Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 108C (2017) 2090-2099

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

High-Level Toolset
For Comprehensive Visual Data Analysis
and Model Validation

Konstantin Ryabinin' and Svetlana Chuprina'
"Perm State University, Bukireva Str. 15, 614990, Perm, Russia
kostya.ryabinin@gmail.com, chuprinas@inbox.ru

Abstract

The paper is devoted to the new method of high-level scientific visualization, comprehensive visual
analysis and model validation tools development using new version of client-server scientific
visualization system SciVi as an example. The distinctive features of the methods implemented are
ontology-based automated adaptation to third-party data sources from various application domains and
to specifics of the visualization problems as well as multiplatform portability of the software solution.
High-level tools for semantic filtering of the rendered data are presented. These tools improve visual
analytics capabilities of SciVi enabling to validate solvers’ or/and data sources’ models in more
comprehensive form and to reduce uncertainties due to the explicit representation of hidden features of
data.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

Keywords: scientific visualization tools, ontology engineering, data filtering, visual analytics, model uncertainty
reduction

1 Introduction

While scientific visualization is widely used to analyze and interpret various data, there are still
issues to be tackled in this field. The state-of-the-art approaches to render scientifically valuable data
often concentrate on the visualization algorithms avoiding the question of retrieving and preparing the
data. Popular scientific visualization systems like ParaView, KiwiViewer, Vizlt, TecPlot, Avizo, etc.
require the input data in the standard formats. Although there are a lot of formats supported, they still
cannot cover every single permutation of the input data and suite the needs of every researcher. This
means, if the scientist works with some data generated by software or hardware solver, or retrieved
them from data storage, he/she can encounter compatibility problems when the particular data source
does not conform to the format required by the visualizer.

The traditional solution of compatibility problem is either to build the intermediate conversion
software or to change the source code of the used solver to make its input match the desired format.

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.050

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.050&domain=pdf

Konstantin Ryabinin et al. / Procedia Computer Science 108C (2017) 2090-2099

Both cases require the scientist to have related skills in programming or to hire developers. As a result,
that may delay the research process and hamper the attainment of research goals. We discussed these
and others problems of traditional scientific visualization systems in details in our previous papers
(see, for example, (Ryabinin K. & Chuprina S., Adaptive Scientific Visualization System for Desktop
Computers and Mobile Devices, 2013)).

To solve the compatibility problem in a more smart way, we propose a high-level adaptation
mechanism based on model-driven architecture, which is implemented within scientific visualization
system SciVi. That allows fine-tuning of the visualization system to make it compatible with third-
party data sources without changing their format. Technically the adaptation mechanism proposed
provides high-level tools that automate data converters building and allow automatically reconfiguring
the visualization algorithms to tie them to the required data structures.

Moreover, the proposed adaptation mechanism provides user with high-level editor of the
visualization system’s rendering pipeline. This editor allows the user to set up preprocessing of the
data, which are to be rendered, enabling, for example, to filter out irrelevant values, change scale from
linear to logarithmic, etc.

If the data source is a software solver generating the data to be visualized in runtime, adaptation
mechanism proposed allows automatically create the graphical user interface (GUI) to steer that
solver, enabling the feedback from the visualization system. Using the interface created, user can
restart the solvers’ calculations; change input parameters and so on.

Model-driven architecture ensures easy extensibility of the visualization system, including the
ability to add new data processing and rendering algorithms (or modify the existing ones) without
changing the source code of the system’s core. It is enough to modify the underlying model to change
the system’s behavior.

The other problem of popular modern scientific visualization systems is a lack of multiplatform
portability. But the growing number of platforms widely used today, including mobile devices, makes
this problem crucial. If the system can run on mobile devices as good as on desktop computers, it can
be used both during the expedition and in the laboratory, providing the scientist with continuous
working process with no need to switch between different software tools.

To ensure multiplatform portability we propose client-server architecture of visualization system
with two types of clients: thick and thin one. Thick client is a native multiplatform application built for
Windows, GNU / Linux, macOS, iOS and Android. Thin client is a cross-browser Web application
capable to run in Firefox, Chrome, Safari, Opera and Internet Explorer (including their mobile
versions).

In this paper we specify the concept of our approach to organize the feature-reach high-level
toolset for scientific visualization and visual data analysis, as well as describe technical details of its
implementation within SciVi.

2 Previous Work

Our previous investigations in scientific visualization area showed the following main problems
the researchers may encounter (Ryabinin K. & Chuprina S., Development of Ontology-Based
Multiplatform Adaptive Scientific Visualization System, 2015):

1. Lack of the high-level mechanisms to adapt the scientific visualization system to the
third-party data sources and specifics of the application domain without any changing in
data source representation.

2. Inability to set up the feedback with the solver generating data without changing the
solver’s or visualizer’s source code.

2091

2092

Konstantin Ryabinin et al. / Procedia Computer Science 108C (2017) 2090-2099

3. Deficiency of high-level means to extend the graphical capabilities of the visualization
system.

4. Absence of the portable software that could run both on desktop computers and mobile
devices.

To alleviate all these problems we propose an approach to build model-driven scientific
visualization systems based on ontology engineering methods. We implemented this approach in
multiplatform scientific visualization system named SciVi. The detailed description of ontologies’ role
in the adaptation process of software components to the specifics of concrete scientific visualization
tasks including a running example is available in our previous paper (Ryabinin K. & Chuprina S.,
Development of Ontology-Based Multiplatform Adaptive Scientific Visualization System, 2015).

SciVi consists of server and client parts. The server is responsible to obtain data from data source,
and the client plays a role of the interface with the user. Visualization process is adaptively distributed
between client and server to ensure the best quality and highest interactivity in particular
computational environment.

The key features of SciVi are:

1. 2D and 3D rendering (in prospect, high-dimensional rendering can be implemented).

2. Objects’ and scenes’ repository extensibility.

3. High-level ontology-based mechanism to adapt to the third-party data source belonging to
an arbitrary application domain.

4. Multiplatform portability.

5. High performance and high quality of rendering results.

Currently we are developing the new version of SciVi, which keeps using the advantages of
ontology-driven paradigm and introduces new features facilitating the data visual analysis in a more
comprehensive way. The features of the new version of SciVi are presented below.

3 From Visualization System to Comprehensive Data Analysis
Toolset

While the visualization can help scientists to interpret the data obtained during experiments as well
as to uncover hidden structures and regularities in these data, sometimes more elaborate analysis is
needed than just rendering the picture. For example, if the data set is too big, it may be sometimes
very useful to be able to filter out only a part of data matching given criteria. In other cases some new
data should be generated according to the given set, for example, the trend lines, approximation lines
or isosurfaces.

In these cases simple visualization tools should be improved to tackle visual analytics challenges.
The main goal of visual analytics is to make the way of data processing more useful and transparent
for an analytic discourse by combining automated analysis techniques with interactive visualizations.
This contributes to effective understanding, reasoning and decision making, as pointed in (Keim D.,
Andrienko G., Fekete J.-D., Gorg C., Kohlhammer J., & Melancon G., 2008).

To provide users with the extensible toolset for comprehensive data analysis we extended the
SciVi architecture with data filtering subsystem and implemented it as a part of new version of SciVi.
The SciVi 2.0 internal data flow is shown in the Figure 1.

As shown in Figure 1, there are three main stages of the new version of SciVi pipeline:

1. Adaptation to the third-party data source.
2. Filtering the data obtained from data source.
3. Rendering the filtered data.

Konstantin Ryabinin et al. / Procedia Computer Science 108C (2017) 2090-2099

Data Filtering

———3 | Adaptation Stage — — Stage
Plain File Format Description Data Source
Or Ontological Profile
Database Schema
Or
Solver's Source Code
J L
N Visual Objects
Ontology

Solver's GUI Graphical Scene
Description Description

[optional]

, Rendering Stage

Programming
Languages
Syntax Ontology

Semantic Filters
Ontology

Figure 1: SciVi pipeline

These stages are discussed in the corresponding sections below.

4 Adaptation to Third-Party Data Sources

Currently, we propose several mechanisms to adapt to the following kinds of data sources:

1. Plain files.
2. Databases.
3. Hardware / software solvers.

To provide a uniform processing of these types of data sources and to meet their specifics we use
ontology engineering methods. The adaptation subsystem (so-called integration module) creates the
ontological profile for every data source according to the user’s settings. This profile includes the data
structure description and is used in the subsequent stages for adaptation.

4.1 Adaptation to Plain Files

In case of plain files, there is high-level graphical interface allowing the user to chose, whether the
file is plain text or binary, to list the parameters stored in the file, to specify their types, order and
delimiters, as well as to define the entries that should be ignored (for example, comment blocks, etc.).

According to the user’s settings done in the GUI, SciVi generates related data structure description
and data source file parser based on either regular expressions (for plain text files) or binary streams
(for binary files). This parser is used to obtain the actual data from the data source file. Data structure

2093

2094

Konstantin Ryabinin et al. / Procedia Computer Science 108C (2017) 2090-2099

description is stored in a form of ontology (so-called data source ontological profile). Each element of
this description has a reference number identifying either capture group of the regex-based parser, or
the item number if the binary file parser. This reference number is used to establish a connection
between the described elements and actual data in runtime.

Thereby SciVi can be easily adapted to arbitrary file format through the GUI, and additionally it
provides an extensible array of presets for popular file formats (for example, PLY, 3DS, etc.).

4.2 Adaptation to Databases

To adapt SciVi to specifics of databases we propose to use the existing external tools, which are
developed with participation of one of this paper authors. Papers (Chuprina S. & Nasraoui O., Using
Ontology-based Adaptable Scientific Visualization and Cognitive Graphics Tools to Transform
Traditional Information Systems Into Intelligent Systems, 2016) (Chuprina S., Postanogov 1., &
Nasraoui O., Ontology Based Data Access Methods to Teach Students to Transform Traditional
Information Systems and Simplify Decision Making Process, 2016) describe how these tools are used
to implement an ontology-driven web-service named Reply to provide a natural language interface to
legacy information systems built on top of relational database management systems. The reported
study was partially supported by the Government of Perm Krai, research project No.C 26/004.08 and
by the Foundation of Assistance for Small Innovative Enterprises, Russia.

Because databases are structured data sources, the tools mentioned above are used to extract the
database schema and to transform it into ontology automatically. Table names are mapped to ontology
classes, foreign keys are mapped to object properties, and other column names are mapped to data
properties. The transformation tools do not depend on the specificities of a concrete application
domain and database management system.

OBDA (Ontology-Based Data Access) approach enables ontology-based accessing one or more
data sources in a uniform way. The ontology has been generated from concrete database schema is
interpreted within SciVi as a desired ontological profile of the data source.

4.3 Adaptation to Solvers

There are two kinds of solvers generating data to be visualized: hardware (different kinds of
sensors, MRI scanners, DNA sequencers, etc.) and software (modeling programs, simulation systems,
calculators, etc.). But usually in both cases solver has some software interface provided to retrieve the
data. Typically this interface either provides API to get the data in runtime using some inter-process
communication technique (like pipes, message queues, sockets, etc.) or stores the data in files or
databases.

In case the solver produces files or stores its results in databases, the adaptation can be potentially
done through the mechanisms described in sections 4.1 and 4.2. But in some cases there is a better
way for the user described below.

If the solver’s source code is available for the user (read-only is enough), the entire adaptation
process can be automated. For this case there is ontology L (see Figure 1), which is a part of the SciVi
knowledge base. This ontology describes syntax of input-output statements and variable definition
statements of programming languages. It is used for automatically generating the parser that analyzes
solver’s source code and extracts the description of related input and output data structures. Thereby
the stage of data structures specification is performed automatically. The only action the user has to do
is to choose the data structure elements he/she is interested in.

Currently C, C++, Fortran-90 and Java are supported, but extending the ontology L to the new
language is as easy as describing input/output statements of this language in Backus-Naur form.

In the current version of SciVi the communication with solver is performed via files produced by
solver. The support of inter-process communication using various techniques is under development.
This kind of communication enables in-situ visualization mode (Rivi M., Calori L., Muscianisi G., &

Konstantin Ryabinin et al. / Procedia Computer Science 108C (2017) 2090-2099

Slavnic V., 2012), which is extremely useful to cover the cases when the solver runs on high-
performance computing system generating big amount of data. For these solvers it is not efficient to
use any storage like files or databases, because the connection with hard drive device becomes a
bottleneck, so inter-process communication is the only way to retrieve the data fast enough.

If the source code is not accessible to the user, it is still possible to adapt visualization system to
the solver using mechanisms described in sections 4.1 and 4.2 with the help of high-level GUI to
specify solver’s input and output data structures manually.

As mentioned above, not only output data structures of the solver are described during the
adaptation, but also input ones. This allows setting up the feedback from SciVi to the solver.

The description of GUI for the solver including control elements (buttons, sliders, text fields, etc.)
is automatically generated based on the input data structures’ specification and integrated into the
SciVi client GUI. This enables user to control the solver from-within the visualization system, for
example, to pause/restart the calculation or to change the input parameters.

The description of input and output data structure is stored in the form of ontology just like in
previous cases, allowing the visualization system to handle solver like any other kind of data source.

5 Data Filtering and Uncertainties Highlighting

Once the ontological profile of the data source is composed, it is used in the next stage of the SciVi
pipeline to set up the data preprocessing. This allows the user to change the data for visual analytical
purposes without direct interfering in the data source and without changing solver’s source code.

To enable data preprocessing we propose mechanism based on semantic filters. In general, the
semantic filter is a mapping ¢: (I, S) = O, where [is a set of typed inputs, S is a set of settings and O
is a set of typed outputs. The set of filters is described by the ontology F (see Figure 1) that is a part of
the SciVi knowledge base. For each filter this ontology includes the following descriptions:

Name.

Role (whether filter is operator or constant).

Set of inputs and outputs (filter’s interface).

Set of properties (filter’s settings).

Optional: source code of semantic filter’s implementation in the case of nonstandard
filtering algorithm (different interpreted languages like JavaScript, Lua or Python,
runtime compiled shading language GLSL are supported) or alternatively link to the
dynamically loading library.

A=

The term “operator” is a common term to designate actions specified as regular expressions,
compiled functions, and source code written in some programming language.

The fragment of the applied ontology F describing HSV to RGB color space conversion filter is
shown in Figure 2. As shown, this filter is specified as a source code written in GLSL, which may be
called as “hsv2rgb(%1)”.

I source_code "vec3 hsv2rgb(vec3 c) {
anguage vecd K = vec4(1.0,
HSV to RGB 2.0 / 3.0,
— 1.0 / 3.0,
GLSL—‘ has_input is_a 3.0);
\"hstrgb(%l)"\ vec3 p = abs(fract(c.xxx +
e K.xyz) *
has_output 6.0 - K.www);
RGB‘ W‘ return r‘l:\::uz((;.xxx,
\%‘ type mask . clamp(p - K.xxx,
is_a 0.0, 1.0),
c.y);
* 1"‘ [operator‘ 3

Figure 2: Ontological description of HSV to RGB color space conversion filter

2095

2096

Konstantin Ryabinin et al. / Procedia Computer Science 108C (2017) 2090-2099

The filtering stage is divided into two steps: primary filtering on the server-side and secondary
(final) filtering on the client-side. User tunes primary filtering right after adaptation stage. It is
assumed, that the primary filtering settings changes quite rarely (because they require user to connect
to the server Web interface) and therefore serves for common data preprocessing purposes. Final
filtering is set up before the actual visualization on the client-side. To improve the system’s
performance it is recommended to use this filtering to fine-tune the visualization system to the
specifics of particular analytical task being solved.

Tuning of final filtering also includes setting up the output elements, which are the graphical
objects depicted in graphic scenes. The properties of graphical objects and scenes available are
described by the ontology U (see Figure 1). The fragment of this ontology describing the line-based
wireframe object is shown in Figure 3.

- m has_model
hasW— e ——| line_model
has_input
” hasﬁoutpwcutor
Vertices| |Colors
Visual| |line_shader|

N i

|vector 3D-object shader

Figure 3: Ontological description of line-based wireframe object

Such kind of applied ontologies is used to control the pipeline’s behavior and to represent type of
the data passing through the data flow. According to the ontologies F and U, the palette filters,
graphical objects and scenes is automatically generated enabling the user to build data flow diagram.
The comprehensive overview of dataflow principles is presented in (Lee B. & Hudson A.R., 1993).
We implemented special node editor as a part of SciVi to help users to describe the concrete pipeline
by means of data flow diagram within this editor.

The example of the data flow diagram created on the SciVi client-side for phylogenetic tree
rendering is shown in Figure 4. The input data were obtained by bacteria strains DNA sequencing in
Institute of Ecology and Genetics of Microorganisms (Perm, Russia) and processed by the third-party

solver ClustalW (Larkin M., et al., 2007).
Scene
Visual

Combine
Visual
Visual 1
Visual 2

3D Tree Builder Spherical

Vertices
Names

Cartesian
to Spherical

Spherical
Cartesian

Color
Vector

Figure 4: Data flow diagram for phylogenetic tree rendering on the SciVi client side

The node “Tree” represents data source ontological profile generated on the adaptation stage and
obtained from the server. The nodes “Lines” (the ontology fragment describing this node is shown in
Figure 3) and “Text” represent graphical objects to be displayed and the nodes “Combine” and

Konstantin Ryabinin et al. / Procedia Computer Science 108C (2017) 2090-2099

“Scene” represent graphical scene containing the objects; these four nodes are described in ontology
U. There is a set of standard data processing semantic filters in the SciVi ontology F, which can be
combined to construct more complex filters to process the data. In the given example, the nodes “3D
Tree Builder”, “Cartesian to Spherical”, “Spherical to HSV”, “HSV to RGB” (the ontology fragment
describing this node is shown in Figure 2) and “Color” are used as filters to define data transformation
from simple hierarchical representation of bacteria strains to another one enriched with additional
information extracted from their relative positions within phylogenetic tree mapped to color values.

The settings done on the filtering stage described above are stored as a description of the graphical
scene. This description has references to the entries of data source description from ontological profile
and is treated as a scene template that will be filled with actual data on the rendering stage. The data
flow paradigm is chosen as a well-established method to control data transformations. For example,
data flow is used in 3D editors Blender and Maya, however those programs do not use ontology-
driven approach to control the set of filters available. The distinctiveness of our approach is that the
behavior of entire filtering subsystem is driven by the knowledge base and thereby can by modified
and extended without changes of visualization system source code to adapt to the specific of research
goals.

Different visual representations of the same data help scientists to analyze the results of
experiments in more comprehensive way, to reveal the uncertainties in the objects being researched,
etc. Compare, for example, the different rendering results of the same data. In Figure 5a the bacteria
strains joined together in the tree are implied to have descended from a common ancestor. The
semantic filters, which map bacteria genetic characteristics similarity to similar colors, help to increase
phylogenetic diagram visibility, as shown in Figure 5b and Figure 5c. This may be one of the possible
building blocks for insightful analytics of scientific experiments, which enable to turn comprehensive
visibility into a model validation tool.

i

yyyyy

a b c
Figure 5: Simple hierarchy (a), 2D (b) and 3D (c) color enriched representations
of phylogenetic tree rendered in SciVi

Adapting SciVi to solve real-world problems in different research areas we have found out that
extending the visualization system functionality with adaptable ontology-based semantic filters allows
analyzing input data uncertainties in different ways and thereby improving the comprehensiveness of
visual analytic tools. For example, the Figure 6 shows the result of applying semantic filters to
highlight the uncertainties in the bacteria strains DNA sequences. These uncertainties are the genome
parts that failed to be recognized by DNA sequencer.

As a result, semantic filters can be used to validate data source, in particular, the solver. Thereby it
enables to validate also the model the solver is based on. In the given example the highlighting of
uncertainties help researcher to discover the quality of the source biological material as well as the
quality of DNA sequencing soft- and hardware.

2097

2098

Konstantin Ryabinin et al. / Procedia Computer Science 108C (2017) 2090-2099

a-or I (WA TRMIIIT G000 (000000 Ui R I 1 I
a6 TN T T T T R TIT YATT a6 Il I
o T T I T, T T e | 1 i1
awie 1IN WA W T awie
avte |01 N L O) A TN O O] 0 2HIR I T 111]
R T TR T W 0 (I T e 2hie I I I
N T I W AT Filtering Il
2-33¢ JEW 11 IOMUTNINNE) O NIRRT 0 O N (N WA |
T T T TR e R T I
2-32¢ JI 000 WAMHID IO 01O N 1 AT IO DI | I
XUy TR TTN TC T C L 231 I
e TR T O O O T T 231 Il
2-om RN TR 0100 11 BB 0 W S 2w [0 T [N
2 |11 W || NI (NN SRR W e I T I
RN T T T T T T] v I TN I
11 11101000 O D 16 Nl |
- %0 26 am s w3 4z aes 500
) | e c m~ - A T G c [Y
a b

Figure 6: The result of rendering the bacteria strains DNA sequences with no filtering (a)
and after filtering that highlights uncertainties (b).

6 Rendering the Data

The rendering stage uses the graphical scene description to build actual visual objects and the
solver’s GUI description (if any) to integrate interface elements needed to steer the solver into the
SciVi GUI. Rendering stage is described in details in (Ryabinin K. & Chuprina S., Development of
Ontology-Based Multiplatform Adaptive Scientific Visualization System, 2015).

SciVi distinctive feature is adaptively distrusted rendering that ensures high visual quality and
quick response of the visualization system to the user’s commands. Three different rendering modes
are supported: client-side rendering (ensures minimal response latency at the expense of high
requirements to the client’s hardware), distributed rendering (ensures optimal load in case of low
client’s rendering capabilities by performing reasonable data simplification and partial visualization on
the server) and server-side rendering (ensures minimal requirements to the client at the expense of
relatively high response latency). The appropriate rendering mode is chosen automatically according
to client’s performance, server load and network connection speed.

The examples of images rendered in SciVi are demonstrated in Figure 5 and Figure 6.

7 Conclusion

In this paper, we described the features of new version of our scientific visualization system SciVi
2.0 towards visual analytics. The distinctive features of our approach to develop high-level toolset for
comprehensive visual analysis of complex data and model validation are adaptivity based on ontology
engineering techniques and multiplatform portability.

The working process in SciVi is divided into three main stages: adaptation to the third-party data
source (plain text or binary file, database or hardware/software solver), filtering the data obtained from
the data source and rendering the filtered data. The advantage of the approach described is that
developers will be able to adapt the system to their personal preferences and also to extend SciVi
functionality without modifying the system’s core code.

In the future, SciVi can be used to tackle the challenges of Big Data visualization:

1. Ontology-based data primary filtering performed on the SciVi server side with HPC facilities
can reduce the Big Data volume either by sampling the only data pieces the user is interested

Konstantin Ryabinin et al. / Procedia Computer Science 108C (2017) 2090-2099

in, or by data aggregation (averaging samples, finding trend lines, etc.) during rendering
taking into account the personal users preferences.
2. Ontology-based adaptation to different formats of data sources can tackle variety of Big Data.
3. Implicit parallelism of data processing in data flow paradigm can tackle velocity of Big Data:
SciVi server can easily handle the primary filtering stage in parallel.

As described in (Ryabinin K. & Chuprina S., Using Scientific Visualization Tools to Bridge the
Talent Gap, 2015), SciVi has been used to solve different visualization tasks from several application
domains, such as physics, bioinformatics, medicine, etc. Now we already started developing the Big
Data ready version of SciVi based on the principals mentioned above within a remit of the project
titled “Socio-Cognitive Modeling of Social Networks Users Verbal and Non-Verbal Behavior Based
on Machine Learning and Geoinformation Technologies”. The reported study is supported by Ministry
of Education and Science of the Russian Federation, State Assignment Ne 34.1505.2017/PCh
(Research Project of Perm State University, 2017-2019).

Another way of SciVi improvement is building upon the semantic filters ontology the meta-
ontology, describing the constraints of the filters’ combinations. The problem is, that while the
semantic filters ontology defines a set of filters available, there are two types of ambiguity: different
combinations of filters can solve the same task and not every single ordered combination of these
filters is meaningful. The meta-ontology can drive an automatic validation of the filters’ sequences
and help to discover the optimal filter chain.

References

Chuprina S., & Nasraoui O. (2016). Using Ontology-based Adaptable Scientific Visualization and
Cognitive Graphics Tools to Transform Traditional Information Systems Into Intelligent Systems.
Scientific Visualization , 8 (1), 23-44.

Chuprina S., Postanogov 1., & Nasraoui O. (2016). Ontology Based Data Access Methods to Teach
Students to Transform Traditional Information Systems and Simplify Decision Making Process.
Procedia Computer Science , 80, 1801-1811.

Keim D., Andrienko G., Fekete J.-D., Gorg C., Kohlhammer J., & Melangon G. (2008). Visual
Analytics: Definition, Process and Challenges. Information Visualization - Human-Centered Issues
and Perspectives , 154—175.

Larkin M., Blackshields G., Brown N., Chenna R., McGettigan P., McWilliam H., et al. (2007).
ClustalW and ClustalX version 2. Bioinformatics , 23, 2947-2948.

Lee B., & Hudson A.R. (1993). Issues in Dataflow Computing. Advances in Computers , 37, 285—
333.

Rivi M., Calori L., Muscianisi G., & Slavnic V. (2012). In situ visualization: State-of-the-art and
some use cases. Retrieved 01 30, 2017, from PRACE: http://www.prace-ri.eu/IMG/pdf/In-
situ_Visualization_State-of-the-art and Some Use Cases-2.pdf

Ryabinin K., & Chuprina S. (2013). Adaptive Scientific Visualization System for Desktop
Computers and Mobile Devices. Procedia Computer Science , 18, 722-731.

Ryabinin K., & Chuprina S. (2015). Development of Ontology-Based Multiplatform Adaptive
Scientific Visualization System. Journal of Computational Science , 10,370-381.

Ryabinin K., & Chuprina S. (2015). Using Scientific Visualization Tools to Bridge the Talent Gap.
Procedia Computer Science, 51, 1734—-1741.

Ryabinin K., Chuprina S., & Bortnikov A. (2016). Automated Tuning Of Scientific Visualization
Systems To Varying Data Sources. Scientific Visualization , 8 (4), 1-14.

Ryabinin K., Chuprina S., & Bortnikov A. (2016). New Ways to Adapt Scientific Visualization
Systems to Third-Party Solvers. Proceedings of GraphiCon2016 (pp. 126—130). Nizhny Novgorod:
Nizhny Novgorod State University of Architecture and Civil Engineering.

2099

