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as they are the constituents of any manufacturing product. In particular, technologies with increasing demand
such as GPUs and photovoltaic panels are made of critical raw materials. To enhance the efficiency of material
management, in this paper we make three main contributions: first, we identify in the literature an emerging
computer-vision-enabled material monitoring technology which we call Material Measurement Unit (MMU);
second, we provide a survey of works relevant to the development of MMUs; third, we describe a material
stock monitoring sensor network deploying multiple MMUs.
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1 PROBLEM INTRODUCTION
Modern society provides high quality life standards in developed countries while seeking to improve
the conditions of developing areas [4]. At the same time, multiple and complex historical factors
have contributed to human population growth [11]. Spreading welfare at large scale relies on the
availability of rawmaterials needed to produce the goods and services supporting society (e.g. drugs,
wind turbines, books, the electrical energy consumed to show this document in electronic format)
[51]. The uncertainties about the long-term supply of critical raw materials have recently led to
the circular economy concept, which aims to create manufacturing systems with minimal mineral
extraction and minimal waste production [27]. To shift from linear to circular manufacturing,
real-time data on materials stocks and flows need to be measured as accurately as possible to
guide sustainable decisions [82, 83]. In particular, the goal of this paper is to devise a system for
generating data/measurements to answer two sustainability questions: “What is the amount of
a critical material currently accumulated in a region, e.g. a city or country? What types of raw
material are accumulated?”.
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Fig. 1. {Taken from [111]} Main difference between (a) hand-crafted feature methods and (b) representation
learning methods.

(1) we identify an emerging monitoring technology to measure material stocks;
(2) we provide a survey of work relevant to this development with an emphasis on its foundations;
(3) we provide a guide towards the design of a material monitoring sensor network.
The paper is organized as follows. Section 2 sets out the background; Section 3 defines thematerial

measurement system and its technological foundations; Section 4 covers system implementation
aspects. Finally, Section 5 provides some conclusions.

2 BACKGROUND: COMPUTER VISION
Computer vision is a research area concerned with making useful decisions about real physical
objects and scenes based on sensed images [98]. It is a subfield of artificial intelligence and consists
of designing a signal-to-symbol converter [79]: cameras provide signals (i.e. measurements) about
the physical world and the computer vision model converts them into symbolic representations,
e.g. the word/symbol “cat” if the image depicts a cat.

Research in computer vision spans more than forty years [106]. State-of-the-art techniques can
be divided into two broad categories: hand-designed feature methods (i.e. classic machine learning)
and representation learning methods (i.e. deep learning). For the foundations of the field, the reader
should refer to well-established books such as [106] for an updated and general treatment, [41] for
a focus on the first category of techniques and [46, 119] for a focus on the second category. This
section provides the general concepts of the two broad categories.

The main difference between classic hand-crafted feature methods and representation learning
methods is depicted in Fig. 1: the former requires an expert to design the algorithm/model capturing
the characteristic features of the image of interest, the latter instead assume that the computer learns
them during a training phase; as a consequence, the former requires expert domain knowledge
and less computing resources than the latter. Given that a deep learning of representations works
directly between the input images and the output symbols, the second category is also referred as
an end-to-end learning approach.
Hand-crafted feature methods. One of the simplest methods is based on bag-of-words (BoW)
[106], also called bag-of-features, which identifies a set of key words (i.e. features) for each image
analogously to text documents that are described by the word content. Then, a test image is assigned
to the class with the closest word/feature composition. One of the first BoW recognition systems
was proposed in [24] and it is shown in Fig. 2. As visible, the feature extraction step of Fig. 1 is
expanded there. The image patches are detected using Harris affine detectors [77], which in turn
are used to compute the scale invariant feature transform (SIFT) descriptors [71]. The histogram of
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Fig. 2. {Taken from [25]} Typical processing sequence in a bag-of-words vision system.

visual words is used as input vector to a machine learning classifier. Other types of detectors and
descriptors are compared in [120].

Bag-of-words models are the simplest because they do not consider the geometric relationships
between different parts and features [106]. While this makes them particularly efficient, higher
inference accuracy is provided by part-based models which focus on the geometric relationships
between the constituent parts of the object [38]. More details on part-based modeling can be found
in [39].
An approach even more accurate than part-based modeling takes into account the context in

which the object with its constituent parts occur [86]. Combinations of part-based and context
models in the same vision system have also been proposed [22, 104].
As visible in Fig. 2, the pipeline final block is the classifier. One of the simplest classification

algorithms is the 𝑘-nearest neighbors which consists of finding the 𝑘 training samples closest to
the new sample and evaluating its class knowing the class of the neighbors [106]. A library with
nearest neighbors algorithms for large training datasets is presented in [81].

The 𝑘-nearest neighbors is a non-parametric approach since it does not define a model of learned
parameters from the training set. A simple parametric classification algorithm is multiclass logistic
regression (despite the name, this method is not for regression), which learns a linear model and
applies the softmax function to the model output to give the probability of having the class𝐶𝑖 given
the input feature vector 𝒙 , i.e. 𝑝 (𝐶𝑖 |𝒙) [15].

In some cases there are multiple possible surfaces that correctly divide the training samples into
their classes. In these cases kernel support vector machines (SVMs) define the decision boundary as
the one that maximizes the distance between the training set classes [15]. A survey of kernel-based
methods for computer vision can be found in [63].
Another approach consists of using decision trees having a graph structure. The key idea of

this approach is to divide the complex classification task in simpler tests that are hierarchically
organized [106]. For example, assume we have an image of an outdoor garden, to classify it as
“outdoor garden” the problem can be split in two subsequent steps: the first answering “Is there the
sky at the top?” and, if true, the second answers “Is the bottom part green?” [23].
Representation learning methods. The most used computer vision methods belonging to this
second category are based on convolutional neural networks (CNNs) [66, 119]. It consists of a network
architecture designed to perform computations emulating multiple connected layers of neurons
in a fashion similar to the neural network of a human brain. Training a CNN-based computer
vision system requires four components: the training/test datasets, the network architecture, the
training algorithm and the cost function to be optimized by the training algorithm. Moreover, by
definition, a CNN has at least one neural layer that performs the convolution operation [46]. An
example of a CNN architecture is depicted in Fig. 3: training images are given as input and, once the
end-to-end learning is completed, the resulting model gives the conditional probabilities 𝑝 (𝐶𝑖 |𝒙),
where 𝐶𝑖 is the 𝑖-th class (e.g. car, bicycle) and 𝒙 is the input image. Therefore, the features are
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CAR
TRUCK

VAN

BICYCLE

Convolutional layers for feature learning Fully connected + softmax
for classification

Fig. 3. Example of the architecture of a simple convolutional neural network: from the input image the
features are learned with hierarchical levels of abstraction using multiple convolutional layers. Finally, the
softmax layer converts the features into classes.

embedded into the model parameters defined through the optimization of the multi-modal cost
function. A key reason that has made CNNs particularly successful for computer vision over other
neural network architectures is that it accepts a two-dimensional input and, through convolutions,
performs two-dimensional operations. Hence the pixels of the input image are processed preserving
their original relative position.

Different CNN architectures have been proposed over the years [121]. For example, in [45] firstly
several local regions of the input image are identified, secondly a large CNN learns the features
of each local region, finally it classifies the content of each region using a linear SVM per class.
Subsequently this CNN architecture has been sped-up in [44, 94].
The basic CNN can process images of arbitrary size with the output size of the convolutional

layers (also called feature maps) being influenced by the image input size. As a consequence, a
trained CNN may have the architecture suitable to process images of a fixed size (say 256 × 256),
but not be adaptable to process images of a different size (say 128 × 128). Therefore, [55] proposes
placing a layer after the last convolutional layer in order to make it possible for the network to
process different image sizes.

As discussed about Fig. 3, typically the output of the model is the marginal probability 𝑝 (𝐶𝑖 |𝒙).
The fully convolutional network in [70] gives instead such a probability pixel-to-pixel, i.e. the
output is a two-dimensional matrix giving the class of each pixel. Subsequently, the region-based
classification approach cited above (i.e. [45]) has been combined in [28] with a fully convolutional
network.

A more complete object classification system is proposed in [93], where for a given input image
depicting a scene, the model infers both the class of every detected object and a bounding block
around them to locate their spatial position. Specifically, the model divides the input image in a
grid and, stating the problem as a regression task, for each grid cell it predicts multiple bounding
boxes, the confidence for those boxes and the object class probabilities. The authors initially define
a smaller CNN network and then, once pre-trained, they convert the model to perform detection
adding four convolutional layers, two fully connected layers and increasing the input resolution of
the network from 224 × 224 to 448 × 448. Subsequently, this algorithm has been sped-up and made
more accurate in [69].

For a more comprehensive treatment of CNNs the reader should refer to [46, 119] for the basics,
[121] for a review of several variants and [110] for a brief review of the most popular deep learning
algorithms for computer vision (not just CNNs).
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Fig. 4. Overview of the MMU system and its purpose: an MMU receives images as input and seeks to
measure material stocks in a desired location. Multiple MMUs could be connected as a sensor network. The
corresponding sections of the survey are indicated along the left sidea.

aCircular economy image sourced from:
https://www.portoprotocol.com/circular-economy-as-a-way-of-increasing-efficiency-in-organizations/

3 COMPUTER-VISION-ENABLED MEASUREMENTS
3.1 Material Measurement Unit
The monitoring system is called a Material Measurement Unit (MMU) and is defined as follows.
Definition 1. An MMU is a complex sensor that, through a mathematical model, receives images of
objects as input (e.g. RGB images, X-ray images, depth images) and provides as output information
about the material composition of the object. The fundamental output measurements are (1) the class
of material and (2) the mass of material. Briefly, it is a converter from object images to material
measurements such as the class and the mass.
Figure 4 provides an overview of the MMU context and purpose: the input to the system are

“Images” as in the green rectangle at the bottom and they are collected or generated through the
“Sources” indicated with the orange arrows on the right side; the images are processed by the
MMU internal “Model” (i.e. the second green rectangle); the outputs of the model are “Material
measurements” having the “Types” specified by the orange arrows; the fourth green rectangle
mentions a “Sensor network”, which is realized if multiple MMUs are implemented on different
platforms and interconnected; the final “Purpose” of such a sensor network is monitoring the
material stocks and flows for a more sustainable natural resources management.

An MMU can be seen as made up of three components, each one dedicated to a specific task:

(1) Component 1 for material recognition
(2) Component 2 for object recognition
(3) Component 3 for volume estimation.
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Given that the density of a material is typically a known parameter [1], the volume estimation
of a product evaluated by Component 3 permits estimation of the mass through𝑚𝑎𝑠𝑠 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
× 𝑣𝑜𝑙𝑢𝑚𝑒 . When processing an object with hidden parts such as a mobile phone, Component 1
would recognize the plastic of the case and the glass of the screen, but not the internal electronics,
whereas Component 2 could recognize the specific model of a phone and read the corresponding
full list of materials from a database. If instead waste plastic packaging is being processed, the
complex shape of the damaged packaging makes Component 1 preferred to Component 2 because
it focuses on the texture of plastic ignoring the unpredictable shape of the damaged object.
The remaining subsections of this section are ordered considering the scale-up of the system:

Subsection 3.2 focuses on Component 1 covering works from the computer vision literature on
material recognition; Subsection 3.3 adds Components 2 and 3; finally Subsection 3.4 proposes a
distributed monitoring system exploiting multiple MMUs. Details on the topics covered by each
subsection are captured on the left side of Fig. 4.

3.2 Computer Vision Focusing on Materials or Waste
One of the three components of an MMU is the material recognizer, hence here we discuss previous
work on computer vision for material or waste recognition.

In [96] CNNs are trained to recognize the traits between materials using weakly-supervised
learning. Particularly relevant is the result that their system is able to segment the scene with
masks purely based on the material appearance, which is a local attribute, hence it does not rely
on the particular shape of the objects. As noted previously, this can be useful when it comes to
automatically sorting trash because products thrown away have a non-standard shape caused by
the damage they experience, e.g. an empty plastic bottle could be compressed to save space, a glass
bottle could be broken.

Hand-crafted-feature-based material recognition is proposed in [99], then both a generative and
a discriminative model are trained from the extracted features. Moreover, to prevent the overfitting
of the generative one, a greedy algorithm is designed to add one feature at a time as long as the
recognition rate increases. An authors’ conclusive suggestion is that the system accuracy could
benefit from including the modeling of non-local features, e.g. object shape, correlated with the
local surface appearances.
The authors of [112] focus on “waste in the wild” proposing a two-stage scene segmentation

to yield a binary waste detection system, i.e. whether there is waste in the scene or not. At the
first stage, the full scene is segmented; at the second stage, a zoom-in is performed around the
detected waste and the zoomed image is processed for a fine segmentation of the waste shape. The
two-stage approach shows an improvement when compared to single-stage segmentations using
the same neural models. For example, an MMU could use the accurate segmentation of the second
stage as input to a material recognition or volume estimation system to return the type of material
or estimate its mass. The authors of [112] emphasize that the task they have considered is binary,
i.e. waste or not waste, because of the leak of available images for several classes of waste type that
makes currently unfeasible training a segmentation system to recognize the waste type. A similar
problem was experienced in [10], where to address the issue a data augmentation through trash
simulation is proposed: given a set of images of objects taken from the trash, i.e. pieces of trash, a
new image is generated randomly combining the initial pieces of trash (say 2-6) as in Fig. 5, thus
simulating images taken from the trash rather than images of single pieces.

Orientation histograms such as scale-invariant feature transform (SIFT) [72] and histograms of
oriented gradients (HOG) [29] are the most commonly used low-level features for object recognition.
Exploiting a kernel view the authors of [19] generalize the definition of such low-level features
and give insights on how to define novel variants. Successively, these kernel descriptors have been
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Fig. 5. {Taken from [10]} A technique for data augmentation is to create a new image as a random combination
of the available images depicting single objects. When single waste items are combined, the resulting new
image simulates the trash. Therefore, this data augmentation technique could increase the accuracy of an
MMU in processing the trash.

used in [56] for both material recognition and object recognition to investigate whether these
two recognition tasks are related or not; in particular they found that using the outputs of an
object recognizer improves the material recognizer accuracy, whereas the object recognizer (which
focused mainly on the shape) does not help material recognition.
In [68] high-level material categories are learned based on low-level and mid-level features

specifically designed for material recognition. They introduce a set of mid-level features to capture
the shape, the reflectance, the micro-texture aspect and the color from the image. Using all these
features might cause overfitting of the training set and it is not known a-priori which features are
the most relevant for material recognition. Therefore, an augmented version of the latent Dirichlet
allocation algorithm [17] is developed by the authors to perform a greedy feature selection. Finally
the selected features are combined together to build a material recognition system.
In [109] material classification is performed comparing two modeling approaches: the Varma-

Zisserman’s classifier [68, 108], that uses a bank of filters to process the image patches, and the so
called “Joint” classifier, that directly uses the source image patches instead of the filter responses
generated by filtering them. The empirical comparison suggested that the “Joint” classifier is more
accurate. A comparison in terms of computational time/complexity is not considered in [109], but
in the context of MMUs it is an important performance metric as will be highlighted in Subsection
3.4 because small platforms such as phones or microcontrollers might impose computational limits.

3.3 Computer Vision Focusing on Food
Food computing is the research area seeking to make machines able to process food images and
extract information such as the type of food in the image, whether there is food or not in the
image, how much food is in the image, what is its recipe and how many calories does it contain
[78]. Such information helps the machine user (e.g. the user of a mobile phone) to monitor his/her
diet and modify the diet for the benefit of his/her health [78]. We observe that food is an object,
i.e. a manufactured product, made of organic materials, hence research questions and challenges
addressed in food computing are closely related to material computing. As we show in this section,
a reader can get useful insights from food computing for developing MMUs by simply looking at
food as an object, at the recipe as the object material composition, and at the food portion volume
estimation as the object component volume estimation.

J. ACM, Vol. 0, No. 0, Article 0. Publication date: 0000.
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From food to material recognition. For example, the food recognition approach in [114] uses
SIFT descriptors [72] to compute the most likely food types appearing in the frames of a video
recording a volunteer eating in a restaurant. Similarly, considering that unused or faulty objects
accumulated in private houses might be a valuable source of materials, an MMU could process a
video of these objects provided by the household to estimate the type and mass of each detected
material.
In [8] a SIFT-based bag-of-features model [85] followed by an SVM classifier is designed after

an extensive investigation considering a dataset of 5000 food images organized in 11 classes. The
final classification accuracy, of the order of 78%, could be similarly achieved optimizing the model
to process images taken from trash, which are complex to classify because the objects frequently
have a different shape once thrown away (e.g. a bottle deformed to save space, a package that has
been damaged to extract the content).

The authors of [117] use descriptors based on the relative geometric position of the ingredients
exploiting the fact that a type of food has ingredients arranged in predictable spatial configurations,
e.g. a sandwich has ingredients distributed vertically over multiple layers, a plate of salad has
ingredients distributed horizontally all over the plate. A similar modeling approach could effectively
exploit the predictable relative position of the components of a manufacturing product, e.g. an
electrical machine is composed of a rotor inside a stator, a phone is externally composed of a screen
on top of a case, books are multiple layers of sheets.
In [57] the focus was primarily on computationally simple detection models because it was

intended to be implemented on mobile phones for a real-time food recognition application. The
authors describe how the application works and its performance considering two implementations:
the first one uses a bag-of-features model with SURF features [13], the second uses a Fischer vector
model [88] with HOG [29]; both use the extracted image features as input for a linear SVM classifier.
Similarly, a mobile phone application for material measurement could be used to process images or
videos of unused and faulty products accumulated in the user’s house; then, for example, products
made of critical raw materials [2, 3, 48] could be collected in agreement with the householder for
their recycling/re-manufacturing.

Based on the observation that food items often have ingredients distributed in slices (i.e. layers),
the authors of [75] propose using “slice” convolutional kernels in a CNN [65] to improve the model
classification accuracy. The authors also point out that such an accurate model to date requires
memory and computational costs too high to be implemented on devices with limited resources
(e.g. on mobile phones as in [57]). The idea of adapting the neural layers to the type of target items
can be seen as a method to embed a-priori knowledge in the layers architecture; an alternative
approach could be adding a-priori knowledge through fine-grained classes able to catch minor
differences between target items (e.g. ravioli vs. dumplings, mobile phone of brand A vs. brand B)
by formulating a multi-task loss function as proposed in [113].
Transfer learning [87] has shown to improve the food classification accuracy of neural models

compared to models trained from scratch [105, 115]. Similarly, the features learned by a network
trained on datasets with images of different types of objects could be fine-tuned (either the whole
network or just part of it) on smaller datasets of images of products whose material is of particular
interest, e.g. critical raw materials [2, 3, 48]. To exploit transfer learning, over the years, large neural
models have been developed, trained on large datasets, made publicly available and ready to use
(see Section 4 for details).

Data augmentation [101] could be applied to increase the number of images available for training.
An example application for food recognition is proposed in [73], where new training images
are generated rotating, translating and rescaling the original ones. Similarly, as in [123], data
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OBJECT/BRAND 
DETECTOR

DATABASE
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VOLUME 
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materials
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GPS

Fig. 6. An example of the system proposed in [76] adapted to measuring material compositions instead of
food calories.

augmentation could be used with images of trash pieces to accurately classify their material
composition (e.g. paper, plastic).
From food portion to material volume estimation. Given the similarity between processing
food and non-food items, below we discuss relevant papers on food calories or food volume
estimation.

In [76] the food volume is estimated requiring a single RGB image using the CNN architecture of
[35] to work as a virtual depth camera; then, the depth map is converted into a voxel representation;
semantic segmentation [118] is performed to identify the pixels corresponding to food and finally,
in combination with the voxel representation, the volume of food is estimated. This approach, as
pointed out by the developers, simply requires a single image collected “from the wild”, hence it
is particularly flexible; however, the whole system is quite complex as it combines multiple tasks,
each one with its own complexity and with the accuracy/robustness of the whole system depending
on the accuracy/robustness of all its components: open-world recognition (i.e. detecting food items
from a generic scene), depth measurements from a single RGB image, 3d voxel representation from
a 2d image, and scene segmentation. As pointed out by the authors, their system requires further
development. Our interest in their system is its application to measure materials. An example of
how the system could be adapted to our case is illustrated in Fig. 6.
In [36] a generative adversarial network [47] is used to map the input image depicting a food

scene into the corresponding, pixel-by-pixel, energy content. The result is that their model reads
the RGB food image and returns as output the energy (i.e. calories) at each pixel, e.g. a pixel without
food has zero calories, a pixel belonging to broccoli corresponds to an energy weight lower than
a pixel belonging to meat; hence, the energy weight can be seen as an energy density in 𝐽/𝑚3.
In common with [76], this approach requires a single input image; a difference is in the fact that
here the real size of the food is reconstructed using a marker of known size included in the food
image rather than using a neural model as a virtual depth camera. Inspired by this work, an MMU
could be implemented training a generative model to map the input RGB image of an object to
the corresponding pixel-by-pixel density of material in 𝐾𝑔/𝑚3; then, the summation of all the
weight-densities overlapping each mask of the semantically segmented image gives an estimate of
the mass of each labeled material.
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Table 1. Examples of books about the raw material composition of complex materials or products.

Material or product Reference
carbon and graphite materials [42]

rubber [34]
nonwoven fabrics [5]
energy systems [18]

electrical and electronic materials [50]
printed electronics [26]

paper [12]
plastic [21]

automobile bodies [31]
miscellaneous [6, 7]

An approach based on stereo vision is proposed in [32], hence it requires two images of the food
item taken from two different views; after a test on the best compromise between accuracy and
efficiency, SURF is chosen for feature extraction; the system requires a reference object placed next
to the food to reconstruct the real sizes, and the food should be placed inside an elliptical, flat plate,
i.e. bowls are not permitted. Compared to [76], this work has the advantage to be implementable
on a computer with limited performance (e.g. a mobile phone). The simplest version implemented
in [76] requires the user to select the best labels and exploits the knowledge of the menu of the
restaurant the dish belongs to, whereas their flexible and highly automated more complex version
is, according to the authors, at a preliminary stage. Note that [32] focuses on food portion volume
estimation without evaluating the calories/energy content. Its application could be adapted to
estimate the volume of the components of a manufacturing product and then, knowing the density
of detected materials, converted into masses. Such an MMU could run in a mobile phone.
From food recipes tomaterial composition of products.An output that MMUs should provide
is the list of materials making a target product. In general, we see two approaches to making the
system capable of providing such information: (1) embedding it inside the mathematical model
during the supervised training phase so that the model learns it (e.g. segmenting the scene labeling
the materials as in [14]); (2) providing the MMUwith access to a list of materials stored in a database
(e.g. as in [76], where the recipe of a detected food item is retrieved from the restaurant menu).

Considering that the recipe of a food item is a list reporting the types and masses of materi-
als/ingredients that compose the desired food type, the methods used in food computing to collect
recipes can give insights on how to collect information about the material composition of other
manufacturing products. Specifically, we list five methods:

• cookbook-like, i.e. looking at books describing the manufacturing process of the target
product such as the ones in Table 1;

• websites, e.g. the manufacturer website providing the technical specifications of its products,
websites collecting material compositions similarly to the ones created for recipes (e.g.
Allrecipes, RecipeSource);

• research papers reporting the material composition of specific products such as the ones in
Table 2;

• documentaries such as “How It’s Made”1;
• performing a chemical composition analysis of the product of interest.

1https://en.wikipedia.org/wiki/How_It%27s_Made
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Table 2. Examples of published research articles reporting the results from an analysis of the material
composition of manufacturing products.

Reference Analyzed products
[62] LCD screens
[92] fluorescent lamps
[95] computer monitors
[58] mobile phones
[107] headset, HDD, SSD
[40] vehicle batteries

Table 3. Analogy between water and manufacturing networks; the SI units are between squared brackets.

Displacement Flow variable Effort variable
Water
network

water
mass [𝐾𝑔]

mass flow
rate [𝐾𝑔/𝑠] pressure [𝑁 /𝑚2]

Manufacturing
network

material
mass [𝐾𝑔]

mass flow
rate [𝐾𝑔/𝑠] force [𝑁 ]

3.4 Towards a Sensor Network for Material Stock Monitoring
Definition 2. A manufacturing network is a set of locations/buildings connected by the exchange of
material, e.g. raw material reservoirs, manufacturers, shops, houses, waste sorting centers, recycling
centers, landfills.

An analogy between water networks and manufacturing networks can be seen considering both
an intuitive and a physical explanation. The intuitive explanation is that both networks are made
of nodes (i.e. compartments) that exchange materials (e.g. water, aluminum, plastic) over time
and space; the physical explanation is based on the force-voltage physical analogy, also known as
Maxwell’s analogy [20], as detailed in Table 3. Note that the two networks have a different effort
variable because within a water network flows a fluid, whereas within a manufacturing network
typically flow solid products. Another difference is that a hydraulic network confines the fluid in
pipes, whereas a manufacturing network moves the solid materials using transport systems (e.g.
trucks, airplanes, ships).
The physical analogy between water and manufacturing networks suggests that MMUs could

be used as a sensor network to monitor the flow of materials as the system proposed in [103] for
water networks. Multiple platforms equipped with MMUs could be a sensor network for material
stock monitoring. An example of the system is shown in Fig. 7 considering the design of an MMU
sensor network for a city using Belfast as an example. Below we list three types of platform upon
which an MMU could be implemented to realize an MMU sensor network.
MMU in bins. The use of multiple sensors in “smart bins” for tasks such as detecting the waste
level or reporting their geographical position have been considered over the years [52, 102]. In
[9, 53, 54] a computer vision system is investigated to process internal images of bins; in particular,
in these works: (1) the camera is installed on the truck (i.e. a smart truck) and used by a worker
when the truck approaches the bin; (2) the image processing returns information only about the
waste level. What if the camera is installed directly on each bin? What if we integrate the variables
currently monitored in bins [102] with the knowledge of the class and mass of material recognized
by an MMU?
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MMU data 
collector

airport

port

recycling/sorting center

retailer

manufacturer

houses

Fig. 7. Example of an MMU sensor network that could be implemented in Belfast.

Fig. 8. {Taken from [80]} Computational time required by the different components of a large neural model
to be simplified and implemented on a smartphone.

MMU in autonomous sorting systems. Previous works integrating computer vision in au-
tonomous sorting systems have been proposed in [74] for demolition waste, in [64] for electronic
waste, in [16] for pomegranate arils, in [89] for plastic granulate, in [97] for municipal solid waste
and in [61] in a patent application.
MMU inmobile phones. As far as we know, the only work proposing a mobile phone application
for waste detection is [80]: the pre-trained model AlexNet [60] is fine-tuned on a garbage-focused
dataset using a GPU and then simplified to be implemented in smartphones; after an analysis of
the image processing time required by the different components of the system as shown in Fig. 8,
the model with the best compromise between classification accuracy, image processing time and
memory size is chosen.
As discussed in Subsection 3.3, computer vision systems proposed for food classification and

calories estimation are related to material classification and mass estimation, respectively. In [76]
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the system prototype runs on mobile phones and requiring the user to provide a single image,
whereas [32, 43] need two images. An interactive application is proposed in [57], whereas the
authors of [90] delegate the most complex tasks such as food recognition to a cloud server instead
of to the phone CPU.
Implementing MMUs on mobile phones is particularly challenging because the computational

expensive task of estimating the mass from images is necessary, whereas it might be avoided in
automated sorting facilities or bins through the use of weight scales; moreover, mobile phones have
limited computing performance compared to the hardware that can be used in sorting facilities,
e.g. GPUs. On the other hand, a mobile phone has the advantage of being portable and cheap.
Potentially any owner of a mobile phone could collect material measurements through an MMU
mobile application or send images/videos to a central server running an MMU.

4 HANDS-ON DEEP LEARNING
In general, the model of an MMU can be defined in two ways: using a pre-trained model or training a
model from scratch. Usually the model reaches a good accuracy if it is at least fine-tuned with images
depicting the domain of application. Hence, in Table 4 we list the source paper and the download
website of several publicly available datasets containing images of manufacturing products or
waste items that might be useful to train/fine-tune MMU models. If the choice is to use pre-trained
models rather than training from scratch, the links to pre-trained models available in some machine
learning libraries are: MATLAB2, PyTorch3, Keras4 and Caffe5.

5 DISCUSSIONS AND CONCLUSIONS
Motivated by the increasing concern for long-term materials supply both at local and global scale,
we identified in the literature an emerging computer-vision material monitoring technology that we
referred to as Material Measurement Unit and we reviewed works relevant to its development. Five
main future research paths are summarized below: the first path essentially consists of implementing
the most advanced recognition systems on platforms such as bins, mobile phones or sorting centers;
the second, third and fourth path are concerned with improving three recognition systems already
implemented on specific platforms; the last path consists of adapting systems from one platform to
another (e.g. from mobile phones to smart bins).
(1) The systems developed in [96] and [99] for material recognition are based on CNN and

hand-crafted features, respectively, and are not implemented on specific platforms. Therefore,
their implementation on mobile phones, smart bins and sorting centers could be investigated.
Successively, the material recognizer could be combined with an object classifier to improve
the system accuracy as done in [56]. Two preliminary questions arise with respect to the
CNN-based approach: “Do I train the network from scratch?” and “Are the publicly available
datasets sufficiently rich for the target application?”. If the answer to the second question is
negative, a valuable contribution to the field would be the development and publication of a
new dataset for this purpose.

(2) The mobile phone application of [76] for food calories estimation is, according to the authors,
at a preliminary stage. Their system is highly automated, but complex as it involves RGB
map estimation, 3d voxel representation, open-world recognition and scene segmentation.
Transferring the target application from food calories to material stock monitoring will result
in a promising MMU.

2https://uk.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
3https://pytorch.org/docs/stable/torchvision/models.html
4https://keras.io/api/applications/
5https://caffe.berkeleyvision.org/model_zoo.html
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Table 4. Publicly available datasets with images of materials and manufacturing products in use or as waste.

Dataset name Reference Original task Waste focused?
Caltech 1011 [37] Object recognition No
Caltech 2562 [49] Object recognition No
COIL1003 [84] Object recognition No
COCO4 [67] Object recognition No
MINC5 [14] Material recognition No

ADE20K6 [122] Object recognition No
Open Images7 [59] Object recognition No
trashnet8 [116] Material recognition Yes
TACO9 [91] Material/object recognition Yes

MJU-Waste10 [112] Object recognition Yes
Flickr Material Database11 [100] Material recognition N/A

GINI12 [80] Object recognition Yes
CUReT13 [30] Material recognition N/A

ImageNet14 [33] Material/object recognition N/A
1 http://www.vision.caltech.edu/Image_Datasets/Caltech101/#Description
2 http://www.vision.caltech.edu/Image_Datasets/Caltech256/
3 https://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
4 https://cocodataset.org/#home
5 http://opensurfaces.cs.cornell.edu/publications/minc/
6 https://groups.csail.mit.edu/vision/datasets/ADE20K/
7 https://storage.googleapis.com/openimages/web/index.html
8 https://github.com/garythung/trashnet
9 http://tacodataset.org/
10 https://github.com/realwecan/mju-waste
11 http://people.csail.mit.edu/celiu/CVPR2010/FMD/index.html
12 https://github.com/spotgarbage/spotgarbage-GINI/blob/master/README.md
13 https://www1.cs.columbia.edu/CAVE/software/curet/index.php
14 http://www.image-net.org/

(3) While the system mentioned in the previous point is based on CNNs, the approach in [32] is
based on hand-crafted features, therefore less computationally demanding. In general, [76]
could be seen as a more challenging research path to be ready for deployment later than the
approach of [32]; however, the latter appears less promising in terms of both accuracy and
flexibility.

(4) The mobile phone application of [80] could be improved, for example, using a more advanced
neural architecture with a similar computational complexity. Moreover, a high performance
central server could communicate with the phone performing the most demanding tasks, i.e.
exploiting cloud computing instead of edge computing.

(5) The systems mentioned in the previous three points consider mobile phones. Their imple-
mentation for smart bins (i.e. on microcontrollers) could be investigated.

The design of a sensor network will follow when single MMUs are accurate and reliable.

Importance of Benchmarking. Regardless of the preferred research direction, benchmarking
the resulting models in a standardized way permits their performance to be effectively assessed;
benchmarking is a standard practice among developers of classification systems, which makes it
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possible to rank models based on chosen metrics6,7. To advance the development of MMUs, the
important benchmarking metrics are: (1) the model accuracy in waste item classification; (2) the
model accuracy in material classification; (3) the model accuracy in mass estimation; (4) the model
computational complexity (e.g. seconds needed to process an image); (5) the model memory storage
requirements (e.g. its size in MB).
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