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ABSTRACT

Benchmarks are standards that allow to identify opportunities for improvement

among comparable units. This study suggests a 2-step methodology for calculating

probabilistic benchmarks in noisy data sets: (i) double-hyperbolic undersampling

filters the noise of key performance indicators (KPIs), and (ii) a relevance vector

machine estimates probabilistic benchmarks with denoised KPIs. The usefulness of

the methods is illustrated with an application to a database of nano-finance+. The

results indicate that—in the case of nano-finance groups—a higher discrimination

power is obtained with variables that capture the macro-economic environment of the

country where a group operates. Also, the estimates show that groups operating in

rural regions have different probabilistic benchmarks, compared to groups in urban

and peri-urban areas.
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1 Introduction

Benchmarking is the process of analyzing key performance indicators with the aim of creating

standards for comparing competing units (Bogetoft and Otto, 2010). Probabilistic benchmarks

measure the probability of a unit falling into an interval along with the cumulative probability of

exceeding a predetermined threshold (Wolfe et al., 2019). As a management tool, benchmarks allow

to identify and apply better documented practices (Bogetoft, 2013).

Benchmarks are widely used in diverse scientific disciplines. Pharmaceutics compare the prices

of prescription drugs with benchmarks (Gencarelli, 2005). In environmental science, benchmarks

set water quality standards (Dam et al., 2019) or define thresholds for radiation risk (Bates et al.,

2011). In finance, interest-rate benchmarks mitigate search frictions by lowering informational

asymmetries in the markets (Duffie, Dworczak, and Zhu, 2017).

This study develops a 2-step processes for calculating probabilistic benchmarks in noisy datasets.

In step 1, double-hyperbolic undersampling filters the noise of key performance indicators (KPIs);

in step 2, a relevance vector machine estimate probabilistic benchmarks with filtered KPIs.

Archimidean copulas approximate the joint density of KPIs during the denoising step. Besides

estimating probabilistic benchmarks, the methods of step 2 identify the continuous and categorical

factors influencing benchmarks.

The 2-step methodology is illustrated with an application to a database of nanofinance+ working

with business interventions. In nanofinance, low-income individuals without access to formal

financial services get together and start to accumulate their savings into a fund, which they later use

to provide themselves with loans and insurance. In nanofinance+ (NF+), development agencies,

donors and governments help communities to create NF+ groups for financial inclusion and then the

groups become a platform for additional ‘plus’ sustainable development programs—see Gonzales

Martínez (2019) for details.

The methods proposed in this study complement the state-of-the-art in probabilistic benchmarking

of Chakarov and Sankaranarayanan (2014), Chiribella and Adesso (2014) or Yang, Chiribella,

and Adesso (2014). Along with this methodological contribution, the empirical findings of this

document fill the research gap left by economic studies that have been focused only on calculating

benchmarks for microfinance institutions—see for example Tucker (2001) or Reille, Sananikone,

and Helms (2002). In microfinance, benchmarks are used to compare institutions; in nanofinance,

benchmarks are aimed to compare groups. Benchmarks for nanofinance groups allow to set perfor-

mance standards for monitoring and evaluating intervention programs implemented in communities

worldwide.
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The definition of multivariate probabilistic benchmarks used in the study is described in Section

2. Section 3 discusses the methods for estimating multivariate probabilistic benchmarks in noisy

datasets. Section 4 shows the empirical application to the NF+ database. Section 5 concludes.

The data and the MatLab codes that allow to replicate the results of the study are freely available

at MathWorks file-exchange (https://nl.mathworks.com/matlabcentral/fileexchange/74398-double-

hyperbolic-undersampling-probabilistic-benchmarks).

2 Multivariate probabilistic benchmarks

Classical benchmarking makes use of fixed inputs to calculate point estimates for classification

standards. Probabilistic benchmarking, in contrast, takes into account elements of uncertainty in

the inputs and thus generates interval estimates as an output (Liedtke et al., 1998). For example,

probabilistic benchmarks are calculated for quantum information protocols—teleportation and

approximate cloning—in Yang, Chiribella, and Adesso (2014); more recently, Lipsky et al. (2019)

calculate probabilistic benchmarks for noisy anthropometric measures, and Wolfe et al. (2019) use

probabilistic benchmarks to quantify the uncertainty in fibromyalgia diagnosis.

Proposition 1 below shows the definition of multivariate probabilistic benchmarks used in this study.

Proposition 1: Multivariate probabilistic benchmarks. Let y be a N × j matrix y ∈ Rj of j-KPIs

(y1, y2, ..., yj key performance indicators) for a set H of {η1, η2, ..., ηN} 3 H comparable units.

Given the joint density,

fy (y) := f (y1, y2, ..., yj) =
∂F (y1, y2, ..., yj)

∂y1∂y2 · · · ∂yj
,

where F (y1, y2, ..., yj) is a CDF and f (y1, y2, ..., yj) ≥ 0, the differentiated units hτ ⊂ H will be

those for which:

1−
∫ ∞
τ1

∫ ∞
τ2

· · ·
∫ ∞
τj

f (y1, y2, ..., yj) dy1dy2 · · · dyj, (1)

given a threshold τ in τ ∈ Rj .

In proposition 1, the discrimination of η1, η2, ..., ηN units in a comparable set H is based on interval

estimates of a multi-dimensional threshold (the benchmark) τ . Proposition 1 sets a probabilistic

standard based on the joint multivariate distribution function of the KPIs {y1, y2, ..., yj} 3 y used
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for calculating τ . The isolines—the contour intervals—defined by the benchmarks τ allow to

identify the units hτ with a different performance in the unit hypercube (hτ ⊂ H).

Proposition 2 below states that the thresholds τ can be calculated without the need to know the

exact form of the joint density fy (y) in Equation 1:

Proposition 2: Unit-hypercube approximation. Let CΘ : [0, 1]d 7→ [0, 1] be a d-dimensional mul-

tivariate cumulative distribution function with u ∈ {u1, u2, ..., ud} uniform marginal distributions

and a dependence structure defined by Θ. If u ≡ Fy (y), the joint density of y needed to calculate

τ can be approximated with the simulation of CΘ (u) in the unit hypercube:

CΘ (u) := CΘ (u1, u2, . . . , ud) =

∫ u1

−∞

∫ u2

−∞
· · ·
∫ uj

−∞
c (u1, u2, . . . , uj) du1du2 · · · duj,

for CΘ (u) = 0 if ud = 0, CΘ (u) = ud for any ud = 1, and CΘ (·) satisfies the non-negativity

condition on the volume, i.e. CΘ (·) is d-increasing quasi-monotone in [0, 1]j .

Proposition 2 is based on Sklar’s theorem (Sklar, 1959; Sklar, 1996), which indicates that any

multivariate joint distribution can be written in terms of univariate marginal distribution functions

and a copulæ CΘ that captures the co-dependence between the variables (Durante, Fernandez-

Sanchez, and Sempi, 2013).

Archimidean copulas are a type of copulæ that approximate the joint multivariate distribution of

KPIs that are not elliptically distributed (Naifar, 2011). In an Archimedean copula Cg, an additive

generation function g(u) models the strength of dependence in arbitrarily high dimensions with

only one scalar parameter: θ (Smith, 2003). Formally:

Cg(u1, u2, ..., ud) =

g−1(g(u1) + g(u1) + · · ·+ g(ud)) if
∑d
v=1 g(uv) ≤ g(0)

0 otherwise,
(2)

with g(u) a generator function that satisfies g(1) = 0, g′(u) < 0 and g′′(u) > 0 for all 0 ≤ u ≤ 1;

hence Cθ ≡ Cg. In Clayton’s Archimedean copula, for example, the generator function is equal to

gθ(u) = u−θ − 1 for θ > 1 (McNeil and Neslehova, 2009; Cherubini et al., 2011):

Cθ(u1, u2, ..., ud) =

(
1− d+

d∑
v=1

u−θv

)−1/θ

. (3)
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3 Estimation of multivariate probabilistic benchmarks in noisy datasets

Based on Propositions 1 and 2 above, a 2-step processes is suggested to calculate multivariate

probabilistic benchmarks in noisy data sets:

1. In the first step, a swarm algorithm estimates the vector of parameters of a double-hyperbolic

noise filter. The optimal estimates of the vector maximize the dependence structure θ in an

Archimidean copula calculated with noisy KPIs. The optimal double-hyperbolic filter that

maximizes θ is used to denoise the KPIs.

2. In the second step, a relevance vector machine is applied to the denoised KPIs in order to

calculate multivariate probabilistic benchmarks. Besides estimating isolines of benchmarks,

the relevance vector machine allows to identify factors that influence the benchmarks.

3.1 Step 1: Double-hyperbolic undersampling and swarm optimization

Let fh (ψ,y) be the real R part—the imaginary part is discarded—of a translated generalized

hyperbola of the form (Hamilton and Knop, 1998):

fh (ψ,y) := R

{
ψ1

√
ψ2 +

ψ3

ψ4 + y

}
, {ψ1, ψ2, ψ3, ψ4} ∈ ψ, (4)

If f⊥h
(
ψ⊥,y

)
is an orthogonal/quasi-orthogonal rotation of the translated generalized hyperbola

defined by equation 4—with rotation parameters
{
ψ⊥1 , ψ

⊥
2 , ψ

⊥
3 , ψ

⊥
4

}
3 ψ⊥—then the region of

the double hyperbola defined by the lobes of fh (ψ,y) and f⊥h
(
ψ⊥,y

)
can be used to filter the

noise of the joint distribution of y, if elements of y outside the lobes of fh (ψ,y) and inside the

lobes of the rotated hyperbola f⊥h
(
ψ⊥,y

)
are discarded.

Let yh ⊂ y be a vector with the non-discarded elements of y inside the lobes of fh (ψ,y) and

outside the lobes of f⊥h
(
ψ⊥, y

)
. The vector yh is an optimal noise reduction of the original data

y if the values of ψ and ψ⊥ maximize the dependence structure (θ) of an Archimidean copula

estimated with samples of y,

max
{ψ,ψ⊥}∈R

yh⊂y

(
−2

∫ 1

0

u−θ − 1

−θu−(θ+1)

)−1

− 2

∫ 1

0

u−θ − 1

−θu−(θ+1)
(5)

Box 1 below shows a swarm algorithm proposed to estimate the optimal values of ψ and ψ⊥ that

maximize θ. The algorithm maximizes the co-dependence in the Archimidean copula by taking

5
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samples of the KPIs contained in y. The structure of the swarm algorithm—separation, alignment,

cohesion—is inspired by the BOIDS algorithm of artificial life described in Reynolds (1987).

Box 1. Pseudo-code of the swarm algorithm

Data: {y1, y2, ..., yj} 3 y

Result: ψ, ψ⊥

initialization;

δ,M, θ0, p0, , p
⊥
0 , ζ, ζ∗ ;

while m ∈ Z+ do
wδ = δ |p|‖p‖ , w⊥δ = δ |p

⊥|
‖p⊥‖ ;

for m← 1 do
random exploration of hyperbola parameters;

pm = pm−1 + wδε, p⊥m = pm−1
⊥ + w⊥δ ε, ε ∼ (0, 1) ;

hyperbolic undersampling;

yh = fh(pm,y), y⊥h = f⊥h (p⊥m,y),
{
yh, y

⊥
h

}
3 yh;

copula dependence estimated with filtered m-samples;

θ̂m = Cθ(yh) ;

end

θ̂∗ = max
{
θ̂i

}m
i=1

(optimal dependence);

p∗ = p(θ̂∗), p⊥∗ = p⊥(θ̂∗) (optimal hyperbola parameters);

cohesion = 1
2

(
‖pm − p∗m‖+

∥∥p⊥m − p⊥∗m ∥∥);
separation = 1

2

(
‖pm − p∗m‖+

∥∥p⊥m − p⊥∗m ∥∥);
if θ̂∗ > θ̂m−1 then

θ̂m = θ̂∗ ;

pm = p∗, p⊥m = p⊥∗ ;

alignment;

δm = δm−1 (ζ∗) ;

m = M − 1 ;

else
δm = δm−1 (ζ) ;

end
end

6
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In the swarm algorithm, δ,M, θ0, p0, p
⊥
0 , ζ, ζ∗ are initialization parameters. The parameter δ ∈ R+

controls the initial dispersion of the particles, M is the initial number of particles used to explore

possible values of θ; θ0 = 0 is the starting value of θm; p0, p
⊥
0 are the starting values of pm, p⊥m; ζ,

ζ∗ are parameters that control the degree of exploration in the swarm algorithm. Exploitation (δ)

and exploration parameters (ζ, ζ∗) are typical of metaheuristic algorithms in general and swarm

intelligence in particular—see for example Tilahun (2019).

The algorithm described in Box 1 explores optimal values of the hyperbola parameters pm, p⊥m
during m-iterations, based on two behavioral rules: cohesion and separation. Swarm cohesion

depends on the euclidean norm between pm, p⊥m and the optimal values p∗m, p
⊥∗
m calculated with θ∗.

Swarm separation is a function of the norm between pm, p⊥m and the centroids p∗m, p
⊥∗
m . Cohesion

abstains the swarm m from including extreme outliers—and thus avoids a biased estimation of

θ—and separation guarantees that the swarm properly explores all the potential values that can

maximize θ for an optimal noise filtering. Alignment is achieved by gradually reducing exploration

and exploitation with ζ∗ (0 < ζ > ζ∗ ≤ 1).

3.2 Step 2: Relevance vector machines

Traditional methods of supervised learning—as stochastic vector machines—produce point estimates

of benchmarks as an output. Relevance vector machines, in contrast, estimate the conditional

distribution of multivariate benchmarks in a fully probabilistic framework. Compared to stochastic

vector machines, relevance vector machines capture uncertainty and make use of a small number of

kernel functions to produce posterior probabilities of membership classification.

Let {xi}ki=1 be a k-set of covariates influencing the KPIs contained in y. The importance of each

covariate is defined by a weight vector w = (w0, . . . , wk). In a linear approach, y = w>x. In the

presence of a non-linear relationship between y and x, a nonlinear maping x → φ(x) is a basis

function for y = w>φ(x).

Given an additive noise εk, the benchmark targets t will be,

t = w>φ(x) + εk, (6)

where εk are independent samples from a mean-zero Gaussian noise process with variance σ2.

Tipping (2000) and Tipping (2001) offer a spare Bayesian learning approach to estimate w in

Equation 6 based on the likelihood of the complete data set,

p(t|w, σ2) = (2πσ2) exp

{
− 1

2σ2
||t− Φw||2

}
,

7
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where Φ is a k × (k + 1) design matrix Φ = [φ(x1), φ(x2), . . . , φ(xk)]
> and φ(xi) =

[1,K(xi,x1),K(xi,x2), . . . ,K(xi,xk)]
> for a kernel function K(·, ·). In a zero-mean Gaus-

sian prior for w,

p(w|α) =
k∏
i=0

G(wi|0, α−1
i ),

α is a vector of k + 1 hyperparameters, and the posterior distribution over the weights is:

p(w|t,α, σ2) =
p(t|w, σ2)p(w|α)

p(t|α, σ2)
,

= (2π)−(k+1)/2|Σ|−1/2 exp

{
−1

2
(w − µ)>Σ−1(w − µ)||2

}
,

where Σ = (σ−2Φ>Φ + A)−1, µ = σ−2ΣΦ>t and A = diag(α1, α2, . . . , αk). Updating

methods for αi are described in Barber (2012). The complete specification of the hierarchical

priors—based on the automatic relevance determination of MacKay (1996) and Neal (2012)—can

be found in Tipping (2001).

The assignment of an individual hyperparameter αk to each weight wk allows to achieve sparsity

in the relevance vector machine. As the posterior distribution of many of the weights is peaked

around zero, non-zero weights are associated only with ‘relevant’ vectors, i.e. with the most relevant

influencing factors of the probabilistic benchmarks estimated with the denoised KPIs.

4 Empirical application: probabilistic benchmarks in nanofinance+

This section illustrates the methods described in Section 3 with an application to a database of

7830 nanofinance+ groups receiving entepreneurship and business training in 14 African countries:

Benin, Burkina Faso, Ethiopia, Ghana, Malawi, Mozambique, Niger, Sierra Leone, South Africa,

Sri Lanka, Tanzania, Togo, Uganda and Zambia. Almost all of the groups in the database work with

a development agency (94%), and 43% of the groups are located in rural regions.

Table 1 shows descriptive statistics of group-level characteristics and the macro-economic envi-

ronment of the countries where the groups operate. On average, each member of NF+ contributes

around 29 USD of savings to the common fund and receives on average a loan of 22 USD. Despite

the low values of savings and loans, returns on savings in the groups are on average 47%, whereas

the equity per member is on average equal to 40 USD (Table 1).

Returns on savings (y1) and equity per member (y2) are the KPIs used for calculating the benchmarks

of NF+ in the empirical application. Hence, j = 2, y = [y1 y2], and the joint distribution in

8
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Proposition 1 simplifies to,

fy1,y2 (y1, y2) = fy1|y2 (y1|y2) fy1|y2 (y2) = fy2|y1 (y2|y1) fy2|y1 (y1) . (7)

Successful units—NF+ groups with a higher financial performance—will be those with KPIs

delimitied by the isolines of the threshold τ ,

1−
∫ ∞
τ1

∫ ∞
τ2

fy1,y2 (y1, y2) dy1dy2,

for a probabilistic benchmark τ ∈ {τ1 τ2}, τ ∈ R2.

Following Proposition 2, the joint density of the KPIs (equation 7) is approximated with a bivariate

Archimedean copula:

Cg(u1, u2) =

g−1(g(u1) + g(u2)) if g(u1) + g(u2) ≤ g(0)

0 otherwise.
(8)

Clayton’s Archimedean copula is particularly suitable to model the dynamics of nanofinance+.

Clayton’s copula has greater dependence in the lower tail compared to the upper tail. In the case of

NF+, greater lower tail dependence is expected because groups with low equity will have zero or

negative returns, while in contrast there is more dispersion in the indicators of groups with higher

performance—i.e. some groups show higher equity but low levels of returns due to lower repayment

rates, while groups with low equity may have higher returns due to the higher interest rates charged

for their loans.

A bivariate Clayton’s Archimedean copula for the uniform marginal distributions of returns on

savings (u1) and equity per member (u2) will be:

Cθ(u1, u2) = g−1(g(u1) + g(u2)) (9)

= (1 + u−θ1 − 1 + u−θ2 − 1)−1/θ (10)

= (u−θ1 + u−θ2 − 1)−1/θ (11)

with a probability density function,

cθ(u1, u2) =
∂2

∂u1∂u2
Cθ =

1 + θ

(u1u2)θ+1
(u−θ1 + u−θ2 − 1)−2− 1

θ (12)

9
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and a co-dependence parameter θ ∈ [0,+∞),

θ =

(
−2

∫ 1

0

u−θ − 1

−θu−(θ+1)

)−1

− 2

∫ 1

0

u−θ − 1

−θu−(θ+1)
. (13)

The parameter θ controls the amount of dependence in Cθ(u1, u2). When θ → +∞ the dependency

between u1 and u2 approaches comonoticity,

lim
θ→+∞

Cθ(u1, u2) = min(u1, u2), (14)

while in turn when θ → 0, u1 and u2 become independent:

lim
θ→0

Cθ(u1, u2) = u1u2. (15)

In the case of returns on savings and equity per member, it is expected that θ → +∞, as both

financial indicators should show lower tail co-dependence in NF+.

Figure 1 shows indeed that the swarm optimization of θ—using the data of returns on savings and

equity per member—leads to a value of θ̂ = 3.97. The estimates of the parameters of the hyperbolas

for θ̂ are equal to,

ψ̂ :=
{
ψ̂1, ψ̂2, ψ̂3, ψ̂4

}
= {77.42, 0.87,−10.38,−46.51} ,

ψ̂⊥ :=
{
ψ̂⊥1 , ψ̂

⊥
2 , ψ̂

⊥
3 , ψ̂

⊥
4

}
= {55.92, 0.67, 2.26,−15.43} .

Figure 2 shows the optimal denoising of the KPIs of NF+ with double-hyperbolic undersampling.

The first step discards the values of ROS and EPM outside the lobes of the hyperbole estimated with

ψ and inside the lobes of the hyperbole estimated with ψ⊥ (Figures 2b and 2d). The co-dependence

between the KPIs before denoising is contaminated with a high number of outliers (Figure 2e). After

denoising, the co-dependence in the lower and upper tails of the KPIs is kept but noisy elements are

discarded (Figure 2f).

Table 2 and Figure 3 show the results of estimating the relevance vector machine with the denoised

KPIs (step 2). In terms of continuous factors influencing the benchmarks, the main covariates

affecting the financial benchmarks of NF+ are those related to the macroeconomic environment,

mainly GDP growth, poverty, inequality and the percentage of rural population in the country where

a NF+ group operates (Table 2). Savings accumulation and loan provision are the main group-level

characteristics influencing the financial benchmarks of NF+; this result is expected—because in NF+

the lending channel is the main source of profit generation—and shows the ability of the relevance

vector machine to properly detect variables related to financial benchmarks in denoised datasets.

10
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In relation to categorical factors influencing the benchmarks, Figure 3 shows that the probabilistic

benchmarks of NF+ are different in rural groups (Figure 3 left) compared to urban groups (Figure

3 right). While both rural and urban groups have a concentration of financial performance in the

lower tail of the joint distribution of the KPIs, higher dispersion in the upper tail is observed in rural

groups, and hence the isolines of the probabilistic benchmarks are wider for rural groups compared

to urban groups.

In the case of urban and peri-urban nano-finance, groups can be classified as successful with a

probability higher than 90% (red contour isoline in Figure 3b) when the groups have returns higher

than 55% and equity higher than 80 USD per member (Figures 3f). In rural NF+, however, groups

that do not show negative returns and have an equity per member higher than 10 USD are classified

as successful with a probability higher than 80% (Figures 3c and 3e).

Figure 1: Swarm optimisation of θ in Clay’s Archimidean copula. The copula was estimated with
the data of returns on savings and equity per member of nanofinance groups. In the graph, the
swarm shows greater dispersion at the start of the iterations, but the cohesion and separation of the
flock converge after the iteration 15, when the value of the estimate of θ tends to stabilize.

11
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Table 1: Descriptive statistics of the SAVIX. Nanofinance groups in the SAVIX have on average
21 members and 82% of the members are women. The members show a high commitment to the
group meetings: member’s attendance is 92%, and the members that end up leaving the group are
only 1.2% of the total of participants. In macro-economic terms, the GDP growth in the countries
where the nanofinance groups operate is on average 4.88%, and the GDP per capita is on average
1353 USD. The countries where the groups are located have also low levels of literacy (the literacy
rate is 56%), low levels of financial inclusion (the indicator of financial deepening is 33%), and a
high percentage of population living in poverty (40%) and in rural areas (60%).

Variables Mean Std. Dev. Min Max
Group-level characteristics of nanofinance+
Returns on savingsa 48.63 47.14 0 199.47
Equity per memberb 40.41 40.25 0.10 269.90
Savings per memberb 29.15 28.71 0.06 235.79
Fund utilisation rateb 57.73 34.88 0 100.00
Number of loans per member 0.51 0.33 0 1.00
Average loans per memberb 22.40 29.51 0 186.14
Welfare fund per memberb 1.32 1.67 0 12.59
Member’s attendancea 92.32 11.16 39.29 100.00
Drop-out ratea 1.17 4.32 0 45.00
Number of members 21.11 6.55 5 33.50
Women membersa 81.99 23.19 0 100.00
Accumulated loans per member 0.51 0.33 0.00 1.75

Macro-economic variables
Uncertainty (inflation deviation)a 2.87 1.39 0.66 11.54
Inflation ratea 6.68 6.88 -1.01 21.87
Age-dependency ratioa 87.19 12.91 51.23 111.67
Gini coefficienta 45.40 8.10 32.90 63.20
Financial deepeninga 33.31 31.75 12.55 179.78
Literacy ratea 56.24 24.18 15.46 94.37
GDP per capitab 1353.04 1410.32 386.73 7575.18
Population densitya 82.61 54.79 15.12 334.33
Rural populationa 60.16 13.23 34.15 84.03
Poverty headcount ratioa 39.18 11.54 17.70 56.90
GDP growtha 4.88 1.61 -1.93 10.25
a Percentage (%)
b US dollars (USD)

12
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Table 2: Results of estimating the relevance vector machine for y with the set of covariates x

Type Covariates (x) AUCa Gini Baccb Precc FDRd

Micro-level
characteristics

Savings per member* 1.0000 1.0000 0.9908 1.0000 0.0000
Fund utilization rate 0.7096 0.4193 0.6326 0.3723 0.6277

Number of loans per member* 0.8261 0.6522 0.7514 0.6355 0.3645
Average loans per member* 0.7852 0.5703 0.8716 0.9955 0.0045
Welfare fund per member* 0.8035 0.6071 0.7675 0.8110 0.1890

Mmember’s attendance 0.6067 0.2134 0.5000 0.0000 1.0000
Drop-out rate 0.5511 0.1021 0.5149 0.0731 0.9269

Women members 0.6374 0.2748 0.5155 0.0619 0.9381
Accumulated loans per member* 0.8261 0.6522 0.7514 0.6355 0.3645

Rural location* 0.7946 0.5893 0.7946 0.8031 0.1969

Macro-economic
variables

Uncertainty (inflation deviation)* 0.7620 0.5241 0.7128 0.5073 0.4927
Inflation rate 0.5860 0.1721 0.5000 0.0000 1.0000

Age-dependency ratio* 0.7606 0.5212 0.7836 0.8268 0.1732
Inequality (Gini index)* 0.8393 0.6785 0.7447 0.5534 0.4466

Financial deepening 0.7369 0.4739 0.7378 0.5816 0.4184
Literacy rate 0.6774 0.3548 0.5000 0.0000 1.0000

GDP per capita* 0.7873 0.5745 0.5011 0.1271 0.8729
Population density* 0.7939 0.5878 0.7276 0.5748 0.4252

Rural population in a country* 0.8485 0.6970 0.7532 0.5591 0.4409
Poverty headcount ratio* 0.8487 0.6973 0.7961 0.7030 0.2970

GDP growth* 0.8516 0.7031 0.7374 0.6614 0.3386

Facilitation
mechanisms

of development
agencies

No facilitating agency 0.5025 0.0051 0.5000 0.0000 1.0000
No donors 0.5479 0.0957 0.5000 0.0000 1.0000

Group formed by paid agent 0.6803 0.3605 0.6803 0.6828 0.3172
Group formed by field officer 0.5147 0.0295 0.5000 0.0000 1.0000

Group formed by unpaid agent 0.5264 0.0529 0.5264 0.0754 0.9246
Group formed by project-paid agent 0.5264 0.0528 0.5264 0.0877 0.9123

Graduated groups 0.5882 0.1764 0.5000 0.0000 1.0000
(*) Variables with the best machine-learning indicators
a AUC: Area under the ROC courve
b Bacc: Balanced accuracy
c Prec: Precision
d FDR: False detection rate
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Figure 2: Denoising with double-hyperbolic undersampling. For an optimal filtering of noise, the
points outside the lobes of the first hyperbole are discarded in graph (b), and the points inside the
lobes of the second hyperbole are discarded in graph (d). Figure (e) shows the relationship between
the KPIs before denoising, and figure (f) shows the relation after denoising.
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Figure 3: Probabilistic benchmarks estimated with the relevance vector machine
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5 Conclusion

This study suggested a 2-step approach for calculating probabilistic benchmarks with noisy KPIs.

An empirical application to a noisy database of nanofinance+ shows that the methods are able to

denoise KPIs, estimate probabilistic benchmarks, and properly identify the continuous and discrete

factors influencing the benchmarks.

In the case of NF+ groups with business training, the results indicate that macroeconomic factors and

the region where a group is located influence their financial benchmarks. Governments, international

donors and development agencies can use the estimated benchmarks for monitoring the performance

of NF+ and gain an independent perspective about how well a group/project is performing when

compared to other similar groups/projects. In the presence of performance gaps, the benchmarks

will be useful to identify opportunities for change and improvement among the groups2.

Future studies can extend the denoising methods to the quadratic surface defined by hyperbolic

cylinders. The higher-dimensional hierarchical Archimedean copula proposed by Savu and Trede

(2010) can be applied to approximate the multivariate probability distribution of KPIs denoised

with hyperbolic cylinders. The recent developments in orthogonal machine learning—see inter

alia Oprescu, Syrgkanis, and Wu (2018), Knaus (2018), Semenova (2018) or Kreif and DiazOrdaz

(2019)—can be used to estimate quasi-causal factors influencing the benchmarsk, complementing

the non-parametric correlational approach of relevance vector machines.
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