transform, namely that it is bounded
as an operator L' — L° and that it is unitary@ Because the Fourier transform is
by no means the only operator with these properties, we are able to extend many
of these well-known uncertainty principles to many other operators.

This unified framework is, at its core, very simple. The L' — L> boundedness
of the Fourier transform gives an inequality relating ||f|so to ||f|l1. Similarly,
the L' — L*> boundedness of the inverse Fourier transform gives an analogous
inequality relating || f||so to || f||1. Multiplying these two inequalities together yields
our basic uncertainty principle, which has the form

Il Wl g,

[ flloo |1 flloo
for an appropriate constant Cy. Thus, in a sense, the measure of localization
Hy(g) = HHngHl is a primary one for us, and the uncertainty principle above,
(1) Ho(f) - Ho(f) = Co

is the source of essentially all our uncertainty principles. Note that Hy really is
yet another measure of localization of a function g, in that a function that is more
spread out will have a larger L' norm than a more localized function, if both have
the same L°° norm. Here is how we will use this primary uncertainty principle.

Suppose we want to prove any uncertainty principle, for any potential measure
of localization H on functions, e.g., one of the form

(2) H(f)-H(f)=C.
For example, our measure of localization H might be the variance of (the square
of) a function on the reals if we want to prove the Heisenberg uncertainty principle,
or H might be the support-size of a finite-dimensional vector if we want to prove
the Donoho—-Stark uncertainty principle.

We will derive (@) by first proving a universald bound, relating the measure
of localization H to our primary one Hj, that holds for every function g. This
reduction will typically take the form

Hig) > ' Holg) = "+ 01"

4In fact, a far weaker condition than unitarity is needed for our results, as will become clearer
in the technical sections.

5This bound is universal in the sense that no operator like the Fourier transform is involved
in this inequality; it deals only with a single function g.
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Now this bound can be applied to both f and f separately, which combined with our
primary principle (@) yields (with (C")? = C - Cy) the desired uncertainty principle
@8

Such an approach to proving simple uncertainty principles is by no means new;
it goes back at least to work of Williams [38] from 1979, who used it to prove a
weak version of an approximate-support inequality for the Fourier transform on R
(see Section B3] for more details). Moreover, this approach to proving the Donoho—
Stark uncertainty principle has apparently been independently rediscovered several
times, e.g., [9[31]. However, we are not aware of any previous work on the wide
applicability of this simple approach; indeed, we found no other applications besides
the two mentioned above. Importantly, the separation of the two parts of the proof
above is only implicit in these papers (after all, the whole proof in these cases
is a few lines), and we believe that making this partition explicit and general, as
presented above, is the source of its power. We note that though the second part
of this two-part approach is often straightforward to prove, it occasionally becomes
interesting and nontrivial; see for instance, Section [£.3.3]

In this paper, will see how this approach leads to a very different proof of the
original Heisenberg uncertainty principle, in which the measure H is the variance.
We will then prove other versions of that classical principle, which yield uncertainty
when H captures higher moments than the variance. We will also see how it extends
to uncertainty principles where H captures several notions of approximate support
and nonabelian support, as well as new uncertainty principles where H captures
the ratio between other pairs of norms (which in turn will be useful for other
applications). Throughout the paper, we attempt to establish tightness of the
bounds, at least up to constant factors.

As mentioned, the primary uncertainty principle uses a very basic property that
is far from special to the Fourier transform but that is shared by (and so applies
to) many other operators in different discrete and continuous settings, which we
call k-Hadamard operators.

Although the study of uncertainty principles is nearly a century old, it continues
to be an active and vibrant field of study, with new results coming out regularly
(e.g., [BIELI72729LB80]—all from the past 12 months!). While many uncertainty
principles are unlikely to fit into the simple framework above, we nonetheless hope
that our technique will help develop this theory and find further applications.

1.3. Outline of the paper. The paper has two main parts, which have somewhat
different natures. The first is on finite-dimensional uncertainty principles, and the
second is on infinite-dimensional ones. Both parts have several sections, each with
a different incarnation of the uncertainty principle. In most sections, we begin
with a known result, which we then show how to reprove and generalize using our
framework. We remark that most sections and subsections are independent of one
another, and can be read in more or less any order. We therefore encourage the
reader to focus on those sections they find most interesting.

Before delving into these, we start with the preliminary Section[2l In it, we first
formally state and prove the (extremely simple) primary L' — L° uncertainty
principle, from which everything else will follow. This leads to a natural abstract

6Variants of this idea will come in handy as well, e.g., proving that H(g) > Ho (g)cl, yielding
c=c¢".
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definition of operators amenable to this proof, which we call k-Hadamard matrices;
most theorems in the finite-dimensional section will be stated in these terms (and
a similar notion will be developed for the infinite-dimensional section).

In Section Bl we survey, reprove, and generalize finite-dimensional uncertainty
principles, including the commutative and noncommutative support uncertainty
principles of Donoho and Stark and of Meshulam, respectively, several old and
new approximate support uncertainty principles, including those of Williams and of
Donoho and Stark, as well as some new uncertainty principles on norms. In Section
[ we turn to infinite-dimensional vector spaces and the uncertainty principles one
can prove there. These include support inequalities for the Fourier transform on
topological groups and several variants and extensions of Heisenberg’s uncertainty
principle, in particular to higher moments. Moreover, these theorems apply to
the general class of linear canonical transforms (which vastly extend the Fourier
transform). Finally, Appendix [Al collects the proofs of some technical theorems.

2. THE PRIMARY UNCERTAINTY PRINCIPLE AND k-HADAMARD MATRICES

As stated in the Introduction, the primary uncertainty principle that will yield
all our other results is a theorem that lower-bounds the product of two L' norms
by the product of two L* norms. In this section, we begin by stating this primary
principle, as well as giving its (extremely simple) proof. We then define k-Hadamard
matrices, which will be our main object of study in Section Bl and whose definition
is motivated from the statement of the primary uncertainty principle (roughly,
the definition of k-Hadamard matrices is “those matrices to which the primary
uncertainty principle applies”). We end this section with several examples of k-
Hadamard matrices, which show that such matrices arise naturally in many areas
of mathematics, such as group theory, design theory, random matrix theory, coding
theory, and discrete geometry.

2.1. The primary uncertainty principle. We begin by recalling the definition
of an operator norm. Let V,U be any two real or complex vector spaces, and let
Il - |lv and || - ||z be any norms on V,U, respectively. Let A : V — U be a linear
map. Then the operator norm of A is

Av U
lA|lv—>u = sup 4] = sup |[Av]y.
ozvev |lvflv veV
llvllv=1
For 1 < p,q < o0, we will denote by ||A||,—4 the operator norm of A when || - ||y is
the L? norm on V and || - ||y is the L2 norm on U.

With this notation, we can state our main theorem, which is the primary un-
certainty principle that will underlie all our other results. We remark that this
theorem, as stated below, is nearly tautological—our assumptions on the operators
A and B are tailored to give the desired result by a one-line implication. Despite
this simple nature, the strength of this theorem comes from the fact that many
natural operators, such as the Fourier transform, satisfy these hypotheses.

Theorem 2.1 (Primary uncertainty principle). Let V,U be real or complex vector
spaces, each equipped with two norms || - |1 and || - ||co, and let AV — U and
B : U — V be linear operators. Suppose that ||All1me < 1 and ||Bl1see < 1.

Suppose too that |BAv||leo > k||v||ec for all v € V', for some parameter k > 0.
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Then for any v € V,
[olll[Av][y = El[v]lco]| AV oo

Proof. Since ||All1500 < 1, we have that
[Av][oo < [[o]]s-

Similarly, since || B||1500 < 1,

[BAY|[e < [|Av]1.
Multiplying these two inequalities together, we find that
[ollilAv]ly = [[Av]loo[| BAV]loo = Eflv]loo | Av]oc,

as claimed. O

Note that Theorem 2.1l holds regardless of the dimensions of V' and U (so long
as the L' and L° norms are well defined on them), and in Section B we will use
this primary uncertainty principle in infinite dimensions. But for the moment, let
us focus on finite dimensions, in which case we take || -||1 and || - || to be the usual
L' and L™ norms on R™ or C”. When applying Theorem 2.1 we will usually take
B = A*. Note that the 1 — 0o norm of a matrix is simply the maximum absolute
value of the entries in the matrix, so ||A|l1»00 < 1 if and only if all entries of A are
bounded by 1 in absolute value. Moreover, if B = A*, thenll || Blj1500 = || Al|1-00-
Thus, in this case, all we need to check in order to apply Theorem [2] is that
|A* Av||so > K||v||o for all v € V. This motivates the following definition, of k-
Hadamard matrices, which are defined essentially as “those matrices that Theorem
2.1l applies to”. We note that a similar definition was made by Dembo, Cover,
and Thomas in [I2, Section IV.C], and they state their discrete norm and entropy
uncertainty principles in similar generality.

Definition 2.2. Let A € C™*™ be a matrix and let k¥ > 0. We say that A is k-
Hadamard if every entry of A has absolute value at most 1 and [|A* Av||oo > k||v||0o
for all v € C™. Equivalently, A is k-Hadamard if all its entries are bounded by 1 in
absolute value, A*A is invertible, and ||(A*A)™Y|co 00 < 1/k.

The next subsection consists of a large number of examples of k-Hadamard ma-
trices which arise naturally in many areas of mathematics. Before proceeding, we
end this subsection with three general observations. The first is the observation that
the simplest way to ensure thatf |A* Av|| oo > E||v|loo is to assume that A*A = k1.
As we will see in the next section, many natural examples of k-Hadamard matrices
have this stronger unitarity property.

Our second general observation is a rephrasing of Theorem 21l using the ter-
minology of k-Hadamard matrices. Note that it is really identical to Theorem 2T

but we state it separately for convenience.

Theorem 2.3 (Primary uncertainty principle, rephrased). Let A € C™*™ be k-
Hadamard. Then for any v € C™, we have that

[l Av][s = El[v]oo | Av]lco-

"In fact, this holds in greater generality: as long as || - ||1 and || - ||co are dual norms on any
inner product spaces, we will have that [|A|[1—c0 = [|A*]1500-
8 And indeed, to have that ||A* Av|| = k||v|| for any norm whatsoever.
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Thirdly, one can observe that the proof of Theorem 2.1l never actually used any
properties whatsoever of the (usual) L' and L° norms, and the same result holds
(with appropriately modified assumptions) for any choice of norms. Above, we
chose to state the primary uncertainty principle specifically for the L' and L*>
norms simply because it is that statement that will be used to prove all subsequent
theorems. However, for completeness, we now state the most general version which
holds for all norms. The proof is identical to that of Theorem 2.1l so we omit it.

Theorem 2.4 (Primary uncertainty principle, general version). Let V.U be real
or complex vector spaces, and let A:V — U and B : U — V be linear operators.
Let || - Iy, || - ly@ be two norms on V, and let || - ||y, || - o be two norms
on U. Suppose that ||Allyo)spe < 1 and |[|Bllyosye < 1, and suppose that
|BAv| |y > k||v|ly@ for allv € V and some k > 0. Then for anyv € V,

[vllve [Av]lpay > kllvllve |Av]ge .

2.2. Examples of k-Hadamard matrices. We end this section by collecting
several classes of examples of k-Hadamard matrices. While this subsection may be
skipped at first reading, its main point is to demonstrate the richness of operators
for which uncertainty principles hold. As remarked above, many of these matrices
actually satisfy the stronger property that A*A = k1.

Hadamard matrices: Observe that if A is a k-Hadamard n xn matrix, then
k < n, and thus n-Hadamard matrices are best possible. One important
class of n-Hadamard matrices are the ordinaryﬁ Hadamard matrices, which
are n X n matrices A with all entries in {—1,1} and with A*A = nI. There
are many constructions of Hadamard matrices, notably Paley’s construc-
tions [28] coming from quadratic residues in finite fields. Moreover, one
can always take the tensor product of two Hadamard matrices and produce
a new Hadamard matrix, which allows one to generate an infinite family of
Hadamard matrices from a single example, such as the 2 x 2 matrix ( 1, }).
Of course, these examples are nothing but the Fourier transform matrices
over Hamming cubes. We remark that there are still many open questions
about Hadamard matrices, most notably the so-called Hadamard conjec-
ture, which asserts that n x n Hadamard matrices should exist for all n
divisible by 4.

Complex Hadamard matrices: However, n-Hadamard n X n matrices are
more general than Hadamard matrices, because we do not insist that the
entries be real. In fact, one can show that n-Hadamard matrices are pre-
cisely complex Hadamard matrices, namely matrices with entries on the
unit circle {z € C : |z| = 1} whose rows are orthogonal. There is a rich
theory to these matrices, with connections to operator algebras, quantum
information theory, and other areas of mathematics; for more, we refer to
the survey [2].

The Fourier transform: A very important class of complex Hadamard ma-
trices consists of Fourier transform matrices: if G is a finite abelian group,
then we may normalize its Fourier transform matrix so that all entries
have norm 1, and the Fourier inversion formula precisely says that this
matrix multiplied by its adjoint is |G|I. Thus, Fourier transform matrices

9Whence our name for such matrices.
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are n-Hadamard n x n matrices, where n = |G|. More generally, quan-
tum analogues of the Fourier transform can also be seen as k-Hadamard
matrices; for more information, see [22].

Other explicit square matrices: We do not insist that £ = n in our n xn
Hadamard matrices. For k < n, special cases of k-Hadamard matrices
with A*A = kI have been studied in the literature. For instance, such
matrices with k = n — 1, real entries, and zeros on the diagonal are called
conference matrices, and weighing matrices are such matrices with k < n
and all entries in {—1, 0, 1}; both of these have been studied in connection
with design theory. See [11] for more details.

Random matrices: For less structured examples of k-Hadamard matrices,
let M be a random n X n unitary (or orthogonal) matrix, i.e., a matrix
sampled from the Haar measure on U(n) (or O(n)). It is well known
that with high probability as n — oo, every entry of M will have norm
O(y/logn/n); see [I3, Theorem 8.1] for a simple proof, and [23] for far more
precise results, including the determination of the correct constant hidden
in the big-O. Thus, if we multiply M by cy/n/logn for an appropriate
constant ¢ > 0, we will obtain with high probability a k-Hadamard matrix
with & = Q(n/logn). This shows that an appropriately chosen random
matrix will be Q(n/logn)-Hadamard with high probability, which is best
possible up to the logarithmic factor.

Rectangular matrices and codes: Recall that we do not require our k-
Hadamard matrices to be square, which corresponds to not insisting that
V and U have the same dimension in Theorem ZIl If A is an m X n
k-Hadamard matrix, then & < m. One example of a nonsquare matrix
attaining this bound is the 2" x nm matrix S whose rows consist of all
vectors in {—1,1}". Then distinct columns of S are orthogonal because
they disagree in exactly 2"~ ! coordinates, which implies that S*S = 21,
and so S is 2"-Hadamard.

Note that the columns of S are simply the codewords of the Hadamard
code, viewed as vectors in {—1,1}?" rather than in {0,1}2". A similar
construction works for all binary codes with an appropriate minimum dis-
tance. If we view the codewords as vectors with £1 entries and form a
matrix S whose columns are these codewords, then the minimum distance
condition will imply that the columns are nearly orthogonal, and thus
that the diagonal entries of S*S will be much larger than the off-diagonal
entries. Thus, S will be k-Hadamard for a value of k£ depending on the
minimum distance of the code.

Incidence matrices of finite geometries: If ¢ is a prime power, let
PG(2,q) be the projective plane over the field F,. Then setting n =
¢ + g+ 1, we can let A be the n x n incidence matrix of points and lines
in PG(2,¢), namely the matrix whose rows and columns are indexed by
the points and lines, respectively, of PG(2, ¢), and whose (p,£) entry is 1
if p € £, and 0 otherwise. Then A certainly has all its entries bounded by
1. Moreover, each column has exactly ¢ + 1 ones, and distinct columns
have inner product 1, since any two lines intersect at exactly one point.
This implies that A*A = gI + J, where J is the all-ones matrix. It is not
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too hard to see from this that ||A*Av||s > 2||v||s for any v € C™, which
implies that A is a k-Hadamard n x n matrix, where k > ¢/2 = ©(y/n).

Similarly, one can consider the d-dimensional projective space PG(d, q)
over Fy, and form the incidence matrix of a-flats and b-flats, for any 0 <
a < b <d. It will be a (not necessarily square) k-Hadamard matrix, for
some value of k depending on a, b, and d.

3. FINITE-DIMENSIONAL UNCERTAINTY PRINCIPLES

In this section, we show how to use our general uncertainty principle for k-
Hadamard matrices, Theorem [2.3] to prove a number of uncertainty principles in
finite dimensions. We start with the basic support-size uncertainty principle of
Donoho and Stark, and then move on to Meshulam’s generalization of it to arbi-
trary finite groups. We next proceed to prove several uncertainty principles for
various notions of approximate support, and conclude with a collection of uncer-
tainty principles for ratios of other norms, which will be useful for us later when
we prove the Heisenberg uncertainty principle.

Most of our results in this section generalize known theorems about the Fourier
transform on finite groups. However, as we demonstrate below, they do not actually
need any of the algebraic structure of the Fourier transform (or even of an under-
lying group), and instead all follow from the fact that Fourier transform matrices
are k-Hadamard.

3.1. The Donoho—Stark support-size uncertainty principle. For a vector
v € C™, let supp(v) be its support, namely the set of coordinates ¢ where v; # 0.
Similarly, if f : G — C is a function on a finite group, we denote by supp(f) the
set of x € G for which f(z) # 0. Recall that if G is a finite abelian group, we
denote by G the dual group, which consists of all homomorphisms from G to the
circle group T = {z € C : |z| = 1}. G forms an abelian group under pointwise
multiplication, and it is in fact (noncanonically) isomorphic to G. We define the
Fourier transform f : G — C of a function f : G — C by f(y) = Y wec f(@)x(z).
The basic uncertainty principle for the Fourier transform on finite abelian groups
is the following theorem of Donoho and Stark.

Theorem 3.1 (Donoho and Stark [I4]). Let G be a finite abelian group. If f :
G — C is a nonzero function and f : G — C denotes its Fourier transform, then

supp(f)|[supp(f)| > |G|.

Our first finite-dimensional result is an extension of Theorem [B.1] to arbitrary
k-Hadamard matrices.

Theorem 3.2 (Support-size uncertainty principle). Let A € C™*™ be a k-Hada-
mard matriz. Then for any nonzero v € C",

|supp (v)||supp(Av)| > k.

Proof. This is the first demonstration of the principle articulated in the Introduc-
tion. We already have, from Theorem 23] that for any nonzero v, ||v|i||Av|1 >

E||v]lso||Av]|co. Thus, all we need is to bound the support-size of a function by the
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ratio of its norms, which is obvious: for any vector wu,
n
lully =Y Jwil = >~ Jwil < [supp(u)|]ulloo-

=1 i1€supp(u)

Applying this bound to both v and Av, we obtain the result. O

In this proof, the measure of localization we wished to study was the support of a
vector. The uncertainty principle for this measure follows from the primary one (on
the ratio of norms) via an inequality that holds for all vectors (bounding it by that
ratio). This is an instance of the basic framework discussed in the Introduction,
which will recur throughout.

Remark. We remark that in general, the bound in Theorem B1] (and thus also in
Theorem [B.2)) is tight. For instance, if f is the indicator function of some subgroup
H C @, then f will be a constant multiple of the indicator function of the dual
subgroup H- C G, and we have that |H||H*| = |G|. Thus, |supp(f)||supp(f)| =
|G-

3.2. Support-size uncertainty principles for general finite groups. In this
section, we show how our general framework can be used to extend the Donoho—
Stark support-size uncertainty principle to the Fourier transform over arbitrary
finite groups, abelian or nonabelian. Such an extension was already proved by
Meshulam [26] for a linear-algebraic notion of support-size. Here we propose a
natural combinatorial notion of supportE and prove an uncertainty principle for
it within our framework. Further, we prove that these two uncertainty principles
are almost equivalent: they are identical for a certain class of functions, and are
always equivalent up to a factor of 4. We note that both notions of support-size
are natural and both extend the abelian case. Finally, at the end of the section,
we provide another, new uncertainty principle of norms for general groups, proved
by Greg Kuperberg, which provides a different proof of Meshulam’s theorem using
our framework.

To facilitate a natural combinatorial definition of support, we embed both the
time domain (namely, functions on the group), and the Fourier domain (namely,
their image under the Fourier transform) as subalgebras of the matrix ring C™*",
where n = |G|. Then the notion of support becomes the standard one, namely the
set of nonzero entries of these matrices. This embedding does much more. It gives
as well a natural definition of norms (treating these matrices as vectors), and it
accommodates a description of the Fourier transform as a k-Hadamard operator.
These yield a proof of our support-size uncertainty inequality that is almost identical
to the one in the abelian case.

3.2.1. Preliminaries: The Fourier transform in general finite groups. We now recall
the basic notions of the Fourier transform of general finite groups (a.k.a. their
representation theory) using the embedding above, which also affords a definition
of the inverse Fourier transform which looks nearly identical to the abelian case.
We refer the reader to the comprehensive text [33] on the representation theory of
finite groups for a standard exposition of these concepts.

10Tn his paper, Meshulam also defines a certain combinatorial measure of support-size, which
(as he points out) is much weaker than his linear-algebraic one.
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Let G be an arbitrary finite group of order n, and let C[G] denote its group
algebra. We embed C[G] as a subalgebra of C"*™ as follows. Given an element
[ = > scc f(x)x, let Ty denote left-multiplication by f in C[G]. Then T} is a
linear map C[G] — C|G]. Moreover, since C[G] is equipped with a standard basis,
namely the basis of delta functions on G, we can represent 7% as an n x n matrix,
and it is straightforward to see that both addition and multiplication of matrices
corresponds to addition and multiplication in C[G]. So we henceforth think of C[G]
as the subspace of C"*" consisting of all matrices 1.

If G were abelian, then conjugating by the Fourier transform matrix would simul-
taneously diagonalize all T, with the diagonal entries precisely being the values
of f . If G is nonabelian, then such a complete simultaneous diagonalization is
impossible, but we can get the maximal one possible; namely, conjugating by an
appropriate matrix, which we also call the Fourier transform, turns each T into a
block-diagonal matrix with specified block sizes, uniformly for all f, as follows.

Let p1,...,p: be the irreducible representations of G over C, i.e., each p; is a
homomorphism G — GL(W;), where W, is a vector space over C of dimension d;.
We may assume that pq, ..., p; are unitary representations, meaning that p;(x) is
a unitary transformation on W; for all z € G. Recall that n = d? + --- + d?. Then
we define the Fourier transform as follows.

Definition 3.3 (The Fourier transform). Given a function f : G — C, its Fourier
transform is defined by f(p;) = >_,cq f(x)pi(z), so that f(p;) is a linear transfor-
mation W; — W,.

We also henceforth fix an orthonormal basis F; of each W;, and everything that
follows will implicitly depend on these choices of bases. In particular, we may now
think of the linear maps p;(z) and f(p;) as d; x d; matrices, represented in the
basis E;. We remark that, as above, one can define the Fourier transform without
reference to any bases, but that everything we do from now on, such as defining
the support and its size, will need these bases.

To define the Fourier transform matrix, we describe its columns (first, up to
scaling): these are the so-called matriz entry vectors. For indices ¢ € [t] and
J. k € [d;], we define the matrix entry vector c(i; 4, k) € C™ as follows. It is a vector
whose coordinates are indexed by elements of GG, and whose = coordinate is the
(4, k) entry of the matrix p;(x); observe that in the abelian case these vectors are
simply the n characters of G. A simple consequence of Schur’s lemma is that these
vectors are orthogonal; see [33, Corollaries 2—-3] for a proof.

Proposition 3.4 (Orthogonality of matrix entries). We have

n/d; ifi=i,j=43k=F
0 otherwise.

(c(is g, k), e(i 5", K)) = {

We can now formally define the Fourier transform matrix and establish its basic
properties.

Definition 3.5 (Fourier transform matrix). Let F' be the n X n matrix whose rows
are indexed by G and whose columns are indexed by tuples (i; j, k) in lexicographic
order, and whose (i; j, k) column is the vector v/d;c(i; j, k). We call F' the Fourier
transform matriz.
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Observe that Proposition B4 implies that F*F = FF* = nl. Moreover, the key
diagonalization property of F' mentioned above is that for any function f : G — C,
we have that FTyF* is a block-diagonal matrix, whose blocks are just d; copies of
the matrices] nf(ps).

Thus, we think of the Fourier transform as simply a change of basis (and a
dilation) on the matrix space C™*”. Recall that we had already embedded C[G] in
this space by mapping f € C[G] to the matrix Ty. We think of its Fourier transform
as the block-diagonal matrix ﬁ = FT¢F*. Moreover, we think of the subspace of
C™*" consisting of all block-diagonal matrices with d; identical blocks of size d; x d;
as the Fourier subspace. Then the change of basis given by F' precisely maps the
subspace corresponding to C[G] to this Fourier subspace. Note that if G is abelian,

then each W; is one dimensional, and we find that 7/? is simply a diagonal matrix
whose diagonal entries are the values of f.

3.2.2. Notions of support for f With this setup, there is a clear candidate for the
support of f Namely, we define supp( f) to simply be the set of nonzero entries

of the matrix Tf Note that since the block f(p;) appears d; times in Tf, we have
that

supp(f)] = _ di[supp(f(p:))!,
=1

where supp(f(p;)) denotes the set of nonzero entries of the matrix f(p;). Recall that
this matrix depended on the choice of the bases F;, so we also make the following
definition.

Definition 3.6. The minimum support-size of f is
jmin-supp(f)| = min_|supp(f)],
Es,....E,

where the minimum is over all choices of orthonormal bases FEi,...,FE; for
Wi, ..., W

Thus, the minimum support-size of f is simply its support-size in its most effi-
cient representation. We note that if G is abelian, then all W; are one-dimensional,
and in particular the choice of basis affects nothing. So if G is abelian, then both
lsupp(f)| and |min-supp(f)| simply recover our earlier notion of the support-size of
I

Meshulam proposed an alternative notion for the support-size of f , which we
call the rank-support, and which is defined as follows.

Definition 3.7 (Meshulam [26]). Given f : G — C, the rank-support of f is
rk-supp(f) = rank T7.

We note that, with this definition, it is not at all clear how rk-supp( f ) even de-

pends on f , let alone in what sense it can be thought of as a support-size. However,

1Tt is a little strange to have the blocks of Cl/? be an(pi)7 rather than simply f(p,) Of course,
we could have normalized F differently, so as to avoid this factor of n. However, we chose not to
do this to be consistent with our earlier normalization of k-Hadamard matrices.
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since similar matrices have the same rank, we see that rank Ty = rank ZI/’; , and since
T} is a block-diagonal matrix, we see that

t
rankl/“} = Z d; rank(f(p:))-
i=1

In particular, this connection shows that if G is abelian, then we also get that
rk-supp(f) = |supp(f)|. Meshulam’s definition of rank-support has some advan-
tages over our definition of minimum support-size; importantly, the rank-support
does not depend on the choices of bases Fy,..., F;. However, it is not obviously
related to any notion of support of the Fourier transform—instead, it jumps directly
to a notion of its size. In contrast, we offer, for each basis, a notion of support of
f , namely the set of nonzero entries in 1/?, and then we pick the smallest possible
(i.e., in the most efficient basis) to define its size. As mentioned, both definitions
agree with |supp(f)| for abelian groups G, so both can be considered reasonable
notions of support-size. The two notions can be related as follows, where we say
that a function f is Hermitian if f(z) = f(z=!) for all z € G.

Lemma 3.8. For any function f : G—C we have that rk-supp(f) < |min-supp(f)|.

Moreover, if [ is a Hermitian function, then rk—supp(f) = |min—supp(f)|.
Proof. If 1/“; has s nonzero entries, then in particular it has at most s nonzero
columns, which implies that ranki’; < |supp( f)| for any bases Ei,...,E;. This
implies the first inequality by minimizing over these bases.

For the second, suppose that f is Hermitian. This implies that each f (p;) is
Hermitian, since

(Fen) =3 7@ (@)™ = 3 T@pita™) = 30 1@ Hoie™) = o).
zcG zeG zeG

Thus, there exists an orthonormal basis E; for W; in which f (pi) is a diagonal

matrix. Using such a basis for each W;, we see that T; is diagonal, at which point
its rank precisely equals the number of nonzero diagonal entries. This proves the
reverse inequality for Hermitian f. |

3.2.3. Uncertainty principles for the min-support and the rank-support. One other
connection between the rank-support and the minimum support-size is that both
of them satisfy an uncertainty principle like that of Donoho and Stark. For the
rank-support, this was proven by Meshulam.

Theorem 3.9 (Meshulam [26]). For any finite group G and any f : G — C,
[supp(f)|rk-supp(f) > |G.
For the minimum support-size, this is main result of this section.
Theorem 3.10. For any finite group G and any f : G — C,
[supp (f)|[min-supp(f)| > |G-

From Lemmal[3.8] we see that Meshulam’s Theorem[3.9limplies our Theorem 310
Moreover, for Hermitian functions f, the two theorems are precisely equivalent.
Finally, we can prove a reverse implication, up to a factor of 4.
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Lemma 3.11. Theorem B.I0l implies that for any function [ : G — C,
16l
1
Proof. Consider the function g : G — C defined by g(z) = f(z) + f(z=1). Then g

is Hermitian, so by Lemma 3.8 we have that rk-supp(¢) = |min-supp(g)|. As both
the rank of matrices and the support of vectors are subadditive, we have that

|supp(f)| rk-supp(f) >

supp(g)| < 2[supp(f)| ~ and rk-supp(g) < 2rk-supp(f).
Putting this all together, we find that
16l
1
|

|supp(f)| rk-supp(f) > ISupp( ) tk-supp(g) = \Supp( )|[min-supp(g)| >

Remark. The bound in Meshulam’s Theorem 3.9 is tight if f is the indicator func-
tion of some subgroup of G, as observed in [26]. As such an indicator function
is Hermitian, this also shows that the bound in Theorem B0l is in general best
possible.

Our proof of Theorem more or less follows the abelian case, namely it is
a direct application of our general framework. We define linear operators A, B :
crnxn — Ccnxn b AoM = FMF* and BoM = F*MF, for any M € C*"*".
Note that Ao T} = T; The main properties of these operators are captured in the
following lemma, which simply says that A acts as an n?-Hadamard operator on
the subspace C[G] C C"*".

Lemma 3.12. Let C[G] =V C C™*™ be the subspace consisting of the matrices Ty,
and let U C C™*™ be the Fourier subspace consisting of all block-diagonal matrices
with d; identical blocks of size d; x d;. Then the following hold.

(i) For any M €V, we have that Bo (Ao M) =n?M.
(ii) For any M €V, we have that ||Ao M|le < [|M]|1.
(ili) For any N € U, we have that ||B o Nl||e < ||N]1.

The proof is straightforward, and we defer it to Appendix[Al However, with this
lemma in hand, we can prove Theorem [3.10

Proof of Theorem [3.10. We begin by fixing bases E1, ..., F; that are minimizers in
the definition of |min-supp(f)|. By applying the support-size uncertainty principle
for k-Hadamard matrices, Theorem 2.1, to the operators A, B as above, we see that

|supp(T¥)|[supp(A o Ty)| > n?.

Recall that A o Ty is simply T;, so the second term is simply |min-supp(f)|. For
the first term, observe that each column of 7% is simply a permutation of the values
that f takes. This implies that |[supp(7y)| = n|supp(f)|, as every nonzero value of f
is repeated exactly n times in T¢. Thus, dividing by n gives the claimed bound. [

12\We use the notation o to denote the action of A and B to avoid confusion with the notation
for matrix multiplication.
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3.2.4. Kuperberg’s proof of Meshulam’s uncertainty principle. After reading a draft
of this paper, Greg Kuperberg (personal communication) discovered a new norm
uncertainty principle for the Fourier transform over nonabelian groups, which can
be proved using our framework and which implies Meshulam’s Theorem as a
simple corollary. To state Kuperberg’s theorem, we first need to define the Schatten
norms of a matrix.

Definition 3.13 (Schatten norms). Let M € C™*™ be a matrix, and let p € [1, x]
be a parameter. The Schatten p-norm of M, denoted ||MH1(,S)7 is defined by

. 1/p
MY =T (e paye/2)

Equivalently, if ¢ = (o1,...,0,) is the vector of singular values of M, then the
Schatten p-norm of M is simply the ordinary L? norm of o, i.e., HM||Z(,S) = |lo|lp-

The Schatten norms are invariant under left- or right-multiplication by unitary
matrices, so ||Tf||,(,s) = %HT,«H,(,S), with the factor of n coming from our normaliza-

tion of F' so that ﬁF is unitary. Moreover, since ﬁ is a block-diagonal matrix

with d; blocks of n fpi, we have that

S S S
1715 = |\Tf||1 )= Zd £ (o)1 and
(3)
1T = HTfu & = max | f (o).

With this definition, we can state Kuperberg’s norm uncertainty principle for the
Fourier transform over finite groups. We state it for the Schatten norms of T, but
by @), we could just as well replace Ty by T in the following theorem.

Theorem 3.14 (Kuperberg). Let G be a group of order n, and let f : G — C be
a nonzero function. We have that

oS
1l 1Tl
Iflloo 772 —

Meshulam’s Theorem is a simple corollary of this theorem.

Proof of Theorem B9 We already know that [supp(f)| > ||fll1/||f|lcc- Addition-
ally, it is well known that for any matrix M,

S
a5

rank M > .
1M

This can be seen from the definition of |M H](DS) as the L? norm of the vector o
of singular values of M. Indeed, the rank of M is simply the number of nonzero
singular values, i.e., rank M = |supp(o)|, from which the above inequality follows.
This shows, using Theorem [3.14] that

S
Vi
oo 1771 =

So to finish the proof, we need to prove Kuperberg’s Theorem [3.14] whose proof
is another application of our general framework.

|supp(f)| rk-supp(f) = |supp(f)| rank Ty >
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Proof of Theorem B.14l If we think of f € C|[G] as a row vector, then we can think
of F as a linear operator C[G] — U, which sends f to %Tf; note the additional
factor of %, coming from our earlier normalization of 7/? = FTyF*. We first claim

that ||%1/“;||(o§) < ||fll1, i-e., that F' has norm 1 as an operator from || - |1 to || - ||E;§)
By convexity of the Schatten co-norm, it suffices to check this on the extreme points
of the L' unit ball, i.e., for a delta function f = J,, the function that takes value 1
at x € G and 0 on all other elements of G. But T, is simply a permutation matrix,
(8)
1

so all of its singular values are 1, implying that ||T5_||;”’ = 1. This in turn implies

that |75, {* = n, by @).

Recall that the Schatten 1- and Schatten oco-norms are dual on the matrix space
C4i*di which implies that they are dual on U by the formulas in (3]). Since the L*
and L> norms on C[G] are also dual, the above also implies that F* has norm 1

as an operator from || - H(15) to || - ||oo- Finally, we already know that F*F = nl, so
we conclude by the primary uncertainty principle, Theorem 2], that
—~ (g —~ (s
IFIITA 15 > nl fllo |1 771K =

3.3. Uncertainty principles for notions of approximate support. The sup-
port-size uncertainty principle of Theorem is rather weak, in the sense that
the support-size of a vector is a very fragile measure: coordinates with arbitrarily
small nonzero values contribute to it. Stronger versions of this theorem, in which
one considers instead the essential support, namely the support of a vector after
deleting such tiny entries are much more robust. Such versions were sought first
by Williams [38] in the continuous setting, and by Donoho and Stark [I4] in the
discrete setting. It turns out that using our approach it is easy to extend Theorem
to such a robust form for the L! norm, but not for L? (although Donoho and
Stark’s original L? proof does generalize to k-Hadamard matrices with A*A = kI).
We will describe both and compare them.

We start with some notation. If v € C™ is a vector and T C [n] is a set of
coordinates, we denote by v[T] the vector in CITI obtained by restricting v to the
coordinates in T'. We use T° to denote the complement of T in [n].

Definition 3.15. Let ¢ € [0,1] and p € [1,00]. For a vector v € C™ and a set
T C [n], we say that v is (p,e)-supported on T if ||o[T€]||, < ||v||p-
We also define the (p, ) support-size of v to be

|supp?(v)| = min{|T'| : T C [n],v is (p, e)-supported on T'}.

Remark. In general, there may not exist a unique minimum-sized set 7" in the
definition of |supp?(v)|, so the set supp?(v) is not well defined. However, we will
often abuse notation and nevertheless write supp?(v) to denote an arbitrary set T'
achieving the minimum in the definition of [supp?(v)].

The basic uncertainty principle concerning approximate supports was also given
by Donoho and Stark, who proved the following.

Theorem 3.16 (Donoho and Stark [I4]). Let G be a finite abelian group, and let
f: G — C be a nonzero function. For any €,n € [0,1], we have that

[supp? (f)lIsuppj; (f)] = [GI(1 — & —n)*.

13More precisely, deleting a small fraction of the total mass in some norm.
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If one attempts to apply our basic framework to prove an uncertainty principle
for approximate supports, one is naturally led to the following result. The analogous
theorem for the Fourier transform on R was proven by Williams [38], in what we
believe is the earliest application of this paper’s approach to uncertainty principles.

Theorem 3.17 (L' approximate-support uncertainty principle). Let A € C™*"
be a k-Hadamard matriz and let v € C™ be a nonzero vector. For any e,n € [0,1],
we have that

[suppz (v)[[supp,, (Av)| > k(1 —e)(1 —n) > k(1 —e ).

Proof. The second inequality follows from the first, so it suffices to prove the first.
We may assume that e,17 < 1. The primary uncertainty principle, Theorem 23]
says that

ol [ Avll

[l [[Av]loc —
Following our framework, what we need to prove is the following claim: for every
0 € [0,1) and for every vector u,

[supps ()| - flullx
1-6 7 Julle

Applying this inequality to v with € and to Av with 7 yields the desired result, so
it suffices to prove this claim.

Let T = supp}(u). Note that since |Jully = ||u[T]||1 + ||[u[T€]||1, the definition of
T implies that |[u[T]||s > (1 — §)|julls. Observe too that ||u[T]|lcc = ||¢]lco, since
T just consists of the coordinates of u of maximal absolute value (with ties broken
arbitrarily). Since u[T] has length |T'|, this implies that ||u[T]||1 < |T|[|u[T]|lcc =
IT|||t||co. Combining our inequalities, we find that

(1= O)lully < [ulTTlh < |T/ullec = Isupps(u)l]lullso,

as claimed. O

Again, as a special case we obtain an uncertainty principle for the L' approximate
support of a function and its Fourier transform.

Corollary 3.18. Let G be a finite abelian group, and let f : G — C be a nonzero
function. For any e,n € [0,1], we have that

|supp? (f)|lsuppy, (f)] > |G|(1 —e)(1 —n) > |G|(1 —e — 7).

At first glance, Corollary [3.18] looks quite similar to Theorem 3161 However,
it is easy to construct vectors whose (2,¢)-support is much smaller than their
(1,e)-support. For instance, we can take vy € C" to be the harmonic vector
(1, %, %, cee %) Then for any fixed ¢ € (0, 1) and large n, we have that

supps (vy) = O.(n'™9) and supp2(vy) = O(c72).

In particular, if we keep ¢ fixed and let n — oo, we see that supp’(vy) will be
much larger than supp?(vgy), which suggests that Theorem will be stronger
than Corollary B8] for such long-tailed vectors. In fact, this is not a coincidence or
a special case: for constant €, the 1-support will be at least as large as the 2-support
of any vector. More precisely, we have the following.
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Proposition 3.19. For any vector v € C™ and any € € (0,1),
[supp: (v)| > [suppZ(v)].

This proposition demonstrates that in general, Theorem [3.16]is stronger than our
Corollary [3I8 Because the proof is somewhat technical, we defer it to Appendix
[Al

To conclude this section, we state a generalization of Theorem [B.16] that applies
to all unitary k-Hadamard matrices.

Theorem 3.20 (L? approximate-support uncertainty principle). Let A € C™*" be
a k-Hadamard matriz with A*A = kI, and let e,n € [0,1]. Let v € C™ be a nonzero

vector. Then
2

[suppZ (v)[[supp; (Av)| = k(1 — & —1)*.

This proof is essentially identical to the original proof from [14], so we defer it to
Appendix [Al We stress that in this proof we need to assume the stronger condition
that A*A = kI: unlike our other proofs, this proof uses crucially and repeatedly
the fact that LkA preserves the L? norm under this assumption. Similarly, it is
important for this proof that the matrix A be square, since we will need the same
property for A*.

We also note that it is impossible to prove this result in the same way we proved
Theorem 317l Indeed, such a proof would necessarily need a 2 — oo norm uncer-
tainty principle of the form ||v||2]|Av|l2 > C||v]|s||Av]|s. In the next subsection,
we will show (in Theorem [B23) that such an inequality cannot hold unless C is
a constant independent of k. Therefore, one necessarily has to use an alternative
approach (and stronger properties) to prove Theorem

3.4. Uncertainty principles for other norms: Possibility and impossibil-
ity. Generalizing the primary uncertainty principle, it is natural and useful to try
to prove other uncertainty principles on norms for the finite Fourier transform, or
more generally for other k-Hadamard operators. Indeed, it seems that one can use
Theorem 24 directly to derive inequalities of the form ||v||, || Av||, > c(k)||v]l4l|Av]|q
for other norms p and ¢, and for some constant c(k).

However, the situation for other norms is trickier than for p = 1 and ¢ = co. It
is instructive to try this for two prototypical cases: first, p = 1 and ¢ = 2, and next,
p =2 and ¢ = co. In both cases, the constant ¢(k) we obtain from a direct use of
the general theorem is 1. As we shall see, this happens for different reasons in these
two cases. In the first (and generally for p = 1 and any ¢), one can obtain a much
better inequality, indeed a tight one, indirectly from the case p =1 and ¢ = co. In
the second (and in general for p > 2 and any ¢), the constant ¢(k) = 1 happens
to be essentially optimal, and one can only obtain a trivial result. We turn now
to formulate and prove each of these statements. We note that, besides natural
mathematical curiosity, there is a good reason to consider uncertainty principles
for other norms: indeed, (a version of) the one we prove here for p = 1 and ¢ = 2
will be key to our new proof of Heisenberg’s uncertainty principle in Section 3

3.4.1. Optimal norm uncertainty inequalities for p = 1. Consider first the case
p = 1and g = 2, and suppose we wish to prove such a norm uncertainty principle for
the Fourier transform on a finite abelian group G. To apply Theorem 2.4 we would
need to scale the Fourier transform matrix into a matrix A with ||A||1 52, [|A*]152 <
1. The way to do so is to rescale so all the entries of A have absolute value
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1/ \/@ But in that case A*A = I, so one would simply obtain the inequality
[lvll1]|Av]]1 > ||v||2]|Av]|2, which is not sharp. In fact, this inequality is trivial (and
has nothing to do with “uncertainty”), since any vector u satisfies |lull; > ||ull2.
To obtain a stronger inequality, which is sharp, we instead use a simple reduction
to the 1 — oo result of Theorem 2.3, which is a variant of the two-step framework
articulated in the Introduction.

Theorem 3.21 (Norm uncertainty principle, p = 1). Let A € C™*" be k-Hada-
mard, and let v € C™ be nonzero. Then for any 1 < q < oo, we have

loll | Avlly = K9]l ]| Avll,.

Proof. The case ¢ = oo is precisely Theorem 2.3 so we may assume that g < co.
So, following our approach, all we need to prove is the bound

(¢—1)/q
n o, (i)
l[wllq [[wlloo

for any nonzero vector u, and plug it into our primary inequality ||v||1[Av|ly >
kl|v]lso||Av||so for both v and Awv. This is simple: we compute

n n
lallg = ual® < Jallict D il = [l )y,
=1 i=1

which implies that Hu||(11_1\|u||g < Jlul|f]|u]|45t, which yields the bound (@]). O

We get as a special case an uncertainty principle for the discrete Fourier trans-
form, which we believe has not been previously observed.

Corollary 3.22. For any 1 < q < 00, any finite abelian group G, and any nonzero
function f: G — C, we have

ANl F = (G2l -

Remark. This is tight if f is the indicator function of a subgroup H C G. In
that case, f is a constant multiple of the indicator function of the dual subgroup
H* C G, and we have that |H||H*| = |G|. This shows that the result is tight, since
the g-norm of an indicator function is exactly the 1/q power of its support-size.

3.4.2. No nontrivial norm uncertainty inequalities for p > 2. Two special cases of
Corollary 3222 one of which is just Theorem 23] are that if A is k-Hadamard, then

lolllAv]s > kllolloo | Avlloe  and  [lo]l1[|Avlh = VE|[vla]| v
Looking at these two bounds, it is natural to conjecture that
(5) [oll2llAv]l2 > VE[[]|oo | 4],

which would of course be best possible if true. If we again attempt to prove this
for the Fourier transform directly from Theorem 24l we need to scale the Fourier
transform to a matrix A with 2 — oo norm at most 1, which again requires taking
A to have all entries of absolute value 1/,/|G|. Then we again get that A*A = T
and only obtain the trivial inequality ||v]2||Av]l2 > ||v]lco]|A¥]|co-

In contrast to the previous subsection, this trivial bound is essentially tight, as
shown by the following theorem.
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Theorem 3.23. Let G be a finite abelian group of order n, and let A be the Fourier
transform matriz of G. Let p € [2,00],q € [1,00] be arbitrary. There exists a vector
v € C" with

[ollpllAvlly < 2jvllq]|Av]lq-

In particular, @) is false in general.

Proof. We normalize A so that all its entries have absolute value 1, and assume
without loss of generality that the first row and column of A consist of all ones[
We define the vector v = (1 + +/n,1,1,...,1) € C*. Then Av = \/nv, i.e., v is an
eigenvector of A with eigenvalue /n; this can be seen by observing that v is the
sum of (1/n,0,0,...,0) and (1,1,...,1), and the action of A on these vectors is to
swap them and multiply each by /n.

Moreover, we can compute that

[oll, = [(Vr+1)" +n— 1]1/p and ollg = [(vVRn+1)"+n— 1}”".

We claim that for any a > 1,b > 0, the function h(z) = (a®+b)*/* is monotonically
nonincreasing for x > 1. Indeed, its derivative is
h(z)

Y= ey

(a”log(a”) — (a® + b) log(a® + b)) .

The term h(x)/(z2(a® +b)) is positive, and the function ¢ — tlogt is increasing for
t > 1, which implies that the parenthesized term is nonpositive, so h’(z) < 0. This
implies that ||v||, is a nonincreasing function of x, so we have that

lvll, < [jv]la =1/2n+2y/n  and lvllg > Iv]loe = VR + 1.

In particular, we find that v/2[|v||; > v/2|[v]|ec > [[v]l2 > ||v]|,- This shows us that

2
ol Al _ WIS _ °
Folle 1ol ~ Tl

3.4.3. The Hausdorff-Young inequality and the regime 1 < p < 2. For the remain-
ing range of 1 < p < 2, we can obtain norm inequalities like those for p = 1.
However, we need two additional hypotheses. First, we need to assume that our
k-Hadamard matrix satisfies the stronger unitarity property that A*A = kI, while
such an assumption was unnecessary in the p = 1 case. Second, we will need to
assume that the second norm index, ¢, is at most p’ = p/(p — 1); this assumption
was immaterial in the p = 1 case, since the dual index of 1 is co. We remark that
we include this subsection only for completeness; the results here are known and
use standard techniques, namely the Riesz—Thorin interpolation theorem and the
log-convexity of the LP norms.

To do this, we first prove a discrete analogue of the Hausdorff-Young inequality.
This inequality was already observedd by Dembo, Cover, and Thomas [12, equation
(52)], who also stated it in the same general setting of unitary k-Hadamard matrices,
as we now do.

14This simply corresponds to indexing the rows and columns of A so that the identity element
of G and @ come first.

15They used this discrete Hausdorff-Young inequality to prove a discrete entropic uncertainty
principle, analogous to that of Hirschman [21].
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Proposition 3.24 (Discrete Hausdorff-Young inequality). Let A € C™*" be a k-
Hadamard matric with A*A=kI. Fir1 <p <2, andletp' =p/(p—1) € (2,00).
Then ||Alp—p < kP=D/P,

Proof. We already know that ||A|l1»00 < 1, and our assumption that A*A = kT
implies that || A||2—2 = Vk. We may apply the Riesz-Thorin interpolation theorem
[32, Theorem IX.17] to these bounds, which implies that ||Al|,—, < k®~D/P as
claimed. ]

As a corollary, we obtain the following norm uncertainty principle for 1 < p < 2.

Theorem 3.25 (Norm uncertainty principle, 1 < p < 2). Let A € C*"*" be a
k-Hadamard matriz with A*A = kI. Let p € (1,2) and q € [p,p’] be norm indices.
Then for any v € C",

a—p
[0llpllAv]lp = 72 [[v]lq]| Av]l,-

Proof. First, suppose that ¢ = p’. In that case, we may multiply the conclusion of
Proposition .24 for A and A* and conclude that

2(p—1)

k= ollpllAvlly = (| Al 1A Avllyr = Kol [l Av]p,

which implies the desired bound ||v]|,|Av||, > kP lollp | Av]]p -
For smaller values of ¢, we use the above as a primary uncertainty principle, and
derive the result by showing that

pP—g
(©) lully < (IUIIp>”“"
[ullg — \llullp

for any nonzero vector v and any p < q < p’. Let 6 € [0, 1] be the unique number

such that
1 1-6 0
=4 —,
q p p
namely 6 = ﬁ. Then the log-convexity of the LP norms (also known as the
generalized Holder inequality) says that |lull; < Hu||11fe|\u||g,, and rearranging this
yields ().
We now apply (@) to v =v and v = Av, and we conclude that
p—q —
Lol LAl (Lol LAe )50, iy 85 g
[ollg  [1Avllg — \llvlly [l Av]ly

Remark. We remark that, as with the 1 — ¢ norm uncertainty principles above,
Theorem is tight for the Fourier transform. Indeed, if v is the indicator vector
of a subgroup of GG, then Av will be a constant multiple of the indicator vector of
the dual subgroup, and the inequality in Theorem will be an equality in this
case.

What these subsections demonstrate is that the 1 — oo result of Theorem 23] is
the strongest result of its form, in two senses. First, it implies the optimal 1 — ¢
inequalities for any 1 < ¢ < oo, which cannot be obtained by a direct application
of Theorem [Z4l Second, such p — ¢ uncertainty principles for p > 1 are false in
general, as shown by the fact that one cannot obtain a superconstant uncertainty
even for the Fourier transform when p > 2. In the regime 1 < p < 2, one can
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obtain tight inequalities whenever p < ¢ < p’, at least for k-Hadamard matrices
that satisfy the unitarity property A*A = kI.

4. UNCERTAINTY PRINCIPLES IN INFINITE DIMENSIONS

In this section, we will state and prove various uncertainty principles that hold in
infinite-dimensional vector spaces, primarily the Heisenberg uncertainty principle
and its generalizations. We begin in Section 1] with general results that hold
for the Fourier transform on arbitrary locally compact abelian groups. We then
restrict to R, and discuss in Section a large class of operators for which our
results hold, namely infinite-dimensional analogues of the k-Hadamard matrices we
focused on in Section [3l These include the so-called linear canonical transforms, a
family of integral transforms generalizing of the Fourier and other transforms, which
arise primarily in applications to optics. Finally, we move to prove the Heisenberg
uncertainty principle and its variations for such operators in Section 3l In addition
to obtaining a new proof which avoids using the analytic tools common in existing
proofs, we also prove a number of generalizations. Most notably, we establish
uncertainty principles for higher moments than the variance[l§ We also give new
inequalities which are similar to Heisenberg’s but are provably incomparable. We
remark that in some of our proofs of existing inequalities, the constants obtained
are worse than in the classical proofs.

4.1. The Fourier transform on locally compact abelian groups. We be-
gin by recalhng the basic definitions of the Fourier transform on locally compact
abelian'] groups, and proving some generalizations of earlier results in this context.

Let G be a locally compact abelian group. Then G can be equipped with a left-
invariant Borel measure u, called the Haar measure, which is unique up to scahng
If we let G denote the set of continuous group homomorphisms G — T, then G
is a group under pointwise multiplication. Moreover, if we topologize G with the
compact-open topology, then G becomes another locally compact abelian group,
which is called the Pontryagm dual of G. Given a function f € LY(@Q), we can
define its Fourier transform f : G—C by f =[fz dp(z), and it is easy

to see that f is a well-defined element of LOO(G). Moreover, havmg chosen u, there

exists a unique Haar measure ¥ on G so that the Fourier inversion formula holds,
namely so that f(z ff dv(y) for p-a.e. z, as long as felLl ((A?) With
this choice of v, we also have the Plancherel formula, that [|f[>du = [|f]>dv, as
long as one side is well defined. From now on, we will fix these measures p and v,
and all LP norms of functions will be defined by integration against these measures.
Observe that from the definition of f and from the Fourier inversion formula, we
have that the Fourier transform and inverse Fourier transform have norm at most
1 as operators L' — L. Using this, we can prove an infinitary version of our
primary uncertainty principle, Theorem 2.1

Theorem 4.1 (Primary uncertainty principle, infinitary version). Let G be a locally
compact abelian group with a Haar measure u, and let G,v be the dual group and

16Such results were already obtained by Cowling and Price [10], but again, our proof avoids
their heavy analytic machinery.

171n fact, we believe that, as in Section many of our results can be extended to infinite
nonabelian groups, at least as long as all their irreducible representations are finite dimensional.
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measure. Let 1 < g < oo and let f € L*(G) be such that f € Ll(@), Then
Il = 1 ool Flloo-

Remark. Throughout this section, we will frequently need the assumption that
f € LY(G) and f € L'(G). To avoid having to write this every time, we make the
following definition.

Definition 4.2 (Doubly L' function). We call function f : G — C doubly L' if
f € LYG) and f € L'(G).

Note that f being doubly L' implies that f,f € L™, and thus that f,f € LP for
all p € [1, oo] by Hélder’s inequality.

Proof of Theorem 1l For any x € G, we have that

F00l = ] / F (@)X (@) dpu(z)| < / F(@)] dpu() = [ £,

since |x(z)| = 1. This implies that || f||os < ||f]]1. For the same reason, we see that
£ lloo < I f]l1. Multiplying these inequalities gives the desired result. O

Remark. If we take G to be a finite abelian group, this result appears to be a factor
of |G| worse than Theorem 23] However, this discrepancy is due to the fact that
previously we were equipping both G and G with the counting measure, which are
not dual Haar measures. If we instead equip them with dual Haar measures (e.g.,
equipping G with the counting measure and then equipping G with the uniform
probability measure), then this “extra” factor of |G| would disappear, and we would
get the statement of Theorem [£.11

Using this theorem, we can obtain an analogue of the Donoho—-Stark uncertainty
principle, which holds for every locally compact abelian group. This result was first
proved by Matolcsi and Szlics [25], using the theory of spectral integrals.

Theorem 4.3 (Support-size uncertainty principle for general abelian groups).
Let G,u,G,v be as above. Let f : G — C be nonzero and doubly L'. Then

p(supp(f))v(supp(f)) > 1.

Proof. The proof follows that of Theorem Following our general approach, we
claim that for any nonzero integrable function g on any measure space (X, \), we
have that

Asupp(g)) > d';:'m

Applying this to f and f and combining it with the primary uncertainty principle,
Theorem [4.1] yields the desired result. To prove the claim, we simply compute

gl = /X l9(2)] dA(x)

- / l9()] dA(®) < llgllo / dA(z) = Msupp(@))gll- O
supp(g) supp(g)

In general, Theorem 3]is tight. This can be seen, for instance, by recalling that
it is equivalent to Theorem B.Ilwhen G is finite, and we already know that theorem
to be tight when f is the indicator function of a subgroup. However, Theorem [£.3]
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is tight even for some infinite groups. For instance, let G be any compact abelian
group, and let u be the Haar probability measure on G. Then G is a discrete group,
and v is the counting measure on G. If we let f G — C be the constant 1 function,
then z(supp(f)) = 1. Moreover, f will be the indicator function of the identity in
G, so v(supp(f)) =1 as well.

However, when we restrict to G = R and p the Lebesgue measure, we find that
Theorem [4.3] is far from tight. Instead, the correct inequality is

pi(supp(f))v(supp(f)) = oo,
as proven by Benedicks [6] and strengthened by Amrein and Berthier [I]. The proofs
of these results use the specific structure of R, and we are not able to reprove them
with our framework, presumably because our approach should work for any G, and
Benedicks’s result is simply false in general. There has been a long line of work
on how much Theorem [£3] can be strengthened for other locally compact abelian
groups G; see [16] Section 7] for more.

4.2. k-Hadamard operators in infinite dimensions. Continuing to restrict
to functions on R, one can ask for other transforms which satisfy an uncertainty
principle, just as previously we investigated all k-Hadamard matrices, and not just
the Fourier transform matrices. From the proof of Theorem I and from the
definition of k-Hadamard matrices, the following definition is natural.

Definition 4.4. We say that a linear operator A : L'(R) — L*(R) is k-Hadamard
if |All100 < 1 and if [|A*Af||co > k|| f]|oo for all functions f with f, Af € LY(R).

Remark. Extending our earlier use of the word, we will say that f is doubly L' for
Aif f,Af € LY(R). We will usually just say doubly L' and omit “for A” when A
is clear from context.

The primary uncertainty principle for k-Hadamard operators, extending Theo-
rem [4.1] is the following, whose proof is identical to that of Theorem [£.11

Theorem 4.5 (Primary uncertainty principle for k-Hadamard operators). Suppose
A is a k-Hadamard operator and f is doubly L'. Then

I AL = ElLf oo 1AL oo

We can also extend the uncertainty principles for other norms seen in Theorem
[B2T to this infinite-dimensional setting, as follows.

Theorem 4.6 (Norm uncertainty principle, infinitary version). Suppose A is a
k-Hadamard operator and f is doubly L'. Then for any 1 < g < oo,

A AT = B9 £l Afllg-

Proof. The proof follows that of Theorem [3.2I] We may assume that g < oo, since
the case of ¢ = oo is precisely Theorem It suffices to prove that for any nonzero
function g € L(R) N L>=(R),

(¢—1)/q
. il (1o )™

lglla — \llgll

since we may then apply this bound to f and f and use the primary uncertainty
principle, Theorem To prove (@), we simply compute

lglld = /Ig(w)lqdw < ||g||?i<?1/\g(:v)\olaj = llgll% gl
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which implies () after multiplying both sides by || gH‘lk1 and rearranging. a

We already saw in the previous section that the Fourier transform on R is 1-
Hadamard. As it turns out, the Fourier transform is one instance of a large class
of k-Hadamard operators (with arbitrary values of k) known as linear canonical
transformations (LCT), which we define below. These transformations arise in the
study of optics, and generalize many other integral transforms on R, such as the
fractional Fourier and Gauss—Weierstrass transformations. Although their analytic
properties are somewhat more complicated than those of the Fourier transform, our
framework treats them equally, since the only property we will need of them is that
they are k-Hadamard. For more information on LCT, see [39, Chapters 9-10] or
[19).

We now define the LCT, following [3]. This is a family of integral transforms,
indexed by the elements of SLy(R). Specifically, given a matrix M = (‘; Z) €
SLa(R) with b # 0, we can define the LCT Lj; associated to M to be

et sgn(b)/4

N

One can also take the limit & — 0 and obtain a consistent definition of Lj; for
all M € SLy(R). It turns out that this definition yields an infinite-dimensional
representation of SLo(R); in particular, one sees that the inverse transform L;} is
given by Ly;—1 = (Lp)*. From the definition, we see that if b # 0,

— L T eiw(d5272z§+azz)/b T
(Las F)(E)) \/ﬂ/f( ) a

(L f)(€) = /f($)ei7r(df272an§+az?)/b d.

1 I £1l1
< — z)|dx = ,
< [ de =

S0 || Las]l1—oo < 1/4/|b]. This implies the following result.

Theorem 4.7. Let M = (¢Y) € SLao(R) be a matriz with b # 0. Let A = \/|b| L
be a rescaling of the LCT Lyp;. Then A is |b|-Hadamard.

Proof. By the above, we see that |All1—00 = v/|b||Las] 1500 < 1. Similarly, if we

set B = A* = \/|b|Lp;-1, then ||Bll1oo < 1 and BAf = |b|Lys-1 Larf = |b|f for
any doubly L' function f. |

By combining the primary uncertainty principle for k-Hadamard operators with
the argument of Theorem[4.3] we obtain the following generalization of the Matolcsi—
Sztics (or Donoho-Stark) uncertainty principle for the LCT, or indeed for any k-
Hadamard operator.

Corollary 4.8. If M = (‘(’; g) € SLy(R) and f : R — C is doubly L* and nonzero,
then

A(supp(f))A(supp(Las f)) = [b,
where \ denotes Lebesgue measure.

Proof. From the primary uncertainty principle, Theorem 3], we find that

L
Il [Zafls
[flloo 1 Ear flloo
In proving Theorem 3] we saw that anguH; < A(supp(g)) for all g, which yields the
claim. 0
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We believe that this fact was not previously observed for the LCT. Of course, one
expects that in general a much stronger result should hold, namely that
A(supp(f))A(supp(Las f)) = oo whenever b # 0; this would generalize the result
of Benedicks [0] from the Fourier transform to all LCT. However, we are not able
to obtain such a result with our approach, for the same reason that we cannot
reprove Benedicks’s theorem.

4.3. The Heisenberg uncertainty principle. In this section, we prove (with a
somewhat worse constant) the well-known Heisenberg uncertainty principle, as well
as some extensions of it. Again, as in all previous proofs we have seen, we use
the elementary two-step process explained in the Introduction. Our proof differs
drastically from the classical ones, which use analytic techniques (integration by
parts) and special properties of the Fourier transform (that it turns differentiation
into multiplication by ). Indeed it is not clear if these classical techniques can be
used to prove our generalizations.
For a doubly L! function f, we define the variance of f to be

V(f) = / 21f(@)]? da.

If | f||2 = 1, then we may think of | f|? as a probability distribution, in which case V'
really does measure the variance of this distribution (assuming, without loss of gen-
eralityE that its mean is 0). This interpretation is natural from the perspective of
quantum mechanics (whence the original motivation for studying uncertainty prin-
ciples): in quantum mechanics, we would think of f as a wave function, and then | f|?
would define the probability distribution for measuring some quantity associated
to the wave function, such as a particle7 position or momentum. Heisenberg’

uncertainty principle asserts that V(f) and V(f) cannot both be small.

Theorem 4.9 (Heisenberg’s uncertainty principle [20024137]). There exists a con-
stant C > 0 such that for any doubly L' function f # 0,

V(HV() = CIFIZIAIE.

Remark. Tt is in fact known that the optimal constant is C' = 1/(167?), with
equality attained for Gaussians.

Additionally, versions of the Heisenberg uncertainty principle have been estab-
lished for the LCT; see [35] for a survey. The most basic such extension is the
following, stated without proof as [39, Exercise 9.10] and first proven in print by
Stern [34].

Theorem 4.10 (LCT uncertainty principle [34,39]). There exists a constant C > 0
such that the following holds for all doubly L' functions f. If M = (‘g g) € SLy(R)
and Ly is the associated LCT, then

V(F)V(Laf) > CO| fI12|1 Lo f1]2.

181f its mean is at some point a, we can simply replace f(z) by f(z — a) to make V be the
actual variance of the distribution.

19Because of this interpretation, it is natural to have f be a function defined on R” to model
a particle moving in n-dimensional space. For the moment we focus on the case n = 1, though we
discuss the multidimensional analogue in Section 331

20Though the physical justification for the uncertainty principle is due to Heisenberg [20], the
proof of the mathematical fact is due to Kennard [24] and Weyl [37].
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4.3.1. A Heisenberg uncertainty principle for other norms. We begin by proving
the following generalization of Heisenberg’s uncertainty principle. It lets us bound
V(f)V(Af) by any L? norm of f and Af, for any k-Hadamard operator A (recov-
ering, for ¢ = 2, the classical results of the previous subsection) As far as we
know, this result is new for ¢ # 2, even for the Fourier transform. As we show
below, the statements for different ¢ are in general of incomparable strength.

Theorem 4.11 (Heisenberg uncertainty principle for arbitrary norms). For any
k-Hadamard operator A, any doubly L' function f, and any 1 < q < oo,

V(/IV(Af) = Ck* /) fIRIIFII,
where Cyq = 9~ depends only on q. In particular, V(f)V(f) > C'q||f|\(21||f|\?1

Remark. No attempt was made to optimize the constant Cy. However, our proof
is unlikely to give the optimal constant even after optimization. For instance, in
the case ¢ = 2, it is known that the optimal constant for the Fourier transform is
Cy = 1/(1672) ~ 6.3 x 1073, whereas our proof gives the somewhat worse constant
2712 2.4 x 1074

As with our other proofs, the proof of this result proceeds in two stages. The
first, already done in Theorem [0 is establishing the norm uncertainty principle
NN AL = 1 fllgllAfllq- After this, all that remains is to lower-bound V' (g) as a
function of ||g||; and ||g||4 for an arbitrary function g. Combining these two bounds
will yield the result.

However, an important new ingredient which we did not use in the finite-dimen-
sional setting is a different way to upper-bound ||g||;. The idea is to choose a
constant 7', depending on ¢ and the target norm ¢, so that most of the the L'-
mass of g is outside the interval [T, T]. This will allow us to lower bound the
variance through a simple use of Hélder’s inequality. Note that in the proof and
subsequently, we use the usual conventions of manipulating ¢ as though it is finite,
though everything works identically for ¢ = oo by taking a limit, or by treating
expressions like co/(co — 1) as equal to 1.

Proof of Theorem 11l We may assume that f ## 0. Following our general frame-
work, we claim that the bound

. ol (= V0))
lall, FIE

holds for any nonzero function g € L*(R) N L*°(R). Observe that this bound is
homogeneous in that it is unchanged if we replace g by cg for some constant ¢. Once
we have this bound, we can apply it to the norm uncertainty principle, Theorem

[4.6], which says that
17 A7 o aove

1fllg 1Afllq ~
Plugging in () for g = f and g = Af, we find that
(2—1ga—18 V() V(Af)>3qq——12 =
71 TA7TE |

21Note, e.g., that one recovers the correct dependence on b when deducing the LCT uncertainty
principle above from this one.
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and rearranging gives the desired conclusion. So it suffices to prove (§).
Let T = L(llglh/(2lgll,))? @D, so that (2T)1~Ya]lg]l, = L]gll1. By Holder's
inequality, we have that

T
/ lg(a)] dz = / 1rry (2)g()]| de

-T

< trmllosa-nlgle = @D Vglg = —Ilgllh

where the last step follows from the definition of T'. This implies that the interval
[—T,T] contains at most half of the L* mass of g, so 3|g[l; < fz|>T|g x)|dx.
Applying the Cauchy—-Schwarz inequality to this bound, we find that

1
glolis [ lo@las
= [, sl

z|>T L

= (~/|w>T%dx> ; (/x|>T gl )|2d$> -
< (%)WV(Q)”2

gl \ /a1
-2(5) Ve

Rearranging this inequality yields (g)). O

Theorem [EIT] contains within it infinitely many “Heisenberg-like” uncertainty
principles, one for each ¢ € (1,00] (and one for each k-Hadamard operator A). It
is natural to wonder whether these are really all different, or whether one of them
implies all the other ones. As a first step towards answering this question in the
case of the Fourier transform, we can show that the ¢ = 2 and ¢ = oo cases are
incomparable, in the sense that there exist functions for which one is arbitrarily
stronger than the other. More precisely, we have the following result. We use S(R)
to denote the Schwartz class of rapidly decaying smooth functions.

Theorem 4.12. Define a function F': S(R) \ {0} — Rs¢ by

piy < Wl Al _ [71el Pl

1£11211/1l2 I1f113
Then the image of F is all of Rs.

We defer the proof of Theorem to Appendix [Al

Recall that the ¢ = 2 case of Theorem FLTT] (which is just the classical Heisenberg
uncertainty principle) says that V(£)V(f) > C||f|2]| /|13, whereas the ¢ = oo case
of Theorem ELIT] says that V(f)V(f) > C’'|fI2|If]/%, for appropriate constants
C,C’" > 0. Thus, Theorem says that these two results are in general incom-
parable: there exist functions for which the ¢ = 2 gives an arbitrarily stronger
lower bound on V(f)V(f), while there exist other functions for which the ¢ = oo
case gives an arbitrarily stronger bound. In fact, we expect that in general, the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE UNCERTAINTY PRINCIPLE: VARIATIONS ON A THEME 253

uncertainty principles for any ¢ # 2 should be incomparable to the Heisenberg un-
certainty principle, namely the case where ¢ = 2. We are unable to prove this, and
therefore leave it as a conjecture.

Conjecture 4.13. Let 2 # g € (1,00], and define a function F, : S(R)\{0} — Rs¢
by

£l Flla _ 1 lallF Nl
F, = .

N TN TN
Then the image of Fy is all of Ryg.

4.3.2. An uncertainty principle for higher moments. Theorem [ I1lis itself a special
case of a much more general uncertainty principle, which we now state. Rather than
proving uncertainty for the variance functional V(f), it proves it for any moments
greater than 1 of the distributions |f|? and |Af|?. Namely, for any 1 < r < oo, let

us define
M) = [lal I @) d,

which is precisely the rth moment of the distribution |f|* if ||f|2 = 1. Even
when ||fll2 # 1, M,.(f) is still a good measure of how “spread” f is, in that it
computes how much L? mass of f is far from the origin, weighted according to |z|".
Uncertainty principles for such functionals were studied by Cowling and Price [10],
who established the ¢ = 2 case of the following result for the Fourier transform, as
well as many more general results of this flavor for the Fourier transform. As with
the basic Heisenberg uncertainty principle, we believe that the g # 2 case is new,
as is the extension to arbitrary k-Hadamard operators.

Theorem 4.14 (Heisenberg uncertainty principle for higher moments). Let 1 <
r,s < oo and 1 < q < co. Then for any k-Hadamard operator A and any doubly
L' function f,

2g
qs+q 2

M, (f)75572 My(Af) 7557 > Cp 7qk17||f\|‘"” lASN g

for some constants C,.4,Cs 4 > 0 depending only on r,q and s,q, respectively. In
particular, if s = r, we have

M, (f)M,(Af) = C} k

g(qqurq*Q)/(qfl)'

qr+q

T

for another constant C;. , =

We defer the proof of this theorem to Appendix [A] but the basic idea is the same
as the proof of Theorem E.IT} by the general framework, it suffices to upper-bound
I £111/11 fllq as a function of M,(f). To do so, we again choose an appropriate T so
that most of the L' mass of f is outside of [T, T], and then we proceed by simple
applications of the Holder and Cauchy—Schwarz inequalities.

4.3.3. Further extensions and open questions. Cowling and Price [10] actually study
a much more general question than what is in Theorem ET4] (though restrict-
ing to q = 2 and the Fourier transform). They investigate integrals of the form
Jw(z)|f(z)[P for values of p other than 2 and for quite general functions w, and
ﬁndlng necessary and sufficient conditions for an uncertainty principle to hold for
such functionals of f and f . Using the same techniques, we can also obtain such
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results in the case w(x) = |z|", as above; the proof is identical to that of Theorem
[AT4l except that instead of using Cauchy—Schwarz to write

1
x)|dx = 2|2 f(2)]) da
/lDTf( ) /I|> (l="217 ()))

7 |2/

- </a:|>T %) ) </|x|T|f(x)2dx) N ,

we would instead use Holder’s inequality to say

1
xT d.’L': x'r‘/p z d{[;
[ @i [ el @)

z|>T |£L“

p—1

(L) )

Then as long as r > p — 1, this first integral will converge, and the argument would
go through as before. We omit the details, since they are very similar to (but
messier than) the computations in the proof of Theorem .14l

However, an interesting point is raised by this argument, which is the fact that
it only works for » > p—1. Cowling and Price’s theorem works for all » > (p—2)/2,
which is a larger range, and they in fact prove a converse which says that no such
result is true if r is any smaller. It is not at present clear to us whether there is a
genuine obstruction that prevents our technique from working for all possible r, or
if there is some variant manipulation that would yield the full strength of Cowling
and Price’s theorem.

A similar convergence issue arises when attempting to prove the multidimen-
sional version of Heisenberg’s uncertainty principle with our framework. The mul-
tidimensional version says the following.

Theorem 4.15. Let n > 1 be an integer, and let f € L>(R"™). Then

9) ([ 1t as) ( [ 1sigiferae) = cnisign g

where the constant C' > 0 does not depend on the dimension n.

If one attempts to prove this by using the argument from the proof of Theorem
[ATT] the natural thing to try is to pick T appropriately and then to write

1
il [ @l

) 1/2 1/2
<( [ omae) ([ jelir@Pa)
lz]|2>T ||55H2 lz||2>T

However, once n > 1, the first integral is infinite for any 7', causing this proof to
break down. The issue is again a convergence issue; in fact, one can make this proof
go through by integrating 1/||z||5 for any r > n, which means that one can prove
a multidimensional uncertainty principle for M, (f) for any r > n. However, we
still do not know how to prove the ordinary Heisenberg uncertainty principle in any
dimension greater than 1 using our framework, and it would be very interesting to
understand if these convergence issues represent a real limitation of our approach,
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or if there is a way around them. We leave this tantalizing question as an open
problem.

Open problem. Can one prove the multidimensional Heisenberg uncertainty prin-
ciple, Theorem H.I5 using our framework? For instance, can one prove that if

g € L'(R") N L®(R™), then
gl _ (Cn V(g))°
lglloe =\ llgli3 /-

where V(g) = [z ll2[3]9(2)|* dz is the n-dimensional variance of g, and C,¢ > 0
are constants independent of n? Alternately, can one prove such an inequality with
llgllo replaced by |lgll4? In all these questions, the main interest is to obtain the
correct dependence on the dimension n.

| 2

APPENDIX A. PROOFS OF SOME TECHNICAL RESULTS

In this section, we present the proofs of Lemma [3.12] Proposition 319, Theorem
320, Theorem E.12l and Theorem .14 which were omitted from the main text.

A.1. Proof of Lemma

Proof of Lemma 3121

(i) Recall that the operators A, B : C"*™ — C™*™ are defined by Ao M =
FMF* and Bo N = F*NF, and that we showed from Proposition [3.4]
that F*F = FF* = nl. This implies that

Bo(AoM)=F*(FMF*)F = (nI)M(nI) = nM.

(ii) Recall that V consists of all matrices Ty for f € C[G]. To prove this norm
bound, it suffices to prove it for the extreme points of the L' ball. So
we may assume that f = J, is the function that takes value 1 at some
x € G and value 0 elsewhere. In that case, Ty is a permutation matrix,
and therefore every entry of F'Ts F* is the inner product of two columns
of F. By Proposition [3.4] all these inner products are either 0 or n, which
implies that [[A o Ts, |leo < n = |T5,||1-

(iii) Note that B = A*, and recall that the L' and L° norms are dual to one
another. This implies that ||Bll1—00 = |[|A4||1—00, and thus this is a direct

consequence of (). O
A.2. Proof of Proposition [3.19]

Proof of Proposition [3.19. Assume this were not the case, and let n be the smallest
dimension in which a counterexample exists. Consider the set of counterexamples v
with ||v]|1 = 1. Since the L* and L? norms of a vector are unchanged if we replace
each entry by its absolute value and are unchanged if we permute the coordinates,
we may restrict ourselves to counterexamples v with nonnegative real entries such

that v1 > vy > --- > wv,. Finally, observe that for any s, the set of vectors
with [suppls (v)| = s is a closed set, and similarly for [suppZ(v)|. So the set of all
counterexamples v with v; > vg > -+ > v, > 0 and ||v||; = 1 is a compact subset

of R™, and we may therefore pick a counterexample v of minimal L? norm. So from
now on, let v be a counterexample with v; > -+ > v, > 0, ||v||s = 1, n chosen to be
minimal, and ||v||> minimal among all such counterexamples. Let s1 = [supp’;(v)]
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and sy = |supp2(v)|, so we assume for contradiction that s; < s3. We split v into
three subvectors,

UL:(Ul,U27...,Usl) UM:(U31+17"'51)82—1) UR:(U327~"51)7L)7

with the subscripts indicating Left, Middle, and Right. Note that vy; may be the
empty vector if s = s;+1. Let the lengths of these vectors be £ = s1,m = so—s1—1,
and r = n — sy + 1. We know that vy, contains at least 1 — &2 of the L! mass of v,
meaning that

oclls > (1= &*)vlly = (1= e*)(lvzll + (lvarll + lvrll),

which implies that

52

1—
(10) lorlls = ———lvally + [lorll)-

Similarly, since vy, and wys together contain sy — 1 coordinates of v, they must
collectively have less than 1 — ¢ of the L? mass of v, meaning that

lvrll3 + llvarllz < (1 =e?)llvll3 = @ =) (el + loarll3) + lorl3),

which implies

2 o 1 —¢’ 2
(11) lozllz + llvarllz < ——llvel>-

Now, we claim that vy and vp; are both constant vectors. Indeed, suppose not,
and let w be the vector gotten by replacing the first ¢ entries of v by the aver-
age value of vq,...,vp, and replacing the next m entries by the average value of
Vs 41y--+5Vss—1. Then |Jwl|2 < ||v]l2, since the L? norm is strictly convex, but
|lwll1 = ||v]|l1. Therefore, inequalities (I0) and (II]) both hold for w, meaning that
w is a new counterexample with smaller L? norm, which we assumed did not exist.
Thus, vy, and vys are both constant vectors. In other words, we have found that
there exist constants a > b > 0 such that v, = (a,a,...,a),vpr = (b,b...,b), and
every entry of vg is at most b. In that case, inequalities (I0) and (III) become

1—¢2
(12) ta 2 —5—(mb+lvrll),
1 — g2
(13) la® + mb* < = llvr|l3.

Multiplying (I2)) by a and using the fact that m,b > 0, we find that

52 52
la® > allvrfl > lvrll3,

g2 g2

where the last step uses the fact that every entry of vg is at most a. However, (I3)
implies that
2

1—¢

la® < ||'UR||§7

2

a contradiction. O
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A.3. Proof of Theorem

Proof of Theorem B20. Let U = ﬁA be a rescaling of A, chosen so that U is

unitary, meaning that ||Uwl|2 = ||w]||2 for all w € C™. Note that since the definition
of supp? is invariant under rescaling, we have that |suppz(Av)| = [supp; (Uv)|.
Let S = supp?(v) and T = supp%(Uv). Let Pg, Pr denote the orthogonal pro-
jections onto the coordinates indexed by S, T, respectively, and let M = PsU* Py
be the submatrix of U* with rows indexed by S and columns by 7. Our goal is to
obtain upper and lower bounds on || M||2—2, which we will combine to conclude the
desired result. To begin with the upper bound, we observe that for any vector w,

8wl = DI a0w)l? = Y0 < 3 Il o1 < I gz,
i=1 i€s i€s
where M; denotes the ith row of M. The first inequality is Cauchy—Schwarz, while
the second uses the fact that every entry of M has absolute value at most 1/ VE,
and that there are |S||T| entries in M. This shows that | M|l2—2 < /|S||T|/k.
For the lower bound, we first observe that the unitarity of U implies that

||U — U*PTUUHQ = ||U*UU — U*PTUU”Q
= [|U*(Uv = PrUv)|l2 = [Uv = PrUvlls < nlv]l2,

where the last step follows from the definition of T'. Since Ps is a projection, it is
a contraction in L2, so

[Psv = MUv|[z = || Ps(v = U"PrUv)|j2 < |lo = U"PrUv|[z < njv]2.
Moreover, by the definition of S, we know that ||jv — Psv|s < €]|v||2. Therefore,
lo = MUvlls < [|[Psv — MUv||2 + [[v = Psvll2 < (n +€)][v]l2.
Using the inequality [ja — b2 > ||a|l2 — ||b]|2, we conclude that
[MUv]l2 = (1 =& =n)ljvlls = (1 =& =n)|Uvll.
Combining this with our bound ||M||2—2 < \/|S]|T|/k gives the desired result. [
A.4. Proof of Theorem

Proof of Theorem 12 Let a > b > 0 be real numbers. Define
fa b(x) = e*ﬂ((a+bi)g;)2 = eiﬂ(a27b2)l’26*27riabm2.

From the definition, we see that |f, ()| = e=m(0*=0")2" Gince we assumed that

a > b > 0, we have that a* — b > 0, and therefore |f, 5| decays superexponentially
at infinity, and we see that f,; € S(R). We can compute

2 2 _ 727T(a27b2)z2 _ ;
fualt = [lfusds= [ e -

Additionally, for any fixed a > b > 0, we see that 7(a* — b?)z? is minimized at
x = 0, implying that |f, ;(z)| is maximized at = 0, and therefore

Hfa,b”oo = |fa,b(0)‘ =1.
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We can also compute the Fourier transform of f,; explicitly, by recalling that the
Fourier transform of e~7(¢®)” is %e’”(g/c)Q, and that this holds for all ¢ € C for

which e~™()* ¢ 12, Setting ¢ = a + bi, we find that

—_ 1 £ )2 1 202 32 2 1242 (o2 253242
fab(é.) — ’e_ﬂ'(a-f—bi) — ’67715 (a®—=b%)/(a*+b*) 6727715 ab/(a®+b%) )
' a+bi a+bi
In particular,
- 1 202 42 2,122
i) = ke
’ a2 +b2

Again for fixed a > b > 0, we have that |ﬁ;(§)| is maximized at £ = 0, and we
conclude that

Foalloe = ——
a,b oo \/m‘
This implies that
F(fap) = [ fa,bllooll fa,bll oo _ 2(a® — b?)
“ I fa.0ll3 a? + b
Finally, let us set b = v/a? — 1, and insist that a > 1 so that b > 0. Then we get
that
2

F(fo vaz) 202 — 1’

and as a ranges over (1,00), the function \/2/(2a2 — 1) ranges over (0,/2). So we
conclude that (0,+/2) is in the image of F.

Next, we wish to construct a family of functions whose images under F' cover
the remaining interval [v/2, 00). For a real number ¢ > 0, we define

1 —71'(1)'()2 —7TCIE2
gc(x):%e (/)+\/E€ ( )

From the property mentioned above about the Fourier transform of a Gaussian, we
see that g, is its own Fourier transform for all ¢. We can compute

1
/:2 co — cllooc = |Gec 0)| = —_—.
el llgel 19¢(0)] = Ve + 7

Moreover, we can also compute
2

> [1
ch”% = /_OO <%e_‘”($/c)2 + \/Ee—‘fr(cm)2> dz
= 1/OO 6_2'”(35/0)2 dz +2 /OO e—‘nx2(c2+1/cz) dz + c/oo e_gﬂ(cwﬁ N
—0o0

C — 00 —0o0
() ()
= — —_— — c -
c \/5 CQ"’% C\/i
c
2c
:\/54‘47

Vet +1
Thus, we find that

~ 1,2
Fgo) = 1oelloolFelloe _ Vet 75 e+2+1
[ RV, Fa v g
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This function is minimized at ¢ = 1, where its value is v/2. Moreover, as ¢ — o0,
the denominator converges to /2, whereas the numerator grows like ¢. Thus, we
see that lim._,o F(g.) = co. Since this is a continuous function of ¢, we conclude
that [v/2,00) is in the image of F. Combining this with our result that (0,/2) is
in the image of F', we conclude that the image of F' is all of R+. O

A.5. Proof of Theorem (.14l

Proof of Theorem 14l We may assume that f % 0. We mimic the proof of Theo-
rem LTIl We first claim that for any nonzero g € L'(R) N L>(R),

qg—1
1 /M T2
lglla = Crg \ llgll3

where
2qr4+qg—r—2

C. = (7’* — 1) qv'q+7<11*2 Q7 Tarfta—2

g T

Once we have this, we can apply it with the norm uncertainty inequality, Theorem
46 to obtain that

! (Mr<f>>—«f+ql—2 (Ms(Af)>—qsq+ql-2 Ll JAfL | e

CrqCsq \ I3 IAfIIZ Al BAf T

which is the claimed result. So it suffices to prove (4.
As before, we set T = 5([lgll1/(2llgll4))* "=, so that (27)'"4|glly = 5llgll1.
Holder’s inequality again gives that

T
1 : .
[ Js@las < Slol mplying [
-T

|x|>T

1
l9(z)ldz = Fllgll-

Therefore, applying the Cauchy—Schwarz inequality, we can compute

1
slol< [ lg@)ds
|z|>T

1 r
[ )
x|>

) 1/2 1/2
<( [ apae) ([ ell@Pda
l2|>T |Z] lz|>T

V2

< —M g 1/27
(r—1)Tr-1 (9)
where we use the assumption that r > 1 to evaluate the (convergent) integral.
Rearranging and using the definition of T', we obtain (I4]). |
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