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Abstract

An efficient compression technique based on hierarchical tensors for
popular option pricing methods is presented. It is shown that the “curse
of dimensionality” can be alleviated for the computation of Bermudan
option prices with the Monte Carlo least-squares approach as well as the
dual martingale method, both using high-dimensional tensorized polyno-
mial expansions. This discretization allows for a simple and computation-
ally cheap evaluation of conditional expectations. Complexity estimates
are provided as well as a description of the optimization procedures in
the tensor train format. Numerical experiments illustrate the favourable
accuracy of the proposed methods. The dynamical programming method
yields results comparable to recent Neural Network based methods.

1 Introduction

Pricing of American or Bermudan type options, i.e., options with an early ex-
ercise feature, is one of the most classical, but also most difficult problems of
computational finance, producing a vast amount of literature. Some examples
of popular classes of methods include PDE methods (see, for instance, [AP05]),
tree and stochastic mesh methods (see, for instance, [Glal3]), and policy it-
eration (see, e.g., [BS18]). In this paper we consider two other very popular
methodologies, namely least squares Monte Carlo methods based on the dy-
namic programming principles pioneered by [LS01] and dual martingale meth-
ods introduced by [Rog02], both of which were, of course, widely adapted and
considerably improved since then. We refer to [Lud20] for a recent overview
together with an open-source implementation.

Both least squares Monte Carlo methods and duality methods require ef-
ficient and accurate approximation of functions from a potentially large class.
Indeed, the key step of the least squares Monte Carlo method involves the com-
putation of a continuation value, i.e., of the conditional expectation E.Jv(t +
At, X¢1a¢)] of a future value function at time t.! (For sake of presentation, let

L Actual algorithms may rather involve actual future payoffs such as in [L.S01]. Note that
we ignore discounting at this time.



us assume that we are using an asset price model based on a Markov process
X, which contains the asset prices S, but possibly also further components,
such as stochastic volatilities or interest rates.) This conditional expectation is
then approximated within a finite dimensional space spanned by basis functions
— often chosen to be polynomials. When the dimension d of the underlying
process X is high, we encounter a curse of dimensionality, i.e., we expect that
the number of basis functions needed to achieve a certain accuracy increases
exponentially in the dimension d. This is especially true when the basis func-
tions are chosen by “tensorization” of one-dimensional basis functions. E.g., the
dimension of the space of polynomials of (total) degree p in d variables is (d’gp )
Such a polynomial basis become inefficient when d » 1, a realistic scenario for
options on baskets or indices. For instance, options on SPY (with 100 assets)
are American, implying that d > 100, depending on the choice of the model — in
the sense that continuation values also depend on volatilities not just the asset
prices in stochastic volatility models, for example. Hence, other classes of basis
functions are needed.

Duality methods are typically based on parameterizations of families of can-
didate martingales. In the Markovian case, we may restrict ourselves to mar-
tingales representable as stochastic integrals of functions ¢(t, X;) against the
driving Brownian motion, and we again see a potential curse of dimensionality
in terms of the dimension of X.

When the underlying model is not Markovian — as, e.g., common for rough
volatility models, see, e.g., [BFG16] — the involved dimensions can increase dras-
tically, as then both continuation values and candidate martingales theoretically
depend on the entire trajectory of the process X until time ¢. There are only
very few rigorously analyzed methods for such non-Markovian problems. We
specifically refer to [Lell8; Lell9], both of which are based on Wiener chaos
expansions of the value process and the candidate martingale, respectively. In
this framework, conditional expectations can be computed explicitly, but the
curse of dimension enters via the chaos decomposition itself, see Section 2.2 for
details.

In either case, we are faced with “natural” d-dimensional bases which quickly
increase in size as d increases. While the curse of dimension is often a real, in-
escapable fact of complexity theory (in the sense of a worst case dependence
over sufficiently general classes of approximation problems), real life problems
often exhibit structural properties which lead to a notion of “effective dimen-
sion” of a problem which may increase much slower than the actual dimension
d — see, for instance, [WS05] for a similar phenomenon in finance. This insight
has lead to efficient approximation strategies for high-dimensional functions of
low effective dimension of some sort in numerical analysis. In this paper, we
propose to use hierarchical tensor formats, more precisely tensor trains, to pro-
vide efficient approximations of nominally high-dimensional functions, provided
that they allow for accurate low-rank approzimations.

Hierarchical tensors (HT) [BSU16; HS14] rely on the classical concept of sep-
aration of variables by means of a generalization of the singular value decompo-
sition (SVD) to higher-order tensors, preserving many of its well-known prop-



erties. The hierarchical SVD (HSVD) yields a notion of multilinear rank and
provides an approach to obtain a quasi-optimal low-rank approximation by rank
truncation. For fixed multilinear ranks, the representation and operation com-
plexities of these formats scale only linearly in the order of the tensor. Central
to the HSVD is a tree-based representation of a recursive decomposition of the
tensor space into nested subspaces. For the described algorithms, we use the
common tensor train (TT) format [OT09; Osell; Osel3], which is a “lineariza-
tion” of the HT representation with general binary trees. Similar to matrices,
the set of hierarchical tensors of fixed multilinear rank is not convex but forms
a smooth manifold. Hence, appropriate optimization techniques such as alter-
nating and Riemannian schemes are available.

Tensor trains are a new technique in computational finance. In fact, we are
only aware of one other paper in the field using these tensor representations,
namely [GKS20]. In that paper, the authors consider parametric option pricing
problems. That is, they are given a model with parameters ( and options
with parameters 7. The price of these options in the model is then a function
P(8), 6 := (¢,n), of the model and option parameters, and we can expect P
to be regular. Some tasks in financial engineering require rapid option pricing,
e.g., for calibrating model parameters to market prices. Following [Gal+18],
[GKS20] propose to approximate § — P(#) by Chebyshev interpolation. If
0 is high-dimensional, such a interpolation may already involve a very large
number of Chebyshev polynomials, and they then proceed to “compress” the
representation using tensor trains.

No discussion of computational methods for high-dimensional problems can
today ignore the trend of using machine learning techniques, in particular deep
neural networks, to often great success. In the context of American or Bermudan
options, we mention the recent paper by [BCJ19], who are able to accurately
price high-dimensional Bermudan options in dimensions up to 500 using deep
learning techniques based on parameterization of randomized stopping times,
see also [BTW20]. A natural question then is if the successes of deep learning
for solving high dimensional problems ( “overcoming” the curse of dimension)
can also be achieved by other, more traditional methods of numerical analysis.

Main contributions

Our intention is to advocate the use of hierarchical tensor formats for high-
dimensional problems in computational finance. For this, we provide an overview
of the main ideas of these formats and illustrate the application of tensor
trains with two popular methods using tensorized polynomial spaces for the
discretization. The considered problem sizes would be infeasible without some
efficient model order reduction technique. We demonstrate in particular that
the achieved accuracy is comparable to recent Neural Network approaches.
Tensor networks have already been used to alleviate the curse of dimension-
ality in physics [Vid03], parametric PDEs [BSU16; EPS17; Eig+19; Eig+20] as
well as other control problems [DKK19; OSS19; Fac+20]. They may signifi-
cantly reduce the computational complexity [Hac12] and are able to represent



sparse functions with a constant overhead [BCD17]. In this paper we demon-
strate the usefulness of tensor networks in computational finance on two exam-
ples with discretizations in polynomial tensor product spaces in d dimensions
with degree p of the form

X= ) XuP, (1)

ae[p]d

with coefficient tensor X € RP". The first example showcases the application
of the alternating least squares algorithm [HRS12c] for the best approxima-
tion problem in the primal method of Longstaff and Schwartz [LS01] where the
discounted value is given by

v
v(@) = > Va | | Baw (@) (2)

a€el k=1

In the second example we present the application of a Riemannian opti-
mization algorithm [KSV14] to solve the convex minimization problem in the
dual method of Lelong [Lell8]. For both examples we examine the reduction
of the space and time complexity. In the numerical experiments we compare
the originally published and the new methods on standard problems. The re-
duced complexity allows to apply the Longstaff-Schwartz algorithm to problems
with up to 1000 assets. Problems of this size have only been reported recently
with state-of-the-art machine learning methods [BCJ19]. Moreover, in compar-
ison to the Neural Network approach, our method requires significantly fewer
samples. Even though the application of the tensor compression to the dual
method turned out to be quite involved (in terms of the tensor optimization),
the resulting algorithm produces comparable or better results while consider-
ably reducing the dimensionality of the underlying equation. This renders this
approach tractable for more assets and higher accuracy computations.

We conclude that tensor networks can be very beneficial technique for high-
dimensional problems in financial mathematics. They rival the performance of
Neural Networks, show similar approximation and complexity properties, and
exhibit richer mathematical structures that can be exploited (such as in the
Riemannian optimization described in Section 3.3).

2 Bermudan option pricing

In what follows we introduce our frameworks and notations for the Bermu-
dan option pricing problem. Furthermore, we recall the celebrated Longstaff-
Schwartz algorithm as well as Lelong’s version of Rogers’ duality approach based
on a Wiener chaos expansion.

We fix some finite time horizon 7" > 0 and a filtered probability space
(Q, F, (Ft)o<t<T, P), where (F;)o<t<T is supposed to be the natural augmented
filtration of a d-dimensional Brownian motion B — the natural setting for the
Wiener chaos expansion lying at the core of our duality algorithm. On this



space, we consider an adapted Markov process (Si)oct<r With values in RY
modeling a d’-dimensional underlying asset. The number of assets d’ can be
smaller than the dimension d of the Brownian motion to encompass the case of
stochastic volatility models or stochastic interest rate. To simplify notation, we
consider the case that S generates the filtration and d’ = d.

We assume that P is an associated risk neutral measure. We consider an
adapted payoff process Z and introduce its discounted value process

(= ewt- | r(s) 197

0 o<t<T

We assume that the paths of Z are right continuous and that supejo, 72| €

L2(, Fr,P). The process Z can obviously take the simple form (o(S;))i<r for
some function ¢, but it can also depend on the whole path of the underlying
asset S up to the current time. We consider the Bermudan option paying Z;,
to its holder if exercised at time 0 = t; < --- < ty = T. Standard arbitrage
pricing theory defines the discounted time-t value of the Bermudan option to be

U, = esssup E[Z,|F;] (3)

TG'Tf,n

where T; denotes the discrete set of F-stopping times with values in [¢,T].

We now recall two of the many algorithms for pricing Bermudan options
available in the literature, beginning with the classical Longstaff-Schwartz algo-
rithm. These algorithms will be used to test the efficiency gains achievable by
hierarchical tensor formats in the context of option pricing.

2.1 Primal (Longstaff-Schwartz)

In the Longstaff-Schwartz algorithm [L.S01], the dynamic programming principle
corresponding to the discounted time-t value of the Bermudan option (3), is
used. It reads

Utn = maX{Ztn,E[UtHthn]} (4)

with final condition Uy, = Z;,. If E[Uy, +1|F:, ] is known, an optimal stopping-
time policy can be synthesized explicitly by stopping if and only if Z, >
E[U, ., |Ft,]- Thus, the problem of finding the optimal stopping time and also
the valuation of the option can be reduced to finding E[U,,, ,|F:, ], which is ex-
actly what the Longstaff-Schwartz algorithm approximates. As this algorithm
is pretty standard, we do not give a detailed explanation and instead simply
state the algorithm. Note that we abbreviate the notation by dropping the ¢ in
the discretization, i.e. Sy, = S,. We define the ITM (“in the money”) operator
which is mapping a set of assets to the subset where the current payoff is positive.



Algorithm 1: Longstaff-Schwartz

input : Number of samples M, exercise dates 0 =t <--- <ty =T,
initial value sq.

output: Conditional expectations v, (x) = E[U,11|Sn, = 2], n < N.
Set S§* = sp and compute trajectories: S)* for m =1,... M,
n=1,...N.
Set
ym -z (5)

fork=n—1+t%t01do
Find ITM paths Sz for m e ITM < {1,..., M}. Set

IRGCOE i (6)

melTM

vp () &~ argmin

1
vem | ITM]

for m=1 to M do
if m e ITM and ZI™ > vi(S) then
| Y™ =27
end

end
Set vo(s0) = XM ym™.

m=1

Note that in this formulation of the algorithm, the set M in (6) is tradi-
tionally a linear space of polynomials. Adding the payoff function to the ansatz
space is a common trick to improve the result, see e.g. [Glal3]. In this work we
use the set of tensor trains, which we explain in Section 5.

The key computational challenge is the approximation of the conditional
expectation

v(Sn) = E[Un41|Sn] = Z VaBa(Sn) (7)

aeNd’

for some L2(RY, B(R?), S P)-orthogonal basis {By}ren, where we tacitly as-
sume the payoff having finite second moments. Since this is an L?-orthogonal
projection we can choose a finite set of multi-indices A < N¢' and approximate
E[Y|S,] by minimizing

2

Y — > vaBa(Sh)

aeA

~ %Z (ym = vaBa(s;y)> . (8)
=1

We use the index set A = [p]d/ and mitigate the “curse of dimensionality” by
representing v in the tensor train format as defined in Section 3.



2.2 Chaos-martingale minimization

Rogers [Rog02] reformulates the problem of computing Uy as the following dual
optimization problem

Uo = Aj?]f:[gE[nHll,aX,N(Zt" B Mt"):l

where HZ denotes the set of square integrable martingales vanishing at zero.
This approach requires us to optimize over the space of all (square integrable)
martingales. As any martingale M can be expressed as conditional expectations
t — E[X|F;] for some square integrable random variable X, we may equivalently
solve

Up= _ mf B %, —B[X|F 9
0 XeLgl(?l,]-‘Tgp) [n_nllaXN( tn [ | tn])]v ()

[RRRE}

where L3(§), Fr,P) is the set of square integrable Fr-random variables with zero
mean. This allows us to minimize over a (seemingly) simpler space — namely the
space of square integrable random variables rather than the space of martingales
— at the cost of expensive calculations of conditional expectations.

The ingenious idea of Lelong [Lel18] was to use a specific parameterization
of the space of square integrable random variables in which conditional expec-
tations w.r.t. the filtration (F;) can be computed explicitly at virtually no cost.
Indeed, a finite-dimensional approximation of X € L3(Q, Fr,P) with the above
property is given by the truncated Wiener chaos expansion

X =) XoHo(G1,...,Gy), (10)

a€el

where A € NVx?' ig 5 predefined set of multi-indices, H,, is the tensorized Her-
mite polynomial with multi-index a and G1,...,Gy are d’-dimensional Gaus-
sian increments. The tensorized Hermite polynomials are defined by

N d

Hoz(Gh“‘?GN) = 1_[ Hhoénk(Gn,k) (11)

n=1k=1

where h,,, are the univariate Hermite polynomials with index ay,. Defining
the subset A := {a € A : Vk > n,ap = 0} it is easy to see that

E[X|F,]= ) XoHa(G1,...,Gy). (12)

aeA™

This means that the linear expectation operator E[ e |F;, | can be represented
with the coefficient tensor simply by dropping trailing terms of the chaos ex-
pansion. The expectation in (9) can thus be estimated by the sample average

f LN () ¥ (i) (@)

Up = inf — max | £, — X Hy(GY ..., G

’ )Zo—omi;lml,...,zv( b ag‘n oHa(Gh ~)
Xq€ER

;o (13)




where (Z), G")1<i<p are ii.d. samples from the distribution of (Z,G). Tt is
shown in [Lell8] that this is an infimum of a convex, continuous and piece-wise
linear cost function over a convex domain and can be calculated easily by a
gradient descent descent method with an Armijo line search.

The choice of the multi-index set A plays an important role in the prefor-
mance and applicability of this algorithm. In [Lell8] A is chosen such that the

polynomial degree 227:1 ZZ/:I Qi is bounded by p. This bounds the number of

entries of X that have to be stored by (N]‘\i,/;,’p) eO ((Nd;)%)p). For fixed p this

can scale unfavourably when the number of exercise dates N or the dimension
of the Brownian motion (i.e. the number of assets) d’ increases. We propose to
choose A = Aév such that Zi:l ok < p for oy, € Ap. and to use the tensor
train format to alleviate the ensuing “curse of dimensionality”. We introduce
the relevant notions and central concepts in the following section.

3 Low-rank tensor representations

We are concerned with an efficient representation of expansions of the form
D> aen Ua H?=1 P, in tensorized polynomials P, determined by some finite set
Ac F:={aeRY : |suppal < oo} of finitely supported multi-indices.
This representation is used for the considered algorithms with tensorized ex-
pansions given by (10) and (33). The set A typically is given as a tensor set
A= X?Zl T, := [n]? or as anisotropical set A = Xj;l T,,, where in our setting
p; denotes the maximal polynomial degree in dimension j = 1,...,d. Appar-
ently, #A is in O(p?) with p := max{p; : j = 1,...,d}. To cope with this
exponential complexity, a potentially very efficient approach is the use of low-
rank tensor representations as e.g. presented in [HS14; Noul7]. Since these
modern model reduction techniques are not widely known in the finance com-
munity yet, we provide a brief review in order to elucidates some of the central
principles. In the presentation, we follow [RSS17; BSU16].

3.1 Tensor product spaces and subspace approximation

We consider finite dimensional linear spaces U; = RPi and define the tensor
product space

d
Hd = ®U] (14)
j=1

Fixing the canonical basis for all U;, any tensor u € ‘H,, can be represented by

D1 Pn
u= > - > U,...,vel, ® e, UcR"®---@R". (15)

vo=1 v, =0

Hence, given this basis, any multi-index v € F can be identified with a compo-
nent in the (coefficient) tensor U, i.e.

v=(v1,...,Vn) — U(,...,vp) eR (16)



The goal is to obtain a compressed representation of (15) in an analytically
and numerically more favourable format by exploiting an assumed low-rank
structure. Hierarchical representations have appealing properties making them
attractive for the treatment of the problems at hand. For example, they contain
sparse polynomials, but are much more flexible at a price of a slightly larger
overhead, see e.g. [BCD18; BD16] for a comparison concerning parametric
PDEs.

To introduce the concept of subspace approrimations, which is central to
the complexity properties of tensor formats, we start with the classical Tucker
format. Given a tensor U and a rank tuple r := (Tj)?=1, the approximation
problem reads: find optimal subspaces V; < U; such that

d
in |[U-V ith = V; 17
gRIU-VI itk V= @, (7)
is minimized over Vi,...,Vq, with dimV; = r;. An equivalent problem is to

find the corresponding basis vectors {bij } ki=1,...r of V; which can be written in
the form

Pj
bij = Z bJ(Vj,ij)eg,j, k‘j = 1,...,Tj < Dpj- (18)
=1

Note that this can be understood as the construction of a reduced basis. The
optimal tensor V can thus be represented by

T1 Td
V=>" > k... ka)bh, ® - @bf, € Va. (19)
k‘l kd:1

j d .
In case of orthonormal bases {b] }x,—1,...r,, the core tensor c € ®j_1 RPi is
. . . . J ’ -
given entry-wise by projection,

c(ki,...,ka) = (v,b, @ @b ). (20)

With a complexity of O(p;r;) for each basis {bij}kal,mm and a complexity of

J
O(r?) for the core tensor c, the complexity of the Tucker representation (19) is
O(pdr + r?) with r := max{r; : j=1,...,d} and p:=max{p; : j=1,...,d}.
As such, the Tucker representation is not sufficient to cope with exponential
representation complexity and the format exhibits other problems such as non-
closedness. Nevertheless, the ideas described above eventually lead to a very

efficient format by hierarchization of the bases as described in what follows.

3.2 Hierarchical tensor representations

The hierarchical Tucker (HT) format introduced in [HK09] is an extension of
the notion of subspace approximation to a hierarchical setting determined by a
dimension tree as shown in Figure 3.2 where the indices j = 1, ..., d correspond
to the spaces U; of the tensor space Hq. Note that by cutting any edge in



the tree, two subtrees are generated. Collecting the indices for each subtree,
a tensor of order two (a matrix) arises. By this, fundamental principles from
matrix analysis, in particular the singular value decomposition (SVD), can be
transferred to the higher-order tensor setting.

To illustrate the central idea, consider the optimal Tucker-subspaces V3 ®
Vo € Uy ® Uy = RPr @ RP2. For the approximation of u € Hg, often only
a subspace Vi1 0y < Vi ® Vo with dimension dim(Vi;0y) = ry10) < 7172 =
dim(V; ® V2) is required. In fact, Vi oy is defined by a basis

‘/{172} = Span {bl{if}} . k{172} = 17 e ,7"{1,2}} (21)

2

with basis vectors

71 T2
1,2
bfmj} = k; kglb{lz}(kl,k’z,k{l,g})b,lcl Qb kpoy=1,...,r19 (22)

and coefficient tensors bil:2} € RM1*72%7(1,2} where

pl}

P;
Koy = Z b{J}(Vj,k:{j})eJyj, j=12and kgjy =1,...,1m5 <pj. (23)

v;j=1

are the basis vectors of the Tucker representation (18). This can be general-
ized to the tensor product space H4 by the introduction of a partition tree (or
dimension tree) D with vertices « ¢ D := {1,...,d} and leaves {1},...,{d}
where D is called the root of the tree. Each vertex « that is not a leaf can
be partitioned as a = a1 U as with a1 nas = & and a3,y # . Al-
though not required, one we restrict the topology to a binary tree and de-
note by ai,as the children of «. Figure 3.2 is an illustration of the un-
balanced tree D = {{1},{2},{1,2},{3},{1,2,3},...,{d},{1,...,d}} where e.g.
a=1{1,2,3} = a3 uay={1,2} U {3}

Let aq1,a0 = D be the two children of « € D. Then V, < V,, ® V,, is
defined by a basis

Tay Tag
by = Z 2 b (4, j, g)bfél ®b?27 (24)
i=1j=1
where the tensors (i, j,£) — b®(i, j,£) are called transfer or components tensors
and bP? = bil-4 ig called the root tensor. To represent a tensor in this
hierarchical format it suffices to store the transfer tensors b® along with the
root tensor bP. More specifically, u € Hy is obtained from (b%),ep, via the
multilinear function 7

(bY)aep — u =7({b": aeD}), (25)

which is defined by the recursive application of the basis representation (24).
The mapping 7 is a multilinear function in its arguments b®. A graphical
representation of this mapping is depicted in Figure 3.2. In this pictorial de-
scription, the contractions of component tensors (24) are indicated as edges

10



between vertices of a graph and the indices of the tensor are represented by
open edges. This hierarchical representation has complexity O(pdr + dr3) with

p =max{pi,...,pq} and r = max{r, : o€ D}.
pil.2.3.4,5) pil.2.3.4,5)
’b{1,2,3} ‘ ’b{475} ‘ ’b{l} ‘ ’b{2,374,5} ‘
wv] ] ) b7) | B ]
bt [p@ ]b{:%} \ ]b{4,5} \
%1 120 Vs V4 %53 141 Vo V3 vy Vs

Figure 1: Dimension trees D for d = 5. Balanced HT tree (left) and linearized
TT tree (right).

Tensor trains Tensor trains are a subset of the general hierarchical tensors de-
scribed above. They were introduced to the numerical mathematics community
in [OT09; OT10] but have been known to physicists for a long time as matrix
product states (MPS). The linear structure is depicted in Figure 3.2 (right),
which corresponds to taking Vi ;11 < Vi . 5 ®V; +1} In the example, we
consider the unbalanced tree D = {{1}, {2}, {1, 2} {3}, {1 3, {dh L, . d
Applying the recursive construction, any tensor u € Hy can be written as

(Vlv"'ayd)'_)U(Vla" Vd)

—Z ZU (Ko, v1, k1)U (k1, v, ko) - - U (ka—1,va, ka), (26)
0

where
1
Ul(Vlv kl) = Z b{l}(Vlve)bD(klvg)a
=1
Uj(k‘j,h vj, k‘j) = Z b{j}(Vj7£)b{j""’d} (k‘jfl, k]‘7£), ji=2,... ,d—1
=1

Ud(kd_l, l/d) = b{d}(l/d7 k‘d_l).

This can be reformulated as matrix products

U, ..., vg Hb v;) =7(b%, ..., b (v), (27)

11



with component matrices b;(v;) € R™-1*"7 given by
b5 i), p, =P (kimjovy k), 1<j<d, (28)

and
(b1(1)}, =b'(v1, k1), (ba(va))y, = b%(ka, va). (29)

It has to be pointed out that the representation (27) is not unique since in general
there exist b® # ¢® such that 7 ({b*: aeD}) = 7 ({c*: aeD}). This can
also be seen easily in (27) when introducing arbitrary orthogonal matrices and
their respective inverses in between the component tensors.

An illustration of the tensor train structure (26) is depicted in Figure 2
(right), which is equivalent to the tree structure shown on the left-hand side.

bil:2:3,4,5}

’b{l} ‘ ’ b{2,3.4.,5} ‘

bi2} (345} |

5] (o9
Vs Vy Vs

Figure 2: An order 5 tensor in tensor train representation and its linear repre-
sentation using component tensors as in (26).

141 1)) 141 120 V3 V4 Vs

It turns out that every tensor has a TT-representation with minimal rank,
which means that the TT-rank is well-defined. Moreover, an efficient algorithm
for computing a minimal TT-representation is given by the TT Singular Value
Decomposition (TT-SVD) [HRS12b]. Additionally, the set of tensor trains with
fixed TT-rank r denoted by 7, < H4 forms a smooth manifold. If all lower
ranks are included, an algebraic variety denoted by T<, is formed [Kut17].

3.3 Tensor Trains as differentiable manifolds

The multilinear structure of the tensor product enables efficient optimization
within the manifold structure. Endowed with the Euclidean metric induced
by the Frobenius scalar product, the set 7, becomes an embedded Riemannian
manifold [HRS11; UV20; Wol19]. This allows the formulation of different line
search algorithms utilizing the Riemannian gradient. For a function J : H,, — R
the Riemannian gradient at X € 7, can be computed by projecting the Euclidean

12



gradient onto the tangent space Tx at X (see e.g. [Stel6; AMS08)), i.e.
PrVJ(X), (30)

where Pr_ is the projector onto the tangent space of 7, at the point X. Just as
the negative Euclidean gradient, the negative Riemannian gradient can be used
as a descent direction for minimizing V). In theory, the strategy is to move
in that direction along a geodesic until a local minimum is reached. Starting
from X, the function that moves in the direction Z € Ty along a geodesic for
a distance of |Z| is called the exponential map expz(Z). Unfortunately, there
is no analytic expression for the exponential map available for 7. Instead, one
usually resorts to a so-called retraction R(Z) which is an approximation of
the exponential map, see [AMS08] for details. In the tensor train format, an
example of a retraction is defined by the TT-SVD via

R+(Z) = TT-SVD(X + Z) (31)
as shown by [Stel6]. Using these techniques, a steepest descent update with
step size § on the manifold 7, is given by

X1 = Ryk(—BPTykvvp’le()?k)). (32)

Convergence of Riemannian optimization algorithms is typically only con-
sidered for smooth functions. When this can be assumend, the convergence
can be sped up by using higher-order algorithms such as the conjugated gradi-
ent method. This additionally requires a method of “moving” tangent vectors
Zi_1€ T}k—l from the tangent space at point X 1 to the tangent space T%c at

point )N(k. Again, the optimal differential geometric tool, the parallel transport,
is computationally infeasible on the tensor train manifold. However, the vec-
tor transport introduced by [AMS08] defines a class of approximations, which
can be used to accomplish this task. In the tensor train format, such a vector
transport is given by the projection PT)?k Zi_1-

4 A version of the Longstaff-Schwartz algorithm
based on the Tensor Train format

We now combine the tensor train format introduced in Section 3.2 with the
Longstaff-Schwartz algorithm for computing Bermudan option prices as detailed
in Algorithm 1. To make the approximation problem (8) concrete a set of basis
functions {Bg,}aeca has to be chosen. We prefer to work on a compact sub-
domain of the reals, which we choose such that the probability of assets lying
outside the domain is minimal. As a heuristic method for determining the
truncation, we set

a = min (S5 and b= max (S5 )k
m,n,k m,n,k
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and choose the H?(a,b)-orthogonal basis functions {Bj,..., B,} spanning the
space of polynomials of degree p. We then represent the approximation of the
discounted value of the option v : RY — R by

p
v(@) = > Va [ | Baw (@), (33)

a€el k=1

where we approximate the coefficient tensor V e (RP)®? in the TT format.
As is common practice in Longstaff-Schwartz type algorithms we augment this
basis by the payoff function ¢. With the definition

B:]R~>]Rp7 B(.’,E):[Bl(l‘),,Bp(l‘)],

i.e. B stacks the one-dimensional basis functions into a vector such that they
can be contracted with the component tensors, the resulting approximation
v:R? — R is graphically represented by

o) = [0 0 U U

E E E E
|B(xy) || Baz) || B(es)| | Blaa)

+ cpp(x) .

Note that on the r.h.s. of this equation every open-index of U; and B(x;) for
1 < i < d is contracted, which indeed results in a scalar value v(x).

To solve the resulting minimization problem (8) we use a rank adaptive
version of the alternating least-squares (ALS) algorithm [HRS12al, the stable
alternating least-squares algorithm (SALSA) [GK19]. Using this algorithm re-
lieves us from having to guess an appropriate rank of the solution beforehand.
As a termination condition we check whether the error on the samples or on a
validation set decreases sufficiently during one iteration. In our implementation
this validation set is chosen to have 20% of the size of the training set.

We now describe how we modify ALS (or SALSA) to handle the additional
term c,p(x). The classical ALS algorithm optimizes the component tensors
{Ui,...,Uy} in an alternating fashion. For each k = 1,...,d" all component
tensors {U,};.k are fixed and only U is optimized. This procedure is then
repeated alternatingly until a convergence criterion is met.

We modify this scheme by optimizing c, as well as Uj, for each k. Since the
mapping (Uy, c,) — v is linear, the resulting problem is a classical linear least
squares problem

3 1 S m m
(Ug,cyp) = argmin — Z Y™ — AT (w, c)|*.

w,c :
’ i=1

To exemplify this, for k£ = 2 the operator A}* is diagrammatically represented
by
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S
hS
bS]
hS]

ap.e,) =[O ——{w g oo + cpp(S™).

[B(sy | [ Besy) | | BGsy)| | Bsy)]

After reshaping the pair (w,c) € R™*P*"2 x R into a vector of size ripra + 1,
the operator can be written as A € R™*("P2m2+1) and the problem becomes

1
X = argmin —|Y — Az|3,
.  m
where Y = [V ... Y™].

Complexity analysis

Using a tensor train representation instead of the full tensor allows us to reduce
the space complexity from O(p?) to O(d'pr?) with r = max{ry,...,re_1}. For
moderate 7 this leads to a dramatic reduction in memory usage which we observe
in our experiments. Figure 3 shows that the rank-adaptive algorithm computes
solutions with r < 6 and we numerically verify that for d’ > 100 a rank of r = 1
is sufficient for obtaining values within the reference interval from the literature.
This allows us to compute the price of max-call options with up to 1000 assets.

Since ALS is an iterative method its time complexity can only be provided
per iteration and amounts to

(’)(Nm|Ap|2T4) (34)

floating point operations per iteration. As with every iterative algorithm the
number of iterations needed depends on the specific problem. In our numerical
tests we generally needed less than 10 iterations.

5 Dual martingale minimization with tensor trains

To use the tensor train format in the dual formulation, we define the set Py =
{X : Xo = 0} and rewrite (13) as

Up= _inf V(X), (35)
XeT, NPy
where 7, denotes the set of T'T tensors of rank r and V7 is the cost function
that is minimized in (13). Performing this optimization directly on the param-
eters of the tensor train is ill-posed since its parametrization is not unique. A
common way to solve this is to use the manifold structure of 7, and employ a
Riemannian optimization algorithm. For this (35) has to be rephrased as an
unconstrained smooth optimization problem. N
Define the projector (PyX)o = (1 — da0)Xo and remove the constraint X e
Po by rewriting (35) as
Up = inf V' (PsX). (36)
XeT,
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Since Fj is a linear operator, the modified cost function V" o F; retains the
convexity, continuity and piece-wise linearity of V. We then mollify the V"
by replacing the maximum with the smooth approximation

o-max T, =

=n=L 37
n=1,...,N ZN 1eomcn ( )

The resulting cost function reads

~ o 1 & i > i i
Vo (X) = VR (X) = — Zlnoi-lmaN<Z§n) - XaHa1<G§’>-~-H%<G;>>>
T aeA™
(38)

i=1
The respective optimization problem

Up = inf Vi (PyX) (39)
XeT,

can be solved by Riemannian algorithms. We use a conjugated gradient method
with the FR-PR, update rule as defined in [NWO06].

We also have to address the choice of the initial value for the optimization.
Since the set 7, is not convex, a diligent choice is important in order to reach
the global minimum. We obtain such a value for polynomial degree p by using
the optimal value X =1 for the polynomial degree p — 1. This recursion stops
at p = 0 where we know the optimal value to be X = (.

In our implementation we used a constant rank of 4 and chose o = 50 which,
empirically, held the smoothing induced error below 1072, As a termination
condition we check if the error does not sufficiently decrease over a period of
10 iterations. Of all iterates obtained during the optimization we choose the
one that has the lowest value on a validation set. In our implementation this
validation set is chosen to have one ninth of the size of the training set.

Complexity analysis

In the dual method we observe the same dramatic reduction in space complexity
as in the primal algorithm. The space complexity of O(p™" d,) for the full tensor
is reduced to O(Nd'pr?) for a tensor in the tensor train format with a rank
uniformly bounded by r. This allows us to use the dual algorithm to compute
the price of a basket put option with N = 31 exercise dates in Table 1.

Since gradient descent is again an iterative algorithm the time complexity
can only be computed per iteration. Assuming that X is a tensor train tensor
with rank r, the contraction

> XaHo, (G Ha, (G) (40)

aeA

can be computed with O(n|A,|r? + (N — n)r?) floating point operations. This
means that both V5" (X) and its gradient can be computed with O(mN?|A,|r?)
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floating point operations. Compare this to the O(mpY d/) floating point oper-
ations required for the full tensor and to the (N]‘\i,;p) operations for the sparse
tensor. At least from a theoretical point of view, evaluation and optimization

are faster in the tensor train format, namely
e exponentially faster when compared to the full tensor ansatz and
e when p > 2 up to a polynomial factor for the sparse ansatz.

These statements obviously depend on the rank r which is bounded by at most
4 in our experiments, meaning that the represented objects are in fact low-rank.

6 Numerical experiments

In this part, we present results obtained from the algorithms described above.
Implementations in Python can be found at https://github.com/ptrunschke/
tensor_option_pricing. For each experiment, we report low-biased estima-
tors vp(St,) and V'3 (X) based on re-simulated trajectories, see [Glal3]. More
precisely, we generate independent trajectories of the underlying price process S
and apply the stopping strategy implied by the already computed approximate
value functions v, giving as a low-biased approximation to the true option price.
Conversely, approximately optimal martingale parameterizations computed by
the dual algorithm are used to compute a high-biased estimator, once again
based on new trajectories, not used to produce the parameterization in the first
place.

In the following we denote by n the number of possible exercise dates, includ-
ing 0, by p the polynomial degree used in the approximation of the conditional
probabilities and in the Wiener—It6 chaos expansion and by m the number of
samples used. We further denote by M esim the number of samples used for the
resimulation. Vg is the price computed by the resimulation of the Longstaff—
Schwartz method and Vgua1 is the price computed by the dual method. The
corresponding reference values are denoted by Vi and VIel respectively, and
were obtained in the literature — see specific references for the individual exam-
ples.

6.1 Options in the Black—Scholes model
The d-dimensional Black Scholes model for j € {1,...,d} reads

ds] = S (ry — 6,)dt + 0! L;dBy), (41)

where B is a Brownian motion with values in R, o = (o4, ...,04) is the vector
of volatilities assumed to be deterministic and positive at all times, and L; is
the j-th row of the matrix L defined as a square root of the correlation matrix
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chosen to be of the form

L p p

r—|” 1 R , (42)
: . P
p .. p 1

where p € (=1/(d — 1),1] to ensure that T' is positive definite. The initial
condition for the SDE is given by the spot price Sp.

We will test the algorithms for different payoff functions ¢, dimensions d and
strike prices K.

6.2 A basket put option on correlated assets

We first consider the case of a put basket option on correlated assets. The payoff
of this option writes as ¢(S;) = (K — Z?:1 ijg>+ where w = (wy,...,wq) is

a vector of real valued weights. We report in Table 1 and Table 2 our values
compared to the reference prices for two different sample sizes m = 20000 and
m = 10°. Blank cells in the tables indicate that reference values are not reported
in the reference papers. The results of our experiments are reported in Table 1.

It can be seen that the values obtained by our version of Lelong’s method
are not as close to the reference price as are the values obtained by [Lell8].
From a theoretical perspective a lower value should always be possible given a
sufficient rank. We thus attribute this to the lack of a rank adaption strategy
in the dual problem and highlight this as an interesting direction for further
research. It can moreover be seen that for NV = 31 the values of V., increase
with p. Because the manifold for p = 2 is a submanifold of p = 3 one would
expect that this is impossible. Note however that the table shows resimulated
prices only. Therefore we interpret this observation to indicate that a larger
value of m is needed in this case. This is confirmed in Table 2.

For the Longstaff-Schwartz variant we use m = 10° and observe values close
to the reference value. Furthermore, in the case N = 31 and S} = 100, we
observe that the result for p = 2 dominate the p = 3 case, indicating sub-optimal
results. However, as seen in Table 2 we obtain better results for polynomial
degree p = 8. Note that we have capped the TT-rank at 4 for the computation
with p = 8. By doing that, the computational time only increased by a factor
of 3 when compared to the run time for the case p = 3, being 40 seconds and
15 seconds respectively.

We also report that during the optimization within the Longstaff-Schwartz
algorithm the TT-rank of the value function did not exceed 5 for any test-case,
which means that a low-rank structure of the sought expectation values within
the polynomial ansatz space is noticeable. This low-rank structure is a necessity
for high-dimensional computation and will be analyzed in greater detail in the
next example. In this example the number of samples used for training has a
larger effect not only on the variances but also on the values.
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S | Vauwar  Stddev Vet | Vig  Stddev Ve
100 | 234 0003 229 [215 0009 217
100 | 2.33  0.003 225 | 216 0.009 2.17
100 | 2.64 0.002 2.62 | 2.39 0.008 2.43
100 | 2.64 0.002 252 | 240 0.008 243
100 | 3.08  0.002 2.49  0.01
100 | 3.12  0.002 2.36  0.01
110 | 0.67 0.002 057 | 0.53 0.006 0.55
110 | 0.67  0.002 0.55 | 0.53 0.006 0.55
110 | 0.78  0.002  0.64 | 0.57 0.007 0.61
110 | 077 0.002  0.64 | 0.57 0.007 0.61
110 | 3.94  0.002 0.61  0.008
110 | 3.95  0.002 0.61  0.008

WA WK WNWDN WN WM
w w w w
KRN REEaarrZ

Table 1: Prices for the put basket option with parametersd = 5, T = 3, r = 0.05,
0 =0,07 =02, p=0, K =100, wj = é, m = 20000, Myesim = 10%. Values
for Vet and V' are taken from [Lell8]. Number of samples for Longstaff-
Schwartz: mpg = 10°. Empty spaces denote unavailable reference values.

S} | Vaua  Stddev p S) | Vis Stddev
100 | 2.88  0.001 8 100 | 256  0.01
100 | 2.88  0.001
110 [ 0.80  0.001
110 | 0.80  0.001

W N w NS

Table 2: Prices for the put basket option with parametersd = 5, N = 31, T = 3,
r=0.05 6 =00 =02, p=0, K =100, w; =1, m =105, myesim = 10°.
Empty spaces denote unavailable reference values

1
d’

6.3 Bermudan max-call options

In this section we consider max-call options and in particular the scalability
of the tensor train approach for the Longstaff-Schwartz algorithm for higher
dimensions. The reference values for this problem were taken from [ABO04;
BCJ19]. The payoff function of a max-call option takes the form

<max w; St — K) . (43)
I<i<d N

In Table 3 we report results for the dual algorithm. In contrast to the case
of the put basket option, we see that we are close to the values computed by
the original method [Lell8] and in some cases improve the previously reported
results. This indicates the viability of this approach. A rank-adaptive algorithm
could probably further improve the efficiency of our method in high dimensions.

In Table 4 we consider the Longstaff-Schwartz algorithm in moderate to ex-
treme dimensions. We increase the number of samples to 10% and test every
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m S} | Viwa Stddev VIt | pref
20000 90 | 885 0.004 10.05 | 8.15
20000 90 | 8.83  0.004 86 | 8.15
20000 90 | 21.68 0.014  21.2 | 16.77
40000 90 | 21.40  0.015  20.13 | 16.77
20000 100 | 14.68  0.004  16.3 | 14.01
20000 100 | 14.65 0.004 15 | 14.01
20000 100 | 32.37  0.017  31.8 | 26.34
40000 100 | 31.95  0.017 29 | 26.34

WK WNDWN WS
U UL N DUt U N N

Table 3: Prices for the call option on the maximum of d assets with parameters
N =10,T = 3, r = 0.05, 8 =0.1,07 =02, p =0, K =100, Myegim = 10°.
Values for VI¢f and V' are taken from [Lell8].

polynomial degree up to p = 7. We observe that we rarely see any signifi-
cant improvement when using polynomial degree larger than 4 or 5. However,
throughout the table polynomial degree p = 6 appears to obtain the overall best
results, with small improvements over the other polynomial degrees. Moreover,
we see that while we are not exactly as high as the reference value for low di-
mensions, i.e. d < 20, the results for higher dimension are accurate. A possible
explanation for this is that the value function might have simpler structure in
high dimension.

Finally, in Table 5 we use a trick, where after sampling all the paths, we
sort the assets at every time point by decreasing magnitude, see, e.g., [AB04,
p. 1230]. We observe, that , the unsorted algorithm performs better than
the sorted, while both stay closely under the reference interval. We observe,
that while the unsorted algorithm is already performing well, sorting the assets
yields an increase in performance in every dimension. Moreover, for the sorted
case, polynomial degree of 3 appears to be sufficient to obtain optimal results.
Finally, we observe some numerical instabilities for our implementation of the
sorted algorithm when the dimension is d = 750 or d = 1000 and the polynomial
degree is larger than 3. We assume that by using a better polynomial basis these
instabilities can be resolved. However, as polynomial degree 3 was sufficient in
the lower-dimensional case we did not further investigate this instability. We
state that within these experiments the standard deviation of the resimulations
was never larger than 0.1.

It is worth noting, that the results in very high dimensions were obtained by
calculating only 10° trajectories while the reference values were computed using
more than 24 x 108 paths using state-of-the-art machine learning techniques, see
[BCJ19]. This underlines the potential of tensor train approaches for optimal
stopping, especially in high dimensions.

In Figure 3 we analyze the average and the maximal rank of the value func-
tion and observe a decrease of the ranks in higher dimensions. We state that
from d = 100 a separate test run where we fix the ranks to 1 yield comparable
results, implying that a rank 1 solution can yield close to optimal results. This
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means, that the value function indeed has a simple structure in high dimension.

d p V;ef
1 2 3 4 ) 6 7

2 13.66 13.79 13.81 13.76 13.80 13.83 13.78 13.902

3 18.34 1830 18.39  18.48 18.50 18.55 18.53 18.69

) 25.66 2558 25,70 2597 2575 2584  25.93 [26.115,26.164]
10 3r.7r 3765 38.01 3812 38.25 38.27 38.14 [38.300, 38.367]
20 51.10  51.34 5149 51.64 51.62 51.63 51.62 [51.549, 51.803]
30 59.11  59.30  59.50  59.63  59.62  59.63  59.63 [59.476, 59.872]
50 69.22 69.23 69.70 69.56  69.57  69.51  69.57 [69.560, 69.945]
100 | 83.14 83.18 83.29 8333 8337 8339 83.16 [83.357, 83.862]
200 | 9721 9v.07 9731 9743 9741 9746  97.21 [97.381,97.889]
500 | 116.13 116.07 116.17 116.31 116.31 116.36 116.14 | [116.210,116.685]
750 | 124.56 124.56 124.61 124.72 124.73 124.78 124.59

1000 | 130.65 130.63 130.66 130.78 130.83 130.84 130.67

Table 4: n =9, T =3, 7 =0.05,0 = 0.1, 0 = 0.2, p = 0, S} = 100, K = 100,
w;j=1m= 106, Myesim = 108 not using reordering
From: [AB04; BCJ19]

d P V;ef
1 2 3 4 5 6 7

2 13.67 13.76 13.82 11.63 13.84 13.84 13.85 13.902

3 18.39 18.51 18.60 18.61 18.61 18.62 18.62 18.69

5 25.83 26.01 26.06 26.07 26.07 26.07 26.07 [26.115,26.164]
10 38.08 38.24 38.29 38.31 38.31 38.30 38.30 [38.300, 38.367]
20 51.48 51.66 51.71 51.71 51.71 51.71 51.71 [51.549,51.803]
30 59.50 59.68 59.71 59.71 59.72 59.72 59.72 [59.476, 59.872]
50 69.58 69.78 69.80 69.81 69.81 69.81 69.81 [69.560, 69.945]
100 83.45 83.65 83.67 83.67 83.67 83.66 83.66 [83.357, 83.862]
200 97.56 97.69 97.70 97.70 97.70 97.69 97.69 [97.381,97.889]
500 | 116.45 116.56 116.56 116.56 116.56 116.50 116.52 | [116.210,116.685]
750 | 124.91 124.98 124.99 124.98 nan nan nan
1000 | 130.96 131.06 131.05 nan nan nan nan

Table 5: n = 9, T =3, r = 0.05, § = 0.1, 0 = 0.2, p = 0, S} = 100, K = 100,
wj =1, m = 10°, Myesim = 10° using reordering

From: [AB04; BCJ19]
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average ranks and maximal rank

6 1 I unsorted
m sorted

avg/max rank

20 30 50 100 200 500 750 1000
d

Figure 3: average ranks(blue) and maximal(black) rank for different dimension.
The black lines indicate the maximal rank. We use the results with highest
values for every dimension and every bar.
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