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Abstract

We propose a new approach for trading VIX futures. We assume that the term structure of

VIX futures follows a Markov model. The trading strategy selects a multi-tenor position by max-

imizing the expected utility for a day-ahead horizon given the current shape and level of the VIX

futures term structure. Computationally, we model the functional dependence between the VIX

futures curves, the VIX futures positions, and the expected utility as a deep neural network with

five hidden layers. Out-of-sample backtests of the VIX futures trading strategy suggest that this

approach gives rise to reasonable portfolio performance, and to positions in which the investor can

be either long or short VIX futures contracts depending on the market environment.

Keywords: VIX Futures, Trading Signals, Contango, Deep Learning, Feedforward Neural Net-

works, Cross Validation.

AMS Subject Codes: 62P05, 68T05, 91B28.

1 Introduction

The shape of the VIX futures curves is informative if it shows a shape that is likely to persist
for only a short period of time. In this situation, there may be a simple VIX futures trade that will
produce profits when the curve reverts to a more typical shape. For example, if the curve has a hump
then there may be a long-short VIX futures position, or a calendar spread, with zero entry cost, which
will pay a positive amount when the curve reverts to contango. Ideally, such a reversion will happen
quickly so that the trade generates a profit with near certainty. In practice there is some risk because
most trades involve non-zero probability of losses. Nevertheless, over long-term horizons with multiple
trading opportunities, losses can be diminished if trading strategies are constructed to optimize the
expected value of a suitable utility function. VIX futures are a good choice for such trading strategies
because their curves have a propensity to quickly revert to contango, which allows for fast turnaround
before the next trading opportunity.1

We use a stationary VIX futures curves model, as done in Avellaneda and Papanicolaou (2019),
to generate day-ahead scenarios of VIX futures. Let U (·) denote a chosen utility function. A trading
signal is the optimal action maximizing the expected utility function under the probability distribution
of the model,

a (x) = argmax
a∈A

E [U (Rt+1 (a)) |Xt = x] , (1.1)

∗The authors would like to thank Brian Healy and Xunyang Wu for their feeback and support.
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§Department of Mathematics, North Carolina State University. Campus Box 8205, Raleigh, NC 27695. apa-

pani@ncsu.edu. The author is partially supported by NSF grant DMS-1907518.
¶Department of Mathematics, Columbia University. 2990 Broadway New York, NY 10027. gw2376@columbia.edu
1Here, “quickly” means relative to other curves such as crude oil or treasuries.
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where t denotes time, E denotes expected value, and where

Xt = VIX futures curves at time t, vector valued,

A = a set of possible trades/actions a, vector valued,

Rt+1 (a) = change in position from time t to t+ 1 if action a ∈ A is taken.

The action space A consists of long or short positions in VIX futures, and Rt+1(a) is a function of the
action a and the transition occurring in the VIX futures curves,

(Xt,Xt+1, a) 7→ Rt+1 (a) .

We take A to be a finite set of trades that are predetermined, and we assume that the transition
distribution for Xt is also given. We estimate the expected value in equation (1.1) using a deep
neural network, see Goodfellow et al. (2016). Historical VIX futures data are applied to estimate
the parameters for the model of Xt, and then the neural network is trained using simulated data
generated by this estimated model. In our model, the most likely curve is a contango, and all other
shapes of curves will revert toward this most likely state. To illustrate, Figure 1.1 shows a contango
and a backwardation curve of VIX futures. We construct a trading signal by solving the optimization
problem (1.1) with a set of trading actions A consisting of various allocations in one month and five-
month rolling VIX futures positions. For most contango curves, the trading signal’s suggested action is
to long the one-month and to short the five-month rolling positions. In backwardation, the suggested
trade is to short the one month and 2× long the five month. In backtesting this trading signal we find
that if transaction costs are not too high, then for a trading period of 200 days and more, there can
be profits of double-digit percentage and Sharpe ratios significantly higher than one.
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Figure 1.1: The VIX futures’ contango curve seen on 2019-11-11 (left) and the backwardation
seen on 2020-03-11 (right). A trading signal is constructed based on the value and shape of
this curve.

1.1 Background Literature

The VIX has been the “fear gauge” for the financial markets of the United States since 1993, see
Whaley (2000) and Whaley (2009). Since 2004, the market for VIX futures has made it possible to
gain exposure to VIX, and the creation of exchange-traded notes (ETNs) has made it possible to
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gain exposure with greater ease, see Alexander et al. (2015). The significance of mean reversion and
contango in the VIX futures curves and ETNs is analyzed in Avellaneda and Papanicolaou (2019),
and mean reversion is also the key assumption in the class of stochastic volatility models driven by
stationary factor processes, see for instance Fouque et al. (2000). Historically, volatility models in
finance have relied on the Markov property, but recently there has been a trend toward VIX pricing
driven by fractional Brownian motion, which is the research subject of Bayer et al. (2016). The
fractional approach is compatible with Markovian optimizations if the state is taken to be the entire
VIX futures curves, with the reason being that, the appropriate Markovianization of the fractional-
curve model is to consider the infinite-dimensional futures curve in its entirety as the Markovian state
process, see Euch and Rosenbaum (2018).

Foundational concepts in machine learning such as convergence and deep learning extensions can be
found in Mohri et al. (2018) and Sutton and Barto (2018). The implementation of high-dimensional
learning is been made possible by recent developments in neural network software such as Ten-
sor Flow and Pytorch. Example of note include the deep-Q neural network (DQN) algorithm, see
Mnih et al. (2015) and Fan et al. (2020), and for applications to finance see Aldridge and Avellaneda
(2020), Sirignano and Spiliopoulos (2017), and Casgrain et al. (2019). Studies on high-dimensional
deep learning have highlighted the improvement in out-of-sample prediction when large neural net-
works are utilized, see Zhang et al. (2017), Belkin et al. (2018), and Hastie et al. (2019). Evaluation of
out-of-sample performance is often done using cross-validation methods, but special care needs to be
taken when applying these methods to financial data, see Arlot and Celisse (2010) and Arnott et al.
(2019). In particular, in finance we often work with times series data with significant auto-correlations,
yet cross-validation methods are still applicable so long as the times series are assumed to satisfy some
basic assumptions such as zero auto-correlations in the noise process, see Burman and Nolan (1992),
Bergmeir and Beńıtez (2012), and Bergmeir et al. (2018).

1.2 Main Results and Structure of the Paper

The focus of this paper is on a new method for trading VIX futures, wherein trading signals
are the optimal action function given by (1.1). We implement this new approach on a variety of
utility functions and utilize deep neural networks to estimate the objective in (1.1). We conduct cross-
validation studies using a k-fold procedure. We use historical VIX futures data consisting of end-of-day
VIX futures curves from January 2008 to February 2021. We find that portfolios constructed with deep
neural networks have the potential to produce reasonable profits and Sharpe ratios in out-of-sample
tests. These findings are an indication that VIX futures curves contain useful predictive information
for trading, and that deep neural networks are able to filter and apply the relevant information from
the curves.

The paper is organized as follows: Section 2 introduces the model, explains how parameters are
estimated and describes the VIX futures positions that we optimize over; Section 3 presents cross-
validation studies of the neural network method on historical VIX futures data – both with and without
transaction costs; Section 4 concludes; Appendix A shows real-time backtest that we conducted with
weekly re-training of the neural network from December 28th, 2020 through February 19th, 2021;
Appendix A also provides a detailed account of how the output of the neural network maps to positions
in VIX futures that can be directly executed by a trader; Appendix B provides portfolio metrics for
various benchmarks for comparison.
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2 A Model for Trading VIX Futures

Let d be an integer such that d + 1 is the number of VIX futures contracts2, and let T1 < T2 <

· · · < Td+1 denote the expiration dates. Let us denote

F i
t := VIX future expiring at time Ti , (2.1)

where t = 0, 1, 2, · · · , Ti is the current date. A term-structure of constant-maturity VIX futures
(CMFs), each with horizon θi-many months, for i = 1, 2, 3, · · · , d, are constructed as a linear
interpolation of the VIX futures,

V i
t := ωi

tF
i
t +

(
1− ωi

t

)
F i+1
t , (2.2)

where t ≤ Ti ≤ t + θi ≤ Ti+1, and where ωi
t = Ti+1−t−θi

Ti+1−Ti

; note now that V i
t is defined for all t. By

convention we denote V 0
t = VIXt. CMFs are preferable for statistical estimation because they do not

have non-stationary effects caused by contract expiry.

2.1 Portfolios of Rolling VIX Futures

A portfolio of rolling VIX futures maintains the CMF weights of equation (2.2) for fixed maturity
θi. For each i we let Ii denote the value of the rolling VIX futures portfolio with horizon θi, for which
returns are given by

∆Iit
Iit

:=
ωi
t∆F i

t +
(
1− ωi

t

)
∆F i+1

t

ωi
tF

i
t +

(
1− ωi

t

)
F i+1
t

+ r∆t , (2.3)

where ∆Iit = Iit+1 − Iit , ∆F i
t = F i

t+1 − F i
t , r ≥ 0 is the interest rate, and ∆t = 1

252 . Simple calculation
leads to an equivalent expression to equation (2.3) in terms of the CMFs,

∆Iit
Iit

=

(
r + ω̇i

t

F i+1
t+1 − F i

t+1

V i
t

)
∆t+

∆V i
t

V i
t

, (2.4)

where ω̇i
t =

ωi

t+1−ωi

t

∆t
< 0 for all t < Ti. The drift term in equation (2.4) contains the quantity referred

to as the roll yield,

Rollit+1 := ω̇i
t

F i+1
t+1 − F i

t+1

V i
t

,

which we use to re-write equation (2.4) as follows,

∆Iit
Iit

=
(
r +Rollit+1

)
∆t+

∆V i
t

V i
t

. (2.5)

From equation (2.5) we see that if V i
t is a stationary process then the return rate of the ith rolling VIX

futures portfolio has a most likely value equal to the risk-free rate plus the mode of Rollit+1. As shown
in Avellaneda and Papanicolaou (2019), the most likely VIX futures curves are contango and the most
likely roll yields are negative, which explains why the value of the rolling VIX futures portfolios decay
so rapidly.

The two main quantities we consider are the CMFs
(
V i
t

)
i=0, 1, 2, ··· , d

and the roll yields
(
Rollit

)
i=1, 2, 3, ··· , d

.

As seen from equation (2.5), these quantities can be used to make short-term prediction of the rolling
VIX futures portfolios. If the predictability is strong enough, then the magnitude of the roll yield and
the anticipated direction of mean reversion could be the basis for a trading strategy that performs

2The VIX futures term structure is a collection of futures contracts with nine monthly maturities (and six weekly
contracts that are not very liquid).
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well over the long term. One trading idea is to utilize the Engle-Granger test to find co-integrated
pairs among rolling VIX future portfolios, see Engle and Granger (1987). For the one-month rolling
VIX futures portfolio (θ = one month) and the five-months rolling VIX futures portfolio (θ = five
months), a simple linear regression of one portfolio on the other suggests that we should short the
one-month portfolio and long 0.9× five-months portfolio. However, this is not a good pair to trade
because their residual is not stationary; for daily data between 2008 and 2020 the value of this position
does not reject a unit root hypothesis. In addition, historical backtesting shows that this trade has
large drawdowns and negative returns at the most inopportune times. Another possibility is to match
volatility levels between the one-month and five-month rolling VIX futures portfolios, which suggests a
position 1× short and 2× long, respectively. This was a popular trade during the decade of 2010, but
also had large drawdowns. The conclusion is that allocations in these rolling VIX futures portfolios
are useful but there needs to be a rule for deciding when to open and close the trade.

Remark 2.1 (Exchange Traded Notes). Rolling VIX futures portfolios represent the underlying re-
demption value for several VIX futures ETNs. Such notes are among the more liquid instruments for
gaining exposure to VIX, see Alexander et al. (2015). Some of the more liquid ETNs include the iPath
VXX (one-month long), the iPath VXZ (five-months long), the VelocityShares TVIX (one-month, 2×
long), and the iPath XIV (one-month short). Trading in these notes can be replicated with trades in
the rolling VIX futures portfolios. However, in practice, replication is not entirely accurate. Firstly,
the issuer of a note may have call-back features embedded that will terminate the note at any time.
Secondly, the rolling VIX futures portfolio is technically just the redemption value and the notes are
free to trade at market value, which means that there may be a slight discrepancy between an ETN’s
return and its respective rolling futures formula.

2.2 Vector Autoregressive Model

For the tth day of a given time period, returns on VIX futures are computable from the following
state vector,

Xt =
[
log VIXt, logV

1
t , logV

2
t , · · · , logV

d
t , Roll

1
t , Roll

2
t , · · · , Roll

d
t

]⊤
,

where all entries of this vector are directly computable from
(
VIXs, F

1
s , F

2
s , · · · , F

d+1
s

)
s≤t

. Given

data at times t = 1, 2, · · · , T , let X∗ denote the mode,

X∗ = mode
t≤T

(Xt) ,

that is, X∗ is the most likely curve, which is illustrated in Figure 2.1. The figure displays the mean
given by 1

T

∑T

t=1Xt, and the mode of the state. Statistical analysis in Avellaneda and Papanicolaou
(2019) shows thatXt is a stationary stochastic process whose historical time series exhibits a tendency
to mean revert towards a contango curve. In its most likely state, the VIX future is around 12%-14%,
the long-term VIX future is around 17%-20%, and all in-between CMFs lie on an upward sloping curve.

We take the state vector Xt for t = 1, 2, · · · , T , we center it around the mode, and then place it
in a larger matrix

ψ = [X1 −X
∗,X2 −X

∗, · · · , XT −X∗] .

Note that we are centering around the mode rather than the mean, which we do for robustness because
Xt has heavy tails. The vector autoregressive (AR) model is the following,

ψt+1 = µ+Aψt +Zt+1 , (2.6)

where Zt is an independent and identically distributed Gaussian random vector with mean zero and
covariance Σ. The least-squares estimator of A is given by

Â =

[
T−1∑

t=1

(
ψt+1 −ψ

) (
ψt −ψ

)⊤
][

T−1∑

t=1

(
ψt −ψ

) (
ψt −ψ

)⊤
]−1

, (2.7)
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Figure 2.1: The mean and modal curves of VIX CMFs (left) and the mean and modal curves
of the roll yields (right). The VIX futures curve is usually in contango, with the possibility
of a volatility spike causing an upward skew in the futures’ distribution. Therefore, the mean
CMF curve is above the modal curve, and a similar relationship appears in the mean and
modal curves of the negative roll yields.

µ̂ =
(
I − Â

)
ψ , (2.8)

where ψ = 1
T

∑T

t=1ψt. The matrix Σ can be estimated as

Σ̂ =
1

T

T∑

t=1

ẐtẐ
⊤

t , (2.9)

where Ẑt+1 = ψt+1 − µ̂− Âψt.
We can write the returns on the rolling VIX futures portfolios from equation (2.5) as

∆Iit
Iit

=
(
r +Xd+i

t+1

)
∆t+

exp
(
Xi

t+1

)
− exp

(
Xi

t

)

exp
(
Xi

t

) , for 1 ≤ i ≤ d , (2.10)

which will be useful in the sequel where we draw samples from a distribution for Xt and use to
simulate trading returns. We use the vector AR model that is described by equation (2.6) to simulate
Xt, which we insert into equation (2.10) for computing returns on rolling VIX futures portfolios.
Figure 2.2 shows simulations of the one-month and five-month rolling VIX futures portfolios, with
each simulation including its respective historical portfolio value.

2.3 Trading-Signal Construction

We consider the following quantity

Rt+1 (a) :=
∑

i

ai
(
∆Iit
Iit

− r∆t

)
. (2.11)
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Figure 2.2: Simulations of the one-month rolling VIX futures portfolio and the five-month
rolling VIX futures portfolio, generated from the vector AR model in equation (2.6). The
dark line in each plot is the historical value of the respective portfolio. The declining value
in these positions is studied in Avellaneda and Papanicolaou (2019).

This represents the profit or loss for a position in a portfolio of rolling VIX futures3. Let A denote the
space of admissible actions. An optimal action is determined by maximizing expected utility,

max
a∈A

E

[
U (Rt+1 (a))

∣∣∣Xt = x
]
, (2.12)

where the action is decided by the trader at time t immediately before Rt+1 (a) is realized, and where
U (R) is the utility function.

We denote by Pt the value of the trading-signal portfolio at time t, for which returns are computed
as

∆Pt

Pt

= Rt+1 (a (Xt)) + r∆t , (2.13)

where a (Xt) = argmaxa∈A E

[
U (Rt+1 (a))

∣∣∣Xt

]
. In testing we use the time series of Pt to compute

performance metrics, such as profit percentages and Sharpe ratios.

3 Computing the Trading Signals with Historical Data

We carried out the method described in Section 2 on historical VIX futures curves. The data
we use were from April 14th of 2008 to November 6th of 2020 of one-month, two-months, three-
months, fourth-months, five-months, and six-months VIX futures, in other words, in equation (2.1),
i = 1, 2, · · · , 6 and d = 5. The procedure for training and testing was straightforward: we divided
the data into two blocks, with the first block designated for training, and the second block designated
for testing. We took VIX futures curves from April 16th of 2008 to August 7th of 2019 for in-sample
training, and then used the remaining curves from August 8th of 2019 to November 5th of 2020 for
out-of-sample testing. The data that we used are downloadable from the VIX Central website.4 Using
these data, we constructed the time series of VIX CMFs and VIX rolls as given by the formulae of

3Of course, every portfolio of rolling VIX futures is equivalent to a portfolio of futures contract (see equation (2.3)).
4The VIX Central website: http://vixcentral.com

7

http://vixcentral.com


(2.2) and (2.4), respectively. We took the weights ωi appearing in (2.2) to be ωi ≡ ω for all i such
that there is 100% in the front-month contract as soon as the prior future matures, and then 0% in
this front-month at the next maturity date. We analyzed the time series of portfolio value over this
testing interval using the following performance metrics: annualized expected rate of return denoted
by E [Rt (a (Xt))], volatility denoted by std[Rt (a (Xt))], trading profit, Sharpe ratio, and maximum
drawdown.

The out-of-sample test described in the previous paragraph was based on a single portfolio run,
which means that good portfolio performance might be attributable to luck. Therefore, to make full
usage of the data, we applied the method of the k-fold cross validation. We divided the data into k = 10
folds, each with 316 or 317 days, and then used these folds to conduct ten separate in-sample and out-
of-sample tests. Specifically, we trained on a configuration of nine folds, upon which we conducted an
in-sample test, and then upon the remaining fold we conducted an out-of-sample test, see chapter four
of Mohri et al. (2018) for details on k-fold cross validation. Table 3.1 gives the precise demarcation
dates for the folds. When we pasted non-contiguous folds we excluded the so-called pasting outlier
when estimating the vector AR model (2.6). For example, in order to out-of-sample test on fold #5
we needed to paste fold #4 to fold #6 for training, and in doing so we made sure to exclude the data
point at the jump from fold #4 to #6.

This application of k-fold cross validation does not allow for truly out-of-sample testing because
there are correlations between folds, see Arnott et al. (2019), but cross validation methods are still effec-
tive for auto-regressivemodels with uncorrelated noise, see Arlot and Celisse (2010), Bergmeir and Beńıtez
(2012), Bergmeir et al. (2018), Burman and Nolan (1992), and Cerqueira et al. (2020). In the case of
the VIX futures data, auto-correlations decay relatively quickly because of faster rates of reversion to
the most likely curve, thereby reducing co-variation between folds.

Fold Time Interval Fold Time Interval
0 2008-04-16 to 2009-07-17 5 2014-07-31 to 2015-10-29
1 2009-07-20 to 2010-10-19 6 2015-10-30 to 2017-02-01
2 2010-10-20 to 2012-01-23 7 2017-02-02 to 2018-05-04
3 2012-01-24 to 2013-04-29 8 2018-05-07 to 2019-08-07
4 2013-04-30 to 2014-07-30 9 2019-08-08 to 2020-11-05

Table 3.1: The start date and end date for each of the ten testing folds in the k-fold cross
validation.

Our approach was to use the training data to estimate the parameters of the vector AR model
(2.6) that was proposed in Section 2.2, and then to draw samples from the vector AR model for
training of the neural network. The neural network is an approximation of the functional form of
E [U (Rt+1 (a)) |Xt] (see Cybenko (1989) and Pinkus (1999)) for each action a in the action space,

A =
{
(0, 0) , (−1, 1) , (−1, 2) , (1, −1) , (1, −2)

}
, (3.1)

where the individual actions were

(0, 0) = no trade ,

(−1, 1) = short I1 and long I5 ,

(−1, 2) = short I1 and 2×long I5 ,

(1, −1) = long I1 and short I5 ,

(1, −2) = long I1 and 2×short I5 ,

and where I1 and I5 denote the one month and five-month rolling VIX futures portfolios, respectively,
as defined by (2.5) in Section 2.1.
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3.1 Neural Network Approach

For general concave utility there is no explicit calculation for the expected utility E [U (Rt+1 (a)) |Xt].
Therefore, we utilize a neural network to find an approximating function. The neural-network architec-
ture that we implement is a deep feed-forward neural network (DFN), as described in Goodfellow et al.
(2016). For a discrete set of actions A = {a1, a2, · · · , ap}, the universal approximation theorem, see
Cybenko (1989) and Pinkus (1999), is a mathematical theorem to ensure that DFN is an effective way
to estimate the nonlinear mapping

Xt 7→ [Q (Xt, a1) , Q (Xt, a2) , · · · , Q (Xt, ap)]
⊤

,

where we denote Q (Xt,aj) = E [U (Rt+1 (aj)) |Xt = x] is the state-action value function. Our ap-
proach is to sampleXt from the vector AR model proposed in Section 2.2, and then use these samples
to train the neural network, and then perform k-fold cross validation to test out-of-sample performance.

The DFN that we utilize has the specifications that are depicted in Figure 3.1. It has eleven neurons
in the input layer, each of which represents an element Xi

t for a given i. The number of neurons in
the output layer is five, which represents the five actions in the action space A. We set the number
of the hidden layers to five, each of them containing J = 50 × 11 neurons. In training we ran the
backpropagation for 15 epochs each having 160 steps, and we set the algorithm to withhold 20% for
validation. We used a dense connective structure between layers, in other words, all layers had neurons
fully connected with the neurons in the previous layer. The activation function f (x) was chosen to be
the Parametric Rectified Linear Unit (PReLU) function,

f (x) =

{
x for x ≥ 0

αx for x < 0 ,
(3.2)

where α > 0, in our studies we set α = 0.1. For all results that we present, we have taken the PReLU
activation function for both the hidden layers and the output layer of the DFN. We did also repeat
all tests using hyperbolic tangent activation function f (x) = tanh (x) and linear activation function
f (x) = wx+b for the output layer, but the results from PReLU were slightly better. Given the neurons,
layers, and activation function, we assume the DFN is the underlying structure of Q : R11 → R

5 such
that




Q (Xt, a0)
Q (Xt, a1)
Q (Xt, a2)
Q (Xt, a3)
Q (Xt, a4)




= f
(
W⊤

6 f
(
· · · f

(
W⊤

2 f
(
W⊤

1Xt + b1

)
+ b2

)
· · ·
)
+ b6

)
, (3.3)

where W ℓ, ℓ = 1, 2, · · · , 6 are the matrices of connection weights that connect the neurons on the
(ℓ− 1)th layer to the ℓth layer, and bℓ, ℓ = 1, 2, · · · , 6 is a vector of some biasing values, here subscript
6 represents the terminal output layer.

We trained the DFN using samples that were drawn from the vector AR model of Section 2.2 with

Gaussian noise. We drew independent and identically distributed samples X
(i)
0 for i = 1, 2, · · · , N

from the stationary distribution of the vector AR model (2.6). We took N = 105. For each X
(i)
0 , we

simulated a batch of one-step forward samples to approximate the conditional expected utility, which

we label asR
(i, i′)
1 (a) for i′ = 1, 2, · · · , M for each a ∈ A. We took M = 300. We then fitted the DFN

to the sample averages by minimizing quadratic loss function with respect to the hyperparametersW
and b,

min
W , b

∑

a∈A

1

N

N∑

i=1

(
Q
(
X

(i)
0 , a

)
−

1

M

M∑

i′=1

U

(
R
(i, i′)
1 (a)

))2

. (3.4)

After training, the optimally fitted neural network was utilized to compute the optimal trading actions,
namely, a (Xt) = argmaxa Q (Xt, a).
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Figure 3.1: Schematic diagram of the deep neural network. In our studies we took J = 550,
i.e., 550 neurons in each hidden layer.

3.2 Piece-Wise Linear and Exponential Utility Functions

We tested the trading signal constructed from a piece-wise linear utility function,

U (R) = max (R, 0) + γmin (R, 0) , (3.5)

and exponential utility function,

U (R) = −
1

γ
exp (−γR) , (3.6)

where we took the risk aversion coefficient γ = 1.3 for the piece-wise linear utiltiy function and γ = 3
for the exponential utility function. We then fitted the DFN with respect to the piece-wise linear
utility function (3.5) with the same quadratic loss given in (3.4), and fitted the DFN with respect to
the exponential utility function (3.6) by minimizing the quadratic loss of the certainty equivalent,

min
W , b

∑

a∈A

1

N

N∑

i=1

(
Q
(
X

(i)
0 , a

)
+ U−1

(
−

1

M

M∑

i′=1

U

(
R
(i, i′)
1 (a)

)))2

. (3.7)

Figure 3.2 illustrates some trading-signal heat plots for the piece-wise linear utility function and the
exponential utility function. The most obvious difference is that the piece-wise linear utility has states
where the trading signal suggests to take position (0, 0). Table 3.2 and Table 3.3 display the portfolio
metrics for the k-fold cross validation of out-of-sample tests, and Figure 3.3 shows the time series of
portfolio values, as given by (3.3). In these tables, strong portfolio performance can be concluded
based on profit and Sharpe ratios, but it is important also to highlight the large drawdowns and the
difficulty they would pose in practice.
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Figure 3.2: Heat plots showing the projection of the trading signals onto the two-dimensional
space spanned by logarithm of VIX and the one-month roll, with the projected values being
the most-common trading actions at these points. The left plot is the projection of the trad-
ing signal constructed with piece-wise linear utility function (3.5), the right is the projection
of the trading signal constructed with exponential utility function (3.6). Both trading signals
were constructed using the DFN approach of Section 3.1. The value “Empty” represents the
values of logarithm of VIX and one-month roll that didn’t occur.

Fold
Statistics

E [Rt (a (Xt))] std[Rt (a (Xt))] Profit (%)
Sharpe Maximum
Ratio Drawdown

0 2.361 0.443 304.264 5.297 -0.196
1 1.195 0.368 145.924 3.215 -0.138
2 4.951 0.447 724.848 11.053 -0.117
3 2.835 0.410 384.387 6.878 -0.214
4 0.854 0.242 108.168 3.474 -0.128
5 1.129 0.361 137.044 3.093 -0.123
6 1.027 0.375 121.582 2.709 -0.156
7 1.415 0.754 130.578 1.862 -0.293
8 0.329 0.302 34.784 1.056 -0.180
9 3.284 0.491 429.191 6.661 -0.240

Table 3.2: Portfolio metrics for out-of-sample tests in k-fold cross validation on trading
signal constructed with piece-wise linear utility function (3.5). These metrics are computed
from the portfolio returns given by (2.13) with no transaction costs.

3.3 Transaction Costs

Finally, it remains to test if the trading signals from Section 3 can perform with transaction costs.
Execution of this strategy is done using market orders, which means that market makers are providing
liquidity, and therefore, we are crossing their bid-ask spread each time we complete a trade. The price
data that we have used in our backtests are bid-ask midpoints. Thus, to simulate real-life trading of
market orders, we should pay (at least) 1/2 the bid-ask spread each time we open or close a futures
position.

VIX futures trade has a tick size of five cents,5 which means that our backtests should always
assume a bid-ask spread of at least five cents. In the simplest backtest, we hold the bid-ask spread

5Each VIX future traded on CBOE has a mutliplier of 1000, which means that the tick size is effectively $50.
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Fold
Statistics

E [Rt (a (Xt))] std[Rt (a (Xt))] Profit (%)
Sharpe Maximum
Ratio Drawdown

0 1.728 0.456 209.177 3.763 -0.239
1 1.610 0.412 198.810 3.880 -0.165
2 4.534 0.462 645.731 9.775 -0.175
3 3.138 0.463 418.006 6.751 -0.202
4 0.742 0.284 90.055 2.577 -0.190
5 0.683 0.388 74.484 1.731 -0.236
6 0.886 0.400 100.162 2.187 -0.189
7 1.239 0.785 103.799 1.564 -0.281
8 0.639 0.356 71.310 1.765 -0.171
9 2.518 0.564 294.004 4.443 -0.248

Table 3.3: Portfolio metrics for out-of-sample tests in k-fold cross validation with trading
signal constructed with exponential utility function (3.6). These metrics are computed from
the portfolio returns given by (2.13) with no transaction costs.

constant at five cents, which means we pay $0.025 each time we open or close a VIX futures position.
However, bid-ask spreads may widen, particularly when the VIX futures curves are in backwardation.
With this widening in mind, a transaction-cost function for the ith future is

TCi
t =

1

2
max

(
εF i

t , 0.05
)
, (3.8)

where ε is a fixed basis points (bps) parameter, in other words, ε = 20bps, 30bps, or 40bps. Using this
notation for transaction costs, the returns on the value of the trading-signal portfolio are computed
similarly to equation (2.13) except for an additional term for transaction costs,

∆Pt

Pt

= Rt+1 (a (Xt)) + r∆t−
1

Pt

∑

i

TCi
t

∣∣ni
t − ni

t−1

∣∣ , (3.9)

where ni
t denotes the number of contracts in the ith VIX future; computation of ni

t is explained in
Appendix A.

Table 3.5 and Table 3.4 display the metrics for portfolios computed with varying levels of transaction
costs. Figure 3.4 illustrates the time series of portfolio value for trading signal constructed using piece-
wise linear utility function and using the portfolio value given by (3.5). In general, the portfolio can still
perform well with transaction costs, but we do see a decline as we increase the basis points parameter
in the transaction costs, in other words, as we increase ε in equation (3.8). Finally, as was the case in
Table 3.2 and Table 3.3, drawdowns remain high when transaction costs are included.

4 Summary & Conclusion

We have proposed and analyzed a method for constructing VIX futures trading signals. The basis
for the method is in the identification of certain trading opportunities by observing the shape of the VIX
futures curves. The trading signal uses a neural network to determine the best action for day-ahead
expectation of returns. We backtested this method and found it to perform well in out-of-sample tests,
showing considerable profits and reasonable Sharpe ratios, but also showing levels of drawdown that
would be difficult to manage in practice. When we included transaction costs we observed portfolio
performance reduced to more pedestrian levels.
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Figure 3.3: Time series of portfolio value for out-of-sample tests of k-fold cross validation
on trading signals constructed with piece-wise linear utility function (top) and exponential
utility function (bottom). The state-action value function Q (Xt, a) is obtained by training
DFN given by equation (3.3). The returns Rt (a (Xt)) were computed with the trading
actions a (Xt) = argmaxa∈A Q (Xt, a), and the portfolio value is computed from (2.13)
with no transaction costs.

Appendix A Mapping Trading Signal to Futures Positions

The DFN model that is proposed in Section 3.1 provides optimal trading actions for the yields of
rolling VIX futures portfolio Ii described in (2.11). For example, the trading signal occurring at the
volatility spike on January 26th of 2021, the piece-wise linear utility function and the deep feed-forward
neural network (3.3) produces an optimal action (−1, 1). This represents a position with weight −1
in I1 and weight of 1 in I5. This appendix will give a translation of the neural network algorithm’s
output into the exact quantities that a real-life trader would use when setting up a position.

In expression (3.1) we defined the five actions considered in our analyses, which are aj for j =
0, 1, 2, 3, 4, with a0 = (0, 0), a1 = (−1, 1), a2 = (−1, 2), a3 = (1, −1), and a4 = (1, −2). Each
action ai is a two-dimensional vector,

aj =
(
a1j , a

5
j

)

where a1j is the portfolio weight in I1 and a5j is the weight in I5. This action can be converted into the

13



Figure 3.4: Time series of portfolio value, computed with transaction costs, for out-of-
sample tests of k-fold cross validation on trading the signal constructed with piece-wise linear
utility function (3.5). The state-action value function Q (Xt, a) obtained by training DFN
given by equation (3.3). The returns Rt (a (Xt)) were computed with the trading actions
a (Xt) = argmaxa∈A Q (Xt, a), and the portfolio value with transaction cost deduction for
the optimal action is Pt computed with equation (3.9).

actual number of contracts in VIX future F i defined by equation (2.1). Letting ni denote the number
of contracts in F i for i = 1, 2, 5, 6, the following are the conversions from a given aij to the ni for

trading signals taking positions in I1 and I5,

n1 =
ωa1jP

V 1
, n2 =

(1− ω) a1jP

V 1
, n5 =

ωa5jP

V 5
, n6 =

(1− ω) a5jP

V 5
,

where P denotes the wealth of trading portfolio, given by either equation (2.13) or (3.9), and where
we have taken the rolling weight ω to be the same for all i as described in the beginning of Section
3. For example, if the optimal trading action is (−1, 1), then we have a1j = −1 and a5j = 1, and we

apply accordingly the above equation for ni. Table A.1 shows the positions in VIX futures F i
t for a

real-time run starting 2020-12-28 of trading signal constructed with piece-wise linear utility function.
The portfolio value shown in the table includes 1/2 the bid-ask spread for each trade, and each position
is rounded to the nearest whole number of contracts. Of note is the drop in P from January 26th to
the 27th, which was the day of the GameStop trading freeze. The trade signal incurred a loss from
the VIX spike caused by GameStop, but then recovered the losses in the following days.
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Statistics
Fold

0 1 2 3 4 5 6 7 8 9

Profit (%) 202.813 35.406 391.423 152.749 -6.926 8.136 -14.775 -26.051 -52.547 218.103
Sharpe

3.756 0.956 6.643 3.099 -0.159 0.345 -0.175 -0.049 -1.403 3.768
ε =0 Ratio

Maximum
-0.213 -0.216 -0.163 -0.258 -0.329 -0.311 -0.306 -0.601 -0.542 -0.240

Drawdown
Profit (%) 187.321 24.631 370.000 148.617 -6.926 8.126 -14.780 -26.122 -52.550 195.975
Sharpe

3.509 0.719 6.329 3.025 -0.159 0.344 -0.175 -0.050 -1.403 3.439
ε = 20bps Ratio

Maximum
-0.225 -0.262 -0.163 -0.262 -0.329 -0.311 -0.306 -0.601 -0.542 -0.240

Drawdown
Profit (%) 138.855 -28.295 247.105 87.970 -11.656 -1.441 -31.083 -28.788 -55.441 123.111
Sharpe

2.709 -0.488 4.460 1.919 -0.324 0.119 -0.561 -0.087 -1.492 2.315
ε = 30bps Ratio

Maximum
-0.244 -0.473 -0.187 -0.307 -0.346 -0.333 -0.367 -0.601 -0.569 -0.279

Drawdown
Profit (%) 85.275 -84.254 103.636 -7.369 -43.848 -42.591 -76.575 -57.851 -80.190 11.942
Sharpe

1.787 -1.677 2.096 0.046 -1.458 -0.898 -1.658 -0.509 -2.170 0.456
ε = 40bps Ratio

Maximum
-0.269 -0.857 -0.377 -0.510 -0.515 -0.507 -0.765 -0.681 -0.802 -0.528

Drawdown

Table 3.4: Portfolio metrics with transaction cost deduction for out-of-sample tests in k-fold
cross validation with trading signal constructed with piece-wise linear utility function (3.5),
and the state-action function Q (Xt, a) obtained by training DFN given by equation (3.3).
The transaction costs per contract are given by equation (3.8) and the portfolio returns are
given by equation (3.9).

Statistics
Fold

0 1 2 3 4 5 6 7 8 9

Profit (%) 143.296 64.787 23.421 139.082 -19.477 -44.923 -33.712 -91.306 -49.599 118.240
Sharpe

2.738 1.477 5.505 2.649 -0.470 -0.871 -0.565 -0.967 -1.063 2.098
ε = 0 Ratio

Maximum
-0.274 -0.184 -0.224 -0.263 -0.381 -0.563 -0.443 -0.920 -0.574 -0.328

Drawdown
Profit (%) 131.973 52.441 305.771 133.121 -19.477 -44.931 -33.716 -91.371 -49.600 103.910
Sharpe

2.553 1.239 5.245 2.551 -0.470 -0.871 -0.565 -0.968 -1.063 1.892
ε = 20bps Ratio

Maximum
-0.274 -0.185 -0.224 -0.267 -0.381 -0.563 -0.443 -0.921 -0.574 -0.328

Drawdown
Profit (%) 99.883 -10.819 194.296 56.765 -24.365 -53.164 -50.059 -94.346 -53.466 55.666
Sharpe

2.015 -0.019 3.545 1.259 -0.618 -1.075 -0.943 -0.989 -1.161 1.173
ε = 30bps Ratio

Maximum
-0.297 -0.348 -0.254 -0.311 -0.402 -0.596 -0.515 -0.948 -0.605 -0.333

Drawdown
Profit (%) 64.643 -78.125 61.369 -58.328 -55.578 -91.129 -95.012 -131.543 -87.536 -29.006
Sharpe

1.405 -1.354 1.336 -0.902 -1.566 -1.809 -1.624 0.794 -1.887 -0.192
ε = 40bps Ratio

Maximum
-0.330 -0.808 -0.416 -0.772 -0.596 -0.912 -0.950 -1.289 -0.890 -0.534

Drawdown

Table 3.5: Portfolio metrics with transaction cost deduction for out-of-sample tests in k-fold
cross validation with trading signal constructed with exponential utility function (3.6), and
the state-action function Q (Xt, a) obtained by training DFN given by equation (3.3). The
transaction costs per contract are given by equation (3.8) and the portfolio returns are given
by equation (3.9).
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Date P ω a1 a5 n1 n2 n5 n6
∑

i n
i

2020-12-28 100.00 0.65714 -1 2 -3 -1 5 3 4
2020-12-29 101.25 0.62857 -1 1 -3 -1 2 1 -1
2020-12-30 103.20 0.60000 0 0 0 0 0 0 0
2020-12-31 103.03 0.57143 0 0 0 0 0 0 0
2021-01-04 103.03 0.45714 -1 2 -2 -2 4 4 4
2021-01-05 102.23 0.42857 -1 2 -2 -2 3 4 3
2021-01-06 101.15 0.40000 -1 2 -2 -2 3 5 4
2021-01-07 104.18 0.37143 0 0 0 0 0 0 0
2021-01-08 103.88 0.34286 -1 1 -1 -3 1 3 0
2021-01-11 101.23 0.25714 -1 1 -1 -3 1 3 0
2021-01-12 103.22 0.22857 -1 1 -1 -3 1 3 0
2021-01-13 105.05 0.20000 -1 1 -1 -3 1 3 0
2021-01-14 105.45 0.17143 -1 1 -1 -4 1 3 -1
2021-01-15 103.63 0.14286 -1 1 -1 -3 1 3 0
2021-01-19 105.99 0.02857 -1 2 0 -4 0 8 4
2021-01-20 103.19 0.00000 0 0 0 0 0 0 0
2021-01-21 102.89 0.96429 -1 2 -4 0 7 0 3
2021-01-22 103.37 0.92857 0 0 0 0 0 0 0
2021-01-25 103.10 0.82143 -1 1 -3 -1 3 1 0
2021-01-26 105.44 0.78571 -1 1 -3 -1 3 1 0
2021-01-27 92.60 0.75000 -1 2 -2 -1 5 2 4
2021-01-28 90.38 0.71429 -1 2 -2 -1 4 2 3
2021-01-29 89.03 0.67857 -1 2 -2 -1 4 2 3
2021-02-01 92.25 0.57143 -1 2 -2 -1 4 3 4
2021-02-02 93.27 0.53571 -1 2 -2 -2 3 3 2
2021-02-03 96.28 0.50000 0 0 0 0 0 0 0
2021-02-04 96.03 0.46429 -1 1 -2 -2 2 2 0
2021-02-05 96.69 0.42857 -1 1 -2 -2 1 2 -1
2021-02-08 98.28 0.32143 -1 1 -1 -3 1 2 -1
2021-02-09 98.66 0.28571 -1 1 -1 -3 1 2 -1
2021-02-10 98.85 0.25000 -1 1 -1 -3 1 3 0
2021-02-11 100.93 0.21429 -1 1 -1 -3 1 3 0
2021-02-12 104.66 0.17857 -1 1 -1 -3 1 3 0
2021-02-16 105.57 0.03571 1 -1 0 4 0 -3 1
2021-02-17 115.42 0.00000 -1 1 0 -4 0 4 0
2021-02-18 115.25 0.96429 -1 1 -4 0 4 0 0
2021-02-19 118.17 0.92857 0 0 0 0 0 0 0

Table A.1: Real-time backtest from 2020-12-28 with weekly re-training of network, for piece-
wise linear utility function (3.5), the number of contracts ni in F i

t , the portfolio value P as
given in equation (2.13), the CMF roll weight ω appearing in equation (2.2), with the same
for all i as explained in Section 3. The net position in VIX futures is

∑
i n

i. The position
is long if the net is positive, short if the net is negative, and neutral if the net is zero. Of
note is the loss seen from Jan. 26th to 27th during the GameStop trading freeze, and then
recovery of losses in the following days.

Appendix B Metrics for the SPY and VIX ETFs

Results that are reported in Section 3.1 should be compared with some standard benchmarks.
Table B.1 presents, for SPDR S&P 500 Trust ETF, the same metrics that were used to evaluate the
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VIX futures trading-signal portfolios for the same ten time periods of the k-fold cross validation. Table
B.2, Table B.3, Table B.4, Table B.5, and Table B.5 display the same metrics for different VIX futures
ETFs and ETNs, such as ProShares VIX Short-Term Futures ETF, iPath Series B S&P 500 VIX
Short-Term Futures ETN, ProShares VIX Mid-Term Futures ETF, iPath Series B S&P 500 VIX Mid-
Term Futures ETN, and iPath S&P 500 Dynamic VIX ETN.6 The data that we used are downloadable
from the Yahoo Finance website. In these tables, the metrics for some folds are missing, it is because
the corresponding data are not available.

By comparing with the metrics for DFN-based trading signals that are displayed in Table 3.2 and
Table 3.3 in Section 3.1, we can observe that the results that are produced by the neural network
algorithm that we propose have reasonably good returns, profits, and Sharpe ratios, but also have
high volatility and high drawdowns.

Fold
Statistics

E [Rt (a (Xt))] std[Rt (a (Xt))] Profit (%)
Sharpe Maximum
Ratio Drawdown

0 -0.172 0.415 -29.111 -0.439 -0.514
1 0.216 0.180 25.147 1.144 -0.157
2 0.138 0.211 14.347 0.607 -0.186
3 0.192 0.125 23.383 1.452 -0.096
4 0.222 0.105 27.567 2.014 -0.056
5 0.100 0.144 11.191 0.624 -0.119
6 0.097 0.130 11.171 0.676 -0.128
7 0.155 0.114 18.722 1.271 -0.101
8 0.095 0.145 10.514 0.583 -0.193
9 0.218 0.304 20.637 0.685 -0.337

Table B.1: Metrics for SPDR S&P 500 Trust ETF (ticker symbol: SPY) for the same ten
folds listed in Table 3.1, which are used in the k-fold cross validation of Section 3.

Fold
Statistics

E [Rt (a (Xt))] std[Rt (a (Xt))] Profit (%)
Sharpe Maximum
Ratio Drawdown

2 -0.020 0.726 -25.155 -0.041 -0.516
3 -0.693 0.656 -82.766 -1.070 -0.833
4 -0.448 0.473 -58.787 -0.968 -0.706
5 -0.163 0.692 -40.503 -0.250 -0.614
6 -0.580 0.667 -74.397 -0.884 -0.839
7 -0.270 0.677 -48.582 -0.413 -0.665
8 -0.149 0.617 35.283 -0.259 -0.564
9 0.331 0.955 -15.597 0.336 -0.681

Table B.2: Metrics for ProShares VIX Short-Term Futures ETF (ticker symbol: VIXY) for
the same ten folds listed in Table 3.1, which are used in the k-fold cross validation of Section
3.

6The Yahoo Finance website: https://finance.yahoo.com/
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Fold
Statistics

E [Rt (a (Xt))] std[Rt (a (Xt))] Profit (%)
Sharpe Maximum
Ratio Drawdown

7 5.572 1.123 43.709 4.951 -0.306
8 -0.143 0.617 -34.642 0.247 -0.564
9 0.321 0.942 -15.396 0.330 -0.683

Table B.3: Metrics for iPath Series B S&P 500 VIX Short-Term Futures ETN (ticker symbol:
VXX) for the same ten folds listed in Table 3.1, which are used in the k-fold cross validation
of Section 3.

Fold
Statistics

E [Rt (a (Xt))] std[Rt (a (Xt))] Profit (%)
Sharpe Maximum
Ratio Drawdown

2 -0.092 0.370 -15.913 -0.276 -0.276
3 -0.528 0.301 -63.331 -1.783 -0.646
4 -0.287 0.230 -36.741 -1.286 -0.493
5 -0.051 0.349 -13.297 -0.175 -0.307
6 -0.228 0.302 -31.823 -0.789 -0.452
7 -0.258 0.275 -34.368 -0.973 -0.456
8 -0.041 0.267 -92.530 -0.190 0.244
9 0.791 0.511 77.000 1.526 -0.266

Table B.4: Metrics for ProShares VIX Mid-Term Futures ETF (ticker symbol: VIXM) for
the same ten folds listed in Table 3.1, which are used in the k-fold cross validation of Section
3.

Fold
Statistics

E [Rt (a (Xt))] std[Rt (a (Xt))] Profit (%)
Sharpe Maximum
Ratio Drawdown

7 1.562 0.553 24.962 2.805 -0.082
8 -0.080 0.250 -13.413 -0.360 -0.241
9 0.789 0.512 76.718 1.521 -0.263

Table B.5: Metrics for iPath Series B S&P 500 VIX Mid-Term Futures ETN (ticker symbol:
VXZ) for the same ten folds listed in Table 3.1, which are used in the k-fold cross validation
of Section 3.

Fold
Statistics

E [Rt (a (Xt))] std[Rt (a (Xt))] Profit (%)
Sharpe Maximum
Ratio Drawdown

8 -0.054 0.144 -2.340 0.444 -0.055
9 1.131 0.505 121.335 2.218 -0.295

Table B.6: Metrics for iPath S&P 500 Dynamic VIX ETN (ticker symbol: XVZ) for the
same ten folds listed in Table 3.1, which are used in the k-fold cross validation of Section 3.
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